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Abstract 

The product ~0(a'~)(tl)~a'D(t2) of two Jacobi functions is expressed as an integral in 
terms of ~(a'Z)(t3) with explicit non-negative kernel, when ~ > fl > -- �89 The resulting 
convolution structure for Jacobi function expansions is studied. For special values of c~ and fl 
the results are known from the theory of symmetric spaces. 

1. Introduction 

This paper  deals wi th  harmonic  analysis for  Jacob i  funct ion  expansions,  which 
was in i t ia ted  in [4]. The funct ions which we call J acob i  funct ions  and  which we 
denote  b y  ~ ,  ~)(t) can be expressed as hypergeomet r ic  funct ions and  are the  non-  
compac t  analogues of  Jacob i  polynomials  P(~'~)(x). Similar to  results of  Gasper  
for  Jacob i  series ([5], [6]) we will present  here results  concerning the  convolut ion  
s t ruc tu re  for  Jacob i  func t ion  expansions.  

The  Four ie r - Jacobi  t r ans fo rm is reduced  to  the  classical Fourier-cosine t r ans fo rm 
in the  case ~ = fl _ !2. The  t r ans fo rm is known as the  (generalized) Mehler- 
t r ans fo rm when  ~ ~ ft. Fo r  cer ta in  discrete values of  ~ and  fi Jacob i  funct ions  
have  an in te rp re ta t ion  as spherical funct ions on non-compac t  symmet r ic  spaces 
of  r a nk  one. In  this group theore t ic  con tex t  all the  results  p resen ted  here  are well 
known,  i.e. the  p roduc t  formula,  the  pos i t iv i ty  and  c o m m u t a t i v i t y  of  the  convolut ion  
product ,  the  phenomenon  of  holomorphic  funct ions in a s tr ip as the  duals of  Le- 
functions,  and  the  s t ruc tu re  of  the  convolut ion  algebra of  Ll-funct ions.  We will 
give the  results  for  all g and  fl such t h a t  a ~ fi ~ - -  �89 only  using ana ly t ic  
methods ,  a l though the  group theore t ic  in te rp re ta t ion  was an  i m p o r t a n t  guide in 
our  research.  

I n  our  opinion Jacob i  funct ions deserve as much  in teres t  as Jacob i  polynomials .  
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They probably constitute the most complicated continuous orthogonal system of 
functions in one variable for which all significant aspects of the classical Fourier 
transform can be generalized in a nice w~y. 

Section 2 of this paper contains some preliminaries. Section 3 deals with properties 
of the Fouricr-Jacobi transform for LP-functions (1 ~ p ~ 2); in particular, the 
injectivity of this transform is proved. The product  formula for Jacobi  functions 
is an important  tool for obtaining a convolution structure. In section 4 we derive 
this product formula, which is analogous to Gelfand's product formula for spherical 
functions on homogeneous spaces. The formula is proved from the integral represen- 
tation for Jacobi  functions by  using ~ new series expansion for the product of two 
Jacobi  functions. This expansion, which generalizes a formula for Jacobi  polynomials 
due to Bateman, may have some interest of its own. In the second part  of section 4 
the product  formula is rewritten in kernel form and an explicit expression is obtained 
for the (non-negative) kernel. The methods used in this section belong to the field 
of classical analysis. 

A functional analytic approach is used again in the last two sections. Section 5 
contains a number of properties of the convolution product. In particular, estimates 
are given for ]If * gt], where f e L P and g e L q. Generalizing a result of Kunze 
and Stein [10] we can improve the well-known classical estimates in certain cases. 
Finally, section 6 deals with the structure of the convolution algebra of Ll-functions. 
I t  turns out that  all the non-zero continuous characters on this Banach-algebra can 
be expressed by  means of Jacobi  functions ~(~.~)tt~, where ~ lies in a certain 
strip in the complex plane. 

In subsequent papers the first author will give a group theoretic interpretation 
for the convolution structure when ~ and fl are half integers. The second author 
will give an elementary proof of the inversion formula for the Fourier-Jacobi trans- 
form. 

The research presented here was part ly done at Inst i tute Mittag-Leffler, Djurs- 
holm, Sweden, where both the authors s tayed during the academic year 1970--71. 
We ~re grateful to professor Lelmart  Carleson for his hospitality. 

2. Preliminaries 

For ~ ~ f l  ~ _  1, for 2 C C  and for t e[0,  ~ )  let the Jacobi  function 
~'~)(t)  (or ~(t))  be defined by  

~ ( t )  = ~(?.~)(t) = ~Fl( �89 + ~ ) ,  �89 - -  i~); ~ + 1; - -  ( sh  t)~), (2 .1)  

where ~ = ~ -~-/? ~- l, and 2F 1 denotes the hypergeometric function (see [3], 
ch. 2)1). I t  follows by  transformation of the hypergeometrio differential equation 
that  ~(~'~)(t) satisfies 

1) I n  [4] the  parameters  p ~  2 ~ - -  2fl a n d  q =  2fl~- 1 were used instead of  :r and  ft. 
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where 

and 

Let  

(% ~ + ~ + Z)~[  ~, ~)(t) = 0, 

%,~ is the differential operator defined by 

% ' / =  A(t)-~ -d[ (t) 

A(t) -= 2 2~ (sh t) 2~+1 (ch t) 2~+1. 

(2.2) 

(2.3) 

(2.4) 

1 
dr ( ,~ ) -  % / ~  [cg)[-2d,~, (2.8) 

2'-'-ixf'(ii)/'(~ + 1) 
c(2) = /~(�89 + it))F(�89 + iX) -- fl)" (2.9) 

The mappings (2.6) and (2.7) extend to an isomorphism between the L2-spaces 
with respect to d,u(t) and dr(2) ([4], prop. 3). 

For ~ = / 3 = - - � 8 9  we have 

~!-�89189 = cos 2t. (2.10) 

This classical case will not  be considered here. I f  either g > /3 ~ -  �89 or 
~ / 3 >  - - �89  then  ~ >  0. The cases f i = - - � 8 9  and ~ / 3  are connected by the  

quadratic t ransformation 
(cq ~ - � 8 9  = ~o~?'~)(t). (2.11) 

where 

is given by 

1 
dl~(t ) -- % / ~  A(t)dt. (2.5) 

I t  was proved in [4] tha t  the mapping f - -+ f^  defined by 

co  

f~(1) = f f(t)r (2.+ 
0 

is a bijection of the space C~, consisting of the even C+-functions f(t) of compact  
support,  onto the space of even, entire, rapidly decreasing functions f^(2) of 
exponential type. I t  was shown tha t  the measure in the inverse mapping 

co  

f(t) = f f^( )vi (2.7) 
0 
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The funct ions ~[~'~)(t) 
or  associated Legendre  funct ions P~(x) b y  

(~+ } t h 2t)/C~,+�89 ,(1) 2~/~(~ + 1)(sh 2t)-~P~(~_l)(Ch 2t) ~[~'~)(t) = ~ ( ,~_~)~c~  ~,,,~-~ = 

(see [3], oh. 3). 
In  the  case of  general ~ and fl we will also use the  nota t ion  

~v~. ~' r ---- R~i~_o)(ch 2t), 

w h e r e  

can be expressed in te rms of  Gegenbauer  functions C~(x) 

(2.12) 

R(2,~)(~ ) = ~F~ - -  ~,, ~ + ~ + ~ + 1; ~ + 1; - -  . 

Note  tha t  for n ---- 0, 1, 2 . . . .  the  f lmction 

is a J acob i  polynomial .  
For  e > fi > - -  �89 there is the  integral representa t ion (Koornwinder  [8], formula 

(4))  

/ /  9)(~'~)(t) = [(ch t) 2 q- (sh t)~r 2 @ sh 2t" r .  cos ~f]�89176 ~f), (2.14) 

r=0 ~p~0 

where 

2r ( .  + 1) 
din(r, ~f) = %/~-/'(:r _ fl)F(fi q- �89 (1 --  r2)~-~-lr2~+l(sin ~f)2adrd~f. (2.15) 

For  the  proof  of  this formula see Askey  [1] and Flens ted-Jensen  [4]. I f  :r = fl or 
fl = �89 then (2.14) degenerates to a single integral. 

Le t  2 = ~ q- i~ E C. In  [4] the  following est imates are p roved  for t E [0, oo) 

lq)z(t)l ~ 9G(t) for all 2 E C, 

Iq)z(t)l ~ 1 for all I~l g e, 

l~x(t)[ _--< K(1 ~- t)e (l'l-o)~ for all 2 e C. 

In  (2.18) K denotes  a posit ive constant  independent  of  ~. 

(2 .16)  

(2.17) 

(2.1S) 

LEMMA 2.1. q)~ is bounded i f  and only i f  [~I <-- ~. 

Pro@ The condit ion is necessary b y  (2.17). Assume ~] > ~ and tha t  ~ is 
bounded.  F r o m  the  discussion in [4], section 2.1. of the  a sympto t i c  behaviour  of  
solutions to the  differential equat ion  (2.2), it  is seen t ha t  ~0x and ~bx are l inearly 
dependent .  B u t  this contradicts  the  fact  t ha t  the  Wronski  de te rminant  
W(qs~, r = --  2i2c(2) is different f rom zero, ([4], proof  of  lemma 8). Q.e.d. 
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3. The Fourier-Jacobi transform of LP-spaces 

Let 1 ~ p  < 2  and take q such tha t  l / p +  l / q =  1. Let D e be the strip 
in the complex 4-plane defined by 

{ [ D e =  ~ = ~ + i ~ E C  [~l < -- 1 9 �9 

Note tha t  by (5.18) ~0zELq(d#) for all 2 C D  e. More precisely, lIqzIIq is uni- 
formly bounded in any closed strip contained in D e and, by (2.17), [[~.lI~ ----- 1 
for all 2 in the closure D1 of D 1. 

LEPTA 3.1..Let 1 ~ p  < 2 ,  
defined and holomorphic in D e, and for all 2 E D e 

[f^(~)l ~ IIfl[/[~jlq. 

In  Tarticular i f  f E Ll(d#), f^(4) is continuous also on .D 1, 

lip + 1/q : 1 and f E L. P(d#), then f^(2) is well 

[ff(4)I =< [ff[I~. 

(3.1) 

and for all ~ E D 1 

(3.5) 

Proof. Formulas (3.1) and (3.2) are proved by using HSlder's inequality. Observe 
thai  ~x(t) is holomorphie in 2. Hence, by applying Fubini's theorem and Cauehy's 
formula we conclude tha t  

1 f f^(4) 

for all 40 E De, where the contour is taken around 40 inside D e. Thus it follows 
tha t  f^(4) is holomorphie in Dp. The rest is now clear. Q.e.d. 

Let M --~ M([0, oo)) 
define 7 ̂  by 

be the set of bounded mesures on 

co 

= f 
0 

[0, oo). For y E M  

TIIEORESI 3.2. The Fourier-Jaeobi transform is injective on Le(d#) for 1 _<. p <= 2, 
and likewise on M. 

Proof. For p = 2 the result follows from the L2-isomorphism mentioned in 
section 2. So assume 1 ~ p < 2. Take,q such tha t  1/p + 1/q = 1. For f E LP(d/~) 
and g E Co ~ we have the inequalities 
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and 

oo 

I(f, g)[ = ff(t)-~)@(t) ~ ItflIpl[glIq 
0 

oo 

g^)l = ff^(~)a^(~)d~(~) < tlf^ll~llg^llx ~ c o n s t . .  Ilfll~llg^ll~, lff  ̂ , 
0 

Therefore the mappings  f--> (f, g) and  f---> (f^, g^) are continuous funct ionals  on 
s P. Now (f, g) -=-- (f^, g^) for all f E L P gl L 2 and  by  cont inu i ty  for all f E L P. 
Assume t h a t  f E L P and  t h a t  f ^ =  0, then  for all g E C~ we have 
( f ,g )  = ( f ^ , g ^ ) =  0 and  therefore f = 0 .  

Le t  7 E M then  by  the methods  of l emma 3.1, y^(~) is bounded in D 1 and  
holomorphic in D 1. Assume t h a t  y ̂  = 0. By  Fubini ' s  theorem we have for f E C~. 

oo oo 

~ ~ ~ 0 ~  

0 0 

therefore ~, = O. Q.e.d. 

4. The product formula for Jacobi functions 

The first  par t  of this section contains a new proof  of the following theorem. 

THEOREM 4.1. Jacobi funct ions R (~' ~)(x) satisfy the product formula 

1 

R (~, ~)(x)R (~' ~)(u~ = f f l  .R (~' ~)ll-(x 1) . . . . . ~ ,  j j  . ,~, + l ) ( y +  + 

0 0 

-~(x --  1)(y --  1)r ~ + ~ ( x  ~ --  1)(y ~ --  1) r cos yJ --  1) din(r, yJ), 

where x ~ 1, 
is used. 

(4.1) 

y ~ 1, # E C, o:> fl > --  ~. The notation f rom (2.13) and (2.15) 

In  the  second par t  of this section we will rewrite formula (4.1) in the so-called 
kernel form 

oo 

q~x(tl)q~z(t2) = f ~(t3)K(tl ,  t2, t3)d#(ts) , (4.2) 

0 

where the no ta t ion  from (2.1) and  (2.5) is used. The kernel K will be obta ined in 
an expliei~ way.  
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I t  was pointed out in [8], where formula (4.1) first occured, that  (4.1) can be 
proved by analytic continuation with respect to # if the formula is known for 
/t ~-- 0, i, 2 , . . .  For these values of /t the product formula was obtained in [8] 
as a corollary to the addition formula for Jaeobi polynomials. In  a forthcoming 
paper [9] the product formula for Jacobi polynomials is directly proved from the 
Laplace type integral representation by using an identity for J~cobi polynomials 
due to Bateman. Here a similar proof of (4.1) will be given for general complex /~. 

From (2.14) and (2.12) we obtain 

1 n 

= f f + + + lrcos f]'dm(r, f), (4.3) 
0 0 

where x ~ l ,  /~EC, ~ > f l ~  --�89 I t  follows from (4.3) tha t  

(x + ~1r (~,~) (1 + xy] 
Y) '~ \ x -[- y /  =: (4.4) 

1 re 

f f [ � 8 9  + 1)(y �89 1)(y 1)r 2 -~ -- 1)(y 2 --  1)" cos ~f), § 1) V(x~ § y,]!*dm(r, 

0 o 

where x ~  1, y ~  1. 
In  our proof formula (4.1) will be derived from (4.4) by applying a generalization 

of Bateman's  formula 

R~ ~, ~)(x)R~ ~, ~)(y) = ~ a~(x + y)~_~' ~) \ X + /" 
k=O Y 

THEOREM 4.2. Let x ~ 1, 
Then the expansion 

y ~= l, x r y, 2# ~- ~ non-integer, ~ ~= fl ~= -- �89 

n=0 \ x - t - y ~  + 
(4.5) 

+ ~ 0 B n \  2 ] - ' -~-nkx + y / 

is valid, where the coefficients An and B~ are determined from the case y =: 1, i.e. 

| 1 7 4  (----2--)x~-i . . . . . . .  . . 

The expansion (4.6) is obtained from [3], w 2.10 (3), which is, in fact, the same 
as the formula 

in [4]. The coefficients in (4.6) are 
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1~(-  /~ + n ) r ( -  ~ - [3 + n) 
A,, = C .  F ( - -  2# --  0 q- 1 q- n)F(1 q- n) (4.7) 

and  

where 

B , , - - - - C -  / ' ( 2 # q - e q -  I q-n)F(1 q-n) ' (4.8) 

~F(:r + 1) 
C = sin Qr(2# + ~))F(# + r162 + 1)/ '(# + e )F ( - - /~ )F ( - -  # --  fl)" (4.9) 

The expansion (4.6) is valid and  convergent for non-ineteger values of 2# q- 
and  for all x E C  such t h a t  [x-k 1 [ >  2 and  [ a r g ( x - k  1)[ <z~. 

Proof of theorem 4.1. Suppose f irst  t h a t  x r y and  2# if- ~ non-integer. Pu t t ing  
x - ~ c h t  1 and  y = c h t  2 we have 

l < c h ( t  1 - t 2 ) = x y - - % / @ 2 -  1)(y2_ 1) G 

�89 -k 1)(y -k 1) + �89 --  1)(y --  1)r 2 -k %/(x 2 --  1)(Y ~ --  1).  r .  cos ~f --  1 

<= xy -}- ~v: @2 _ 1)(y2 _ 1) = oh (t 1 q- t2) 

for 0_<_r <~ 1 and  0 G ~ p ~ z .  Hence the  i n t e g r a n d i n  the r ight  hand  side of 
(4.1) can be expanded by  using (4.6), and  summat ion  and  integrat ion m a y  be 
in terchanged because the series converges uni formly  in r and % Next ,  formula  
(4.4) can be applied to each te rm and  the result ing series is the r ight  hand  side of (4.5). 
When  x = y or 2/~ -k ~ is integer, formula  (4.1) is proved by  cont inui ty .  Q.e.d. 

Remark. For  ~ =- fi or fi = --  �89 formula (4.1) degenerates to a single integral. 

We still have to prove theorem 4.2. This will be done in several steps. Firs t  
observe t h a t  the funct ion R~, ~' ~)(z), defined by  (2.13), is holomorphie in the complex 
z-plane wi th  cut (--  0% --  1] and  satisfies the differential equat ion 

with 

(D z q-/x(# q- ~o))R(~ ~' ~)(z) = O 

d ~ d 
D ~ =  ( 1 - - z  2) ~ z  2 @ (f l - -  ~ - -  (~-{- f iq-  2)z) d~" 

(4.10) 

(4.11) 

The funct ion F(z, w ) =  R(~'Z)(z)R(~"Z)(w~ is clearly a solution of the part ial  /~ x--J  p x t 

differential  equat ion 

(D~ -- D)F(z ,  w) = O. (4.12) 
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L E M ~  4.3. The function 

,,R(~,~)( 1 + zw I 
F(~, w) = (z + w) . \ z ~ - /  

is a solution of (4.12). 

Proof. The equat ion (4.12) t ransforms under  the subst i tu t ion 

into 

1 + z w  
U - -  V ~ Z ~ - W  

Z -~ W 

D ~ + v  ~ + ( ~ + / 5 + 2 ) V ~ - v  F(z,w)  ~ 0  

and the funct ion v'R(,~'a)(u) is a solution of this  equation.  Q.e.d. 

L~MMA 4.4. Let _F(z, w) be a solution of (4.12), analytic in a neighbourhood of 
(z 0, 1). Then F(z, w) is uniquely determined by its values F(z, 1) for z in a neigh- 
bourhood of z o. 

Proof. Expand ing  the  funct ion F(z, w) as F(z, w) = ~,2~o Fk(z)( w --  1) ~ we 
obtain t h a t  

(D= -- D~o)F(z, w) = 

= ~ = 0  (w --  1)k[(D= + k(k + Q))Fk(z) + 2(k + 1)(k + ~ + 1)Fk+~(z)] = 0. 

Hence all functions Fk(z) can be expressed in terms of Fo(Z ) = F(z, 1) by  means 
of  differential recurrence relations (for ~ # --  1, --  2, --  3 , . . . ) .  Q.e.d. 

L ~ M ~ 4 . 5 .  Let ~ >  f i >  --�89 For every x ~  1, s 1 >  O, e 2 >  0 there existsa 
5 > 0 such that the following holds: 

I f  z E G  J z - - x [ < 6 ,  # ~ + i ~ 7 ,  ~ 0  then 

IR(~'Z)(z)] ~ (x + ~ / x  2 --  1)~e *I~+~I'E. (4.13) 

(This l emma is a k ind  of extension of the est imate (2.18) to complex values of t.) 

Proof. Formula  (4.3) can be wr i t ten  as 

1 

0 0 

(4.14) 

with z ~  1 and 
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A(z; r, ~) = �89 + 1) + �89 - -  1)r~ + V / z  2 - -  1 r cos ~. 

For  z E C ,  0 ~ r ~ < l ,  0 = < W ~  the funct ion A ( z ; r , ~ )  is continuous and  

x - - % / x 2 - - 1 g A ( x ; r , w ) ~ x + A / ~ x ~ - - I  for x__>l.  

Hence, fo reve ry  x ~ 1, s~ > 0, s~ > O there exists a ~ > 0 such t h a t  the following 
holds: 

I f  z E C  and [ z - - x  I < ~  then  

e - % x  - V~x~ - 1) < IA(z; r, ~)1 < e~(x + V /  x ~ - -  1) (4.15) 

and 

[arg A(z; r, ~)l < s2. 

The funct ion A(z; r, y~) is two-valued for z around 1, bu t  this branching s ingular i ty  
is removed by  the  integrat ion in (4.14) wi th  respect to F. Choosing x, e~, s 2, 
the  same as above we conclude t h a t  bo th  the left  hand  side and  the r ight  hand  side 
of (4.14) are analyt ic  in z for z E C and  [z --  x] < 5. B y  analyt ic  cont inuat ion 
formula (4.14) holds for these values of z. The est imate  (4.13) is f inal ly  obta ined 
f rom (4.14) and (4.15). Q.e.d. 

LEMMA 4.6. Let F(x ,  y) denote the right hand side of (4.5). I f  x >= 1, y _>_ 1, x r y, 
then the series represented by F(z, w)(z, w complex) converges absolutely and uniformly 
in a certain neighbourhood of (x, y). 

Proof. I t  follows from (4.7) and  (4.8) t h a t  A n ~ O(n ~-I) and B n = O(n ~-~) 
for n--> oo (see [3], w 1.18 (4)). 

Choose s >  0. There exists a ~ >  0 such t h a t  for z E C ,  w e t 3 ,  I z - - x [  < 5 ,  
J w - - y ]  < 5, n ~ : R e ( / , +  Q) we have 

R(~,,~)( 1 § zw I --_ 
" - ~  

(see lemma 4.5) and  

n - " - ~ \ z  + w ] = + ~ \ x  + y / - -  1 

Ke en 
= \x + y /  

Here K is a certain positive constant .  Combining the three est imates we obtain 
t ha t  for n - +  ~ :  

[ z + w \  .'~-n / 1  + z w \  

uniformly  in z and  w for 

l')n) 
(x + y)2 

l z - x l  < 5 ,  [ w - y [  < 5 -  Observe t h a t  for x e e y  
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2(1 + xy) + 2 %/(x  ~ - -  1)(y a --  1) 

(x § y)~ 
2(1 -~ xy) -~ 2 %/ (x 2 - -  1)(y 2 --  1) 

2(1 ~- xy)  + (x 2 - -  1) -~ (y2 _ 1) 

for 

Choosing s small enough we find: 

t 2 / " - ~ \ z §  

n ~ ~ ,  ]z - -  xi < ~(s), tw - -  y] < ~(e). 
A similar es t imate  holds for 

/z + w\  - ' -~-~  , /1 + zw\ 
Q.e.d. 

Proof  of theorem 4.2. Le t  F(x,  y) denote the r ight  hand  side of (4.5) and  G(x, y) 
the left  hand  side. :By lemma 4.6 the funct ion F(x,  y) is analyt ic  for x >__ 1, y ~ 1, 
x r y. Since P(z, w) is a locally uniform convergent sum of analyt ic  solutions of 
(4.12) (cf. l emma 4.3), F satisfies the equat ion (D~ - -  JD~)F(z, w) ~ 0 itself. The 
funct ion G(z, w) is clearly an  analyt ic  solution of the same differential  equat ion 
and  /7(x, 1) ~ G(x, 1) (cf. formula (4.6)). Hence, by  lemma (4.4) and  by  using 
analyt ic  cont inuat ion wi th  respect to y we conclude t h a t  F(x,  y) -~ G(x, y) for 
x > y ~  1, and  also for y >  x ~ l  because of the symmet ry .  Q.e.d. 

.Remark. Le t  Q(~,~)(x) be a second solution of (4.10) wi th  expansion 

1 - ~ x .  

I t  follows f rom the  proof  of  theorems 4.1 and  4.2 t h a t  for x > y ~ 1 

q<2' = . = 0 A :  t z + u / = 

// = Q(~'z)(�89 + 1)(y -~ 1) -t- �89 --  1)(y - -  1)r 2 ~- 

0 0 

%/(x 2 --  1)(y ~ --  1)r cos ~p --  1)dm(r, ~p). 

We nex t  come to the  second par t  of  this  section and  will derive an  explicit 
expression for the  kernel K( t  1, t2, t3) in formula (4.2). Le t  f (ch  2t) be a funct ion 
which is absolutely integrable in every f ini te  t-interval. Le t  the  subst i tu t ion 
(r, ~0) --> (t3, Z) be defined b y  

ch t a e ~- ---- ch t 1 ch t 2 ~ sh t 1 sh t~ re~'% 
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Then b y  making this subs t i tu t ion  of  the  integrat ion variables,  it follows easily 
(cf. [9], section 5) t ha t  

1 z 

f f/(2[(ch tx)2(ch t2) 2 ~- (sh ~l)2(sh t2)2r 2 -@ 
o 0 (4 .16 )  

co 

q- 2 sh t 1 eh tx sh t 2 eh tar cos ~o] - -  1)din(r, ~,) = ff(ch 24)K( t  1, t~, t3)d~(t3), 

0 

K(tl ,  4, 4) = 0 

and for ] t l - - 4 ]  < t a < t l ~ 4  

2(3/2)-2eF(05 q -  1)  

K(t l ,  4, 4) = _P(o~ - -  fl)F(fl q- �89 (sh t I sh  t 2 sh  t3) -2a"  (4.17) 

f ( 1  - -  (oh tx) 2 - -  (oh 4) ~ - -  (ch ta) 2 -}- 2 eh ch t 2 eh 3 t cos Z)~ -'8-1 �9 (sin g)2~d;r tl 

0 

Here  ( x ) + = x  for x >  0 and ( x ) + = O  for x < O .  Taking 

~(a,  8) . . 
f (ch  2t) = ~v~,(t) = ~(~.-~,)tcn 2t) 

we ob ta in  formula (4.2) b y  subs t i tu t ing  (4.16) for the  right hand  side of  (4.1) wi th  
~t = � 8 9  e). Thus  we have  an explicit  expression for the  kernel K ( q ,  t2, 4) 
in (4.2). 

The kernel K can be expressed as a hypergeometr ie  funct ion (see Gasper [6] 
and  Koornwinder  [9]). Wri t ing 

(oh tl) ~ -~ (ch t2) ~ q- (eh 4) 2 - -  1 
B = ( 4 . 1 s )  

2 ch t 1 ch t 2 eh t 3 

we have  for I t1 - -41  < 4 < t l + t 2  (i.e. IBI < 1 ) :  

2�89176 + 1)(oh t 1 ch 4 eh 4)  ~ - ~ - 1  

K(tx, 4, ta) = 1~(~ + �89 t 1 sh 4 sh t3) 2c~ 
(4.19) 

" ( 1 -  B2)a-�89 q-/J, ~ - / ~ ;  ~ q-�89 l - - B )  
2 " 

The funct ion K(tx, 4, t3) is non-negative,  and it  is symmet r i c  in the  three 
variables.  I t  is a C~-funetion,  singular or identical ly zero according to  whether  
the  sum of  two of the  variables  is greater,  equal  to or less than  the th i rd  variable.  
Since ~%(t) = 1 we conclude f rom (4.2) tha t  

where for 4 ~ ([4 - -  t2l, tl -~- t2) 
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oo 

f .K(tl, t2, ta)dtt(t3) = 1. (4.20} 

0 

K(t 1, t~, ta) is no t  well-defined as a funct ion if  one of the variables is zero; bu t  in 
this case K(0, t2, t3) can be considered as a distr ibution and  it  follows f rom (4.16) 
t h a t  

f f(t3)K(O, t2, t3ld#(tz) = f(t2). (4.21) 

0 

In  section 5 we shall use the kernel K to define a convolution s t ructure  associated 
with  the Fourier-Jaeobi  t ransform. We shall need the following lemma. 

LEMMA 4.7. The flenction 
oo 

H(t 1, t 2, 8 1 ,  82 )  = f K(t. 
0 

is well-defined i f  no two of the numbers It 1 - -  t~l, tl ~- t~, Is1 --  s2[ , s 1 ~- s 2 are equal. 
Moreover H is symmetric in the four variables. 

Proof. I t  follows from (4.20) t ha t  K(tl, 6, ~)K(sl, se, 1:) is integrable wi th  reslSect 
to d/~(v) i f  K(t  1, t~, T) and K(sl, s~, ~) do not  have a s ingular i ty  in common. 
Hence the funct ion H(tl, t2, sl, s2) is well-defined. Using Fubini ' s  theorem, and  
formula (4.2) we f ind t h a t  

H ( . ,  h ,  sl,  = 

and similar results hold for the  Fourier-Jacobi  t ransform in the other variables. 
B y  applying theorem 3.2 i t  is proved t h a t  the funct ion H(tl, t2, sl, s2) is sym- 

metric. Q.e.d. 

5. The convolution product 

DEFINITION 5.1. Let f be a suitable function on [0, oo) and let x 6 [0, ~ ) .  The 
generalized t ransla t ion operat ion Tx is defined by 

oo 

(Txf)(y) = / ' f ( z )K(x ,  y, z)dtt(z). (5.1} 
L ! 

0 

Obviously T J ( y )  = T J ( x ) .  
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LEM~rA 5.2. For 1 <~p <= ~), f E Le(d#) and x >- O 

IITJI[~, ~ l[fl[~. (5.2) 

Proof. :For p = o0 (5.2) follows from (4.16). :For 1 ~ :p < m we use HSlder 's  
inequal i ty  for the bounded measure .K(x, y, z)d#(z) and we obtain 

0 0 

DEFINITION 5.3. _For suitable functions f and g the convolution product  f �9 g 
is defined by 

0 0 0 

The following properties of the convolution product  are easily proved from 
results in section 4 on the funct ions K and  H: 

(i) f , g = g , f ,  
(ii) ( f  �9 g) , h = f �9 (g �9 h), (5.4) 

(iii) Is f ~ 0  and  g ~ 0  then  f , g ~ 0 ,  
(iv) ( f ,  g)^(k) = f^(k)g^(2) 

whenever these Fourier-Jaeobi  t ransforms are well-defined. 

THEOREM 5.4. Lei p, q, r be such that 1 <= p, q, r <~ ~ and 1/1o -~ 1/q --  1 = 1/r. 
For f C LP(d#) and g E Lq(d~) f �9 g is a well-defined element in Lr(d#) and 

]rf * gll, < ]lfl]vl[gI]~. (5.5) 

Proof. (The idea of the  proof  is f rom [11], p. 278). For  r = 0o the  result  follows 
from (5.2) and  l~ISlder's inequali ty.  

Assume r < ~ ,  which implies p, q < ~ .  Fi rs t  t ake  f ,  g E C o (continuous 
of compact  support),  and  let s = : p ( 1 -  I/q) and  1/q + 1 /q '=  1. Then 0 G s < 1 
and  s q ' = p .  We assume s >  0 or equivalent ly  q >  1. (In the case s = 0  the  
proof  is almost  the same except  for some obvious modifications.)  Using (5.2) and  
HSlder 's  inequal i ty  wo f ind  

f ]q/q, 
[f �9 g(x)]q <= [Txf(y) ](1-,)qig(y)[qd#(y) �9 Txf(y) ~g d#(y) < 

0 o (5.6) 
oo 

<---- I]f]lT" f hy(x)dlu(Y), 
0 
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where by(x) = ITxf(y)[(x-,)q[g(y)jq. 
Clearly the mapping y --> hx is continuous and of compact support  from [0, oo) 

into 7L~(#) for 1 _< g < oo. Using vector integration we get 
09 00 

0 0 

After taking 7L~-norms in both sides of (5.6) if follows by  some calculations that  

This inequality is reduced to (5.5) by  the substitution ~ = r/q (observe that  
( 1 -  s)r-~ p). Now the theorem is proved by  using the fact that  C o is dense 
in L~(dtt) for 1 ~ 7 < oo. Q.e.d. 

We can get the following improved inequalities for the convolution. In the 
special case ~ = fi = 0 theorem 5.5 was proved by  Kunze and Stein [10]. 

TI~EOR~I 5.5. Let 1 < p < 2 and lip ~ 1/q = 1. There exists a constant 
Ap > 0 such that 

(i) I f  f E 7L2(dtt ) and g E 7LP(d#) then f �9 g C L2(dtt) and 

I l l  * g[12 < A~l l f l l~ l lg l l~ ,  

(ii) I f  f ,  g E L2(d#) then f �9 g E Lq(dtt) and 

Ill �9 gila < A~ilfll=lig]12. 

Proof. (i) Let  f, g E C~ ~ then by  lemma 3.1 and formula (2.16) 

Ilf*glI~ Ill  ̂  g^ll~ <llg^ll~llf^Ill < : = : = �9 = = /Ig l [~ l l~o l lqt l f l I~ .  

Since C~ ~ is dense in 7L2 and 7LP the result follows with Ap-= llq011u. 
(ii) Let  k E 7LP(d/~) and J, g E C o then from (i) 

ff lfl(x)d/t(x) < Ilgll  II ilct �9 Ill  II~,tl=A,~lllcllellfll~. g(x)k(x)d/z(x) =< =< 

Taking supremum over 

and the result follows. 

COROLnARY 5.6. Let 
7Let r be determined by 

{k E LP(d#)IHk]I~ ~ 1} we ge t  

JIf * gl[q ~ A~ltflI21Igll~ 

lgpi<2, i ~P2  < 2  
1/p l  + 1/p2 - 1 = 1/r.  

g E LP~(d#). Then f ,  g E LS(d/,) for all s E [2, r]. 

Q . e . d .  

such that l ip 1 + 1/p~ < 3/2. 
Suppose that f E LPl(d#) and 
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Proof. Clearly L 2f) L ' C L "  for s E [ 2 ,  r]. B y  theorem 5.4 f , g C L ' .  I t  
remains to prove t h a t  f * g E L 2. Wri te  g = gl ~- g~ where gl = g " l(Igl ~_ ~) 
and  g2----g'l(Igl<l). Then g l E L  ~ f l L  p' and  g ~ E L  P~AL ~ C L  ~. By  theorem 5.4 
f , g ~ E L  p~NL ~ C L  :, by  theorem 5.5 (i) f , g ~ e L  ~. Thus 

f *g = f * g l  + f *g~ eL~. Q.e.d. 

6. The Banaeh algebra (L~(d#), ,) 

I t  is clear from theorem 5.4 t h a t  (L~(d#), ,)  is a commuta t ive  Banach algebra. 
F r o m  (5.4) and  (3.2) i t  is seen t h a t  the  functional  Z~ defined by  

Z~.(f) = f^(4) 

is a continuous character  on Ll(d/t) for all 4 E/~1 = {~ -l- i~ E C I [U I <:" ~}. 
Theorem 3.2 implies t ha t  Ll(dtt) is semisimple. Obviously complex conjugat ion 

is an  isometric involution. I t  was shown in [4], t h a t  Ll(d#) has an approximate  
ident i ty .  

LE~MA 6.1. Let f ~ C ~ and a) = w~. ~ then 

(c% --  %)TJ(y)  = O. 

Proof. Since the kernel K(x, y, z), i f  considered as a funct ion of z, has compact  
support  i t  is easily seen t h a t  i t  is sufficient to prove the lemma for f E C~. Using 
(4.2) we can write for such f 

co  

TJ(y )  ff^(4)  ( )q~ (y)d (4) 

0 

therefore 
o9 

c%Tj(y) = % T J ( y )  : f -  (4 2 + Q2)f^(4)~z(x)~.(y)d~(4). 
0 

Q.e.d. 

L ~ A  6.2. Every non-zero continuous character on 

z(f) = f^(4) 

for some 4 E f)l. 

(Ll(d#), ,) has the form 

Proof. (The idea of  the proof is t aken  from [7], p. 400.) Assume Z r 0 is a 
continuous character  on Ll(d#). Since the dual  space of L 1 is L ~, there exists a 

funct ion g e L~(d#) such t h a t  z ( f )  ---- fof(X)g(x)d~(x). In  view of the iden t i ty  
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z(fl *f2) = )~(fl))C(f2) it follows by a straight-forward calculation tha t  for almost 
all x, y 

r 

g(x)g(y) = f g(z)K(x, y, z)d/~(z) =- T~g(y). (6.1) 

0 

Choose ~0 E C~ such tha t  f o  g(x)F(x)d#(x) = c V= O. Then for almost all y 
we get 

oo oo 

1/ f 1 g(Y) = c g(z) ~(x)K(x ,  y, z)d#(x)d#(z) = c (g * ~f)(Y)" 
0 0 

I t  follows easily from the definition of the convolution tha t  g �9 ~ is a C~-function. 
Thus we can assume tha t  g is a C~-function. 

From (6.1) it is seen tha t  g(0) = 1. Lemma 6.1 applied to (6.1) gives 

(~g)(x)g(y) --g(x)(~og)(y). 

:By taking y = 0 it is clear that  g is an eigenfunetion of co with eigenvalue cog(0). 
Therefore g(x) = q)~(x) for some 2 E C. Since g is bounded it follows from lemma 
2.1 tha t  2 E D 1. Q.e.d. 

T~EOR]~3{ 6.3. (Ll(d[~), .)  is a semisimple, commutative Banach algebra with 
involution and approximate identity. 

The maximal  ideal space is D 1 with 2 and --  ,~ identified. The set of seIf-adjoint 
maximal  ideals are given by {4 e C12 ~ -}- ~ ~ 0}, with ,~ and ~ ~ identified. 

Proof. The only thing left to be proved is tha t  for 2 E b 1 ~6 is self-adjoint if 
and only if 42 + ~2 _> 0. But  this follows easily from the fact tha t  ~;. is real if 
and only if 42 is real. Q.e.d. 

COROLLARY 6.4. The funct ion ~ ( x )  for 2 E (~ is characterized by the integral 
equation (6.I). 

This follows from the proof of lemma 6.2. 

Remark.  I t  was pointed out by H. Chdbli in [2], tha t  Weinberger's maximum 
property for differential equations [12] can be applied in order to prove the positivity 
of the generalized translation operation (5.1). 
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