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I n t r o d u c t i o n  

L e t  ( / 2 , 7 ,  P )  be  a p r o b a b i l i t y  s p a c e  a n d  le t  ~ 0 C ~ i c . . . c ~ n c . . .  be  
a s equence  o f  a - f ie lds  such  t h a t  7 = U~=0 %.  

F o r  a r a n d o m  v a r i a b l e  f e L~(~2, 7 ,  P )  we  shal l  se t  

f ,  = E ( f t ~ , ) ,  Afn = f~ - -  A - I ,  

f *  = m a x  lf, I, f *  = sup  tf~i, 
~ n  n 

s~(f) = v / ~,L~ ~f~, s( f )  = sup s~(f). 

W e  also i n t r o d u c e  t h e  spaces  

~)~p = {f: E ( [ S ( f ) ] ' )  < m} (I .1)  

w i t h  n o r m  

F u r t h e r m o r e ,  we  le t  

w i t h  n o r m * *  

[Iflf% = [E([S(f)]P)] lIP (P ~ 1). 

B M O  = {f:  sup  t i E ( I f  - -  L_~l~l~.)iI~ < ~ }  
n_>l 

(I.2) 

[Ifi[BMO = SUp It ~/~7( I f  - -  fn--1 ]U i~n)ll~. 
a>_I 

* This work was supported by  the Air Force Office of Scientific research under Grant 
A F - ~ O S R  1322-67. 

** Strictly speaking, these functionals are norms in the usual sense only when restricted to 
{f: E(flVo) --= 0}. 
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The reason for this notation lies in the fact that  with an appropriate choice of 
(I2, ~Y, P) and {~},  the spaces in (1.1) can be identified with the classical 
spaces of function theory, while at the same time the space defined in (I.2) can be 
identified with the class of functions of Bounded Mean Oscillation introduced by  
John and Nirenberg [6]. 

This given, Burgess Davis [3] proved the following remarkable inequalities 

1 
:T E(f*) ~ E(S(f)) ~ C2E(f* ) (V f: E(fl::o) ---- 0), (I.4) 

where C1 and C 2 are universal constants. 
More recently, Charles Fefferman [4] showed that  there is a universal constant 

C8 such that  for any two martingales f ,  = E(ft~,, ), Fn = E(F]~n) with f0 = 0, 
we have 

f fnq~,dP] ~ C31lftly(,II~IIBMO, (I.5) 
o 

Actually, in [4] Fefferman only states the corresponding inequality in a classical 
function theoretic setting, however, we understand that  Fefferman had also proved 
(I.5). 

The object of this paper is to show that  both sides of (I.4) follow in a rather 
natural manner from (I.5). 

We hope that  our arguments here, in addition to throwing some new light on 
this matter,  will actually provide what  is perhaps one of the simplest ways of 
establishing the Burgess Davis inequalities. 

For  sake of completeness, at  the end of this paper we shall include a proof of 

(I.5) with C a = V / 2 ,  this will yield (I.4) with C t ~ V ~  and C 2 =  2@%/5-. 
Perhaps it is worthwhile to include some historical remarks, l~irst of all, it was 

Burkholder, Gundy and Silverstein [2] who made it apparent tha t  the ~ spaces 
of classical function theory could be viewed in a most natural manner in a martingale 
setting. 

This has become even more apparent now after some recent work of Getoor and 
Sharpe [5]. 

Burkholder and Gundy [1] conjectured the Burgess Davis inequalities for general 
martingales after proving them for the class of regular martingales*. 

The space BMO as in (I.2) was introduced (after John-Nirenberg's paper) 
by  R. Gundy a few years ago. We also understand that  after learning of Fefferman's 
analogous functional theoretical result, R. Gundy and C. Herz worked together 
on a proof of  (I.g). Indeed, the proof of (I.5) we shall present here is essentially a 
simplified version of Herz's proof we learned from Gundy. 

* For the definition see [1]. 
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In this connection, we wish to acknowledge here our gratefulness to the Mittag- 
Leffler institute for making possible during the summer of 1971 our mathematical 
exchanges with Burkholder, Fefferman and Gundy which provided us not only 
the stimulus but  also the information without which this work could not  have been 
carried out. 

1. Construct ion  of s o m e  BMO f u n c t i o n s  

Our arguments will be based upon two results that  should be of independent 
interest. 

L~,~IA 1.1. Let {0,} 

Then, the function 

is BMO and indeed 

be a sequence of random variables satisfying 

~7=~ [0~! ~ 1. (1.1) 

E([~ -- ~,_ll~l~,) ~_ 5, V n  ~ 1. (1.3) 

Proof. Clearly 

To prove 1.3 set 

~o E L 1 since 

E([~I) _< ~ E(I0~[)_< 1. 

E(0~I ,). 

This given, from (1.2) we get 

~,-1 = E(~lg,-1) ---- ~7-~ E(0~IJ~) + E(~oi~,_I). 
So 

and, using (1.1), we obtain 

E(I ~ - -~ ,_~ i2 [~ , )=  E ( r  2 E ( r  )E(r _1) + 
_ 2 ~  + [E(r  2 < E(r  .) + 3. 

On the other hand, again using (1.1), 

Combining (1.4) and (1.5) we obtain (1.3) as asserted. 
Our next result can be stated as follows: 

(1.4) 

(1.5) 
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L E ~ A  1.2. Let {7~} be a sequence of random variables such that for each ~ > O, 
~(Y~) C ~ and set y* : sup~>o ]Y~I. Then the function 

q~ = ~%~ 7,-1{E(1/7 * t~) -- E(1/Y* ]~-1)} (1.6) 

is BMO and indeed 

E(I~ - -  ~,_al'~lS,) _< 2. (1.7) 

Proof. Set for convenience % -- E(1/y*I~+), A% • % --  % - r  
We then  have 

E(I~ 0 ~ _ ~ 1 2 [ ~ ) = ~ + =  E 2 2U _ = E '  , 2A  2 ~ .  

where 

y* : max  !y,]. 
O<t~<_v 

Now, note  t h a t  

1 < y * _ I E ( 1 / y * ] ~ _ I )  < * - -  _ - -  _ 7 , , _ 1 A ~ .  ~ y * _ ~ E ( 1 / y * [ ~ . )  < 1, 

Thus 

O.s) 

~] .2  * 2 ~_13~v, < 1. (1.9) 

Final ly  

~ N n + I E , . , 2 A  2 7 - E , : , 2 r  2 2 

< ~ : . + I E ,  *2 2 E '  ,2 2 7 - _ _ E , _ , 2  2 7 " _ _  

Let t ing  n - +  + and  combining with  (1.8) and (1.9) our inequal i ty  (1.7) im- 
media te ly  follows. 

These two lemmas provide some ra ther  general methods  of generating BMO 
functions.  In  fact,  i t  can be shown t h a t  all BMO functions can be obtained in the  
manner  given by  L e m m a  1.1. 

Before dosing this section, i t  is worthwhile  to point  out  t h a t  these two lemmas 
are somewhat  related. 

Indeed,  suppose we use L e m m a  1.1 wi th  0~ = ( 7 * -  7"-~)/7" where 7*, 7" 
are defined as in L e m m a  1.2. Then we get t h a t  

is BMO. However,  summat ion  by  parts  yields 

~vn--_ 1 y*_~{E(1/y* I~:) - -  E(1/7* I~:_x)} = 

= E ( r , / y , I ~ ) _ E ( y , o / F , I ~ o ) _ ~ . = ~ E ( 7 * - - 7 * _ I  ) y .  ~Y . (1.1O) 
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So passing to the limit as n--> 0% we obtain 

7 , ~ ,  y*_ , {E(1 /r*[%)  - -  E ( 1 / r * i ~ , _ , ) }  = ' - -  E ( r * / y * l ~ o )  - -  ~ .  (1.11) 

Since any bounded function is clearly BMO, and the BMO norm of the left 
hand side of (1.11) is (as we have seen in the proof of Lemma 1.2) larger than  tha t  
of the function in (1.6), we can see tha t  ~mssentially~> Lemma 1.1 implies Lemma 1.2. 
Unfortunately, it does not seem possible by this approach to derive as good an 
estimate as in (1.7). 

Alternatively, suppose the functions 6, in Lemma 1.1 are of the form 

0, = (Y, - -  ~ ' , - , ) lY* (Yo = O, ~b' , )  c ~,). 

Then the identi ty 

~ ( / r  1 ~-,)}  Y,,=, E(0,1~,) -- E( rn / r* l~)  -- ~ = ,  y,,,{E(1/~*lT,) -- E 1 * 

shows tha t  in this case, Lemma 1.2 essentially implies Lemma 1.1 This seems to 
suggest tha t  perhaps Lemma 1.1 might still remain true if the condition 1.1 is 
slackened to 

sup I~,%, ~,1 -< 1. 
n 

However we shall have to leave this as an open question. 

2. The ~easy~, side 

Although in Burgess Davis paper the proof of the two inequalities is somewhat 
symmetrical in f*  and S(f), historically the left hand side of (I.4) has been easier 
to prove. 

Our proof here should be reminiscent of H. Weyl's ~>n(x),> method. Indeed, set 
for v =  1 , 2 , . . . , n  

E, = {~o:f*_l <f*,f* =f*}. 

We then have, assuming fo = 0 

fz=>.o, f,z.,=r.=, fo, i, 
E v 

where we have set 

Since 

i t  --- f fn ~,:1 E(O,I~,)]dP, 

O~ = XE~ sign (f~). 

~,%110~] = 1, 

(2.1) 
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f rom L e m m a  1.1 and  (I.5) we get  

* ~_ C~E(S,(f)) 

3. The hard side 

The  idea here  is to  s ta r t  f rom the  es t imate  

E(S.(f)) <_ ~r E--~) ~r E(S2.(f)/f *) (3.1) 

which is a simple consequence of  Schwarz 's  inequal i ty .  This given, we use the  
iden t i ty  

S~.(f) ---- f.~ - -  2 ~:=lf,_IAf, 
and wri te  the  r ight  hand  most  t e r m  of  (3.1) in the  fo rm 

E(S2,(f)/f *) = E(fd/f*) -- 2 ~ E(Af~f,_~/f*). 
We thus  get  

E(S.(f)) ~_ ~r %/ E(f*) + 2]Q]. (3.2) 

where 

Q = ~,"=~ E(Af~f,_i/f*) -~ ~,"=~ E(Af,[E(f~_~/f* [Sz,) - -  E(f,_Jf* I~,_0]). 
Since for / ~ v ~ -  1 we have  

E(Af.. f~_~[E(Uf* ) ST,) - -  E(1/f* ]~,-1)]) = 0 

we can wri te  

where  

Q = ff. .dP 
.Q 

= 1%) -- E(1/f* [%-0]. 
So by  L e m m a  1.2 wi th  y, = f ,  and (I.5) we get  

Iq[ -< CaE(S.(f)) %/2. 

Subst i tu t ing  in 3.2 we get  

E(S.( f ) )  ~_ ~ V ~ f * )  -F 2 ~/2 QE(S.(f)) 

and  this is easily seen to y ie ld  

E(S,,(I)) ~ (~/2C3 + ~r + 2C~)E(I*). 
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4. A proot ot Fefferman's inequality 

Le t  f ,  = E( f l~ . ) ,  ~0, = E(~[W,) wi th  f e 9 (  1 and  ~ E BMO. Le t  f0 - -  % ---- 0 
and  set as before  

A L  = L - - L - l ,  /Jc~t~ ~-  qgn - -  ~ n - 1 ,  S = S . ( f )  = ~,,%~ [ A L ]  ~=. 

Note  then  tha t ,  since 

the  p roduc t  f . + .  is in tegrable  V n > 1 and  we have  

f fo f %tiP -~ ~= , %dP. (4.1) 
t2 Q 

A v e r y  clever idea due to  C. Herz  is to  wri te  the  r ight  h an d  side of  4.1 in the  
form 

and  use Sehwarz 's  inequa l i ty  to  obta in  

f f~+flP l ~-- +-A ~'-B (4.2) 

where  

f f 
F2 

As we shall readi ly  see this  leads to  a r em ark ab ly  simple p roof  of  Fe f fe rman ' s  
inequal i ty .  

Indeed,  

= 5."=1 f 
S~ 

S, 

While,  on the  o ther  hand  we have  

f " S B = ~,a,=l  [zJVv] 2 ~ , u = l (  ~* - -  St*-i)dP : 
, 1  

~9 

D 

_ n f _ 2 E - -  ~ / ~ = 1  (S/z - -  S._I)E(Iq~. - -  ~._~3l~.)dP < [[~l[~Mo (S.(f)). 
Q 

(4.3) 

..0 
(4.41 



236 ADRIA:NO ]g.  G A R S I A  

Combining (4.2), (4.3) and (4.4) we obtain 

Y2 

which yields (I.5) with C3 = ~ / 2  as asserted. 

5. Further remarks 

Before closing it migh be good to point out another interesting way of establishing 
the hard side of the Burgess Davis inequalities. 

However,  we shall only give an outline of the arguments here since some of the 
details are quite intricate and the resulting constant is not as good as that  obtai- 
ned in section 3. 

The idea consists in establishing first the converse of Lemma 1.1, namely 

LEPTA 5.1. There is a universal constant c ~ 0 such that each q~ E BMO with 
I]~[IBMO ~ 1 can be written in the form 

with 

--~ ~ 1  E(0~]~) 

This given, when E(f*) ~ ~ and [I~]]BMo ~ 1 we can write 

q~ndP = ~=xE(O~l~)dP = ~=~ A~OflP ~_ 

And this yields 

lfs.  IJ~IIBMO <-- 1 
f2 f~ 

On the other hand, we have 

In  other words 

E(S (f)) -= ~=1 f [Af~]2/S. dP = 
Y2 

= ~=~ f Af,{E(Af~/S~ ]~) - -  E(Af~/S n I~,_~)}dP. 

(5.1) 
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with  

E(S.(f)) = f A dP 
g2 

m = ~.=~{E(ALIS.I .) E(ALIS,,I~._~)} 
Now, it is easy  to show t h a t  the  following result,  somewha t  analogous to t h a t  of  
L e m m a  1.1 holds. 

L E M ~  5.2. Let  

then the funct ion 

is BMO and indeed 

{0,} be a sequence of random variables satisfying 

~0 ~ v = l  { E ( 0 , ] % )  - -  c7 = ~ E(0,1 ~,_1)} 

This given we get  

E(S.(f)) <_ v ~  sup 
]I~ollBM 0 _< 1 

and  combining with (5.1) we f inal ly obta in  

I ffnvdP, 
g~ 

(5.3) 

E ( S , ( f ) )  < %/-ScE(f*~). 

Finally,  we should ment ion  t h a t  L e m m a  5.2 like L e m m a  1.1 has also a converse. 
B u t  we hope to come back  on this ma t t e r  in a for thcoming publication.  
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