Endomorphisms of finetely generated projective modules over a commutative ring

GERT ALMKVIST*

University of California, Berkeley, U.S.A. and University of Lund, Sweden

Introduction

The origin of this paper is a misprint (?) in Bourbaki ([4], p. 156, Exercise 13 d). There it is stated that if f is a 2×2 -matrix with entries in a commutative ring and $f^2 = 0$ then $(\operatorname{Tr} f)^4 = 0$ and 4 is the smallest integer with this property. Using the Cayley-Hamilton theorem we get $f^2 - af + b1 = 0$ where $a = \operatorname{Tr} f$ and $b = \det f$. Noting that $f^2 = 0$ and taking traces we get $a \cdot \operatorname{Tr} f = a^2 = 2b$. Multiplying the first equation by f gives bf = 0 which implies $b \cdot \operatorname{Tr} f = ba = 0$. Hence $a^3 = 2ab = 0$ so 3 and not 4 is the smallest integer above. Experimenting with small m and n one soon makes the conjecture: If f is an $n \times n$ -matrix with $f^{m+1} = 0$ then $(\operatorname{Tr} f)^{mn+1} = 0$. This is proved in a somewhat more general setting in 1.7 using exterior algebra.

In Section 1 the characteristic polynomial $\lambda_t(f)$ is defined for an endomorphism $f: P \to P$ where P is a finitely generated projective A-module (A is a commutative ring with 1). If P is free then $\lambda_t(f) = \det(1 + tf)$. The exponential trace formula (in case A contains \mathbf{Q})

$$\lambda_i(f) = \exp\left(-\sum_{1}^{\infty} \frac{\operatorname{Tr}(f^i)}{i} (-t)^i\right)$$

connects $\lambda_i(f)$ with the traces of the powers of f.

Various computations of $\lambda_t(f)$ are made in Section 2. By the isomorphism $\operatorname{End}_A(P) \to P^* \otimes_A P$ where $P^* = \operatorname{Hom}_A(P, A)$ every $f: P \to P$ corresponds to a tensor $\sum_i x_i^* \otimes x_i$ with $x_i^* \in P^*$, $x_i \in P$. Let M(f) be the matrix with entries $a_{ij} = \langle x_i^*, x_j \rangle$. Then $\lambda_t(f) = \det(1 + tM(f))$. Even the computation of $\lambda_t(1_P)$

^{*} This research was partly supported by the Swedish Natural Science Foundation.

where 1_P is the identity map is not quite trivial. The result is $\lambda_i(1_P) = \sum_{0}^{n} e_i(1+t)^i$ where the e_i :s are the idempotents given by Ann $\Lambda^i P = (e_0 + e_1 + \ldots + e_{i-1})A$.

In Section 3 the behaviour of $\lambda_i(f)$ under change of rings and taking duals is studied. Some attempts are made to connect the polynomials $\lambda_i(f)$, $\lambda_i(g)$ and $\lambda_i(f \otimes g)$. In the multiplicative group $\tilde{A} = \{1 + a_1t + a_2t^2 + \ldots; a_i \in A\}$ of formal power series with constant term 1 one can define a *-multiplication such that $\lambda_i(f \otimes g) = \lambda_i(f) * \lambda_i(g)$. Then \tilde{A} becomes a ring (with ordinary multiplication as addition).

A formula for computing $\lambda_i(f)$ in terms of the minimal polynomial of f and some of the Tr (f^i) :s is given in Section 4.

In Section 5 the definition of $\lambda_{\iota}(f)$ is extended to $f: M \to M$ where M is an A-module having a finite resolution of finitely generated projective modules. Some of the results in Section 1 can be generalized to this case. Furthermore $\lambda_{\iota}(f)$ is defined for f = chain map of complexes (or map of graded A-modules).

Section 6 contains an attempt to classify all endomorphism of finitely generated projective A-modules, i.e. to compute the K-group K_0 (End $\mathcal{P}(A)$). The characteristic polynomial $\lambda_i(f)$ is sometimes a good enough invariant. This is the case if A is a PID or A = K[X, Y] where K is a field or A is a regular local ring of dimension at most two. Then K_0 (End $\mathcal{P}(A)$) is isomorphic (as a ring) with the direct product of $K_0(A) = \mathbf{Z}$ and the ring of all »rational functions»

$$\frac{1+a_1t+\ldots+a_mt^m}{1+b_1t+\ldots+b_nt^n}$$

(under multiplication and *-multiplication). This generalizes a result by Kelley-Spanier ([8] p. 327) for A =field. The ring of *rational functions* is also isomorphic with a subring of the Witt ring W(A) of A. Finally *trace sequences*, $(\text{Tr } (f^i)_1^{\infty}$ are studied.

Finally I would like to thank T. Farrell, G. Hochschild, M. Schlessinger and M. Sweedler for many valuable discussions about this paper and mathematics in general.

1. The characteristic polynomial

First we fix some notation. A will always denote a commutative ring with unity element 1. Spec A is the set of all prime ideals \mathfrak{p} of A. If $x \in M$ where M is an A-module we denote by $x_{\mathfrak{p}}$ the image of x under the localization map $M \to M_{\mathfrak{p}} = M \otimes_A A_{\mathfrak{p}}$ for all $\mathfrak{p} \in \text{Spec } A$.

The category of all finitely generated projective A-modules will be denoted by $\mathcal{P}(A)$. If $P \in \mathcal{P}(A)$ then $P_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module of finite rank $= \mathrm{rk}_{\mathfrak{p}}P$. We define $\mathrm{rk}P = \mathrm{max}_{\mathfrak{p}} \mathrm{rk}_{\mathfrak{p}}P$. This integer is equal to the minimal number of generators of P. If $\mathrm{rk}_{\mathfrak{p}}P = \mathrm{rk}P$ for all $\mathfrak{p} \in \mathrm{Spec} A$ we say that P has constant rank. Let $P^* = \operatorname{Hom}_A(P, A)$ be the dual of P. Then for $P \in \mathcal{P}(A)$ there are natural isomorphisms of A-modules

$$\operatorname{End}_{\mathcal{A}}(P^*) \to \operatorname{Hom}_{\mathcal{A}}(P^* \otimes_{\mathcal{A}} P, \mathcal{A}) \to \operatorname{Hom}_{\mathcal{A}}(\operatorname{End}_{\mathcal{A}} P, \mathcal{A})$$
(*)

Let Tr be the image of 1_{p*} under the composed map. We call Tr (f) the trace of $f: P \to P$. This coincides with Bourbakis definition ([3] p. 112).

Definition 1.1:

$$\lambda_t(f) = \sum_{i=0}^n \operatorname{Tr} (\Lambda^i f) t^i$$

Here t is an indeterminate, $f: P \to P$ an endomorphism with $P \in \mathcal{P}(A)$, $\Lambda^{i}f: \Lambda^{i}P \to \Lambda^{i}P$ the induced endomorphism of the *i*:th exterior power of P and $n = \operatorname{rk} P$. Observe that $\Lambda^{i}P \in \mathcal{P}(A)$ ([4], p. 142).

Remark 1.2. If P is free then Tr (f) is the usual trace of f and $\lambda_t(f) = \det(1 + tf)$ where 1 = identity of the free A[t]-module $P \otimes_A A[t]$. This is a well known formula ([9] p. 436).

PROPOSITION 1.3. Let $f, g: P \to P$ with $P \in \mathcal{P}(A)$ and $\mathfrak{p} \in \text{Spec } A$ be given. Then

- (i) $(\operatorname{Tr} f)_{\mathfrak{p}} = \operatorname{Tr} f_{\mathfrak{p}}$
- (ii) $(\lambda_t(f)_p = \lambda_t(f_p), i.e. if \lambda_t(f) = 1 + a_1t + \ldots + a_nt^n$ then $\lambda_t(f) = 1 + a_{1p}t + \ldots + a_{np}t^n$
- (iii) $\lambda_t(f \circ g) = \lambda_t(g \circ f)$
- (iv) $\lambda_t(h \circ f \circ h^{-1}) = \lambda_t(f)$ if $h: P \to Q$ is an isomorphism.

Proof.

- (i) Localization commutes with everything in (*) since all modules involved $(P^*, \operatorname{End}_A(P^*) \text{ etc.})$ are in $\mathcal{P}(A)$ ([4], p. 98).
- (ii) Localization commutes with exterior powers, $(\Lambda^i f)_{\mathfrak{p}} = \Lambda^i f_{\mathfrak{p}}$, so (ii) follows from (i).
- (iii) We have $\operatorname{Tr}(f \circ g) = \operatorname{Tr}(g \circ f)$ ([3], p. 112) and $\Lambda^i(f \circ g) = \Lambda^i f \circ \Lambda^i g$.
- (iv) By (ii) it is sufficient to prove (iv) for P free (and hence Q is free), in which case it is well known.

CAYLEY-HAMILTON THEOREM 1.4. Let $\lambda_t(f) = 1 + a_1 t + \ldots + a_n t^n$ and define $q_f(t) = t^n - a_1 t^{n-1} + \ldots + (-1)^n a_n$. Then $q_f(f) = 0$.

Proof. It suffices to show

$$(q_f(f))_{\mathfrak{p}} = f_{\mathfrak{p}}^n - a_{\mathfrak{l}\mathfrak{p}}f_{\mathfrak{p}}^{n-1} + \ldots + (-1)^n a_{n\mathfrak{p}} \cdot \mathbf{1}_{P_{\mathfrak{p}}} = 0$$

for all $\mathfrak{p} \in \text{Spec } A$. But this follows from the ordinary Cayley-Hamilton theorem for $f_{\mathfrak{p}} \colon P_{\mathfrak{p}} \to P_{\mathfrak{p}}$ with $P_{\mathfrak{p}}$ free since

$$t^n - a_{1\mathfrak{p}}t^{n-1} + \ldots + (-1)^n a_{n\mathfrak{p}} = t^{n-rk(P_{\mathfrak{p}})}q_{f_{\mathfrak{p}}}(t).$$

PROPOSITION 1.5. Let

$$0 \to P_d \to \ldots \to P_1 \to P_0 \to 0$$
$$\downarrow f_d \qquad \qquad \downarrow f_1 \qquad \downarrow f_0$$
$$0 \to P_d \to \ldots \to P_1 \to P_0 \to 0$$

be a commutative diagram with exact row and all $P_i \in \mathcal{P}(A)$. Then

$$\sum_{0}^{d} (-1)^{i} \operatorname{Tr} f_{i} = 0 \ and \ \prod_{0}^{d} \lambda_{i}(f_{i})^{(-1)^{i}} = 1$$

Proof. Since localization is an exact functor it is (using 1.3 (i), (ii)) sufficient to prove the proposition when all P_i are free. But then it is well known at least for d = 2 (see [9], p. 402) and the general case follows by splitting up the long exact sequence into short ones.

COROLLARY 1.6.

$$\mathrm{Tr} \ (f \oplus g) = \mathrm{Tr} \ f + \mathrm{Tr} \ g \ \ and \ \ \lambda_{\iota}(f \oplus g) = \lambda_{\iota}(f) \cdot \lambda_{\iota}(g).$$

THEOREM 1.7. Let $f: P \rightarrow P$ be given with

$$P \in \mathcal{P}(A)$$
, $\operatorname{rk} P = n$ and $\lambda_t(f) = 1 + a_1 t + \ldots + a_n t^n$.

- (i) Assume that f is nilpotent with $f^{m+1} = 0$. Then $a_1^{\nu_1} a_2^{\nu_2} \dots a_n^{\nu_n} = 0$ if the weight $\nu_1 + 2\nu_2 + \dots + n\nu_n > mn$. The constant mn is best possible.
- (ii) Conversely assume that $a_1^{v_1}a_2^{v_2}\ldots a_n^{v_n}=0$ when $v_1+2v_2+\ldots+nv_n>k$. Then $f^{n+k}=0$. The integer n+k is best possible.

Proof. (i) After localizing and using 1.3 (ii) we may assume that P is free of rank n (it is sufficient to consider the case of maximal rank). Let P have basis e_1, e_2, \ldots, e_n . Then $\Lambda^n P$ is free with basis $e_1 \wedge e_2 \wedge \ldots \wedge e_n$. Now we claim that

$$a_r e_1 \wedge e_2 \wedge \ldots \wedge e = \sum_{i_1 < i_2 < \ldots < i_r} e_1 \wedge \ldots \wedge f e_{i_1} \wedge \ldots \wedge f e_{i_2} \wedge \ldots \wedge f e_{i_r} \wedge \ldots \wedge e_n \quad (**)$$

By definition we have $a_r = \text{Tr}(\Lambda^r f)$. Let $e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_r}$ be a fixed basis element of $\Lambda^r P$ (with $i_1 < i_2 < \ldots < i_r$). Then

$$A'f(e_{i_1} \wedge \ldots \wedge e_{i_r}) = fe_{i_1} \wedge \ldots \wedge fe_{i_r} = C_{i_1i_2\dots i_r}e_{i_1} \wedge \ldots \wedge e_{i_r} + \text{other terms.}$$

Hence

$$a_r = \operatorname{Tr} \left(A'f \right) = \sum_{i_1 < i_1 < \ldots < i_r} C_{i_1 i_2 \ldots i_r}$$

266

Expanding the right hand side in (**) one easily gets

$$\left(\sum_{i_1 < i_2 < \ldots < i_r} C_{i_1 i_2 \ldots i_r}\right) e_1 \wedge e_2 \wedge \ldots \wedge e_n$$

and the claim is proved.

Using (**) several times we get

$$a_1^{r_1}a_2^{r_2}\ldots a_n^{r_n}(e_1\wedge e_2\wedge\ldots\wedge e_n)=\sum f^{s_1}e_1\wedge f^{s_2}e_2\wedge\ldots\wedge f^{s_n}e_n$$

where the sum is taken over all s_1, s_2, \ldots, s_n such that $s_1 + s_2 + \ldots + s_n = v_1 + 2v_2 + \ldots + nv_n$ which by assumption is larger than mn. Hence each term contains an $s_i > m$ and $f^{s_i} = 0$. Therefore the right hand side is zero and the first part of (i) is proved.

To see that mn is best possible let A be the commutative ring generated by 1, $\alpha_1, \ldots, \alpha_n$ with the only relations $\alpha_1^{m+1} = \alpha_2^{m+1} = \ldots = \alpha_n^{m+1} = 0$. Let f be the map given by the diagonal matrix

$$f = \begin{pmatrix} \alpha_1 & & \\ & \alpha_2 & 0 \\ & & \cdot \\ & & 0 & \cdot \\ & & & \ddots \\ & & & & \alpha_n \end{pmatrix}$$

Then $f^{m+1} = 0$ and $a_1^{r_1} \dots a_n^{r_n} = \sum \alpha_1^{s_1} \alpha_2^{s_2} \dots \alpha_n^{s_n}$ where the sum runs over all s_1, s_2, \dots, s_n with $s_1 + s_2 + \dots + s_n = r_1 + 2r_2 + \dots + nr_n$. If $r_1 + 2r_2 + \dots + nr_n \leq mn$ then there is a term $\alpha_1^{s_1} \dots \alpha_n^{s_n}$ with all $s_i \leq m$ and hence $a_1^{r_1} \dots a_n^{r_n} \neq 0$.

(ii) Assume that $a_1^{\nu_1} \ldots a_n^{\nu_n} = 0$ if $\nu_1 + 2\nu_2 + \ldots + n\nu_n > k$. By the Cayley-Hamilton theorem we have

$$f^n = a_1 f^{n-1} - a_2 f^{n-2} + \ldots \pm a_n \mathbf{1},$$

Multiplying by f and using Cayley-Hamilton again we get

$$f^{n+1} = a_1^2 f^{n-1} + \ldots \pm a_1 a_n \mathbf{1}.$$

Repeating the procedure several times we get

$$f^{r} = q_{r-n+1}f^{n-1} + q_{r-n+2}f^{n-2} + \ldots + q_{r} \cdot 1$$

where q_i is a polynomial in a_1, \ldots, a_n of weight *i*. If r = k + n then $q_r = q_{r-1} = q_{r-n+1} = 0$ and we get $f^r = 0$.

To show that n + k is best possible let $A = Z[X_1, X_2, \ldots, X_n]/I$ where X_1, \ldots, X_n are indeterminates and I is the ideal generated by all monomials in X_1, \ldots, X_n of weight k + 1. Put

$$f = \begin{pmatrix} 0 & 0 & 0 & 0 & (-1)^{n-1} & a_n \\ 1 & 0 & 0 & . & - & \\ 0 & 1 & 0 & . & - & \\ - & - & - & 0 & -a_2 & \\ 0 & 0 & 0 & 1 & a_1 & \end{pmatrix}$$

where a_i is the residue of X_i . Then a calculation shows that

$$\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$$

and that $f^{n+k-1} \neq 0$.

COROLLARY 1.8. f is nilpotent if and only if all coefficients $a_i (i \ge 1)$ of $\lambda_i(f)$ are nilpotent.

PROPOSITION 1.9. Given $f: P \to P$ with $P \in \mathcal{P}(A)$. If $f^{\otimes v} = f \otimes f \otimes \ldots \otimes f = 0$ then $f^{v} = 0$.

Proof. Localizing we may assume that P is free of rank n. Let (a_{ij}) be the matrix of f in some basis and I the ideal in A generated by the coefficients (a_{ij}) . The entries of the matrix of $f^{\otimes \nu}$ are just all possible products of ν of the a_{ij} :s. Since $f^{\otimes \nu} = 0$ we get $I^{\nu} = 0$. The entries (c_{ij}) of the matrix of f^{ν} are certain sums of products of ν of the a_{ij} :s. Hence $c_{ij} \in I^{\nu}$ and $c_{ij} = 0$ for all i, j and $f^{\nu} = 0$.

THEOREM 1.10 (exponential trace formula). Let $f: P \to P$ be A-linear with $P \in \mathcal{P}(A)$. Then

$$-t\lambda_i(f)^{-1}rac{d}{dt}\ \lambda_i(f) = \sum_{1}^{\infty} \mathrm{Tr}\ (f^i)(-t)^i$$

Proof. Setting $b_i = \text{Tr} (-f)^i$ and $\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$ we must prove

$$-(a_{1}t + 2a_{2}t^{2} + \ldots + na_{n}t^{n}) = (1 + a_{1}t + \ldots + a_{n}t^{n})\sum_{1}^{\infty}b_{i}t^{i}$$

Comparing the coefficients of t^i on both sides one finds $b_i = Q_i(a_1, \ldots, a_n)$ where the Q_i :s are certain polynomials with integer coefficients. Localizing at $\mathfrak{p} \in \operatorname{Spec} A$ we have to show $b_{i\mathfrak{p}} = Q_i(a_{\mathfrak{l}\mathfrak{p}}, \ldots, a_{n\mathfrak{p}})$. Hence it is sufficient to show the formula when P is free and f is a matrix. Then $b_i = Q_i(a_1, \ldots, a_n)$ becomes a polynomial identity (over \mathbb{Z}) in the coefficients of the matrix f. Therefore it is enough to consider the case $A = \mathbb{Z}[X_{11}, \ldots, X_{nn}]$ which is a domain of characteristic zero. Let K be the quotient field of K and \overline{K} the algebraic closure of K. Over \overline{K} the formula is easy to prove. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of f we have

268

 $\lambda_t(f) = \prod_{\nu=1}^n (1 + \lambda_{\nu} t)$. Taking the logarithmic derivative, expanding $\lambda_{\nu}(1 + \lambda_{\nu} t)^{-1}$ into power series and using $\operatorname{Tr}(f^i) = \sum_{\nu=1}^n \lambda_{\nu}^i$ we get the desired formula.

Remark 1.11. In the theory of differential equations there is a »continuous» analogue of the formula above: Let U(t) and B(t) be $n \times n$ -matrices with real entries, depending on a parameter t, satisfying

$$\frac{d}{dt} U(t) = B(t)U(t)$$
 and $U(0) = 1$.

Then

det
$$U(t) = \exp \int_{0}^{t} \operatorname{Tr} B(s) ds.$$

It is well known that if $\operatorname{Tr}(f^i) = 0$ for $i = 1, 2, \ldots, n$ where f is an $n \times n$ -matrix over a field of characteristic zero then f is nilpotent. Our next result is a generalization of this.

We will call the ring A torsion-free if it is torsion-free as an abelian group, i.e. na = 0 with $n \in \mathbb{Z}$ and $a \in A$ implies n = 0 or a = 0.

PROPOSITION 1.12. Assume that A is torsion-free. Let $f: P \to P$ be A-linear where $P \in \mathcal{P}(A)$ has rank n. If $\operatorname{Tr}(f^i) = 0$ for n consecutive i:s then f is nilpotent.

Proof. Assume that $\operatorname{Tr}(f^r) = \operatorname{Tr}(f^{1+r}) = \ldots = \operatorname{Tr}(f^{r+n-1}) = 0$. Multiplying Cayley-Hamilton by f^r we get

$$f^{n+r} = a_1 f^{n+r-1} - a_2 f^{n+r-2} + \ldots \pm a_n f^r$$

Taking traces on both sides we get $\operatorname{Tr}(f^{n+r}) = 0$. Repeating the procedure we get $\operatorname{Tr}(f^r) = 0$ for all $r \geq r$. Put $g = f^r$. Then $\operatorname{Tr}(g^r) = 0$ for $r = 1, 2, \ldots$. Using the exponential trace formula for g we find $\frac{d}{dt} \lambda_t(g) = 0$ which implies $\lambda_t(g) = 1$ since A has no torsion. Cayley-Hamilton applied to g gives $g^n = 0$, i.e. $f^{nr} = 0$.

Remark 1.13. The proposition is true if A has no s-torsion for $s \leq \operatorname{rk} P$.

Remark 1.14. If A is a field of characteristic 2 then $\operatorname{Tr} l_p^{\nu} = 0$ for P free of rank 2.

Remark 1.15. If we assume that A is torsion-free we can give another proof of the fact that $f^{\otimes v} = 0 \Rightarrow f$ nilpotent (compare 1.9). Put $b_i = \operatorname{Tr}(f^i)$. Then $(f^i)^{\otimes v} = (f^{\otimes v})^i = 0$ implies $\operatorname{Tr}((f^i)^{\otimes v}) = (\operatorname{Tr}(f^i))^v = b_i^v = 0$ for $i = 1, 2, \ldots$. Comparing coefficients in the exponential trace formula we get $a_1 = b_1, 2a_2 = b_1^2 - b_2, \ldots$. Since A has no torsion all a_i :s are nilpotent. Then f is also nilpotent by 1.8.

GERT ALMKVIST

2. Some computations

First a generalization 1.3 (iii):

PROPOSITION 2.1. Given
$$f: P \to Q$$
 and $g: Q \to P$ with $P, Q \in \mathcal{P}(A)$. Then
 $\operatorname{Tr} (f \circ g) = \operatorname{Tr} (g \circ f)$ and $\lambda_{\iota}(f \circ g) = \lambda_{\iota}(g \circ f)$

Proof. After localization we may assume that P and Q are free. The formula for the trace is then easily proved and

$$\operatorname{Tr} \Lambda^{i}(f \circ g) = \operatorname{Tr} \left(\Lambda^{i} f \circ \Lambda^{i} g \right) = \operatorname{Tr} \left(\Lambda^{i} g \circ \Lambda^{i} f \right) = \operatorname{Tr} \Lambda^{i}(g \circ f)$$

finishes the proof.

We continue with describing a method for computing $\lambda_i(f)$. P denotes always a module in $\mathcal{P}(A)$ of rank n.

THEOREM 2.2. We have $\operatorname{End}_A(P) \cong P^* \otimes_A P$. Let $f: P \to P$ correspond to $\sum_{i=1}^m x_i^* \otimes x_i$ in $P^* \otimes_A P$. Let M(f) be the $m \times m$ -matrix with entries $\langle x_i^*, x_j \rangle$ at place (i, j). Then

$$\lambda_i(f) = \det\left(1 + tM(f)\right)$$

In particular the right hand side is independent of the choice of representatives for the tensor. The x_i :s can be chosen as a minimal generator set of P.

Proof. First we reduce to the case when P is free. Let \mathfrak{p} be a prime ideal in A. Localizing at \mathfrak{p} we get a commutative diagram

$$\begin{array}{c} P^* \otimes_{\mathcal{A}} P \xrightarrow{u} \operatorname{End}_{\mathcal{A}} P \\ \downarrow \\ P^*_{\mathfrak{p}} \otimes_{\mathcal{A}_{\mathfrak{p}}} P_{\mathfrak{p}} \xrightarrow{\cong} \operatorname{End}_{\mathcal{A}_{\mathfrak{p}}} P_{\mathfrak{p}} \end{array}$$

where the star in the south west corner means $\operatorname{Hom}_{A_{\mathfrak{p}}}(\cdot, A_{\mathfrak{p}})$. Hence if $f: P \to P$ corresponds to $\sum_{1}^{m} x_{i}^{*} \otimes x_{i}$ then $f_{\mathfrak{p}}: P_{\mathfrak{p}} \to P_{\mathfrak{p}}$ corresponds to $\sum_{1}^{m} (x_{i}^{*})_{\mathfrak{p}} \otimes x_{i\mathfrak{p}}$ and by using 1.3 (ii) we may assume that P is free. Let now y_{1}, \ldots, y_{n} be a basis for P and h_{1}, \ldots, h_{n} a dual basis for P^{*} , i.e. $\langle h_{i}, y_{j} \rangle = \delta_{ij}$. Given $f: P \to P$ let it correspond to

$$\sum_{i,j} a_{ji}(h_i \otimes y_j) = \sum_{j=1}^n (\sum_{i=1}^n a_{ji}h_i) \otimes y_j = \sum_{j=1}^n y_j^* \otimes y_j \quad \text{in} \quad P^* \otimes_A P, \quad \text{i.e.} \quad y_j^* = \sum_{i=1}^n a_{ji}h_i.$$

Hence the (j, k):th entry in the matrix is

$$\langle y_j^*, y_k
angle = \sum_{i=1}^n a_{ji} \langle h_i, y_k
angle = a_{jk}.$$

Now $u: P^* \otimes_{\mathcal{A}} P \to \operatorname{End}_{\mathcal{A}} P$ is given by $x^* \otimes x \mapsto (y \mapsto \langle x^*, y \rangle x)$ so $f = u(\sum_{i,j} a_{ji}h_i \otimes y_j)$ means $f(x_k) = \sum_{i,j} a_{ji}\langle h_i, x_k \rangle y_j = \sum_j a_{jk}y_j$.

It follows that f has the matrix (a_{jk}) in the basis y_1, \ldots, y_n . Thus the formula is true if the x_i :s form a basis for P.

Let now $\sum_{i=1}^{m} x_i^* \otimes x_i$ be another representation of f. Assume that

$$x_i = \sum_{j=1}^n c_{ji} y_j \hspace{0.2cm} ext{and} \hspace{0.2cm} x_i^* = \sum_{k=1}^n d_{ik} h_k$$

Then

$$\sum_{i=1}^m x_i^* \otimes x_i = \sum_{i=1}^m \sum_{j,k} c_{ji} d_{ik} h_k \otimes y_j = \sum_{j,k} \left(\sum_{i=1}^m c_{ji} d_{ik} \right) h_k \otimes y_j = \sum_{j,k} a_{jk} h_k \otimes y_j$$

where

$$(a_{jk}) = CD$$
 with $C = (c_{ji})$ and $D = (d_{ik})$

(here C and D are $n \times m$ - and $m \times n$ -matrices respectively). The (i, k):th entry of the matrix in the formula is

$$\langle x_i^*, x_k
angle = \sum\limits_{
u,j} d_{i
u} c_{jk} \langle h_
u, y_j
angle = \sum\limits_{j=1}^n d_{ij} c_{jk}.$$

Thus this matrix is DC and we are done since $\lambda_t(f) = \det(1 + tCD)$ by the first part of the proof and $\det(1 + tCD) = \det(1 + tDC)$ by 2.1.

Next we compute $\lambda_{l}(l_{p})$ where l_{p} is the identity map of $P \in \mathcal{P}(A)$.

THEOREM 2.2 (Goldman). (i) Tr $(1_p) = \sum_{0}^{n} ie_i$ and $\lambda_i(1_p) = \sum_{1}^{n} e_i(1+t)^i$ where e_0, e_1, \ldots, e_n are orthogonal idempotents with $e_0 + e_1 + \ldots + e_n = 1$.

(ii) Ann $(\wedge^i P) = (e_0 + e_1 + \ldots + e_{i-1})A$. Furthermore the e_i :s are uniquely determined by P.

Remark. Some of the e_i :s might be zero, e.g. if P is constant rank n, then $e_0 = e_1 = \ldots = e_{n-1} = 0$.

Proof. (i) Let **Z** have the discrete topology. Then $rk: \operatorname{Spec} A \to \mathbf{Z}$ given by $\mathfrak{p} \to \operatorname{rk}_{\mathfrak{p}} P$ is a continuous function. Hence $X_i = \{\mathfrak{p} \in \operatorname{Spec} A_0; \operatorname{rk}_{\mathfrak{p}} P = i\}$ is both open and closed. It follows that $\operatorname{Spec} A = X_0 \cup X_1 \cup \ldots \cup X_n$ where the union is disjoint. But to this covering of $\operatorname{Spec} A$ corresponds a unique »partition of unity»

$$1 = e_0 + e_1 + \ldots + e_n \text{ where } e_i(x) = \begin{cases} 1 & \text{if } x \in X_i \\ 0 & \text{otherwise} \end{cases} \text{ i.e. } 1 - e_i \in \mathfrak{p} \text{ for all } \mathfrak{p} \in X_i \end{cases}$$

and $e_i \in \mathfrak{p}$ for all $\mathfrak{p} \notin X_i$: (see Swan [12] p. 140). This means that the e_i :s are orthogonal idempotents.

Now we claim that $\lambda_i(1_p) = \sum_{0}^{n} e_i(1+t)^i$.

Fix a prime $\mathfrak{p} \in X_i$. Then the localization at \mathfrak{p} of the left hand side is $(\lambda_i(1_p))_{\mathfrak{p}} = \lambda_i(1_{P_{\mathfrak{p}}}) = (1+t)^i$ since $P_{\mathfrak{p}}$ is free of rank *i*. To compute the localization of the right hand side we need $e_{k\mathfrak{p}}$. But $e_i e_j = 0$ with $e_i \notin \mathfrak{p}$ implies $e_{j\mathfrak{p}} = 0$ in $A_{\mathfrak{p}}$ for $j \neq i$. Furthermore $e_i(1-e_i) = 0$ with $e_i \notin \mathfrak{p}$ implies $e_{i\mathfrak{p}} = 1$ in $A_{\mathfrak{p}}$. Thus $(\sum_{0}^{n} e_j(1+t)^j)_{\mathfrak{p}} = (1+t)^i = (\lambda_i(1_p))_{\mathfrak{p}}$ and we are done since $\mathfrak{p} \in \text{Spec } A$ was arbitrary.

(ii) $\Lambda^i P$ is in $\mathcal{P}(A)$ and thus Ann $(\Lambda^i P) = eA$ where e is a uniquely determined idempotent (Goldman [6] p. 33). Now $(\Lambda^i P)_{\mathfrak{p}} = 0$ if and only if $\mathrm{rk}_{\mathfrak{p}} P < i$ if and only if $\mathfrak{p} \in X_0 \cup X_1 \cup \ldots \cup X_{i-1}$. This is the case if and only if $eA = \mathrm{Ann}(\Lambda^i P) \not \oplus \mathfrak{p}$ if and only if $e \notin \mathfrak{p}$. Thus e(x) = 0 if and only if $x \in X_i \cup \ldots \cup X_n$ (and hence e(x) = 1 otherwise). But $e_0 + e_1 + \ldots + e_{i-1}$ is a candidate satisfying these conditions. By uniqueness we get

$$e = e_0 + e_1 + \ldots + e_{i-1}$$

Putting i = 1 we get e_0 uniquely. Since $e_0 + e_1$ is unique e_1 is unique etc.

Definition 2.3: We define the determinant of f by $\det f = \lambda_1(f - 1_p)$ for $f: P \to P$ with $P \in \mathcal{P}(A)$.

First we note that det $l_p = \lambda_1(0) = 1$. If P is free then det (f) coincides with the usual determinant of a matrix for f. If $\operatorname{rk} P = n$ then there exists Q such that $P \oplus Q = F$ where F is free of rank n. Clearly $Q \in \mathcal{P}(A)$. Localizing at $\mathfrak{p} \in \operatorname{Spec} A$ we get $P_{\mathfrak{p}} \oplus Q_{\mathfrak{p}} = F_{\mathfrak{p}}$ where $P_{\mathfrak{p}}, Q_{\mathfrak{p}}, F_{\mathfrak{p}}$ are free $A_{\mathfrak{p}}$ -modules of rank $r = rk_{\mathfrak{p}}P$, n - r and n, respectively. We get $(\det(f \oplus 1_Q))_{\mathfrak{p}} = \det(f_{\mathfrak{p}} \oplus 1_{Q_{\mathfrak{p}}}) =$ $\det f_{\mathfrak{p}} \cdot \det 1_{Q_{\mathfrak{p}}} = \det f_{\mathfrak{p}} = (\det f)_{\mathfrak{p}}$. Hence we could also have defined $\det f$ as $\det(f \oplus 1_Q)$ where the last det is the ordinary determinant of a matrix for $f \oplus 1_Q$. Thus $\det f$ is the same as Goldman's determinant ([6] p. 29). We state some properties of $\det(f)$.

PROPOSITION 2.4. (i) det $(f \circ g) = \det f \det g$.

(ii) f is an ismorphism if and only if det f is invertible in A.

We now collect some formulas for $\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$ where $f: P \to P$ with $P \in \mathcal{P}(A)$ and rkP = n.

PROPOSITION 2.5. (i) $\lambda_t(\Lambda^k f) = 1 + a_k t + \ldots + a_n^{\binom{n-1}{k-1}} t^{\binom{n}{k}}$. In particular

(ii)
$$\lambda_t(\Lambda^n f) = 1 + a_n t.$$

(iii)
$$\lambda_t(\Lambda^{n-1}f) = 1 + a_{n-1}t + a_{n-2}a_nt^2 + a_{n-3}a_n^2t^3 + \ldots + a_1a_n^{n-2}t^{n-1} + a_n^{n-1}t^n.$$

(iv)
$$\lambda_t(f^2) = 1 + (a_1^2 - 2a_2)t + (2a_4 - 2a_1a_3 + a_2^2)t^2 + \ldots + a_n^2t^n$$
.

Proof. Since λ_i and Λ^k commute with localization we may assume that P is free. Using the technique employed in proving the exponential trace formula 1.10 we may even assume that A is an algebraically closed field. If

$$\lambda_i(f) = \prod_{1}^n (1 + \lambda_i t) = 1 + a_1 t + \ldots + a_n t^n$$

we have

$$\lambda_{i}(\Lambda^{k}f) = \prod_{1 \leq i_{1} < i_{2} < \ldots < i_{k} \leq n} (1 + \lambda_{i_{1}}\lambda_{i_{2}} \ldots \lambda_{i_{k}}t).$$

The first two formulas now follow easily.

(iii) We may assume that $a_n = \prod_{i=1}^n \lambda_i \neq 0$. Then we have

$$\lambda_{t}(\Lambda^{n-1}f) = \prod_{1}^{n} \left(1 + \frac{a_{n}}{\lambda_{i}}t\right) = a_{n}^{n}t^{n} \prod_{1}^{n} \left(1 + \frac{\lambda_{i}}{a_{n}t}\right) \cdot \prod_{1}^{n} \frac{1}{\lambda_{i}} = a_{n}^{n-1}t^{n} \left(1 + a_{1} \cdot \frac{1}{a_{n}t} + a_{2}\frac{1}{a_{n}^{2}t^{2}} + \dots + \frac{a_{n-1}}{a_{n}^{n-1}t^{n-1}} + \frac{a_{n}}{a_{n}^{n}t^{n}}\right) = 1 + a_{n-1}t + a_{n-2}a_{n}t^{2} + \dots + a_{1}a_{n}^{n-2}t + a_{n}^{n-1}t^{n}.$$

(iv) Set $t = -s^2$. Then

$$\lambda_{t}(f^{2}) = \det (1 - s^{2}f^{2}) = \det (1 - sf) \cdot \det (1 + sf) = \lambda_{-s}(f)\lambda_{s}(f) =$$

= $(1 - a_{1}s + a_{2}s^{2} - + \ldots + (-1)^{n}a_{n}s^{n})(1 + a_{1}s + a_{2}s^{2} + \ldots + a_{n}s^{n}) =$
= $1 + (2a_{2} - a_{1}^{2})s^{2} + (2a_{4} - 2a_{1}a_{3} + a_{2}^{2})s^{4} + \ldots + a_{n}^{2}(-s^{2})^{n}$

We keep the notation from above and furthermore e_0, e_1, \ldots, e_n are the idempotents in theorem 2.2.

Proposition 2.6. (i) det $f = \sum_{i=0}^{n} a_i e_i$ where $a_0 = 1$.

(ii) If f is invertible then det f is a unit in A and $\lambda_i(f^{-1}) = \sum_{0}^{n} d_k t^k$ where $d_k = \sum_{i=k}^{n} c_{i-k} e_i$ with c_i given by $(\det f)^{-1} = (\sum_{0}^{n} a_i e_i)^{-1} = \sum_{i=0}^{n} c_i e_i$ (i.e. if $e_i \neq 0$ then $c_i e_i$ is the inverse of $a_i e_i$ in the subring $A e_i$).

Proof. (i) Localization at $\mathfrak{p} \in X_i$ (for the notation see the proof of 2.2) gives

$$(\sum_{0}^{n} a_{j}e_{j})_{\mathfrak{p}} = \sum_{0}^{n} a_{j\mathfrak{p}}e_{j\mathfrak{p}} = a_{j\mathfrak{p}} \text{ since } e_{j\mathfrak{p}} = \delta_{ij}.$$

But $(\det f)_{\mathfrak{p}} = (\lambda_{\mathfrak{l}}(f - \mathbf{1}_{p})_{\mathfrak{p}} = \lambda_{\mathfrak{l}}(f_{\mathfrak{p}} - \mathbf{1}_{P_{\mathfrak{p}}}) = \det(f_{\mathfrak{p}})$ since $P_{\mathfrak{p}}$ is free. Furthermore $P_{\mathfrak{p}}$ has rank i (since $\mathfrak{p} \in X_{i}$) and hence $(\lambda_{\mathfrak{l}}(f))_{\mathfrak{p}} = \lambda_{\mathfrak{l}}(f_{\mathfrak{p}}) = 1 + \ldots + \det f_{\mathfrak{p}} \cdot t^{i}$ and $a_{i\mathfrak{p}} = \det f_{\mathfrak{p}}$. This proves (i).

(ii) It is sufficient to show the formula locally. Fix a $\mathfrak{p} \in X_{\nu}$. Then $P_{\mathfrak{p}}$ is free of rank ν and we get

$$\begin{aligned} (\lambda_{t}(f^{-1})_{\mathfrak{p}} &= \lambda_{t}(f_{\mathfrak{p}}^{-1}) = \det (1 + tf_{\mathfrak{p}}^{-1}) = (\det f_{\mathfrak{p}})^{-1} \det (t \cdot 1_{P_{\mathfrak{p}}}) \det (1 + t^{-1}f_{\mathfrak{p}}) = \\ &= (\sum_{0}^{n} c_{j\mathfrak{p}}e_{j\mathfrak{p}})t^{\nu} \sum_{j=0}^{\nu} a_{j\mathfrak{p}}t^{-j} = c_{\nu\mathfrak{p}} \sum_{j=0}^{\nu} a_{j\mathfrak{p}}t^{\nu-j} \text{ since } e_{j\mathfrak{p}} = \delta_{j\nu}. \end{aligned}$$

On the other hand

$$(\sum_{0}^{n} d_{k}t^{k})_{\mathfrak{p}} = \sum_{0}^{n} d_{k\mathfrak{p}}t^{k} = \sum_{k=0}^{n} (\sum_{i=k}^{n} c_{i\mathfrak{p}}a_{(i-k)\mathfrak{p}})t^{k} = \sum_{k=0}^{\nu} c_{\nu\mathfrak{p}}a_{(\nu-k)\mathfrak{p}}t^{k} = c_{\nu\mathfrak{p}}\sum_{j=0}^{\nu} a_{j\mathfrak{p}}t^{\nu-j} \text{ with } j = \nu - k.$$

Hence the localizations of both sides agree.

3. The behaviour of λ_t under change of rings, taking duals and forming of tensor products

PROPOSITION 3.1. Let $\phi: A \to B$ be a ringhomomorphism (with $\phi(1) = 1$) and $f: P \to P$ an A-linear map with $P \in \mathcal{P}(A)$. Then $P \otimes_A B$ is in $\mathcal{P}(B)$ and

$$\lambda^{B}_{t}(f\otimes 1_{B})=\phi(\lambda^{A}_{t}(f)).$$

Proof. The first statement is well known. Since $\Lambda_B^i(P \otimes_A B)$ is naturally isomorphic as *B*-module to $(\Lambda_A^i P) \otimes_A B$ it is sufficient to prove $\operatorname{Tr}_B(f \otimes 1_B) = \phi(\operatorname{Tr}_A(f))$ which is well known.

PROPOSITION 3.2. Every $f: P \to P$ with P in $\mathcal{P}(A)$ induces $f^*: P^* \to P^*$ where $P^* = \operatorname{Hom}_A(P, A)$ is in $\mathcal{P}(A)$. Furthermore

$$\operatorname{Tr} f^* = \operatorname{Tr} f$$
 and $\lambda_i(f^*) = \lambda_i(f)$.

Proof. For every $\mathfrak{p} \in \text{Spec}(A)$ we get a natural $A_{\mathfrak{p}}$ -isomorphism

$$(P^*)_{\mathfrak{p}} = (\operatorname{Hom}_{A}(P, A))_{\mathfrak{p}} \xrightarrow{h} \operatorname{Hom}_{A_{\mathfrak{p}}}(P_{\mathfrak{p}}, A_{\mathfrak{p}}) = (P_{\mathfrak{p}})^*$$

and we have a commutative diagram

$$(P^*)_{\mathfrak{p}} \xrightarrow{h} (P_{\mathfrak{p}})^* \\ \downarrow (f^*)_{\mathfrak{p}} \qquad \downarrow (f_{\mathfrak{p}})^* \\ (P^*)_{\mathfrak{p}} \xrightarrow{h} (P_{\mathfrak{p}})^*$$

Hence $(f^*)_{\mathfrak{p}} = h^{-1} \circ (f_{\mathfrak{p}})^* \circ h$. It follows

$$(\lambda_t(f^*))_{\mathfrak{p}} = \lambda_t((f^*)_{\mathfrak{p}}) = \lambda_t(h^{-1} \circ (f_{\mathfrak{p}})^* \circ h) = \lambda_t((f_{\mathfrak{p}})^*)$$

by 1.3 (iv). But $(P_{p})^{*}$ is free and

 $\mathbf{274}$

$$\lambda_{\iota}((f_{\mathfrak{p}})^*) = \det \left(1 + (f_{\mathfrak{p}})^*\right) = \det \left(1 + f_{\mathfrak{p}}\right) = \lambda_{\iota}(f_{\mathfrak{p}}) = (\lambda_{\iota}(f))_{\mathfrak{p}}.$$

This proves the formula for λ_t and taking the coefficient of t we get the formula for the trace.

Next we turn to the tensor product of two A-linear maps $f: P \to P$ and $g: Q \to Q$ with P, Q in $\mathcal{P}(A)$. For completeness we quote

Proposition 3.3. Tr $(f \otimes g) = \operatorname{Tr} f \cdot \operatorname{Tr} g$.

There is a corresponding formula for λ_i but it is more complicated. It is convenient to introduce some notation:

Let \tilde{A} denote the set of all formal power series $1 + a_1t + a_2t^2 + \ldots$ over A with constant term 1. Then \tilde{A} is an abelian group under multiplication. We define **- multiplication* in \tilde{A} such that the following formula is valid

$$\lambda_{\iota}(f\otimes g)=\lambda_{\iota}(f)*\lambda_{\iota}(g).$$

This defines * for all polynomials in \tilde{A} since $1 + a_1t + \ldots + a_nt^n = \lambda_t(f)$ where $f: A^n \to A^n$ is given by the matrix

$$f = egin{pmatrix} 0 & 0 & \dots & 0 \pm a_n \ 1 & 0 & \mp & a_{n-1} \ 0 & 1 & \dots & \pm & a_{n-2} \ \dots & \dots & 0 & - & a_2 \ 0 & 0 & 1 & & a_1 \end{pmatrix}$$

PROPOSITION 3.4. If $\lambda_t(f) = 1 + a_1 t + \ldots + a_n t^n$ and

$$\lambda_{\iota}(g) = 1 + b_{1}t + \ldots + b_{m}t^{m}$$

then

 $\lambda_{t}(f \otimes g) = (1 + a_{1}t + \ldots + a_{n}t^{n}) * (1 + b_{1}t + \ldots + b_{m}t^{m}) = 1 + d_{1}t + \ldots + d_{mn}t^{mn}$ where

$$\begin{aligned} d_1 &= a_1 b_1 \\ d_2 &= a_1^2 b_2 + a_2 b_1^2 - 2a_2 b_2 \\ d_3 &= a_1^3 b_3 + a_3 b_1^3 + a_1 a_2 b_1 b_2 - 3a_1 a_2 b_3 - 3a_3 b_1 b_2 + 3a_3 b_3 \\ d_4 &= a_1^2 a_2 b_1 b_3 + a_1 a_3 b_1^2 b_2 - a_1 a_3 b_1 b_3 + a_1^4 b_4 + a_4 b_1^4 + 4a_1 a_3 b_4 + 4a_4 b_1 b_3 - 2a_1 a_3 b_2^2 - \\ &- 2a_2^2 b_1 b_3 + 2a_2^2 b_4 + 2a_4 b_2^2 - 4a_4 b_4 - 4a_1^2 a_2 b_4 - 4a_4 b_1^2 b_2 + a_2^2 b_2^2 \\ & \dots \end{aligned}$$

 $d_{mn-1} = a_n^{m-1} a_{n-1} b_m^{n-1} b_{m-1}$ $d_{mn} = a_n^m b_n^m.$

Proof. Just as in the proof of 1.10 we may assume that A is an algebraically closed field of characteristic zero. Then

$$\lambda_t(f) = \overline{\prod_{1}^n} (1 + \lambda_i t), \ \ \lambda_t(g) = \overline{\prod_{1}^m} (1 + \mu_j t)$$

and

$$\lambda_i(f\otimes g)=\prod_{i,j}\ (1+\lambda_i\mu_jt)$$

Using formulas for symmetric functions (see [1] p. 258) it is possible to compute d_1, d_2, d_3, \ldots A better way is to use the exponential trace formula 1.10. $ext{Put} \quad p_i = ext{Tr}\, f^i, \quad q_i = ext{Tr}\, g^i \quad ext{and} \quad r_i = ext{Tr}\, (f \otimes g)^i.$ Then $r_i = p_i q_i$ since $\operatorname{Tr} (f \otimes g)^i = \operatorname{Tr} (f^i \otimes g^i) = \operatorname{Tr} f^i \operatorname{Tr} g^i$. The exponential trace formula applied to f gives $a_1t + 2a_2t^2 + \ldots + na_nt^n = (1 + a_1t + \ldots + a_nt^n)(p_1t - p_2t^2 + p_3t^3 - \ldots)$ and hence

$$egin{aligned} a_1 &= p_1 \ 2a_2 &= a_1p_1 - p_2 \ 3a_3 &= a_2p_1 - a_1p_2 + p_3 \ 4a_4 &= a_3p_1 - a_2p_2 + a_1p_3 - p_4 \end{aligned}$$

Solving for the p_i :s we get

. . .

. . .

$$p_{1} = a_{1}$$

$$p_{2} = a_{1}^{2} - 2a_{2}$$

$$p_{3} = a_{1}^{3} - 3a_{1}a_{2} + 3a_{3}$$

$$p_{4} = a_{1}^{4} - 4a_{1}^{2}a_{2} + 4a_{1}a_{3} + 2a_{2}^{2} - 4a_{4}$$

There are similar formulas connecting the b_i :s and q_i :s (d_i :s and r_i :s). The latter give

$$\begin{aligned} d_1 &= r_1 = p_1 q_1 = a_1 b_1 \\ 2d_2 &= d_1 r_1 - r_2 = a_1^2 b_1^2 - p_2 q_2 = a_1^2 b_1^2 - (a_1^2 - 2a_2)(b_1^2 - 2b_2) = 2(a_1^2 b_2 + a_2 b_1^2 - 2a_2 b_2) \\ 3d_3 &= d_2 r_1 - d_1 r_2 + r_3 = d_2 p_1 q_1 - d_1 p_2 q_2 + p_3 q_3 = a_1 b_1 (a_1^2 b_2 + a_2 b_1^2 - 2a_2 b_2) - \\ &- a_1 b_1 (a_1^2 - 2a_2)(b_1^2 - 2b_2) + (a_1^3 - 3a_1 a_2 + 3a_3)(b_1^3 - 3b_1 b_2 + 3b_3) = \\ &= 3(a_1^3 b_3 + a_3 b_1^3 - 3a_1 a_2 b_3 - 3a_3 b_1 b_2 + 3a_3 b_3 + a_1 a_2 b_1 b_2) \end{aligned}$$

We omit the calculation of d_4 .

We could immediately have seen that the terms $a_1^3b_1^3$, $a_1^3b_1b_2$ would be missing in d_3 since they would occur in $(1 + a_1t) * (1 + b_1t + b_2t_2^2)$ which only has degree $1 \cdot 2 = 2$. Similarly $a_1b_2b_1^3$ will not occur.

To get the last terms one can use

$$(1 + a_{1}t + \ldots + a_{n}t^{n}) * (1 + b_{1}t + \ldots + b_{m}t^{m}) =$$

$$= a_{n}^{m}b_{m}^{n}t^{mn}\left(1 + \frac{a_{n-1}}{a_{n}}t^{-1} + \frac{a_{n-2}}{a_{n}}t^{-2} + \ldots\right) * \left(1 + \frac{b_{m-1}}{b_{m}}t^{-1} + \frac{b_{m-2}}{b_{m}}t^{-2} + \ldots\right)$$

In particular the number of monomials occurring in d_{mn-i} is the same as in d_i . Let s_k denote the number of monomials in d_k for large m, n (say $m, n \ge k$). The computation of s_k seems to be quite a problem.

By formally factoring

$$1 + a_1 t + a_2 t^2 + \ldots + a_n t^n = (1 + \alpha t)(1 + \beta t)(1 + \gamma t)(t + \delta t) \ldots$$

we find that the term containing, say $b_4^2 b_1^2$, of

$$(1 + a_1 t + \ldots) * (1 + b_1 t + b_2 t^2 + \ldots) =$$

= $(1 + b_1 \alpha t + b_2 \beta^2 t^2 + \ldots) (1 + b_1 \beta t + b_2 \beta^2 t^2 + \ldots) \ldots$

is $-\alpha^4 \beta^4 \gamma \delta$. Using the large fold-out tables of *Faa de Bruno*: Theorie des formes binaires, Turin 1876, we find the following results $s_1 = 1$, $s_2 = 3$, $s_3 = 6$, $s_4 = 15$, $s_5 = 28$, $s_6 = 64$, $s_7 = 116$, $s_8 = 234$, $s_9 = 373$, $s_{10} = 814$, $s_{11} = 1508$.

The method based on couning zeroes in tables cannot be generalized to k larger than 11.

Now back to defining *-multiplication in \tilde{A} . By the computations above it is clear that if we cut off the power series in the left hand side of

$$(1 + a_1t + \ldots) * (1 + b_1t + \ldots) = 1 + d_1t + \ldots + d_kt^k + \ldots$$

and take * of the remaining polynomials of degree n and m respectively, then $d_k =$ the coefficient of t^k will not depend on n and m if $n, m \geq k$. Hence we can define d_k in this way. Then \tilde{A} becomes a commutative ring with ordinary multiplication as addition and *-multiplication as multiplication. The unity element is 1 + t. Clearly \tilde{A} is torsionfree (as abelian group). Furthermore $\lambda_t(f) \mapsto \lambda_t(\Lambda^k f)$ induces a λ -ring structure on \tilde{A} (it is even a special λ -ring, see [1], p. 257).

We denote by $N(A) = \{a \in A_0; a \text{ is nilpotent}\}\$ the nilradical of a ring A.

PROPOSITION 3.5. (i) If A is torsion free then

$$N(\widetilde{A}) \subseteq \widetilde{N(A)} = \{1 + a_1t + a_2t^2 + \ldots; a_i \in N(\widetilde{A})\}.$$

(ii) If A is noetherian then $N(\widetilde{A}) \subseteq \widetilde{N(A)}$.

Proof. (i) Assume that $(1 + a_1t + a_2t^2 + ...)^{*k} = 1$. The left hand side is $1 + c_1t + c_2t^2 + ...$ with $c_1 = a_1^k$ and in general $c_n = m_n a_n^k + a$ polynomial of weight nk containing at least one of $a_1, a_2, ..., a_{n-1}$. Here m_n is an integer. We proceed by induction over n. We have $a_1^k = 0$ so $a_1 \in N(A)$. Assume now that $a_1, a_2, ..., a_{n-1} \in N(A)$. Since $c_n = 0$ we get $m_n a_n^k \in N(A)$ and $a_n \in N(A)$ since A is torsion free.

(ii) If A is noetherian then N(A) is nilpotent, say $N(A)^{k} = 0$. Hence the product of any k elements of N(A) is zero. The computation above shows that all monomials occurring in c_{n} contain at least k factors among the $a_{1}, \ldots, a_{n} \in N(A)$. It follows that $(1 + a_{1}t + \ldots)^{*k} = 1$.

We will return to the ring \tilde{A} in Section 6.

PROPOSITION 3.6. Given $f: P \to P$, $g: Q \to Q$ with $P, Q \in \mathcal{P}(A)$. Then we have an induced map

Hom (f, g): Hom_A $(P, Q) \rightarrow$ Hom_A (P, Q) where Hom_A $(P, Q) \in \mathcal{P}(A)$

defined by $u \mapsto g \circ u \circ f$. Then

 $\operatorname{Tr} \operatorname{Hom} \left(f,g\right) = \operatorname{Tr} f \cdot \operatorname{Tr} g \quad and \quad \lambda_t(\operatorname{Hom} \left(f,g\right)) = \lambda_t(f) * \lambda_t(g).$

Proof. We have a natural isomorphism $Q \simeq Q^{**}$ which induces natural isomorphisms

 $\operatorname{Hom}_{A}(P,Q) \cong \operatorname{Hom}_{A}(P,Q^{**}) \cong \operatorname{Hom}_{A}(P \otimes_{A} Q^{*},A) = (P \otimes_{A} Q^{*})^{*}$

Hence we get Tr (Hom $(f, g) = \text{Tr} (f \otimes g^*)^*$ and $\lambda_i(\text{Hom} (f, g)) = \lambda_i(f \otimes g^*)^*$). Using 3.2 twice and the definition of *-multiplication we get the desired formulas.

4. Relations between $\lambda_t(f)$ and minimal polynomials of f

PROPOSITION 4.1. Let $f: M \to M$ be A-linear with M a finitely generated A-module. Then there is a monic polynomial $q \in A[t]$ of minimal degree such that q(f) = 0. (q will be called a minimal polynomial of f). The degree of q is at most equal to the minimal number of generators of M.

Proof. Let *n* be the minimal number of generators of *M*. Then we have a surjection $A^n \xrightarrow{\pi} M \longrightarrow 0$. Since A^n is free we can find $g: A^n \longrightarrow A^n$ such that

commutes. Now g satisfies a monic polynomial q_1 of degree n by the Cayley-Hamilton theorem. Using this in the diagram gives

$$0 = q_1(g) \bigvee_{\substack{n \\ q_1(f) \\ A^n \xrightarrow{\pi} M \longrightarrow 0}}^{A^n \xrightarrow{\pi} M} M \xrightarrow{0} 0$$

from which it follows that $q_1(f) = 0$.

Remark 4.2. The polynomial q is not unique in general. If A = Z/(4) then $f = \binom{22}{22}$ satisfies both $f^2 = 0$ and $f^2 + 2f = 0$.

PROPOSITION 4.3. Given $f: P \to P$ with P in $\mathcal{P}(A)$. Assume that f has minimal polynomial q and put $\tilde{q}(t) = (-t)^r q(-t^{-1})$ where v = degree of q. Then $\lambda_t(f)$ satisfies the following differential equation in A[t]

$$t\lambda_t(f)^{-1} \, rac{d}{dt} \, \lambda_t(f) = rac{ ilde{q} \, \cdot \, \psi \; (\mathrm{mod} \; t^{v+1})}{ ilde{q}}$$

where $\psi(t) = b_1 t - b_2 t^2 + b_3 t^3 \dots$ with $b_i = \operatorname{Tr} f^i$. If q(0) = 0 we may take (mod t^{ν}) in the formula above.

Proof. Assume that $q(t) = t^{r} + c_{1}t^{r-1} + \ldots + c_{k}t^{r-k}$. Taking the trace of $0 = f^{r} + c_{1}f^{r-1} + \ldots + c_{k}k^{r-k}$ we get $0 = b_{r} + c_{1}b_{r-1} + \ldots + c_{k}k_{r-k}$ where in case k = r we put $b_{0} = \operatorname{Tr} 1_{P}$. Multiplying by f and taking traces again gives $b_{r+1} + c_{1}b_{r} + \ldots + c_{k}b_{r-k+1} = 0$ etc. Now $\tilde{q}(t) = 1 - c_{1}t + c_{2}t^{2} - \ldots \pm c_{k}t^{k}$ and $\tilde{q}(t)\psi(t) = (1 - c_{1}t + c_{2}t^{2} - \ldots \pm c_{k}t^{k})(b_{1}t - b_{2}t^{2} + b_{3}t^{3} \ldots) =$ $= (\text{terms of degree } < r) \pm (b_{r} + c_{1}b_{r-1} + \ldots + c_{k}b_{r-k})t \pm \pm (b_{r+1} + c_{1}b_{r} + \ldots + c_{k}b_{r-k+1})t^{r+1} + \ldots$

Here all terms of degree higher than ν vanish and the coefficient of t^{ν} is zero unless $k = \nu$ in which case it is $(-1)^{\nu-1}c_k \operatorname{Tr} 1_P$. The exponential trace formula gives

$$t\lambda_{\iota}(f)^{-1}\frac{d}{dt}\lambda_{\iota}(f)=\psi(t)$$

and multiplying by $\tilde{q}(t)$ finishes the proof.

Remark 4.4. If A contains the rational numbers **Q** then $\lambda_i(f)$ is determined by a minimal polynomial q of f and $b_1, b_2, \ldots, b_{\nu-1}$ where $\nu = \text{degree of } q$.

Example 4.5. Assume that $A \supseteq Q$. Let $f: P \to P$ have minimal polynomial $q(t) = t^2 - t$, i.e., f is a non-trivial idempotent in $\operatorname{End}_A P$. Then $\tilde{q}(t) = 1 + t$ and if we apply 4.3 we get (since q(0) = 0)

GERT ALMKVIST

$$t\lambda_{t}(f)^{-1}\frac{d}{dt}\lambda_{t}(f) = \frac{((1+t)(b_{1}t - b_{2}t^{2} \dots))(\text{mod }t^{2})}{1+t} = \frac{b_{1}t}{1+t}$$

which implies $\lambda_t(f) = (1 + t)^{b_t} = (1 + t)^{Tr f}$.

If $f^3 = f$, i.e. $q(t) = t^3 - t$ one finds similarly

$$\lambda_t(f) = (1+t)^{rac{b_2+b_1}{2}} \cdot (1-t)^{rac{b_2-b_2}{2}}$$

Example 4.6. Let G be a finite group of order n and A[G] the group algebra. Let $f: A[G] \to A[G]$ be given by left multiplication with $\sigma \in G$. If σ has order k then the minimal polynomial of f is $q(t) = t^k - 1$ and $\tilde{q}(t) = 1 + (-1)^{kt^k}$. Using 4.3 and the fact that $b_1 = b_2 = \ldots = b_{k-1} = 0$ and $b_k = n$ we get

$$\lambda_{\iota}(f) = (1 - (-1)^{k} t^{k})^{\frac{n}{k}}$$

5. Endomorphisms of modules having finite resolutions of finitely generated projective modules

Let $\mathcal{H}(A)$ denote the category of A-modules M such that M has a finite resolution in $\mathcal{P}(A)$. We want to define $\lambda_t(f)$ for $f: M \to M$ when $M \in \mathcal{H}(A)$. For this we need some preparations.

Definition 5.1. Let End $\mathcal{P}(A)$ denote the category of endomorphisms of modules in $\mathcal{P}(A)$, i.e. the objects are endomorphism $f: P \to P$ with $P \in \mathcal{P}(A)$ and a morphism u from f to $g: Q \to Q$ (where $Q \in \mathcal{P}(A)$) is a commutative diagram

$$\begin{array}{ccc} P \xrightarrow{u} & Q \\ f & & \downarrow g \\ P \xrightarrow{u} & Q \end{array}$$

Then K_0 (End $\mathcal{P}(A)$) is defined as the free abelian group generated by (the isomorphism classes of) the objects in End $\mathcal{P}(A)$ modulo the subgroup generated by all [f] - [f'] - [f''] where

is commutative with exact row. Similarly we define End $\mathcal{H}(A)$ and K_0 (End $\mathcal{H}(A)$).

PROPOSITION 5.2. The embedding End $\mathcal{P}(A) \to \text{End } \mathcal{N}(A)$ induces an isomorphism $i: K_0 \text{ (End } \mathcal{P}(A)) \xrightarrow{\sim} K_0 \text{ (End } \mathcal{N}(A)).$

 $\mathbf{280}$

Proof. The usual proof does not apply since $f: P \to P$ with $P \in \mathcal{P}(A)$ is not a projective object in the abelian category of all endomorphisms (which is isomorphic to the category of modules over A[t]). Fortunately Swan has formulated a theorem general enough for our purposes (see [12] p. 235. Theorem 16.12). Put $\mathcal{P} = \text{End } \mathcal{P}(A)$ and $\mathcal{M} = \text{End } \mathcal{X}(A)$. Then the assumptions in 16.12 are fulfilled. Indeed,

(1) Clearly End $\mathcal{P}(A)$ and $\mathcal{H}(A)$ are closed under direct sums

(2) If
$$0 \longrightarrow P' \xrightarrow{u} P \xrightarrow{v} P'' \longrightarrow 0$$

 $\downarrow f' \qquad \downarrow f \qquad \downarrow f''$
 $0 \longrightarrow P' \xrightarrow{u} P \xrightarrow{v} P'' \longrightarrow 0$

is exact and commutative then $P, P'' \in \mathcal{P}(A)$ implies $P' \in \mathcal{P}(A)$ and $P, P'' \in \mathcal{H}(A)$ implies $P' \in \mathcal{H}(A)$ (see Bass [2], p. 122, Proposition 6.3).

(3) Given any $f: M \to M$ with $M \in \mathcal{X}(A)$ there exists a finite resolution in End $\mathcal{P}(A)$, i.e.

$$0 \longrightarrow P_{d} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$$

$$\downarrow f_{d} \qquad \qquad \downarrow f_{1} \qquad \downarrow f_{0} \qquad \downarrow f \qquad (*)$$

$$0 \longrightarrow P_{d} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$$

is commutative with exact row and all $P_i \in \mathcal{P}(A)$. This is easily proved.

Now the inverse ψ of $i: K_0$ (End $\mathcal{P}(A)$) $\rightarrow K_0$ (End $\mathcal{H}(A)$) is given by

$$\psi([f]) = \sum_{0}^{d} (-1)^{i} [f_{i}]$$

and it is shown in [12] that the right hand side is independent of the choice of the resolution (*).

THEOREM 5.3. Given $f: M \to M$ with $M \in \mathcal{N}(A)$. Consider the resolution (*) in End $\mathcal{P}(A)$ above. Then

$$\sum_{0}^{d} (-1)^{i} \operatorname{Tr} f_{i} \quad and \quad \prod_{0}^{d} \lambda_{t}(f_{i})^{(-1)^{i}}$$

are independent of the choice of the resolutions and the liftings f_i of f.

Proof. For $f: P \to P$ with $P \in \mathcal{P}(A)$, $f \mapsto \lambda_t(f)$ is a map from (isomorphism classes in) End $\mathcal{P}(A)$ to \widetilde{A} . If $0 \to (P', f') \to (P, f) \to (P'', f'') \to 0$ is exact in End $\mathcal{P}(A)$ we have (by (1.5) $\lambda_t(f) = \lambda_t(f')\lambda_t(f'')$.

Hence by the universal property of K_0 (End $\mathcal{P}(A)$) we have a factorization

Assume now that (M, f) in End $\mathcal{X}(A)$ has two resolutions

$$0 \rightarrow (P_d, f_d) \rightarrow \ldots \rightarrow (P_0, f_0) \rightarrow , (M, f) \rightarrow 0$$

and

$$0 \to (P'_{d'}, f'_{d'}) \to \ldots \to (P'_0, f'_0) \to (M, f) \to 0$$

in End $\mathcal{P}(A)$. By the proof of 5.2 we have

$$\sum_{0}^{d} (-1)^{j}[f_{j}] = \sum_{0}^{d'} (-1)^{j}[f'_{j}] \text{ in } K_{0} (\text{End } \mathcal{P}(A))$$

and thus

$$\prod_{0}^{d} \lambda_{\iota}(f_{j})^{(-1)^{j}} = \prod_{0}^{d^{\prime}} \lambda_{\iota}(f_{j}^{\prime})^{(-1)^{j}} \hspace{0.1 in} \hspace{0.1 in} \widetilde{A}.$$

The statement about the trace follows from taking the coefficient of t in the formula for λ_t .

Now we can safely make the

Definition 5.4. For $f: M \to M$ with M in $\mathcal{H}(A)$ we define $\chi(f) = \sum_{i=1}^{d} (-1)^{i} \operatorname{Tr} f_{i}$ and $\lambda_{i}(f) = \prod_{i=1}^{d} \lambda_{i}(f_{i})^{(-1)^{i}}$

where the f_i :s are given in (*).

Proposition 5.5. Let

$$0 \to M_k \to \ldots \to M_1 \to M_0 \to 0$$
$$\downarrow f_k \qquad \qquad \downarrow f_1 \qquad \downarrow f_0$$
$$0 \to M_k \to \ldots \to M_1 \to M_0 \to 0$$

be a commutative diagram with exact row and all M_i in $\mathcal{N}(A)$. Then

$$\sum_{0}^{k} (-1)^{i} \chi(f_{i}) = 0 \quad and \quad \prod_{0}^{k} \lambda_{i}(f_{i})^{(-1)^{i}} = 1$$

Proof. Consider the diagram (see the proof of 5.2)

282

where we denote λ_t by $\tilde{\lambda}_t$ on End $\mathcal{H}(A)$. The definition of ψ and $\tilde{\lambda}_t$ means exactly that $\tilde{\lambda}_t = \lambda_t \circ \psi$. Now given an exact sequence

$$0 \to (M_k, f_k) \to \ldots \to (M_0, f_0) \to 0$$

in End $\mathcal{H}(A)$ we get $\sum_{0}^{k} (-1)^{i} [f_i] = 0$ in K_0 (End $\mathcal{H}(A)$) and hence
 $\prod_{0}^{k} \tilde{\lambda}_i [f_i]^{(-1)^{i}} = 1$

Taking the coefficient of t we get the formula for χ .

COROLLARY 5.6. $\chi(f \oplus g) = \chi(f) + \chi(g)$ and $\lambda_{\iota}(f \oplus g) = \lambda_{\iota}(f) \cdot \lambda_{\iota}(g)$.

Next we generalize the exponential trace formula

PROPOSITION 5.7. If $f: M \to M$ with $M \in \mathcal{N}(A)$ then

$$-t\lambda_i(f)^{-1}rac{d}{dt}\lambda_i(f)=\sum_{1}^{\infty}\chi(f^i)(-t)^i$$
 in \tilde{A} .

Proof. Let $0 \to (P_d, f_d) \to \ldots \to (P_0, f_0) \to (M, f) \to 0$ be a resolution in End $\mathscr{P}(A)$. Taking logarithmic derivatives of

$$\lambda_{\iota}(f) = \prod_{j=0}^{d} \lambda_{\iota}(f_j)^{(-1)^j}$$

we get (using the exponential trace formula)

$$- t\lambda_{t}(f)^{-1}\frac{d}{dt}\lambda_{t}(f) = \sum_{j=0}^{d} (-1)^{j} \left(- t\lambda_{t}(f_{j})^{-1}\frac{d}{dt}\lambda_{t}(f_{j})\right) =$$
$$= \sum_{j=0}^{d} (-1)^{j} \sum_{i=1}^{\infty} (-1)^{i} \operatorname{Tr}(f_{j}^{i})t^{i} = \sum_{i=1}^{\infty} (-1)^{i} \left(\sum_{j=0}^{d} (-1)^{j} \operatorname{Tr}(f_{j}^{i})\right) = \sum_{i=1}^{\infty} (-1)^{i} \chi(f^{i})t^{i}$$

since

 $0 \to (P_d, f_d^i) \to \ldots \to (P_0, f_0^i) \to (M, f^i) \to 0$

is a resolution of (M, f^i) .

THEOREM 5.8. Let $f: M \to M$ with $M \in \mathcal{H}(A)$ be nilpotent, $f^{m+1} = 0$. Then there is a resolution

$$0 \to (P_d, f_d) \to \ldots \to (P_0, f_0) \to (M, f) \to 0$$

in End $\mathcal{P}(A)$ such that all $f_i^{m+1} = 0$.

GERT ALMKVIST

Assume that $\operatorname{rk} P_i = n_i$ and $\lambda_i(f) = 1 + \sum_{1}^{\infty} c_i t^i$. Then all the c_i :s are nilpotent and $c_1^r c_2^{r_2} \dots c_k^{r_k} = 0$ if the weight $v_1 + 2v_2 + \dots + kv_k > m \sum_{0}^{d} n_i$. It follows that $\lambda_i(f)$ is a polynomial of degree

$$\leq n_0+mn_1+n_2+mn_3+\ldots+egin{cases} n_d & if \ d \ is \ even \ mn_d \ if \ d \ is \ odd. \end{cases}$$

Proof. The existence of the projective resolution such that $f_i^{m+1} = 0$ is precisely Proposition 6.2, p. 653 in Bass [2]. Now $\lambda_i(f)$ is a product of factors

$$\lambda_t(f_i) = 1 + a_1 t + \ldots + a_{n_i} t^{n_i}$$

or their inverses. By 1.7 any monomial in the a_i :s vanishes provided its weight is larger than mn_i . Inverting the polynomial $\lambda_t(f_i) = 1 + a_1t + \ldots + a_n t^{n_i}$ we find that $\lambda_t(f_i)^{-1}$ is a polynomial of degree at most mn_i and the coefficient of t^r is a polynomial in the a_i :s where every term has weight ν . Taking the alternating product of the $\lambda_t(f_i)$:s we get $\lambda_t(f) = 1 + c_1t + c_2t^2 + \ldots$ where c_{ν} is a sum of terms of the type

$$a_1^{r_1} \dots a_{n_0}^{r_{n_0}} \dots b_1^{s_1} \dots b_{n_d}^{s_{n_d}}$$
 (**)

if $\lambda_t(f_0) = 1 + a_1 t + \ldots + a_{n_0} t^{n_0} \ldots$, $\lambda_t(f_d) = 1 + b_1 t + \ldots + b_{n_d} t^{n_d}$.

Furthermore the weight of the monomial (**) is

$$v = r_1 + 2r_2 + \ldots + n_0r_{n_0} + \ldots + s_1 + 2s_2 + \ldots + n_ds_{n_d}$$

Let now $c = c_1^{\nu_1} c_2^{\nu_2} \dots c_k^{\nu_k}$ be a monomial in the c_i :s of weight

$$v_1+2v_2+\ldots+kv_k>m\sum_{i=0}^a n_i.$$

Then c is a sum of monomials of type (**) such that their weight

$$r_1 + 2r_2 + \ldots + n_0r_{n_0} + \ldots + s_1 + 2s_2 + n_ds_{n_d} = v_1 + 2v_2 + \ldots + kv_k > m\sum_{0}^{d} n_i.$$

Hence at least one of the factors

$$(a_1^{r_1} \dots a_n^{r_n}), \dots, (b_1^{s_1} b_2^{s_2} \dots b_{n_d}^{s_{n_d}})$$

has weight $> mn_1, \ldots, mn_d$ respectively and this factor is zero by 1.7.

The estimate of the degree of $\lambda_t(f)$ is clear from the previous considerations.

COROLLARY 5.9. Assume that the ring A is reduced, i.e. the nilradical N(A) = 0. Then $\lambda_t(f) = 1$ for all nilpotent $f: M \to M$ with $M \in \mathcal{X}(A)$.

We denote the projective dimension of an A-module M with $dh_A M$.

PROPOSITION 5.10. Let A be a local noetherian ring with maximal ideal m, residue field k = A/m, and M a finitely generated A-module. If $d = dh_A M$ is finite then $M \in \mathcal{N}(A)$ and $\lambda_i^A(1_M) = (1 + t)^{\chi^A(1_M)}$ where

$$\chi^{\mathcal{A}}(1_{M}) = \sum_{i=0}^{d} (-1)^{i} \dim_{k} \operatorname{Tor}_{i}^{\mathcal{A}}(M, k)$$

Proof. Choose a minimal free resolution

$$0 \to P_d \to \ldots \to P_1 \to P_0 \to M \to 0$$

with $n_i = rk_A P_i = \dim_k \operatorname{Tor}_i^A(M, k)$ (see Serre [10] p. IV - 47). Then

$$\lambda_{t}(1_{M}) = \prod_{0}^{d} \lambda_{t}(1_{P_{i}})^{(-1)^{i}} = \prod_{0}^{d} (1+t)^{(-1)^{i}n_{i}} = (1+t)^{\frac{d}{\Sigma}(-1)^{i}n_{i}}$$

 But

$$\chi(1_M) = \sum_{0}^{d} (-1)^i \operatorname{Tr} 1_{P_i} = \sum_{0}^{d} (-1)^i n_i.$$

PROPOSITION 5.11. Let A be a regular local noetherian ring with residue field k. Then $k \in \mathcal{H}(A)$ and $\lambda_{i}^{A}(1_{k}) = 1$.

Proof. Putting M = k in 5.10 we get

$$\chi^{A}(1_{k}) = \sum_{0}^{d} (-1)^{i} \dim_{k} \operatorname{Tor}_{i}^{A}(k, k) = \sum_{0}^{d} (-1)^{i} \binom{d}{i} = (1-1)^{d} = 0$$

since $\dim_k \operatorname{Tor}_i^{\mathcal{A}}(k, k) = \begin{pmatrix} d \\ i \end{pmatrix}$ where d = global dimension of A if A is a regular local noetherian ring.

PROPOSITION 5.12. Let $\phi: A \to B$ be a flat ring homomorphism, i.e. B is flat as an A-module. If $f: M \to M$ with $M \in \mathcal{N}(A)$, then $M \otimes_A B \in \mathcal{N}(B)$ and

$$\lambda^{B}_{\iota}(f \otimes 1_{B}) = \phi(\lambda^{A}_{\iota}(f)).$$

Proof. Let

$$0 \to P_{d} \to \ldots \to P_{0} \to M \to 0$$
$$\downarrow f_{d} \qquad \qquad \downarrow f_{0} \qquad \downarrow f$$
$$0 \to P_{d} \to \ldots \to P_{0} \to M \to 0$$

be a projective resolution. Then the exactness is preserved after taking $\cdot \otimes_A B$ since B is A-flat. Furthermore each $P_i \otimes_A B$ is B-projective and finitely generated as B-module. Hence $M \otimes_A B \in \mathcal{H}(B)$ and since $\phi(\lambda_i^A(f_i)) = \lambda_r^B(f_i \otimes 1_B)$ by 3.1 we finish the proof by taking alternating products.

COROLLARY 5.13. Let A be an integral domain and K its quotient field. Then

 $\lambda_t^A(f) = \lambda_t^K(f \otimes \mathbf{1}_K)$

Proof. The inclusion $A \to K$ is flat.

COROLLARY 5.14. Let A be an integral domain and $f: M \to M$ where M is a torsion module in $\mathcal{N}(A)$. Then $\lambda_i(f) = 1$.

Proof. Since M is torsion we have $M \otimes_A K = 0$ and hence

$$\lambda_t^A(f) = \lambda_t^K(f \otimes \mathbf{1}_K) = \lambda_t^K(0) = \mathbf{1}_K$$

by 5.13.

COROLLARY 5.15. Let A be a Dedekind ring and $f: M \to M$ A-linear where M is finitely generated. Then $M = T \oplus P$ where T is a torsion module and P is projective and torsion free.

Furthermore $f(T) \subseteq T$ and $\lambda_i(f) = \lambda_i(f_P)$ where $f_P: P \to P$ is the storsion free parts of f.

Proof. First we note that $M \in \mathcal{H}(A)$ since A is notherian and gl. dim $A \leq 1$. Then $M = T \oplus P$ is just Bourbaki [5] p. 79, Corollaire. Now $\operatorname{Hom}_{A}(T, P) = 0$ so we get the following diagram using matrix representation

$$\begin{pmatrix} 1\\ 0 \end{pmatrix} (0, 1) \\ 0 \to T \to T \oplus P \to P \to 0 \\ \downarrow f_T \downarrow f = \begin{pmatrix} f_T h\\ 0 f_P \end{pmatrix} \downarrow \\ 0 \to T \to T \oplus P \to P \to 0 \\ \begin{pmatrix} 1\\ 0 \end{pmatrix} (0, 1) \end{cases}$$

From 5.6 and 5.14 it follows that

$$\lambda_t(f) = \lambda_t(f_T) \cdot \lambda_t(f_P) = 1 \cdot \lambda_t(f_P) = \lambda_t(f_P).$$

We now extend the definitions of χ and λ_i to endomorphisms of graded modules and complexes.

Definition 5.16. Let $M = \bigoplus_{i=0}^{d} M_i$ be a graded A-module with all $M_i \in \mathcal{H}(A)$. If $f: M \to M$ is a homomorphism of degree zero, i.e. $f(M_i) \subseteq M_i$, we put f_i = the restriction of f to M_i and define

$$\chi^{gr}(f) = \sum_{0}^{d} (-1)^i \chi(f_i) \text{ and } \lambda_i^{gr}(f) = \prod_{0}^{d} \lambda_i(f_i)^{(-1)^i}.$$

Note that $\chi^{g^r}(f)$ and $\lambda_i^{g^r}(f)$ in general do not agree with $\chi(f)$ and $\lambda_i(f)$ where M is considered just as an A-module.

Similarly if

$$0 \longrightarrow C_{d} \xrightarrow{\delta_{d}} C_{d-1} \longrightarrow \ldots \longrightarrow C_{1} \xrightarrow{\delta_{1}} C_{0} \longrightarrow 0$$

$$\downarrow f_{d} \qquad \downarrow f_{d-1} \qquad \downarrow f_{1} \qquad \downarrow f_{0}$$

$$0 \longrightarrow C_{d} \xrightarrow{\delta_{d}} C_{d-1} \longrightarrow \ldots \longrightarrow C_{1} \xrightarrow{\delta_{1}} C_{0} \longrightarrow 0$$

for short $f: C \to C$ is a chain map of a finite complex C with all C_i in $\mathcal{H}(A)$, we define

$$\chi(f) = \sum_{0}^{d} (-1)^{i} \operatorname{Tr} f_{i} \text{ and } \lambda_{i}(f) = \prod_{0}^{d} \lambda_{i}(f_{i})^{(-1)^{i}}.$$

PROPOSITION 5.17. Let $f: C \to C$ be as above. Assume that all homology modules $H_i(C)$ are in $\mathcal{H}(A)$. Then

$$\chi(f) = \chi^{gr}(H_*(f))$$
 and $\lambda_i(f) = \lambda_i^{gr}(H_*(f))$

where $H_*(f): H_*(C) \to H_*(C)$ is the induced endomorphism of the graded homology module $H_*(C) = \bigoplus_{0}^{d} H_i(C)$.

Proof. Put $K_i = \text{Ker } \delta_i$ and $B_i = \text{Im } \delta_{i+1}$. Then we have exact sequences

$$0 \to K_i \to C_i \to B_{i-1} \to 0$$
$$0 \to B_i \to K_i \to H_i(C) \to 0.$$

Now $B_0 = C_0 \in \mathcal{H}(A)$ and $C_1 \in \mathcal{H}(A)$ so $K_1 \in \mathcal{H}(A)$ by Bass [2] p. 122, Proposition 6.3. Since $H_1(C) \in \mathcal{H}(A)$ we also get $B_1 \in \mathcal{H}(A)$. By induction all $B_i, K_i \in \mathcal{H}(A)$. We get induced maps

$$\begin{array}{lll} 0 \rightarrow K_i \rightarrow C_i \rightarrow B_{i-1} \rightarrow 0 & 0 \rightarrow B_i \rightarrow K_i \rightarrow H_i(C) \rightarrow 0 \\ & & & \downarrow g_i \quad \downarrow f_i \quad \downarrow h_{i-1} & & \downarrow h_i \quad \downarrow g_i \quad \downarrow H_i(f) \\ 0 \rightarrow K_i \rightarrow C_i \rightarrow B_{i-1} \rightarrow 0, & 0 \rightarrow B_i \rightarrow K_i \rightarrow H_i(C) \rightarrow 0. \end{array}$$

Using 5.5 several times and taking alternating products all $\lambda_i(g_i)$ and $\lambda_i(h_i)$ cancel and we get the wanted formula for $\lambda_i(f)$.

Remark 5.18. The condition $H_i(C) \in \mathcal{H}(A)$ is satisfied if A is a regular noetherian ring.

COROLLARY 5.19. If $f: C \to C$ and $g: C \to C$ are chain homotopic maps of complexes then $\lambda_i(f) = \lambda_i(g)$.

PROPOSITION 5.20. Let $f: C \to C$ be a chain map as above. Then

$$-t\lambda_{\iota}(f)^{-1} \frac{d}{dt} \lambda_{\iota}(f) = \sum_{j=1}^{\infty} \chi(f^j)(-t)^j$$

Proof. Take the logarithmic derivative of $\lambda_i(f) = \overline{\prod_{i=0}^{d} \lambda_i(f_i)^{(-1)^i}}$ and use 5.7.

PROPOSITION 5.21. Given $f: M \to M$ and $g: N \to N$ with $M, N \in \mathcal{H}(A)$. Assume that $\operatorname{Tor}_i(M, N) \in \mathcal{H}(A)$ for all $i \geq 0$. Then

$$\lambda_{\mathbf{i}}(f) * \lambda_{\mathbf{i}}(g) = \lambda_{\mathbf{i}}^{gr} \left(\operatorname{Tor}_{*} \left(f, g \right) \right)$$

where $\operatorname{Tor}_*(M, N) = \bigoplus_{i \ge 0} \operatorname{Tor}_i(M, N)$ and $\operatorname{Tor}_*(f, g)$ is the induced graded map.

Proof. Let

$$0 \to (P_m, f_m) \to \ldots \to (P_0, f_0) \to (M, f) \to 0$$

and

$$0 \to (Q_n, g_n) \to \ldots \to (Q_0, g_0) \to (N, g) \to 0$$

be resolutions in End $\mathcal{P}(A)$. Then

$$\lambda_t(f) = \overline{\prod_{0}^n} \lambda_t(f_i)^{(-1)^i}$$
 and $\lambda_t(g) = \overline{\prod_{0}^n} \lambda_t(g_j)^{(-1)^j}$.

Taking the tensor product of the complexes we get a complex $C = (C_k)_{k=0}^{m+n}$ and a chain map $h = (h_k)_0^{m+n}: C \to C$ where

$$C_k = \bigoplus_{i+j=k} P_i \otimes Q_j \ \ ext{and} \ \ h_k = \bigoplus_{i+j=k} (f_i \otimes g_j).$$

Then

$$H_k(C) = \operatorname{Tor}_k(M, N) \text{ and } H_k(h) = \operatorname{Tor}_k(f, g).$$

Now

$$\lambda_{\iota}(h_k) = \lambda_{\iota}(\bigoplus_{i+j=k} (f_i \otimes g_j)) = \prod_{i+j=k} \lambda_{\iota}(f_i \otimes g_j) = \prod_{i+j=k} \lambda_{\iota}(f_i) * \lambda_{\iota}(g_j)$$

and

$$egin{aligned} &\lambda_{\iota}(h) = \prod_{k=0}^{m+n} \lambda_{\iota}(h_k)^{(-1)^k} = \prod_{i=0}^m \prod_{j=0}^n \lambda_{\iota}(f_i) st \lambda_{\iota}(g_j))^{(-1)^{i+j}} = \ &= \prod_{i=0}^m \lambda_{\iota}(f_i)^{(-1)^i} st \prod_{j=0}^m \lambda_{\iota}(g_j)^{(-1)^j} = \lambda_{\iota}(f) st \lambda_{\iota}(g). \end{aligned}$$

 $\mathbf{288}$

But $\lambda_t(h) = \lambda_t^{gr}(H_*(h)) = \lambda_t^{gr}(\operatorname{Tor}_*(f, g))$ by 5.17 and we are done.

Remark 5.22. If $M, N \in \mathcal{H}(A)$ implies $M \otimes_A N \in \mathcal{H}(A)$ for all M, N then also Tor_i $(M, N) \in \mathcal{H}(A)$ for $i \geq 1$. This is the case if A is a regular noetherian ring.

To prove this we use induction on dh M. If dh M = 0, i.e. M is projective, we have nothing to prove. Assume that dh $M = m \ge 1$. Choose an exact sequence

$$0 \to K \to F \to M \to 0$$

where F is free. Then dh K = m - 1 and $K \in \mathcal{H}(A)$ since F and M are in $\mathcal{H}(A)$. The long exact sequence is

$$\cdots \to \underbrace{\operatorname{Tor}_2(F, N)}_{= 0} \to \operatorname{Tor}_2(M, N) \to \operatorname{Tor}_1(K, N) \to \underbrace{\operatorname{Tor}_1(F, N)}_{= 0} \to \operatorname{Tor}_1(M, N) \to \\ \to K \otimes_A N \to F \otimes_A N \to M \otimes_A N \to 0.$$

By assumption $K \otimes N$, $F \otimes N$, $M \otimes N \in \mathcal{H}(A)$ and thus $\operatorname{Tor}_1(M, N) \in \mathcal{H}(A)$ by Bass [2] p. 122. Furthermore by the induction hypothesis $\operatorname{Tor}_1(K, N) \in \mathcal{H}(A)$ and hence $\operatorname{Tor}_2(M, N) \cong \operatorname{Tor}_1(K, N) \in \mathcal{H}(A)$. Similarly $\operatorname{Tor}_i(M, N) \in \mathcal{H}(A)$ for $i \geq 2$.

Example 5.23 (M. Schlessinger). If $M, N \in \mathcal{H}(A)$ then $M \otimes_A N$ may not be in $\mathcal{H}(A)$. Let A be the local ring at the singular point (0, 0) of the curve $x^3 - y^2 = 0$. Then A/(x) and A/(y) have homological dimension one (since $0 \to A \xrightarrow{x} A \to A/(x) \to 0$ is exact) but $A/(x) \otimes A/(y) \cong A/(x, y) = k$ = the residue field which has infinite homological dimension (as A-module) since A is not regular.

COROLLARY 5.24. If M or N is projective and both are in H(A) then

$$\lambda_{\mathbf{i}}(f \otimes g) = \lambda_{\mathbf{i}}(f) * \lambda_{\mathbf{i}}(g)$$

(it is not more general to assume M only flat since M flat and $M \in \mathcal{H}(A)$ implies M is projective).

Example 5.25. Let X be a polyhedron (or any topological space such that $H_*(X, \mathbb{Z})$ is finitely generated) and $g: X \to X$ a continuous map. Then there is an induced homomorphism of graded abelian groups

$$H_*(X) = \bigoplus_{\mathfrak{o}}^{d} H_i(X, \mathbf{Z}) \text{ with } d = \dim X.$$

Then (since **Q** is **Z**-flat)

$$\lambda_i(g_*) = \lambda_i(g_* \otimes 1_Q) = \prod_{i=0}^d \lambda_i(H_i(g_*)^{(-1)^i}$$

is exactly $\tilde{\zeta}_g(-t)$ where $\tilde{\zeta}_g$ is the »false» ζ -function of g (see Smale [11] p. 768). It would be interesting to consider (co-)homology with other coefficients. The Lefschetz number is just $\chi(g_*) =$ the coefficient of t in $\lambda_t(g_*)$.

PROPOSITION 5.26. Assume that $A = \prod_{s=1}^{i=1} A_i$ is a direct product of rings. Then $1 = e_1 + \ldots + e_s$ where e_1, \ldots, e_s are orthogonal idempotents and $A_i \cong Ae_i$. Given an A-linear map $f: M \to M$ with M in $\mathcal{H}(A)$ then $M = \bigoplus_{i=1}^{s} M_i$ where $M_i = e_i M$ can be considered as an A_i -module in $\mathcal{H}(A_i)$. Let $f_i: M_i \to M_i$ be the restriction of f to M_i . Then

$$\pi_i(\lambda_t^A(f)) = \lambda_t^{A_i}(f_i)$$

where $\pi_i: A \to A_i$ is the canonical projection.

Proof. Since A_i is a direct summand of A it follows that A_i is a projective (and hence flat) A-module. Then

 $M \otimes_A A_i \in \mathcal{P}(A_i)$ and $\pi_i(\lambda_i^A(f)) = \lambda_i^{A_i}(f \otimes 1_{A_i})$

by 5.12. Finally $M \otimes_A A_i \cong e_i M = M_i$ as A_i -modules and $f \otimes 1_{A_i}$ may be identified with $f_i: M_i \to M_i$.

COROLLARY 5.27. Let A be a noetherian regular ring. Then $A = \prod_{i=1}^{s} A_i$ where the A_i :s are integral domains. Let M be a finitely generated A-module and $f: M \to M$ as in 5.26. Then

$$\pi_i(\lambda_i^A(f)) = \lambda_i^{A_i}(f_i) = \lambda_i^{K_i}(f_i \otimes 1_{K_i})$$

where K_i is the quotient field of A_i .

Proof. First M is in $\mathcal{H}(A)$ since A is noetherian and gl. dim $A < \infty$. The direct product decomposition of the ring is Kaplansky [7], p. 119, Theorem 168.

6. K-theory of endomorphisms

In this section we make an attempt to classify the endomorphisms of finitely generated projective A-modulus (for notation see 5.1).

We have two ringhomomorphisms

$$K_0$$
 (End $\mathcal{P}(A)$) $\rightarrow K_0(A)$

defined by

$$(P, f) \mapsto P$$
 and $K_0(A) \to K_0$ (End $\mathcal{P}(A)$)

defined by $P \mapsto (P, 0)$.

Since the latter map is the right inverse of the first one we get a split exact sequence

$$0 \to K_0(A) \to K_0 \; (\mathrm{End} \; \mathcal{P}(A)) \to \tilde{K_0} \; (\mathrm{End} \; \mathcal{P}(A)) \to 0$$

(compare Bass [2], p. 652) which defines \tilde{K}_0 (End $\mathcal{P}(A)$). Hence

$$K_0 \ (\mathrm{End} \ \mathscr{P}(A)) \simeq K_0(A) imes \widetilde{K}_0 \ (\mathrm{End} \ \mathscr{P}(A))$$

and we can consider λ_i defined on \widetilde{K}_0 (End $\mathscr{P}(A)$) since $\lambda_i(0) = 1$.

PROPOSITION 6.1. Let $A = \prod_{i=1}^{s} A_i$. Then K_0 (End $\mathcal{P}(A)$) $\cong \prod_{i=1}^{s} K_0$ (End $\mathcal{P}(A_i)$).

Proof. We have $1 = e_1 + \ldots + e_s$ where $e_1, \ldots e_s$ are orthogonal idempotents (see 5.26). Given $f: P \to P$ with $P \in \mathcal{P}(A)$ we get $f_i: P_i \to P_i$ where $P_i = e_i P \in \mathcal{P}(A_i)$. Define

$$\Psi: K_{\mathbf{0}} (\operatorname{End} \, \mathcal{P}(A)) \to \prod_{i=1}^{s} K_{\mathbf{0}} (\operatorname{End} \, \mathcal{P}(A_{i}))$$

by

$$[f] \to ([f_i])_{i=1}^s$$

Conversely given $([g_i])_1^s$ in $\prod_{i=1}^s K_0$ (End $\mathcal{P}(A_i)$) where $g_i: P_i \to P_i$ with $P_i \in \mathcal{P}(A_i)$, define $[g] \in K_0$ (End $\mathcal{P}(A)$) by $g(x) = g(\sum_{i=1}^s x_i) = \sum_{i=1}^s g_i(x_i)$

if
$$x = \sum_{i=1}^{s} x_i \in P = \bigoplus_{i=1}^{s} P_i$$
 with $x_i \in P_i$ for $i = 1, 2, \ldots, s$.

Then $P = \bigoplus_{i=1}^{s} P_i \in \mathcal{P}(A)$ and $g: P \to P$ is A-linear.

The maps Ψ and $(\lceil g_i \rceil)_1^s \mapsto \lceil g \rceil$ are easily seen to be each others inverses. Furthermore Ψ is a ringhomomorphism since f_i can be identified with $f \otimes 1_{A_i}$ and A_i is A-flat.

Definition 6.2. We define the subring of »rational functions»

$$ilde{A_0} = \left\{ egin{matrix} 1+a_1t+\ldots+a_mt^m \ 1+b_1t+\ldots+b_nt^n; & a_i, b_j \in A \end{matrix}
ight\}$$

of \tilde{A} (where $\tilde{A_0}$ has the induced operations).

PROPOSITION 6.3. $\lambda_i: \widetilde{K}_0 \pmod{\mathcal{P}(A)} \to \widetilde{A}$ is a λ -ringhomomorphism with image \widetilde{A}_0 .

Proof. This follows from the definitions made after 3.3.

THEOREM 6.4. $\tilde{A_0}$ is a direct summand (as an abelian group) of \tilde{K}_0 (End $\mathcal{P}(A)$).

Proof. We have to construct a right inverse σ of

$$\lambda_i: K_0 \ (\text{End } \mathcal{P}(A)) \to \widetilde{A}_0$$

For this purpose it is convenient to view an endomorphism $f: P \to P$ as an A[t]-module with the action defined by $t \cdot x = f(x)$ for $x \in P$. Maps between endomorphisms correspond exactly to A[t]-linear maps. Let S be the multiplicative set of all monic polynomials in A[t]. Then $S^{-1}P = 0$, i.e. P is killed by some monic polynomial, which follows from the Cayley-Hamilton theorem. Summing up, put $T_0(A[t], S) = K_0 \{P \in \text{Mod } A[t]; P \text{ is projective as an } A\text{-module and } S^{-1}P = 0 \}$ then

$$T_0(A[t], S) \cong K_0 \pmod{\mathscr{P}(A)}.$$

Given $g(t) = 1 + a_1 t + \ldots + a_n t^n$ in \tilde{A}_0 define $\sigma: \tilde{A}_0 \to T_0(A[t], S)$ by $\sigma(g(t)) = A[t]/\tilde{g}(t)$ where $\tilde{g}(t) = t^n g^{-1/t}$

Over in K_0 (End $\mathcal{P}(A)$) this means

$$\sigma(g(t)) = egin{pmatrix} 0 & 0 & 0 & 0 & \pm a_n \ 1 & 0 & 0 & 0 & \pm a_{n-1} \ 0 & 1 & 0 & 0 & \pm a_{n-2} \ 0 & 0 & 0 & 1 & 0 & -a_2 \ 0 & 0 & 0 & 0 & 1 & a_1 \end{pmatrix}$$

and $\sigma(q(t))$ is an endomorphism of a free A-module.

Then σ is additive, i.e. $\sigma(g(t)h(t)) = \sigma(g(t)) + \sigma(h(t))$. Indeed we have an exact sequence in Mod A[t]

$$0 \to A[t]/(\tilde{g}(t)) \to A[t]/(\tilde{g}(t)\tilde{h}(t)) \to A[t]/(\tilde{h}(t)) \to 0$$

since $\tilde{g}(t)$ and h(t) are non-zero-divisors in A[t]. Since

 $\lambda_i(\sigma(g(t)) = 1 + a_1t + \ldots + a_nt = g(t)$

we have $\lambda_t \circ \sigma = id$ as we wanted.

COROLLARY 6.5. Let A be a regular noetherian ring. Then A_0 is a direct summand (as abelian group) of K_0 (End $\mathcal{P}(A)$) = K_0 (End $\mathcal{M}(A)$) (here $\mathcal{M}(A)$ is the category of finitely generated A-modules).

Proof. If A is regular noetherian then every module has finite homological dimension and $\mathcal{M}(A) = \mathcal{H}(A)$. By 5.27 $A = \prod_{i=1}^{s} A_{i}$ where the A_{i} :s are integral domains. The rest follows from $\tilde{A}_{0} \cong \prod_{i=1}^{s} \tilde{A}_{i_{0}}$, 5.27, 6.1 and 6.4.

THEOREM 6.6. The map $\lambda_i: \tilde{K}_0$ (End $\mathcal{P}(A)$) $\rightarrow \tilde{A}_0$ is a ring isomorphism in the following cases

 $\mathbf{292}$

- (i) A is a PID.
- (ii) A = B[X] where B is a PID, e.g. A = K[X, Y] where K is a field. (iii) A is a noetherian regular local ring of dimension ≤ 2 .

Proof. Using the notation in the proof of 6.4 and Bass [2] p. 492 we have

$$K_{\mathbf{0}} (\operatorname{End} \mathscr{P}(A) \cong K_{\mathbf{0}} (\operatorname{End} \mathscr{H}(A)) = K_{\mathbf{0}} (\operatorname{End} \mathscr{M}(A)) \cong G_{\mathbf{0}}(A[t], S) =$$

 K_0 of the category of A[t]-modules killed by some monic polynomial. Now A[t] is noetherian so given any M as above we have a filtration in Mod A[t]

$$M = M_0 \supset M_1 \supset \ldots \supset M_k = 0$$

such that

$$M_i/M_{i+1} \cong A[t]/\widetilde{\mathfrak{p}_i}$$

where the $\widetilde{\mathfrak{p}_i}$:s are prime ideals in A[t]. Since M is killed by a monic polynomial so is M_i and $A[t]/\widetilde{\mathfrak{p}_i}$ which means that $\widetilde{\mathfrak{p}_i}$ contains a monic polynomial. Let $\mathfrak{p}_i = \widetilde{\mathfrak{p}_i} \cap A$ and put $\mathfrak{p}'_i = (\mathfrak{p}_i, f_i)$ where f_i is a monic polynomial in $\widetilde{\mathfrak{p}_i}$ of minimal degree. Now we claim that \mathfrak{p}'_i is a prime ideal in A[t].

We have

$$A[t]/\mathfrak{p}'_i = A[t]/(\mathfrak{p}_i, f_i) \simeq (A/\mathfrak{p}_i)[t]/(f_i)$$

where $\overline{f_i}$ is the residue of f_i in $A/\mathfrak{p}_i[t]$. Furthermore $\overline{f_i}$ is irreducible in $A/\mathfrak{p}_i[t]$ since $\overline{f_i} = \overline{g_i h_i}$ implies $f_i = g_i h_i + q_i$ with $q_i \in \mathfrak{p}_i A[t]$. We can choose g_i and h_i monic and $g_i h_i \in \widetilde{\mathfrak{p}_i}$ since f_i and q_i are in $\widetilde{\mathfrak{p}_i}$. Hence g_i or h_i is in $\widetilde{\mathfrak{p}_i}$ since $\widetilde{\mathfrak{p}_i}$ is prime. But f_i has minimal degree so $g_i = 1$ or $h_i = 1$ and we have shown that \mathfrak{p}'_i is prime in A[t]. Evidently $\mathfrak{p}'_i \subseteq \widetilde{\mathfrak{p}_i}$ and $\mathfrak{p}'_i \cap A = \widetilde{\mathfrak{p}_i} \cap A$ so $\mathfrak{p}'_i = \widetilde{\mathfrak{p}_i}$ by Serre [10] p. III. 17, Lemma 3.

Hence $G_0(A[t], S)$ is generated by all $A[t]/(\mathfrak{p}, f)$ where $\mathfrak{p} \in \operatorname{Spec} A$ and f is a monic polynomial such that \overline{f} is irreducible in $A/\mathfrak{p}[t]$. We will show that only the case $\mathfrak{p} = 0$ is interesting. We treat the three cases separately.

(i) Assume that A is a PID and $0 \neq \mathfrak{p} = pA$. Then there is an exact sequence

$$0 \to A[t]/(f) \xrightarrow{p} A[t]/(f) \to A[t]/(\mathfrak{p}, f) \to 0$$

This shows that $[A[t]/(\mathfrak{p}, f)] = 0$ if $\mathfrak{p} \neq 0$.

(ii) If A = B[X] where B is a PID then a prime ideal $p \neq 0$ in A is either principal or of the form p = (p, g) where $p \in B$ is a prime element in B and $g \in B[X]$ is such that $\tilde{g} \in B/pB[X]$ is irreducible.

The case p principal is treated as in (i) and in the second case

$$0 \to A[t]/(p,f) \xrightarrow{g.} A[t]/(p,f) \to A[t]/(p,g,f) \to 0$$

is exact.

Hence [A[t]/(p, f)] = 0.

(iii) Let now A be a noetherian regular local ring of dimension ≤ 2 . If dim A = 0 or 1 then A is a field or a PID. Assume therefore dim A = 2. Let $\mathfrak{p} \neq 0$ be a prime ideal in A. If ht $\mathfrak{p} = 1$ then \mathfrak{p} is principal since A is a UFD (Bourbaki [5], p. 33) and we are back in case (i). If ht $\mathfrak{p} = 2$ then \mathfrak{p} is the maximal ideal in A and $\mathfrak{p} = (x_1, x_2)$ where x_1, x_2 is an A-sequence. Hence the map

$$A/(x_1) \xrightarrow{\tilde{x}_2.} A/(x_1)$$

is injective. Then

$$0 \to A[t]/(x_1, f) \xrightarrow{\bar{x}_2} A[t]/(x_1, f) \to A[t]/(x_1, x_2, f) \to 0$$

is exact and

$$[A[t]/(\mathfrak{p},f)]=0.$$

Hence in all three cases $G_0(A[t], S)$ is generated by all A[t]/(f) where f is an irreducible monic polynomial. Recall the maps in the proof of 6.4

$$G_0(A[t], S) \xleftarrow{\lambda_t}{\sigma} \tilde{A_0}$$

where we saw $\lambda_i \circ \sigma = id$. The subgroup $K_0(A) \simeq \mathbb{Z}$ of K_0 (End $\mathcal{P}(A)$) = $G_0(A[t], S)$ has the generator A[t]/(t). It follows that $\sigma \circ \lambda_i = id$ on the rest of the generators A[t]/(f) and hence \tilde{K}_0 (End $\mathcal{P}(A)$) $\simeq \tilde{A}_0$ which ends the proof.

We now turn to the study of the K_0 -groups of some full subcategories of End $\mathcal{P}(A)$. The first one is (see Bass [2] p. 652)

$$\mathcal{Nil} \ \mathcal{P}(A) = \{ f \in \operatorname{End} \ \mathcal{P}(A); \ f \ \text{ is nilpotent} \}$$

Definition 6.7. Let $N(A)_0$ denote the subring of A_0 consisting of all »rational functions»

$$\frac{1+a_1t+\ldots+a_mt^m}{1+b_1t+\ldots+b_nt^n}$$

where all a_i, b_j are nilpotent. Since $(1 + b_1 t + \ldots + b_n t^n)^{-1}$ in this case is a polynomial we have

$$N(A)_0 = \{1 + c_1 t + \ldots + c_k t^k; c_i \in N(A)\}.$$

PROPOSITION 6.8. $\lambda_i: K_0$ (*Net* $\mathcal{P}(A)$) $\rightarrow N(A)_0$ is a surjective ringhomomorphism. Furthermore $\widetilde{N(A)_0}$ is a direct summand (as abelian group) of $K_0(\operatorname{Net} \mathcal{P}(A))$.

294

Proof. We only have to check that all the a_i :s in $\lambda_i(f) = 1 + a_1t + \ldots + a_nt^n$ are nilpotent if f is nilpotent. This was done in 1.7 and 1.8. The last part follows from 6.4.

Remark 6.9. The subcategory of $\mathcal{NilP}(A)$ consisting of all zero maps $0: P \to P$ can be identified with $\mathcal{P}(A)$. It follows that $K_0(\mathcal{NilP}(A))$ contains $K_0(\mathcal{P}(A)) = K_0(A)$ as a direct summand (see Bass [2] p. 652)

$$K_0(\mathcal{Nil} \mathcal{P}(A)) = K_0(A) \oplus \operatorname{Nil}(A).$$

Since $\lambda_i(0) = 1$ we have $K_0(A) \subseteq \text{Ker } \lambda_i$ so the proposition shows that Nil (A) contains $N(A)_0$ as a direct summand.

PROPOSITION 6.10. The map

 $\Psi: K_0(A) \to \{\sum_{i=1}^s e_i(1+t)^{n_i}; n_i \in \mathbb{Z} \text{ and } e_1, \dots, e_s \text{ are orthogonal idempotents with sum } 1\}$

defined by $[P] \mapsto \lambda_i(1_P)$ is a split surjective ring homomorphism. The right hand side considered as a subring of \tilde{A} is isomorphic to the ring of all continuous functions from Spec A to Z (where Z has the discrete topology). The kernel of Ψ is equal to the Jacobson radical of $K_0(A)$, which is also equal to $N(K_0(A))$.

Proof. Given $P \in \mathcal{P}(A)$ with rkP = n let

$$X_j = \{ \mathfrak{p} \in \operatorname{Spec} A; \ rkP_\mathfrak{p} = j \}$$
 (compare the proof of 2.2.)

Let e_0, e_1, \ldots, e_n be the corresponding indempotents in A. Then

$$\lambda_i(1_P) = \sum_{i=0}^n e_i(1+t)^i$$
 defines Ψ .

To construct a right inverse Θ of Ψ consider the map

$$\sum_{i=1}^{k} e_i (1+t)^{n_i} \xrightarrow{\Theta} \left[\bigoplus_{n_i \ge 0} A_i^{n_i} \right] - \left[\bigoplus_{n_j < 0} A_j^{-n_j} \right] = [P] - [Q]$$

where e_1, \ldots, e_k are orthogonal idempotents with sum one, $n_i \in \mathbb{Z}$, and $A_i = Ae_i \in \mathcal{P}(A)$. One verifies that Θ is a ring homomorphism. We want $\lambda_i \circ \Theta = id$.

First

$$(Ae_i)_{\mathfrak{p}} = A_{\mathfrak{p}}e_{i\mathfrak{p}} = \begin{cases} A_{\mathfrak{p}} & \text{if } \mathfrak{p} \in X_i \\ 0 & \text{otherwise,} \end{cases}$$

where X_i is the closed and open subset of Spec *A* corresponding to e_i . Hence $rk_{\mathfrak{p}}P = n_i$ and $(\lambda_i(1_P))_{\mathfrak{p}} = (1+t)^{n_i}$ for $\mathfrak{p} \in X_i$.

But

$$(\sum_{i=1}^k e_i(1+t)^{n_i})_{\mathfrak{p}} = (1+t)^{n_i} \text{ for } \mathfrak{p} \in X_i.$$

Furthermore

$$(\sum_{n_j<0} e_j(1+t)^{-n_j})^{-1} = \sum_{n_j<0} e_j(1+t)^{n_j}$$

and we have shown that $\lambda_t \circ \Theta = id$.

The map

$$\sum_{1}^{k} e_{i}(1+t)_{0}^{n_{i}} \stackrel{\xi}{\mapsto} f$$

where $f(x) = n_i$ if $x \in X_i$, gives the isomorphism between the ring on the right hand side above and the ring of all continuous functions f: Spec $A \to \mathbb{Z}$.

The composite $\xi \circ \Psi$ is precisely the rank map rk. It follows that

Ker Ψ = Ker (rk) = the Jacobson radical of $K_0(A)$

(for the last statements see Swan [12] p. 169).

COROLLARY 6.11. Let A be noetherian. Then A has a finite number, say k, of irreducible idempotents and $K_0(A)$ contains \mathbf{Z}^k as a direct summand.

By the previous results the study of the structure of \tilde{A}_0 seems interesting. In case A contains the rational numbers \tilde{A}_0 is related to sequences of traces of the powers of a matrix (see 6.13).

Definition 6.12. A sequence (b_1, b_2, \ldots) of elements in A is called a *trace* sequence if there is some $f: P \to P$ with $P \in \mathcal{P}(A)$ such that $b_i = \text{Tr}(f^i)$ for all $i \geq 1$.

One may of course assume that P is free.

PROPOSITION 6.13. Assume that $A \supseteq \mathbf{Q}$.

- (i) Then there is a ringisomorphism $\phi: \tilde{A} \to \prod_{1}^{\infty} A$ where the latter ring can be identified with all sequences under componentwise addition and multiplication.
- (ii) A_0 is isomorphic to the ring of all sequences which are differences of trace sequences.

Proof. (i) Define ϕ as the composition

$$1 + a_1 t + \ldots \mapsto \frac{a_1 t + 2a_2 t^2 + \ldots}{1 + a_1 t + a_2 t^2 + \ldots} = b_1 t - b_3 t^3 \ldots \mapsto (b_1, b_2, b_3, \ldots)$$

The inverse is given by

 $\mathbf{296}$

$$(b_1, b_2 \ldots) \mapsto \exp \int_0^t (b_1 - b_2 s + b_3 s^3 \ldots)$$

where \int_0^t is A-linear and $\int_0^t s^k = rac{t^{k+1}}{k+1}$.

Clearly ϕ is additive (essentially it is the logarithmic derivative). To see that ϕ is multiplicative one uses the same technique as in the proof of 3.4, the key fact being Tr $(f \otimes g)^i = \text{Tr} (f^i) \text{Tr} (g^i)$.

(ii) The restriction of ϕ to \tilde{A}_0 will do. By the exponential trace formula

$$\phi\left(rac{\lambda_i(f)}{\lambda_i(g)}
ight) = (b_i)_1^\infty - (c_i)_1^\infty ext{ where } b_i = \operatorname{Tr} f^i ext{ and } c_i = \operatorname{Tr} g^i.$$

Remark 6.14. If A is a finite field with q elements then ϕ in (i) is neither injective nor surjective. Indeed $\lambda_i(f^{q^\nu}) = \lambda_i(f)$ for $\nu = 1, 2, \ldots$ In particular $b_q \nu = b_1$ and hence every $(b_i)_1^{\infty}$ in the image of ϕ must have this property.

Definition 6.15. The Witt ring W(A) of A consists of all sequences $(x_i)_1^{\infty}$ where $x_i \in A$ (Witt vectors) with addition and multiplication defined such that for every $n \geq 1$

$$(x_i)_1^\infty \mapsto \sum_{d|n} dx_d^{n/d}$$

is a ring homomorphism $W(A) \to A$. The right hand side $b_n = \sum_{d|n} dx_d^{n/d}$ is called the *n*:th ghost component of $(x_i)_1^{\infty}$. We have a ring isomorphism $W(A) \to \tilde{A}$ defined by

$$(x_i)_1^{\infty} \mapsto \overline{\prod_{i=1}^{\infty}} (1 - x_i(-t)^i).$$

Many of the previous results can be formulated in the Witt ring instead of A. E.g. 6.6. becomes

PROPOSITION 6.16. If A is a PID (A = B[X] where B is a PID) or A is a regular local ring of dimension ≤ 2 then $K_0(\text{End } \mathcal{P}(A))$ is isomorphic with the subring $W_0(A)$ of W(A) consisting of all Witt vectors having differences of trace sequences as ghost components.

Thus we have four rings: K_0 (End $\mathcal{P}(A)$), \tilde{A}_0 , the ring of differences of trace sequences and $W_0(A)$. They are all isomorphic if A is a field of characteristic zero. In case A is also algebraically closed they are also isomorphic to the group ring $\mathbf{Z}[A^*]$ where A^* is the multiplicative group of non-zero elements in A. The isomorphism $\tilde{A_0} \to \mathbf{Z}[A^*]$ is given by

$$\overline{\prod_i} \ (1 + \lambda_i t)^{\nu_i} \mapsto \sum_i \nu_i \lambda_i$$

and is actually defined for any algebraically closed field.

Assume now that $f: P \to P$ is nilpotent, say $f^{m+1} = 0$ and rkP = n. Consider the image $(x_i)_1^{\infty}$ in W(A) of $\lambda_i(f) = 1 + a_1t + \ldots + a_nt^n$. Since x_k is a polynomial of weight k in a_1, a_2, \ldots, a_k we find (using 1.7) that all x_i are nilpotent and $x_k = 0$ if k > mn. We can now reformulate 6.8 as follows.

PROPOSITION 6.17. There is a surjective ring homomorphism from $K_0(\mathcal{Nil}\mathcal{P}(A))$ onto the ring of Witt vectors $(x_i)_1^{\infty}$ where almost all $x_i = 0$ and all x_i are nilpotent. The latter is a direct summand (as abelian group) of Nil (A).

PROPOSITION 6.18. The following are equivalent for a sequence (b_1, b_2, \ldots) in A

(i) (b_1, b_2, \ldots) is a trace sequence,

11) there exist
$$a_1, a_2, \ldots, a_n$$
 in A such that
 $b_1 = a_1$
 $b_2 = a_1b_1 - 2a_2$
 $b_3 = a_1b_2 - a_2b_1 + 3a_3$ (Newton's formulas)
 \ldots
 $b_n = a_1b_{n-1} - a_2b_{n-2} + \ldots + (-1)^n a_{n-1}b_1 + (-1)^{n+1}na_n$
and
 $b_{n+i} - a_1b_{n+i-1} + \ldots + (-1)^n a_nb_i = 0$ for all $i \ge 1$,

(iii) there exists an integral extension $A' \supseteq A$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in A'$, zeroes of a monic polynomial in A[t] of degree n, such that

$$b_i = \sum_{
u=1}^n \lambda_{
u}^i \; \textit{ for all } \; i \geq 1,$$

(iv) (if $A \supseteq \mathbf{Q}$)

$$\exp\left(-\sum_{1}^{\infty}\frac{b_{i}}{i}(-t)^{i}\right)$$

is a polynomial.

Proof. (i) \Rightarrow (ii): Assume that $b_i = \text{Tr}(f^i)$ where $f: P \to P$ with $P \in \mathcal{P}(A)$ and rkP = n. Assume that $\lambda_i(f) = 1 + a_1t + \ldots + a_nt^n$. Comparing the coefficients on both sides in the exponential trace formula we get Newton's formulas.

(ii) \Rightarrow (i): Assume that (b_1, b_2, \ldots) satisfies the condition (ii). Let $f: A^n \to A^n$ be such that $\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$. The exponential trace formula then gives $b_i = \operatorname{Tr}(f^i)$.

(i) \Rightarrow (iii): Assume that $\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$ and $b_i = \text{Tr}(f^i)$. Since $t^n \lambda_{1/i}(f)$ is a monic polynomial there exists an integral extension A' of A such that $t^n \lambda_{1/i}(f)$ splits into linear factors in A'[t] (Bass [2], p. 118, Lemma 5.10). It follows that

$$\lambda_t(f) = \prod_{\nu=1}^n (1 + \lambda_{\nu} t) \text{ with } \lambda_{\nu} \in A'.$$

Taking logarithmic derivatives on both sides and comparing with the exponential trace formula gives $b_i = \sum_{\nu=1}^n \lambda_{\nu}^i$.

(iii) \Rightarrow (ii): Assume that $\lambda_1, \ldots, \lambda_n$ are zeroes of $t^n - a_1 t^{n-1} + \ldots + (-1)^n a_n$ with a_1, \ldots, a_n in A. Then $b_i = \sum_{\nu=1}^n \lambda_{\nu}^i$ and a_1, \ldots, a_n satisfy Newton's formulas in (ii). In particular we have $b_i \in A$.

(i) \Rightarrow (iv): see 1.10.

 $(iv) \Rightarrow (ii)$: Taking logarithmic derivatives of

$$\exp\left(-\sum_{1}^{\infty}\frac{b_{i}}{i}(-t)^{i}\right)=1+a_{1}t+\ldots+a_{n}t^{n}$$

and comparing coefficients we get (ii).

Example 6.19. The Fibonacci sequence (1, 3, 4, 7, 11, 18, ...) is a trace sequence in **Z**. We have $b_{i+2} - b_{i+1} - b_i = 0$, so $a_1 = 1$ and $a_2 = -1$. The initial conditions $b_1 = a_1 = 1$ and $b_2 = a_1b_1 - 2a_2 = 3$ are satisfied. We get $\lambda_i(f) = 1 + t - t^2$ and the corresponding matrix

$$f = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

PROPOSITION 6.20. If A is a finite ring then a trace sequence is periodic. If the trace sequence comes from $f: P \to P$ with $\operatorname{rk} P = n$ then the period is at most $k^n - 1$ where k is the number of elements in A.

Proof. Assume that $b_i = \text{Tr}(f^i)$ with $\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$. Then $b_{n+i} = a_1 b_{n+i-1} - a_2 b_{n+i-2} + \ldots \pm a_n b_i$ for $i \ge 1$ by 6.14 (ii).

Hence an element in the trace sequence is completely determined by the n preceding elements. There are only k^n choices of these preceding n elements. Thus among $k^n + n$ consecutive b_i :s there must be two identical sets of n consecutive b_i :s. Thus the period is at most $k^n - 1$.

Remark 6.21. The maximal period $k^n - 1$ may occur as the Fibonacci sequence (mod 2) shows (1, 1, 0, 1, 1, 0, ...) with k = 2 and n = 2. (See 6.19.)

Remark 6.22. The sequence of maps f, f^2, f^3, \ldots is also periodic if A is finite. If A has k elements and f is represented by an $n \times n$ -matrix then two maps in the sequence $f, f^2, \ldots, f^{k^{n^2}+1}$ must coincide since there are at most k^{n^2} distinct $n \times n$ -matrices.

PROPOSITION 6.23. Let A be a finite field with q elements. Assume that $b_i = \text{Tr}(f^i)$ with $\lambda_i(f) = 1 + a_1 t + \ldots + a_n t^n$ irreducible in A[t]. Then the period of the trace sequence (b_1, b_2, \ldots) divides $q^n - 1$.

Proof. Let $\lambda_i(f) = \prod_{\nu=1}^n (1 + \lambda_{\nu} t)$ be the factorization of $\lambda_i(f)$ with $\lambda_{\nu} \in K$ where K is the splitting field of $\lambda_i(f)$ over A.

Then $b_i = \sum_{\nu=1}^n \lambda_{\nu}^i$. Now $A[\lambda_{\nu}]$ is a field with q^n elements and $\lambda_{\nu}^{q^n-1} = 1$ in $A[\lambda_{\nu}]$ and hence in K. It follows that $b_{i+q^n-1} = b_i$ for all $i \ge 1$. Thus the period of (b_1, b_2, \ldots) divides $q^n - 1$.

COROLLARY 6.24. If $\lambda_i(f)$ is a product of irreducible polynomials of degrees n_1, n_2, \ldots, n_s respectively then the period of the trace sequence $(\text{Tr}(f^i))_1^{\infty}$ divides the l.c.m. of $q^{n_1} - 1, q^{n_2} - 1, \ldots, q^{n_s} - 1$.

Remark 6.25. It seems to be quite hard to predict the period from the characteristic polynomial $\lambda_i(f)$. The following results are not too useful for practical computations.

PROPOSITION 6.26. Given $b_i = \text{Tr}(f^i)$.

- (i) Let $q \in A[t]$ be any polynomial such that q(f) = 0 (e.g. $q = t^n \lambda_{-1/t}(f)$ or q = a minimal polynomial of f). If q|t' - 1 then $(b_i)_1^{\infty}$ is periodic and the period s divides r.
- (ii) Conversely assume that $(b_i)_1^{\infty}$ is periodic with period s. Assume further that A is a UFD and $\lambda(f)$ is irreducible of degree ≥ 1 . Then $t^n \lambda_{-1/t}(f) [t^s - 1].$

Proof. (i) We have $t^r - 1 = q(t)h(t)$ for some h in A[t]. Since q(f) = 0 we get $f^r = 1$ so $f^{r+\nu} = f^{\nu}$ for all $\nu \ge 1$. It follows $b_{\nu+r} = b_{\nu}$ and s|r. (ii) The exponential trace formula gives

 $\frac{d}{dt}\lambda_i(f) = \lambda(f)(b_1 - b_2t + bt^2 \dots) = \lambda_i(f)(b_1 - b_2t + \dots - (-1)^s b_s t^{s-1})(1 - (-t)^s)^{-1}$

since $b_{i+s} = b_i$.

Hence $\lambda_i(f)|(1-(-t)^s)\cdot \frac{d}{dt} \lambda_i(f)$ and $\lambda_i(f)|(1-(-t)^s)$ which implies $t^n\lambda_{-1/i}(f)|(t^s-1)$.

COROLLARY 6.27. Assume that A is a UFD and that $\lambda_i(f)$ is irreducible. Then $(b_i)_1^{\infty}$ is periodic if and only if

$$t^n \lambda_{-1/t}(f) | t^r - 1$$

for some $r \geq 1$ and the period s is the smallest r with this property.

Remark 6.28. If $\lambda_i(f)$ is not irreducible but the product $\lambda_i(f) = h_1 h_2 \dots h_k$ where h_1, \ldots, h_k are irreducible of degrees n_1, \ldots, n_k respectively, then the period is the l.c.m. of s_1, s_2, \ldots, s_k where s_i is the smallest integer > 0 such that

$$t^{n_i}h_i(-1/t)|t^{s_i}-1.$$

Example 6.29. Let A = Z/(13) and

$$f = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Then $\lambda_t(f) = 1 + t + t^3 = (1 - 2t)(1 + 3t - 6t^2)$ where $1 + 3t - 6t^2$ is irreducible. We get

$$t^{3}\lambda_{-1/t}(f) = (t+2)(t^{2}-3t+6)$$

Now $t + 2|t^6 - 1$ and $t^2 - 3t + 6|t^{168} - 1$ since the splitting field of $t^2 - 3t + 6$ has $13^2 = 169$ elements.

Thus 6|s and s|168 where s is the period of Tr $(f^i) = (1, 1, 4, 5, 6, 10, ...)$. By actually computing the period one finds s = 168 and hence 168 is the smallest integer $r \ge 0$ such that $t^2 - 3t + 6|t' - 1$.

Added in proof: In a paper "The Grothendieck ring of the category of endomorphisms", to appear in J. Algebra, the author proves Theorem 6.6 for any commutative ring.

References

- 1. ATIYAH, M. F. and TALL, D. O., Group representations, λ -rings and the *J*-homomorphism. Topology 8 (1969), 253-297.
- 2. BASS, H., Algebraic K-theory. Benjamin, New York, 1968.
- 3. BOURBAKI, N., Algèbre, Ch. II. Hermann, Paris, 1968.
- 4. -»- Algèbre commutative, Ch. I and Ch. II. Hermann, Paris, 1961.
- 5. -»- Algèbre commutative, Ch. VII. Hermann, Paris, 1965.
- 6. GOLDMAN, O., Determinants in projective modules. Nagoya Math. J. 18 (1961), 27-36.
- 7. KAPLANSKY, I., Commutative rings. Allyn and Bacon, Boston, 1970.
- 8. KELLEY, J. and SPANIER, R., Euler characteristics. Pacific J. Math. 26 (1968), 317-339.
- 9. LANG, S., Algebra. Addison-Wesley, Readings, Massachusetts, 1965.
- 10. SERRE, J.-P., Algèbre locale. Multiplicités. Lecture notes, Vol. 11. Springer, Berlin, 1965.
- 11. SMALE, S., Differential dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747-817.
- 12. SWAN, R., Algebraic K-theory. Lecture notes, Vol. 76. Springer, Berlin, 1968.

Received March 14, 1972

Gert Almkvist Matematiska Institutionen Box 725 S-220 07 Lund, Sweden