Endomorphisms of finetely generated projective modules over a commutative ring

Gert Alukvist*
University of California, Berkeley, U.S.A. and University of Lund, Sweden

Introduction

The origin of this paper is a misprint (?) in Bourbaki ([4], p. 156, Exercise 13 d). There it is stated that if f is a 2×2-matrix with entries in a commutative ring and $f^{2}=0$ then $(\operatorname{Tr} f)^{4}=0$ and 4 is the smallest integer with this property. Using the Cayley-Hamilton theorem we get $f^{2}-a f+b 1=0$ where $a=\operatorname{Tr} f$ and $b=\operatorname{det} f$. Noting that $f^{2}=0$ and taking traces we get $a \cdot \operatorname{Tr} f=a^{2}=2 b$. Multiplying the first equation by f gives $b f=0$ which implies $b \cdot \operatorname{Tr} f=b a=0$. Hence $a^{3}=2 a b=0$ so 3 and not 4 is the smallest integer above. Experimenting with small m and n one soon makes the conjecture: If f is an $n \times n$-matrix with $f^{m+1}=0$ then $(\operatorname{Tr} f)^{m n+1}=0$. This is proved in a somewhat more general setting in 1.7 using exterior algebra.

In Section 1 the characteristic polynomial $\lambda_{t}(f)$ is defined for an endomorphism $f: P \rightarrow P$ where P is a finitely generated projective A-module (A is a commutative ring with l). If P is free then $\lambda_{t}(f)=\operatorname{det}(1+t f)$. The exponential trace formula (in case A contains \mathbf{Q})

$$
\lambda_{t}(f)=\exp \left(-\sum_{1}^{\infty} \frac{\operatorname{Tr}\left(f^{i}\right)}{i}(-t)^{i}\right)
$$

connects $\lambda_{t}(f)$ with the traces of the powers of f.
Various computations of $\lambda_{t}(f)$ are made in Section 2. By the isomorphism $\operatorname{End}_{A}(P) \rightarrow P^{*} \otimes_{A} P$ where $P^{*}=\operatorname{Hom}_{A}(P, A)$ every $f: P \rightarrow P$ corresponds to a tensor $\sum_{i} x_{i}^{*} \otimes x_{i}$ with $x_{i}^{*} \in P^{*}, x_{i} \in P$. Let $M(f)$ be the matrix with entries $a_{i j}=\left\langle x_{i}^{*}, x_{j}\right\rangle$. Then $\lambda_{t}(f)=\operatorname{det}(1+t M(f))$. Even the computation of $\lambda_{t}\left(1_{P}\right)$

[^0]where 1_{P} is the identity map is not quite trivial. The result is $\lambda_{t}\left(1_{P}\right)=\sum_{0}^{n} e_{i}(1+t)^{i}$ where the e_{i} :s are the idempotents given by $\operatorname{Ann} \Lambda^{i} P=\left(e_{0}+e_{1}+\ldots+e_{i-1}\right) A$.

In Section 3 the behaviour of $\lambda_{t}(f)$ under change of rings and taking duals is studied. Some attempts are made to connect the polynomials $\lambda_{t}(f), \lambda_{t}(g)$ and $\lambda_{t}(f \otimes g)$. In the multiplicative group $\tilde{A}=\left\{1+a_{1} t+a_{2} t^{2}+\ldots ; a_{i} \in A\right\}$ of formal power series with constant term 1 one can define a $*$-multiplication such that $\lambda_{t}(f \otimes g)=\lambda_{t}(f) * \lambda_{t}(g)$. Then \tilde{A} becomes a ring (with ordinary multiplication as addition).

A formula for computing $\lambda_{t}(f)$ in terms of the minimal polynomial of f and some of the $\operatorname{Tr}\left(f^{i}\right): s$ is given in Section 4.

In Section 5 the definition of $\lambda_{t}(f)$ is extended to $f: M \rightarrow M$ where M is an A-module having a finite resolution of finitely generated projective modules. Some of the results in Section 1 can be generalized to this case. Furthermore $\lambda_{t}(f)$ is defined for $f=$ chain map of complexes (or map of graded A-modules).

Section 6 contains an attempt to classify all endomorphism of finitely generated projective A-modules, i.e. to compute the K-group $K_{0}($ End $\mathscr{P}(A))$. The characteristic polynomial $\lambda_{t}(f)$ is sometimes a good enough invariant. This is the case if A is a PID or $A=K[X, Y]$ where K is a field or A is a regular local ring of dimension at most two. Then K_{0} (End $\mathscr{P}(A)$) is isomorphic (as a ring) with the direct product of $K_{0}(A)=\mathbf{Z}$ and the ring of all \#rational functions»

$$
\frac{1+a_{1} t+\ldots+a_{m} t^{m}}{1+b_{1} t+\ldots+b_{n} t^{n}}
$$

(under multiplication and $*$-multiplication). This generalizes a result by KelleySpanier ([8] p. 327) for $A=$ field. The ring of "rational functions" is also isomorphic with a subring of the Witt ring $W(A)$ of A. Finally »trace sequences», $\left(\operatorname{Tr}\left(f^{i}\right)_{1}^{\infty}\right.$ are studied.

Finally I would like to thank T. Farrell, G. Hochschild, M. Schlessinger and M. Sweedler for many valuable discussions about this paper and mathematics in general.

1. The characteristic polynomial

First we fix some notation. A will always denote a commutative ring with unity element 1. Spec A is the set of all prime ideals \mathfrak{p} of A. If $x \in M$ where M is an A-module we denote by x_{p} the image of x under the localization $\operatorname{map} M \rightarrow M_{\mathfrak{p}}=M \otimes_{A} A_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec} A$.

The category of all finitely generated projective A-modules will be denoted by $\mathscr{P}(A)$. If $P \in \mathscr{P}(A)$ then $P_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$-module of finite rank $=\mathrm{rk}_{\mathfrak{p}} P$. We define $\mathrm{rk} P=\max _{\mathfrak{p}} \mathrm{rk}_{\mathfrak{p}} P$. This integer is equal to the minimal number of generators of P. If $\operatorname{rk}_{p} P=\operatorname{rk} P$ for all $\mathfrak{p} \in \operatorname{Spec} A$ we say that P has constant rank. Let
$P^{*}=\operatorname{Hom}_{A}(P, A)$ be the dual of P. Then for $P \in \mathscr{P}(A)$ there are natural isomorphisms of A-modules

$$
\begin{equation*}
\operatorname{End}_{A}\left(P^{*}\right) \rightarrow \operatorname{Hom}_{A}\left(P^{*} \otimes_{A} P, A\right) \rightarrow \operatorname{Hom}_{A}\left(\operatorname{End}_{A} P, A\right) \tag{*}
\end{equation*}
$$

Let Tr be the image of $1_{p *}$ under the composed map. We call $\operatorname{Tr}(f)$ the trace of $f: P \rightarrow P$. This coincides with Bourbakis definition ([3] p. 112).

Definition 1.1:

$$
\lambda_{t}(f)=\sum_{i=0}^{n} \operatorname{Tr}\left(\Lambda^{i} f\right) t^{i}
$$

Here t is an indeterminate, $f: P \rightarrow P$ an endomorphism with $P \in \mathscr{P}(A)$, $\Lambda^{i} f: \Lambda^{i} P \rightarrow \Lambda^{i} P$ the induced endomorphism of the i :th exterior power of P and $n=\operatorname{rk} P$. Observe that $\Lambda^{i} P \in \mathscr{F}(A)$ ([4], p. 142).

Remark 1.2. If P is free then $\operatorname{Tr}(f)$ is the usual trace of f and $\lambda_{t}(f)=$ $\operatorname{det}(1+t f)$ where $1=$ identity of the free $A[t]$-module $P \otimes_{A} A[t]$. This is a well known formula ([9] p. 436).

Proposition 1.3. Let $f, g: P \rightarrow P$ with $P \in \mathscr{P}(A)$ and $\mathfrak{p} \in \operatorname{Spec} A$ be given. Then
(i) $(\operatorname{Tr} f)_{\mathfrak{p}}=\operatorname{Tr} f_{\mathfrak{p}}$
(ii) $\left(\lambda_{t}(f)_{\mathfrak{p}}=\lambda_{t}\left(f_{p}\right)\right.$, i.e. if $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ then $\lambda_{t}(f)=1+a_{1 p} t+\cdots+a_{n p} t^{n}$
(iii) $\lambda_{t}(f \circ g)=\lambda_{t}(g \circ f)$
(iv) $\lambda_{t}\left(h \circ f \circ h^{-1}\right)=\lambda_{t}(f)$ if $h: P \rightarrow Q$ is an isomorphism.

Proof.
(i) Localization commutes with everything in (*) since all modules involved $\left(P^{*}, \operatorname{End}_{A}\left(P^{*}\right)\right.$ etc.) are in $\mathscr{P}(A)([4]$, p. 98).
(ii) Localization commutes with exterior powers, $\left(A^{i} f\right)_{\mathfrak{p}}=\Lambda^{i} f_{\mathfrak{p}}$, so (ii) follows from (i).
(iii) We have $\operatorname{Tr}(f \circ g)=\operatorname{Tr}(g \circ f) \quad([3], p .112)$ and $\Lambda^{i}(f \circ g)=\Lambda^{i} f \circ \Lambda^{i} g$.
(iv) By (ii) it is sufficient to prove (iv) for P free (and hence Q is free), in which case it is well known.

Cayley-Hamilton theorem 1.4. Let $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ and define $q_{f}(t)=t^{n}-a_{1} t^{n-1}+\ldots+(-1)^{n} a_{n}$. Then $q_{f}(f)=0$.

Proof. It suffices to show

$$
\left(q_{f}(f)\right)_{p}=f_{\mathfrak{p}}^{n}-a_{1 p} f_{\mathfrak{p}}^{n-1}+\ldots+(-1)^{n} a_{n \mathfrak{p}} \cdot 1_{p_{p}}=0
$$

for all $\mathfrak{p} \in \operatorname{Spec} A$. But this follows from the ordinary Cayley-Hamilton theorem ¡or $f_{\mathfrak{p}}: P_{\mathfrak{p}} \rightarrow P_{\mathfrak{p}}$ with $P_{\mathfrak{p}}$ free since

$$
t^{n}-a_{1 p} t^{n-1}+\ldots+(-1)^{n} a_{n \mathfrak{p}}=t^{n-r k\left(P_{\vec{p}}\right)} q_{f_{p}}(t)
$$

Proposition 1.5. Let

be a commutative diagram with exact row and all $P_{i} \in \mathscr{P}(A)$. Then

$$
\sum_{0}^{d}(-1)^{i} \operatorname{Tr} f_{i}=0 \text { and } \prod_{0}^{d} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}}=1
$$

Proof. Since localization is an exact functor it is (using 1.3 (i), (ii)) sufficient to prove the proposition when all P_{i} are free. But then it is well known at least for $d=2$ (see [9], p. 402) and the general case follows by splitting up the long exact sequence into short ones.

Corollary 1.6.

$$
\operatorname{Tr}(f \oplus g)=\operatorname{Tr} f+\operatorname{Tr} g \quad \text { and } \quad \lambda_{t}(f \oplus g)=\lambda_{t}(f) \cdot \lambda_{t}(g)
$$

Theorem 1.7. Let $f: P \rightarrow P$ be given with

$$
P \in \mathscr{P}(A), \quad \operatorname{rk} P=n \quad \text { and } \quad \lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}
$$

(i) Assume that f is nilpotent with $f^{m+1}=0$. Then $a_{1}^{\nu_{1}} a_{2}^{\nu_{2}} \ldots a_{n}^{\nu_{n}}=0$ if the weight $\nu_{1}+2 \nu_{2}+\ldots+n \nu_{n}>m n$. The constant $m n$ is best possible.
(ii) Conversely assume that $a_{1}^{y_{1}} a_{2}^{\nu_{3}} \ldots a_{n}^{v_{n}}=0$ when $v_{1}+2 v_{2}+\ldots+n v_{n}>k$. Then $f^{n+k}=0$. The integer $n+k$ is best possible.

Proof. (i) After localizing and using 1.3 (ii) we may assume that P is free of rank n (it is sufficient to consider the case of maximal rank). Let P have basis $e_{1}, e_{2}, \ldots, e_{n}$. Then $\Lambda^{n} P$ is free with basis $e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n}$. Now we claim that

$$
\begin{equation*}
a_{r} e_{1} \wedge e_{2} \wedge \ldots \wedge e=\sum_{i_{1}<i_{2}<\ldots<i_{r}} e_{1} \wedge \ldots \wedge f e_{i_{1}} \wedge \ldots \wedge f e_{i_{2}} \wedge \ldots \wedge f e_{i_{r}} \wedge \ldots \wedge e_{n} \tag{**}
\end{equation*}
$$

By definition we have $a_{r}=\operatorname{Tr}\left(\Lambda^{r} f\right)$. Let $e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{r}}$ be a fixed basis element of $\Lambda^{r} P$ (with $i_{1}<i_{2}<\ldots<i_{r}$). Then

$$
A^{r} f\left(e_{i_{2}} \wedge \ldots \wedge e_{i_{r}}\right)=f e_{i_{1}} \wedge \ldots \wedge f e_{i_{r}}=C_{i_{1} i_{2} \ldots i_{r}} e_{i_{1}} \wedge \ldots \wedge e_{i_{r}}+\text { other terms. }
$$

Hence

$$
a_{r}=\operatorname{Tr}\left(\Lambda^{r} f\right)=\sum_{i_{1}<i_{2}<\ldots<i_{r}} C_{i_{1} i_{2} \ldots i_{r}}
$$

Expanding the right hand side in (**) one easily gets

$$
\left(\sum_{i_{1}<i_{2}<\ldots<i_{r}} C_{i_{1} i_{2} \ldots i_{r}}\right) \dot{e_{1}} \wedge e_{2} \wedge \ldots \wedge e_{n}
$$

and the claim is proved.
Using (**) several times we get

$$
a_{1}^{v_{1}} a_{2}^{\nu_{2}} \ldots a_{n}^{v_{n}}\left(e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n}\right)=\sum f^{s_{2}} e_{1} \wedge f^{s_{8}} e_{2} \wedge \ldots \wedge f^{s_{n}} e_{n}
$$

where the sum is taken over all $s_{1}, s_{2}, \ldots, s_{n}$ such that $s_{1}+s_{2}+\ldots+s_{n}=$ $v_{1}+2 \nu_{2}+\ldots+n v_{n}$ which by assumption is larger than $m n$. Hence each term contains an $s_{i}>m$ and $f^{s_{i}}=0$. Therefore the right hand side is zero and the first part of (i) is proved.

To see that $m n$ is best possible let A be the commutative ring generated by l, $\alpha_{1}, \ldots, \alpha_{n}$ with the only relations $\alpha_{1}^{m+1}=\alpha_{2}^{m+1}=\ldots=\alpha_{n}^{m+1}=0$. Let f be the map given by the diagonal matrix

$$
f=\left(\begin{array}{cccc}
\alpha_{1} & & & \\
& \alpha_{2} & & 0 \\
& & \cdot & \\
& 0 & \cdot & \\
& & & \cdot \\
& & & \alpha_{n}
\end{array}\right)
$$

Then $f^{m+1}=0$ and $a_{1}^{v_{1}} \ldots a_{n}^{v_{n}}=\sum \alpha_{1}^{s_{1}} \alpha_{2}^{s_{2}} \ldots \alpha_{n}^{s_{n}} \quad$ where the sum runs over all $s_{1}, s_{2}, \ldots, s_{n}$ with $s_{1}+s_{2}+\ldots+s_{n}=\nu_{1}+2 v_{2}+\ldots+n v_{n}$. If $\nu_{1}+2 v_{2}+\ldots+n v_{n} \leq m n$ then there is a term $\alpha_{1}^{s_{1}} \ldots \alpha_{n}^{s_{n}}$ with all $s_{i} \leq m$ and hence $a_{1}^{\nu_{1}} \ldots a_{n}^{\nu_{n}} \neq 0$.
(ii) Assume that $a_{1}^{\nu_{1}} \ldots a_{n}^{\nu_{n}}=0$ if $\nu_{1}+2 v_{2}+\ldots+n v_{n}>k$. By the CayleyHamilton theorem we have

$$
f^{n}=a_{1} f^{n-1}-a_{2} f^{n-2}+\ldots \pm a_{n} 1
$$

Multiplying by f and using Cayley-Hamilton again we get

$$
f^{n+1}=a_{1}^{2} f^{n-1}+\ldots \pm a_{1} a_{n} 1
$$

Repeating the procedure several times we get

$$
f^{r}=q_{r-n+1} f^{n-1}+q_{r-n+2} f^{n-2}+\ldots+q_{r} \cdot 1
$$

where q_{i} is a polynomial in a_{1}, \ldots, a_{n} of weight i. If $r=k+n$ then $q_{r}=q_{r-1}=q_{r-n+1}=0$ and we get $f^{r}=0$.

To show that $n+k$ is best possible let $A=Z\left[X_{1}, X_{2} \ldots, X_{n}\right] / I$ where X_{1}, \ldots, X_{n} are indeterminates and I is the ideal generated by all monomials in X_{1}, \ldots, X_{n} of weight $k+1$. Put

$$
f=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & (-1)^{n-1} & a_{n} \\
1 & 0 & 0 & . & - & \\
0 & 1 & 0 & . & - & \\
- & - & - & 0 & -a_{2} & \\
0 & 0 & 0 & 1 & a_{1} &
\end{array}\right)
$$

where a_{i} is the residue of X_{i}. Then a calculation shows that

$$
\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} n^{n}
$$

and that $f^{n+k-1} \neq 0$.
Corollary 1.8. f is nilpotent if and only if all coefficients $a_{i}(i \geq 1)$ of $\lambda_{t}(f)$ are nilpotent.

Proposition 1.9. Given $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$. If $f^{\otimes v}=f \otimes f \otimes \ldots \otimes f=0$ then $f^{\nu}=0$.

Proof. Localizing we may assume that P is free of rank n. Let $\left(a_{i j}\right)$ be the matrix of f in some basis and I the ideal in A generated by the coefficients ($a_{i j}$). The entries of the matrix of $f^{\otimes v}$ are just all possible products of y of the $a_{i j}$:s. Since $f^{\otimes v}=0$ we get $I^{v}=0$. The entries $\left(c_{i j}\right)$ of the matrix of f^{v} are certain sums of products of v of the $a_{i j}: s$. Hence $c_{i j} \in I^{y}$ and $c_{i j}=0$ for all i, j and $f^{\nu}=0$.

Theorem 1.10 (exponential trace formula). Let $f: P \rightarrow P$ be A-linear with $P \in \mathscr{F}(A)$. Then

$$
-t \lambda_{t}(f)^{-1} \frac{d}{d t} \lambda_{t}(f)=\sum_{1}^{\infty} \operatorname{Tr}\left(f^{i}\right)(-t)^{i}
$$

Proof. Setting $b_{i}=\operatorname{Tr}(-f)^{i}$ and $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ we must prove

$$
-\left(a_{1} t+2 a_{2} t^{2}+\ldots+n a_{n} t^{n}\right)=\left(1+a_{1} t+\ldots+a_{n} t^{n}\right) \sum_{1}^{\infty} b_{i} t^{i}
$$

Comparing the coefficients of t^{i} on both sides one finds $b_{i}=Q_{i}\left(a_{1}, \ldots, a_{n}\right)$ where the Q_{i} :s are certain polynomials with integer coefficients. Localizing at $\mathfrak{p} \in \operatorname{Spec} A$ we have to show $b_{i p}=Q_{i}\left(a_{1 p}, \ldots, a_{n p}\right)$. Hence it is sufficient to show the formula when P is free and f is a matrix. Then $b_{i}=Q_{i}\left(a_{1}, \ldots, a_{n}\right)$ becomes a polynomial identity (over \mathbf{Z}) in the coefficients of the matrix f. Therefore it is enough to consider the case $A=\mathbf{Z}\left[X_{11}, \ldots, X_{n n}\right]$ which is a domain of characteristic zero. Let K be the quotient field of K and \bar{K} the algebraic closure of K. Over \bar{K} the formula is easy to prove. If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of f we have
$\lambda_{t}(f)=\prod_{v=1}^{n}\left(1+\lambda_{v} t\right)$. Taking the logarithmic derivative, expanding $\lambda_{v}\left(1+\lambda_{v} t\right)^{-1}$ into power series and using $\operatorname{Tr}\left(f^{i}\right)=\sum_{\nu=1}^{n} \lambda_{v}^{i}$ we get the desired formula.

Remark 1.11. In the theory of differential equations there is a "continuous" analogue of the formula above: Let $U(t)$ and $B(t)$ be $n \times n$-matrices with real entries, depending on a parameter t, satisfying

$$
\frac{d}{d t} U(t)=B(t) U(t) \quad \text { and } \quad U(0)=1
$$

Then

$$
\operatorname{det} U(t)=\exp \int_{0}^{t} \operatorname{Tr} B(s) d s
$$

It is well known that if $\operatorname{Tr}\left(f^{i}\right)=0$ for $i=1,2, \ldots, n$ where f is an $n \times n$ matrix over a field of characteristic zero then f is nilpotent. Our next result is a generalization of this.

We will call the ring A torsion-free if it is torsion-free as an abelian group, i.e. $n a=0$ with $n \in Z$ and $a \in A$ implies $n=0$ or $a=0$.

Proposition 1.12. Assume that A is torsion-free. Let $f: P \rightarrow P$ be A-linear where $P \in \mathscr{P}(A)$ has rank n. If $\operatorname{Tr}\left(f^{i}\right)=0$ for n consecutive $i: s$ then f is nilpotent.

Proof. Assume that $\operatorname{Tr}\left(f^{r}\right)=\operatorname{Tr}\left(f^{1+r}\right)=\ldots=\operatorname{Tr}\left(f^{r+n-1}\right)=0$. Multiplying Cayley-Hamilton by f^{r} we get

$$
f^{n+r}=a_{1} f^{n+r-1}-a_{2} f^{n+r-2}+\ldots \pm a_{n} f^{r}
$$

Taking traces on both sides we get $\operatorname{Tr}\left(f^{n+r}\right)=0$. Repeating the procedure we get $\operatorname{Tr}\left(f^{\nu}\right)=0$ for all $\nu \geq r$. Put $g=f^{r}$. Then $\operatorname{Tr}\left(g^{\nu}\right)=0$ for $v=1,2, \ldots$ Using the exponential trace formula for g we find $\frac{d}{d t} \lambda_{t}(g)=0$ which implies $\lambda_{t}(g)=1$ since A has no torsion. Cayley-Hamilton applied to g gives $g^{n}=0$, i.e. $f^{n r}=0$.

Remark 1.13. The proposition is true if A has no s-torsion for $s \leq \mathrm{rk} P$.
Remark 1.14. If A is a field of characteristic 2 then $\operatorname{Tr} 1_{p}^{\nu}=0$ for P free of rank 2.

Remark 1.15. If we assume that A is torsion-free we can give another proof of the fact that $f^{\otimes v}=0 \Rightarrow f$ nilpotent (compare 1.9). Put $b_{i}=\operatorname{Tr}\left(f^{i}\right)$. Then $\left(f^{i}\right)^{\otimes v}=$ $\left(f^{\otimes v}\right)^{i}=0$ implies $\operatorname{Tr}\left(\left(f^{i}\right)^{\otimes v}\right)=\left(\operatorname{Tr}\left(f^{i}\right)\right)^{\nu}=b_{i}^{v}=0$ for $i=1,2, \ldots$ Comparing coefficients in the exponential trace formula we get $a_{1}=b_{1}, 2 a_{2}=b_{1}^{2}-b_{2}, \ldots$. Since A has no torsion all a_{i} :s are nilpotent. Then f is also nilpotent by 1.8 .

2. Some computations

First a generalization 1.3 (iii):
Proposition 2.1. Given $f: P \rightarrow Q$ and $g: Q \rightarrow P$ with $P, Q \in \mathscr{P}(A)$. Then

$$
\operatorname{Tr}(f \circ g)=\operatorname{Tr}(g \circ f) \text { and } \quad \lambda_{l}(f \circ g)=\lambda_{t}(g \circ f)
$$

Proof. After localization we may assume that P and Q are free. The formula for the trace is then easily proved and

$$
\operatorname{Tr} \Lambda^{i}(f \circ g)=\operatorname{Tr}\left(\Lambda^{i} f \circ \Lambda^{i} g\right)=\operatorname{Tr}\left(\Lambda^{i} g \circ \Lambda^{i} f\right)=\operatorname{Tr} \Lambda^{i}(g \circ f)
$$

finishes the proof.
We continue with describing a method for computing $\lambda_{t}(f) . P$ denotes always a module in $\mathscr{P}(A)$ of rank n.

Theorem 2.2. We have $\operatorname{End}_{A}(P) \cong P^{*} \otimes_{A} P$. Let $f: P \rightarrow P$ correspond to $\sum_{i=1}^{m} x_{i}^{*} \otimes x_{i}$ in $P^{*} \otimes_{A} P$. Let $M(f)$ be the $m \times m$-matrix with entries $\left\langle x_{i}^{*}, x_{j}\right\rangle$ at place (i, j). Then

$$
\lambda_{t}(f)=\operatorname{det}(1+t M(f))
$$

In particular the right hand side is independent of the choice of representatives for the tensor. The x_{i} :s can be chosen as a minimal generator set of P.

Proof. First we reduce to the case when P is free. Let \mathfrak{p} be a prime ideal in A. Localizing at p we get a commutative diagram

where the star in the south west corner means $\operatorname{Hom}_{A_{p}}\left(\cdot, A_{\mathfrak{p}}\right)$. Hence if $f: P \rightarrow P$ corresponds to $\sum_{1}^{m} x_{i}^{*} \otimes x_{i}$ then $f_{\mathfrak{p}}: P_{p} \rightarrow P_{p}$ corresponds to $\sum_{1}^{m}\left(x_{i}^{*}\right)_{p} \otimes x_{i p}$ and by using 1.3 (ii) we may assume that P is free. Let now y_{1}, \ldots, y_{n} be a basis for P and h_{1}, \ldots, h_{n} a dual basis for P^{*}, i.e. $\left\langle h_{i}, y_{j}\right\rangle=\delta_{i j}$. Given $f: P \rightarrow P$ let it correspond to
$\sum_{i, j} a_{j i}\left(h_{i} \otimes y_{j}\right)=\sum_{j=1}\left(\sum_{i=1} a_{j} h_{i}\right) \otimes y_{j}=\sum_{j=1} y_{j}^{*} \otimes y_{j} \quad$ in $\quad P^{*} \otimes_{A} P, \quad$ i.e. $\quad y_{j}^{*}=\sum_{i=1}^{n} a_{j i} h_{i}$.
Hence the (j, k):th entry in the matrix is

$$
\left\langle y_{j}^{*}, y_{k}\right\rangle=\sum_{i=1}^{n} a_{j i}\left\langle h_{i}, y_{k}\right\rangle=a_{j k} .
$$

Now $u: P^{*} \otimes_{A} P \rightarrow \operatorname{End}_{A} P \quad$ is given by $\quad x^{*} \otimes x \mapsto\left(y \mapsto\left\langle x^{*}, y\right\rangle x\right) \quad$ so $f=u\left(\sum_{i, j} a_{j i} h_{i} \otimes y_{j}\right)$ means $f\left(x_{k}\right)=\sum_{i, j} a_{j i}\left\langle h_{i}, x_{k}\right\rangle y_{j}=\sum_{j} a_{j k} y_{j}$.

It follows that f has the matrix $\left(a_{j k}\right)$ in the basis y_{1}, \ldots, y_{n}. Thus the formula is true if the x_{i} :s form a basis for P.

Let now $\sum_{1}^{m} x_{i}^{*} \otimes x_{i}$ be another representation of f. Assume that

$$
x_{i}=\sum_{j=1}^{n} c_{j i} y_{j} \text { and } x_{i}^{*}=\sum_{k=1}^{n} d_{i k} h_{k}
$$

Then

$$
\sum_{i=1}^{m} x_{i}^{*} \otimes x_{i}=\sum_{i=1}^{m} \sum_{j, k} c_{j i} d_{i k} h_{k} \otimes y_{j}=\sum_{j, k}\left(\sum_{i=1}^{m} c_{j i} d_{i k}\right) h_{k} \otimes y_{j}=\sum_{j, k} a_{j k} h_{k} \otimes y_{j}
$$

where

$$
\left(a_{j k}\right)=C D \text { with } C=\left(c_{j i}\right) \text { and } D=\left(d_{i k}\right)
$$

(here C and D are $n \times m$ - and $m \times n$-matrices respectively). The (i, k): th entry of the matrix in the formula is

$$
\left\langle x_{i}^{*}, x_{k}\right\rangle=\sum_{v, j} d_{i v} c_{j k}\left\langle h_{v}, y_{j}\right\rangle=\sum_{j=1}^{n} d_{i j} c_{j k} .
$$

Thus this matrix is $D C$ and we are done since $\left.\lambda_{t}(f)=\operatorname{det}(1+t C D)\right)$ by the first part of the proof and $\operatorname{det}(1+t C D)=\operatorname{det}(1+t D C)$ by 2.1.

Next we compute $\lambda_{t}\left(\mathrm{l}_{p}\right)$ where l_{p} is the identity map of $P \in \mathscr{P}(A)$.
Theorem 2.2 (Goldman). (i) $\operatorname{Tr}\left(1_{p}\right)=\sum_{0}^{n} i_{i} \quad$ and $\quad \lambda_{t}\left(1_{p}\right)=\sum_{1}^{n} e_{i}(1+t)^{i}$ where $e_{0}, e_{1}, \ldots, e_{n}$ are orthogonal idempotents with $e_{0}+e_{1}+\ldots+e_{n}=1$.
(ii) Ann $\left(\wedge^{i} P\right)=\left(e_{0}+e_{1}+\ldots+e_{i-1}\right)$. Furthermore the $e_{i}: s$ are uniquely determined by P.

Remark. Some of the e_{i} :s might be zero, e.g. if P is constant rank n, then $e_{0}=e_{1}=\ldots=e_{n-1}=0$.

Proof. (i) Let \mathbf{Z} have the discrete topology. Then rk: Spec $A \rightarrow \mathbf{Z}$ given by $\mathfrak{p} \rightarrow \mathrm{rk}_{\mathfrak{p}} P$ is a continuous function. Hence $X_{i}=\left\{\mathfrak{p} \in \operatorname{Spec} A_{0} ; \mathrm{rk}_{\mathfrak{p}} P=i\right\}$ is both open and closed. It follows that $\operatorname{Spec} A=X_{0} \cup X_{1} \cup \ldots \cup X_{n}$ where the union is disjoint. But to this covering of $\operatorname{Spec} A$ corresponds a unique "partition of unity" $1=e_{0}+e_{1}+\ldots+e_{n}$ where $e_{i}(x)=\left\{\begin{array}{ll}1 & \text { if } x \in X_{i} \\ 0 & \text { otherwise }\end{array}\right.$ i.e. $1-e_{i} \in \mathfrak{p}$ for all $\mathfrak{p} \in X_{i}$ and $e_{i} \in \mathfrak{p}$ for all $\mathfrak{p} \notin X_{i}$: (see Swan [12] p. 140). This means that the $e_{i}: s$ are orthogonal idempotents.

Now we claim that $\lambda_{t}\left(1_{p}\right)=\sum_{0}^{n} e_{i}(1+t)^{i}$.

Fix a prime $\mathfrak{p} \in X_{i}$. Then the localization at p of the left hand side is $\left(\lambda_{t}\left(1_{p}\right)\right)_{\mathfrak{p}}=\lambda_{t}\left(1_{P_{p}}\right)=(1+t)^{i}$ since P_{p} is free of rank i. To compute the localization of the right hand side we need $e_{k p}$. But $e_{i} e_{j}=0$ with $e_{i} \notin \mathfrak{p}$ implies $e_{j p}=0$ in $A_{\mathfrak{p}}$ for $j \neq i$. Furthermore $e_{i}\left(1-e_{i}\right)=0$ with $e_{i} \notin \mathfrak{p}$ implies $e_{i p}=1$ in $A_{\mathfrak{p}}$. Thus $\left(\sum_{0}^{n} e_{j}(1+t)^{j}\right)_{\mathfrak{p}}=(1+t)^{i}=\left(\lambda_{t}\left(1_{p}\right)\right)_{\mathfrak{p}} \quad$ and we are done since $\mathfrak{p} \in \operatorname{Spec} A$ was arbitrary.
(ii) $A^{i} P$ is in $\mathscr{P}(A)$ and thus $\operatorname{Ann}\left(\Lambda^{i} P\right)=e A$ where e is a uniquely determined idempotent (Goldman [6] p. 33). Now ($\left.\Lambda^{i} P\right)_{\mathfrak{p}}=0$ if and only if $\mathrm{rk}_{\mathrm{p}} P<i$ if and only if $p \in X_{0} \cup X_{1} \cup \ldots \cup X_{i-1}$. This is the case if and only if $e A=\operatorname{Ann}\left(A^{i} P\right) \nsubseteq \mathfrak{p}$ if and only if $e \notin \mathfrak{p}$. Thus $e(x)=0$ if and only if $x \in X_{i} \cup \ldots \cup X_{n}$ (and hence $e(x)=1$ otherwise). But $e_{0}+e_{1}+\ldots+e_{i-1}$ is a candidate satisfying these conditions. By uniqueness we get

$$
e=e_{0}+e_{1}+\ldots+e_{i-1}
$$

Putting $i=1$ we get e_{0} uniquely. Since $e_{0}+e_{1}$ is unique e_{1} is unique etc.
Definition 2.3: We define the determinant of f by $\operatorname{det} f=\lambda_{1}\left(f-1_{p}\right)$ for $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$.

First we note that $\operatorname{det} 1_{p}=\lambda_{1}(0)=1$. If P is free then $\operatorname{det}(f)$ coincides with the usual determinant of a matrix for f. If $r k P=n$ then there exists Q such that $P \oplus Q=F$ where F is free of rank n. Clearly $Q \in \mathscr{F}(A)$. Localizing at $\mathfrak{p} \in \operatorname{Spec} A$ we get $P_{\mathfrak{p}} \oplus Q_{\mathfrak{p}}=F_{\mathfrak{p}}$ where $P_{\mathfrak{p}}, Q_{\mathfrak{p}}, F_{\mathfrak{p}}$ are free $A_{\mathfrak{p}}$-modules of rank $r=r k_{p} P, n-r$ and n, respectively. We get $\left(\operatorname{det}\left(f \oplus 1_{Q}\right)\right)_{p}=\operatorname{det}\left(f_{\mathfrak{p}} \oplus 1_{Q_{\mathfrak{p}}}\right)=$ $\operatorname{det} f_{\mathfrak{p}} \cdot \operatorname{det} \mathbf{1}_{Q_{\mathfrak{p}}}=\operatorname{det} f_{\mathfrak{p}}=(\operatorname{det} f)_{\mathfrak{p}}$. Hence we could also have $\operatorname{defined} \operatorname{det} f$ as $\operatorname{det}\left(f \oplus \mathrm{l}_{Q}\right)$ where the last det is the ordinary determinant of a matrix for $f \oplus \mathrm{I}_{Q}$. Thus det f is the same as Goldman's determinant ([6] p. 29). We state some properties of $\operatorname{det}(f)$.

Proposition 2.4. (i) $\operatorname{det}(f \circ g)=\operatorname{det} f \operatorname{det} g$.
(ii) f is an ismorphism if and only if $\operatorname{det} f$ is invertible in A.

We now collect some formulas for $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ where $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$ and $r k P=n$.

Proposition 2.5. (i) $\lambda_{t}\left(\Lambda^{k} f\right)=1+a_{k} t+\ldots+a_{n}{ }^{\binom{n-1}{k-1}} t^{\binom{n}{k}}$. In particular
(ii) $\lambda_{t}\left(\Lambda^{n} f\right)=1+a_{n} t$.
(iii) $\lambda_{t}\left(\Lambda^{n-1} f\right)=1+a_{n-1} t+a_{n-2} a_{n} t^{2}+a_{n-3} a_{n}^{2} t^{3}+\ldots+a_{1} a_{n}^{n-2} t^{n-1}+a_{n}^{n-1} t^{n}$.
(iv) $\lambda_{t}\left(f^{2}\right)=1+\left(a_{1}^{2}-2 a_{2}\right) t+\left(2 a_{4}-2 a_{1} a_{3}+a_{2}^{2}\right) t^{2}+\ldots+a_{n^{2}}^{2}$.

Proof. Since λ_{t} and Λ^{k} commute with localization we may assume that P is free. Using the technique employed in proving the exponential trace formula 1.10 we may even assume that A is an algebraically closed field. If

$$
\lambda_{t}(f)=\prod_{1}^{n}\left(1+\lambda_{i} t\right)=1+a_{1} t+\ldots+a_{n} t^{n}
$$

we have

$$
\lambda_{t}\left(\Lambda^{k} f\right)=\prod_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n}\left(1+\lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{k}} t\right) .
$$

The first two formulas now follow easily.
(iii) We may assume that $a_{n}=\prod_{1}^{n} \lambda_{i} \neq 0$. Then we have

$$
\begin{gathered}
\quad \lambda_{t}\left(A^{n-1} f\right)=\prod_{1}^{n}\left(1+\frac{a_{n}}{\lambda_{i}} t\right)=a_{n}^{n} t^{n} \prod_{1}^{n}\left(1+\frac{\lambda_{i}}{a_{n} t}\right) \cdot \prod_{1}^{n} \frac{1}{\lambda_{i}}= \\
=a_{n}^{n-1} t^{n}\left(1+a_{1} \cdot \frac{1}{a_{n} t}+a_{2} \frac{1}{a_{n}^{2} t^{2}}+\ldots+\frac{a_{n-1}}{a_{n}^{n-1} t^{n-1}}+\frac{a_{n}}{a_{n}^{n} t^{n}}\right)= \\
=1+a_{n-1} t+a_{n-2} a_{n} t^{2}+\ldots+a_{1} a_{n}^{n-2} t+a_{n}^{n-1} t^{n} .
\end{gathered}
$$

(iv) Set $t=-s^{2}$. Then

$$
\begin{aligned}
& \lambda_{1}\left(f^{2}\right)=\operatorname{det}\left(1-s^{2} f^{2}\right)=\operatorname{det}(1-s f) \cdot \operatorname{det}(1+s f)=\lambda_{-s}(f) \lambda_{s}(f)= \\
& =\left(1-a_{1} s+a_{2} s^{2}-+\ldots+(-1)^{n} a_{n} s^{n}\right)\left(1+a_{1} s+a_{2} s^{2}+\ldots+a_{n} s^{n}\right)= \\
& =1+\left(2 a_{2}-a_{1}^{2}\right) s^{2}+\left(2 a_{4}-2 a_{1} a_{3}+a_{2}^{2}\right) s^{4}+\ldots+a_{n}^{2}\left(-s^{2}\right)^{n}
\end{aligned}
$$

We keep the notation from above and furthermore $e_{0}, e_{1}, \ldots, e_{n}$ are the idempotents in theorem 2.2.

Proposition 2.6. (i) $\operatorname{det} f=\sum_{0}^{n} a_{i} e_{i}$ where $a_{0}=1$.
(ii) If f is invertible then $\operatorname{det} f$ is a unit in A and $\lambda_{t}\left(f^{-1}\right)=\sum_{0}^{n} d_{k} t^{k}$ where $d_{k}=\sum_{i=k}^{n} c_{i-k} e_{i}$ with c_{i} given by $(\operatorname{det} f)^{-1}=\left(\sum_{0}^{n} a_{i} e_{i}\right)^{-1}=\sum_{i=0}^{n} c_{i} e_{i} \quad$ (i.e. if $e_{i} \neq 0$ then $c_{i} e_{i}$ is the inverse of $a_{i} e_{i}$ in the subring $A e_{i}$).

Proof. (i) Localization at $p \in X_{i}$ (for the notation see the proof of 2.2) gives

$$
\left(\sum_{0}^{n} a_{j} e_{j}\right)_{\mathfrak{p}}=\sum_{0}^{n} a_{j p} e_{j p}=a_{j p} \text { since } e_{j p}=\delta_{i j}
$$

But $(\operatorname{det} f)_{\mathfrak{p}}=\left(\lambda_{1}\left(f-1_{p}\right)_{p}=\lambda_{1}\left(f_{p}-1_{p_{p}}\right)=\operatorname{det}\left(f_{p}\right)\right.$ since P_{p} is free. Furthermore P_{p} has rank i (since $\mathfrak{p} \in X_{i}$) and hence $\left(\lambda_{s}(f)\right)_{p}=\lambda_{k}\left(f_{\mathfrak{p}}\right)=1+\ldots+\operatorname{det} f_{p} \cdot t^{i}$ and $a_{i p}=\operatorname{det} f_{\mathfrak{p}}$. This proves (i).
(ii) It is sufficient to show the formula locally. Fix a $\mathfrak{p} \in X_{v}$. Then $P_{\mathfrak{p}}$ is free of rank v and we get

$$
\begin{gathered}
\left(\lambda_{\imath}\left(f^{-1}\right)_{\mathfrak{p}}=\lambda_{\imath}\left(f_{\mathfrak{p}}^{-1}\right)=\operatorname{det}\left(1+t f_{\mathfrak{p}}^{-1}\right)=\left(\operatorname{det} f_{\mathfrak{p}}\right)^{-1} \operatorname{det}\left(t \cdot \mathrm{I}_{p_{\mathfrak{p}}}\right) \operatorname{det}\left(1+t^{-1} f_{\mathfrak{p}}\right)=\right. \\
=\left(\sum_{0}^{n} c_{j p} e_{j \mathfrak{p}}\right) t^{\nu} \sum_{j=0}^{v} a_{j \mathfrak{p}} t^{-j}=c_{v p} \sum_{j=0}^{v} a_{j p} t^{v-j} \text { since } e_{j \mathfrak{p}}=\delta_{j v} .
\end{gathered}
$$

On the other hand
$\left(\sum_{0}^{n} d_{k} t^{k}\right)_{\mathfrak{p}}=\sum_{0}^{n} d_{k \neq p} t^{k}=\sum_{k=0}^{n}\left(\sum_{i=k}^{n} c_{i p} a_{(i-k) \mathfrak{p}}\right) t^{k}=\sum_{k=0}^{\nu} c_{\nu \psi} a_{(v-k) \nmid} t^{k}=c_{\nu p} \sum_{j=0}^{\nu} a_{j p} p^{p-j}$ with $j=\nu-k$.
Hence the localizations of both sides agree.

3. The behaviour of λ_{t} under change of rings, taking duals and forming of tensor products

Proposition 3.1. Let $\phi: A \rightarrow B$ be a ringhomomorphism (with $\phi(1)=1$) and $f: P \rightarrow P$ an A-linear map with $P \in \mathscr{P}(A)$. Then $P \otimes_{A} B$ is in $\mathscr{P}(B)$ and

$$
\lambda_{t}^{B}\left(f \otimes 1_{B}\right)=\phi\left(\lambda_{t}^{A}(f)\right)
$$

Proof. The first statement is well known. Since $\Lambda_{B}^{i}\left(P \otimes_{A} B\right)$ is naturally isomorphic as B-module to $\left(\Lambda_{A}^{i} P\right) \otimes_{A} B$ it is sufficient to prove $\operatorname{Tr}_{B}\left(f \otimes 1_{B}\right)=$ $\phi\left(\operatorname{Tr}_{A}(f)\right)$ which is well known.

Proposition 3.2. Every $f: P \rightarrow P$ with P in $\mathscr{P}(A)$ induces $f^{*}: P^{*} \rightarrow P^{*}$ where $P^{*}=\operatorname{Hom}_{A}(P, A)$ is in $\mathscr{P}(A)$. Furthermore

$$
\operatorname{Tr} f^{*}=\operatorname{Tr} f \quad \text { and } \quad \lambda_{t}\left(f^{*}\right)=\lambda_{t}(f)
$$

Proof. For every $\mathfrak{p} \in \operatorname{Spec}(A)$ we get a natural $A_{\mathfrak{p}}$-isomorphism

$$
\left(P^{*}\right)_{\mathfrak{p}}=\left(\operatorname{Hom}_{A}(P, A)\right)_{\mathfrak{p}} \stackrel{h}{\cong} \operatorname{Hom}_{A_{\mathfrak{p}}}\left(P_{\mathfrak{p}}, A_{\mathfrak{p}}\right)=\left(P_{\mathfrak{p}}\right)^{*}
$$

and we have a commutative diagram

Hence $\left(f^{*}\right)_{\mathfrak{p}}=h^{-1} \circ\left(f_{\mathfrak{p}}\right)^{*} \circ h$. It follows

$$
\left(\lambda_{t}\left(f^{*}\right)\right)_{\mathfrak{p}}=\lambda_{t}\left(\left(f^{*}\right)_{\mathfrak{p}}\right)=\lambda_{t}\left(h^{-1} \circ\left(f_{\mathfrak{p}}\right)^{*} \circ h\right)=\lambda_{t}\left(\left(f_{\mathfrak{p}}\right)^{*}\right)
$$

by 1.3 (iv). But $\left(P_{\mathfrak{p}}\right)^{*}$ is free and

$$
\lambda_{t}\left(\left(f_{\mathfrak{p}}\right)^{*}\right)=\operatorname{det}\left(1+\left(f_{\mathfrak{p}}\right)^{*}\right)=\operatorname{det}\left(1+f_{\mathfrak{p}}\right)=\lambda_{t}\left(f_{\mathfrak{p}}\right)=\left(\lambda_{t}(f)\right)_{\mathfrak{p}}
$$

This proves the formula for λ_{t} and taking the coefficient of t we get the formula for the trace.

Next we turn to the tensor product of two A-linear maps $f: P \rightarrow P$ and $g: Q \rightarrow Q$ with P, Q in $\mathscr{P}(A)$. For completeness we quote

Proposition 3.3. $\operatorname{Tr}(f \otimes g)=\operatorname{Tr} f \cdot \operatorname{Tr} g$.
There is a corresponding formula for λ_{t} but it is more complicated. It is convenient to introduce some notation:

Let \tilde{A} denote the set of all formal power series $1+a_{1} t+a_{2} t^{2}+\ldots$ over A with constant term 1. Then \tilde{A} is an abelian group under multiplication. We define "*- multiplication» in \tilde{A} such that the following formula is valid

$$
\lambda_{t}(f \otimes g)=\lambda_{t}(f) * \lambda_{t}(g)
$$

This defines $*$ for all polynomials in \tilde{A} since $1+a_{1} t+\ldots+a_{n} t^{n}=\lambda_{t}(f)$ where $f: A^{n} \rightarrow A^{n}$ is given by the matrix

$$
f=\left(\begin{array}{lllc}
0 & 0 & \ldots & 0 \pm a_{n} \\
1 & 0 & & \mp a_{n-1} \\
0 & 1 & \ldots & \pm a_{n-2} \\
\ldots & \ldots & 0 & -a_{2} \\
0 & 0 & 1 & a_{1}
\end{array}\right)
$$

Proposition 3.4. If $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} n^{n}$ and

$$
\lambda_{t}(g)=1+b_{1} t+\ldots+b_{m} t^{m}
$$

then
$\lambda_{t}(f \otimes g)=\left(1+a_{1} t+\ldots+a_{n} t^{n}\right) *\left(1+b_{1} t+\ldots+b_{m} t^{m}\right)=1+d_{1} t+\ldots+d_{m n} t^{m n}$ where

$$
\begin{aligned}
& d_{1}= a_{1} b_{1} \\
& d_{2}= a_{1}^{2} b_{2}+a_{2} b_{1}^{2}-2 a_{2} b_{2} \\
& d_{3}= a_{1}^{3} b_{3}+a_{3} b_{1}^{3}+a_{1} a_{2} b_{1} b_{2}-3 a_{1} a_{2} b_{3}-3 a_{3} b_{1} b_{2}+3 a_{3} b_{3} \\
& d_{4}= a_{1}^{2} a_{2} b_{1} b_{3}+a_{1} a_{3} b_{1}^{2} b_{2}-a_{1} a_{3} b_{1} b_{3}+a_{1}^{4} b_{4}+a_{4} b_{1}^{4}+4 a_{1} a_{3} b_{4}+4 a_{4} b_{1} b_{3}-2 a_{1} a_{3} b_{2}^{2}- \\
&-2 a_{2}^{2} b_{1} b_{3}+2 a_{2}^{2} b_{4}+2 a_{4} b_{2}^{2}-4 a_{4} b_{4}-4 a_{1}^{2} a_{2} b_{4}-4 a_{4} b_{1}^{2} b_{2}+a_{2}^{2} b_{2}^{2} \\
& \cdots \\
& \cdots \\
& d_{m n-1}=a_{n}^{m-1} a_{n-1} b_{m}^{n-1} b_{m-1} \\
& d_{m n}= a_{n}^{m} b_{n}^{m} .
\end{aligned}
$$

Proof. Just as in the proof of 1.10 we may assume that A is an algebraically closed field of characteristic zero. Then

$$
\lambda_{t}(f)=\prod_{1}^{n}\left(1+\lambda_{i} t\right), \quad \lambda_{t}(g)=\prod_{1}^{m}\left(1+\mu_{j} t\right)
$$

and

$$
\lambda_{1}(f \otimes g)=\prod_{i, j}\left(1+\lambda_{i} \mu_{j} t\right)
$$

Using formulas for symmetric functions (see [1] p. 258) it is possible to compute $d_{1}, d_{2}, d_{3}, \ldots$ A better way is to use the exponential trace formula 1.10. Put $\quad p_{i}=\operatorname{Tr} f^{i}, \quad q_{i}=\operatorname{Tr} g^{i} \quad$ and $\quad r_{i}=\operatorname{Tr}(f \otimes g)^{i}$. Then $\quad r_{i}=p_{i} q_{i} \quad$ since $\operatorname{Tr}(f \otimes g)^{i}=\operatorname{Tr}\left(f^{i} \otimes g^{i}\right)=\operatorname{Tr} f^{i} \operatorname{Tr} g^{i}$. The exponential trace formula applied to f gives $a_{1} t+2 a_{2} t^{2}+\ldots+n a_{n} t^{n}=\left(1+a_{1} t+\ldots+a_{n} t^{n}\right)\left(p_{1} t-p_{2} t^{2}+p_{3} t^{3}-\ldots\right)$ and hence

$$
\begin{aligned}
a_{1} & =p_{1} \\
2 a_{2} & =a_{1} p_{1}-p_{2} \\
3 a_{3} & =a_{2} p_{1}-a_{1} p_{2}+p_{3} \\
4 a_{4} & =a_{3} p_{1}-a_{2} p_{2}+a_{1} p_{3}-p_{4}
\end{aligned}
$$

Solving for the p_{i} :s we get

$$
\begin{aligned}
& p_{1}=a_{1} \\
& p_{2}=a_{1}^{2}-2 a_{2} \\
& p_{3}=a_{1}^{3}-3 a_{1} a_{2}+3 a_{3} \\
& p_{4}=a_{1}^{4}-4 a_{1}^{2} a_{2}+4 a_{1} a_{3}+2 a_{2}^{2}-4 a_{4}
\end{aligned}
$$

There are similar formulas connecting the $b_{i}:$ s and $q_{i}: \mathrm{s}\left(d_{i}:\right.$ s and $\left.r_{i}: \mathrm{s}\right)$. The latter give

$$
\begin{aligned}
d_{1}= & r_{1}=p_{1} q_{1}=a_{1} b_{1} \\
2 d_{2}= & d_{1} r_{1}-r_{2}=a_{1}^{2} b_{1}^{2}-p_{2} q_{2}=a_{1}^{2} b_{1}^{2}-\left(a_{1}^{2}-2 a_{2}\right)\left(b_{1}^{2}-2 b_{2}\right)=2\left(a_{1}^{2} b_{2}+a_{2} b_{1}^{2}-2 a_{2} b_{2}\right) \\
3 d_{3}= & d_{2} r_{1}-d_{1} r_{2}+r_{3}=d_{2} p_{1} q_{1}-d_{1} p_{2} q_{2}+p_{3} q_{3}=a_{1} b_{1}\left(a_{1}^{2} b_{2}+a_{2} b_{1}^{2}-2 a_{2} b_{2}\right)- \\
& -a_{1} b_{1}\left(a_{1}^{2}-2 a_{2}\right)\left(b_{1}^{2}-2 b_{2}\right)+\left(a_{1}^{3}-3 a_{1} a_{2}+3 a_{3}\right)\left(b_{1}^{3}-3 b_{1} b_{2}+3 b_{3}\right)= \\
& =3\left(a_{1}^{3} b_{3}+a_{3} b_{1}^{3}-3 a_{1} a_{2} b_{3}-3 a_{3} b_{1} b_{2}+3 a_{3} b_{3}+a_{1} a_{2} b_{1} b_{2}\right)
\end{aligned}
$$

We omit the calculation of d_{4}.

We could immediately have seen that the terms $a_{1}^{3} b_{1}^{3}, a_{1}^{3} b_{1} b_{2}$ would be missing in d_{3} since they would occur in $\left(1+a_{1} t\right) *\left(1+b_{1} t+b_{2} t_{2}^{2}\right)$ which only has degree $1 \cdot 2=2$. Similarly $a_{1} b_{2} b_{1}^{3}$ will not occur.

To get the last terms one can use

$$
\begin{gathered}
\left(1+a_{1} t+\ldots+a_{n} t^{n}\right) *\left(1+b_{1} t+\ldots+b_{m} t^{m}\right)= \\
=a_{n}^{m} b_{m}^{n} t^{m n}\left(1+\frac{a_{n-1}}{a_{n}} t^{-1}+\frac{a_{n-2}}{a_{n}} t^{-2}+\ldots\right) *\left(1+\frac{b_{m-1}}{b_{m}} t^{-1}+\frac{b_{m-2}}{b_{m}} t^{-2}+\ldots\right)
\end{gathered}
$$

In particular the number of monomials occurring in $d_{m n-i}$ is the same as in d_{i}. Let s_{k} denote the number of monomials in d_{k} for large m, n (say $m, n \geq k$). The computation of s_{k} seems to be quite a problem.

By formally factoring

$$
1+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}=(1+\alpha t)(1+\beta t)(1+\gamma t)(t+\delta t) \ldots
$$

we find that the term containing, say $b_{4}^{2} b_{1}^{2}$, of

$$
\begin{gathered}
\left(1+a_{1} t+\ldots\right) *\left(1+b_{1} t+b_{2} t^{2}+\ldots\right)= \\
=\left(1+b_{1} \alpha t+b_{2} \beta^{2} t^{2}+\ldots\right)\left(1+b_{1} \beta t+b_{2} \beta^{2} t^{2}+\ldots\right) \ldots
\end{gathered}
$$

is $-\alpha^{4} \beta^{4} \gamma \delta$. Using the large fold-out tables of Faa de Bruno: Theorie des formes binaires, Turin 1876, we find the following results $s_{1}=1, s_{2}=3, s_{3}=6, s_{4}=15$, $s_{5}=28, s_{6}=64, s_{7}=116, s_{8}=234, s_{9}=373, s_{10}=814, s_{11}=1508$.

The method based on couning zeroes in tables cannot be generalized to k larger than 11 .

Now back to defining $*$-multiplication in \tilde{A}. By the computations above it is clear that if we cut off the power series in the left hand side of

$$
\left(1+a_{1} t+\ldots\right) *\left(1+b_{1} t+\ldots\right)=1+d_{1} t+\ldots+d_{k} t^{t}+\ldots
$$

and take $*$ of the remaining polynomials of degree n and m respectively, then $d_{k}=$ the coefficient of t^{k} will not depend on n and m if $n, m \geq k$. Hence we can define d_{k} in this way. Then \tilde{A} becomes a commutative ring with ordinary multiplication as addition and $*$-multiplication as multiplication. The unity element is $1+t$. Clearly \tilde{A} is torsionfree (as abelian group). Furthermore $\lambda_{t}(f) \mapsto \lambda_{t}\left(\Lambda^{k} f\right)$ induces a λ-ring structure on \tilde{A} (it is even a special λ-ring, see [1], p. 257).

We denote by $N(A)=\left\{a \in A_{0} ; a\right.$ is nilpotent $\}$ the nilradical of a ring A.
Proposition 3.5. (i) If A is torsion free then

$$
N(\tilde{A}) \subseteq \widehat{N(A)}=\left\{1+a_{1} t+a_{2} t^{2}+\ldots ; \quad a_{i} \in N(\tilde{A})\right\}
$$

(ii) If A is noetherian then $N(\tilde{A}) \subseteq \widehat{N(A)}$.

Proof. (i) Assume that $\left(1+a_{1} t+a_{2} t^{2}+\ldots\right)^{* k}=1$. The left hand side is $1+c_{1} t+c_{2} t^{2}+\ldots$ with $c_{1}=a_{1}^{k}$ and in general $c_{n}=m_{n} a_{n}^{k}+a$ polynomial of weight $n k$ containing at least one of $a_{1}, a_{2}, \ldots, a_{n-1}$. Here m_{n} is an integer. We proceed by induction over n. We have $a_{1}^{k}=0$ so $a_{1} \in N(A)$. Assume now that $a_{1}, a_{2}, \ldots, a_{n-1} \in N(A)$. Since $c_{n}=0$ we get $m_{n} a_{n}^{k} \in N(A)$ and $a_{n} \in N(A)$ since A is torsion free.
(ii) If A is noetherian then $N(A)$ is nilpotent, say $N(A)^{k}=0$. Hence the product of any k elements of $N(A)$ is zero. The computation above shows that all monomials occurring in c_{n} contain at least k factors among the $a_{1}, \ldots, a_{n} \in N(A)$. It follows that $\left(1+a_{1} t+\ldots\right)^{* k}=1$.

We will return to the ring \tilde{A} in Section 6 .
Proposition 3.6. Given $f: P \rightarrow P, g: Q \rightarrow Q$ with $P, Q \in \mathscr{P}(A)$. Then we have an induced map
$\operatorname{Hom}(f, g): \operatorname{Hom}_{A}(P, Q) \rightarrow \operatorname{Hom}_{A}(P, Q)$ where $\operatorname{Hom}_{A}(P, Q) \in \mathscr{P}(A)$
defined by $u \mapsto g \circ u \circ f$. Then
$\operatorname{Tr} \operatorname{Hom}(f, g)=\operatorname{Tr} f \cdot \operatorname{Tr} g \quad$ and $\quad \lambda_{t}(\operatorname{Hom}(f, g))=\lambda_{t}(f) * \lambda_{t}(g)$.
Proof. We have a natural isomorphism $Q \cong Q^{* *}$ which induces natural isomorphisms

$$
\operatorname{Hom}_{A}(P, Q) \cong \operatorname{Hom}_{A}\left(P, Q^{* *}\right) \cong \operatorname{Hom}_{A}\left(P \otimes_{A} Q^{*}, A\right)=\left(P \otimes_{A} Q^{*}\right)^{*}
$$

Hence we get $\operatorname{Tr}\left(\operatorname{Hom}(f, g)=\operatorname{Tr}\left(f \otimes g^{*}\right)^{*}\right.$ and $\left.\lambda_{t}(\operatorname{Hom}(f, g))=\lambda_{t}\left(f \otimes g^{*}\right)^{*}\right)$. Using 3.2 twice and the definition of $*$-multiplication we get the desired formulas.

4. Relations between $\lambda_{t}(f)$ and minimal polynomials of f

Proposition 4.1. Let $f: M \rightarrow M$ be A-linear with M a finitely generated A-module. Then there is a mon ic polynomial $q \in A[t]$ of minimal degree such that $q(f)=0$. (q will be called a minimal polynomialof f). The degree of q is at most equal to the minimal number of generators of M.

Proof. Let n be the minimal number of generators of M. Then we have a surjection $A^{n} \xrightarrow{\pi} M \longrightarrow 0$. Since A^{n} is free we can find $g: A^{n} \longrightarrow A^{n}$ such that

commutes. Now g satisfies a monic polynomial q_{1} of degree n by the CayleyHamilton theorem. Using this in the diagram gives
from which it follows that $q_{1}(f)=0$.
Remark 4.2. The polynomial q is not unique in general. If $A=Z /(4)$ then $f=\left(\begin{array}{l}\left.{ }_{02}^{22}\right)\end{array}\right.$ satisfies both $f^{2}=0$ and $f^{2}+2 f=0$.

Proposition 4.3. Given $f: P \rightarrow P$ with P in $\mathscr{P}(A)$. Assume that f has minimal polynomial q and pat $\tilde{q}(t)=(-t)^{v} q\left(-t^{-1}\right)$ where $v=$ degree of q. Then $\lambda_{t}(f)$ satisfies the following differential equation in $A[t]$

$$
t \lambda_{t}(f)^{-1} \frac{d}{d t} \lambda_{t}(f)=\frac{\tilde{q} \cdot \psi\left(\bmod t^{p+1}\right)}{\tilde{q}}
$$

where $\psi(t)=b_{1} t-b_{2} t^{2}+b_{3} t^{3} \ldots$ with $b_{i}=\operatorname{Tr} f^{i}$. If $q(0)=0 \quad$ we may take $\left(\bmod t^{\nu}\right)$ in the formula above.

Proof. Assume that $q(t)=t^{y}+c_{1} t^{y^{-1}}+\ldots+c_{k} t^{\nu-k}$. Taking the trace of $0=f^{v}+c_{1} f^{v-1}+\ldots+c_{k} k^{v-k}$ we get $0=b_{v}+c_{1} b_{p-1}+\ldots+c_{k} k_{\nu-k}$ where in case $k=\nu$ we put $b_{0}=\operatorname{Tr} 1_{P}$. Multiplying by f and taking traces again gives $b_{v+1}+c_{1} b_{v}+\ldots+c_{k} b_{v-k+1}=0$ etc. Now $\tilde{q}(t)=1-c_{1} t+c_{2} t^{2}-\ldots \pm c_{k} t^{k}$ and $\tilde{q}(t) \psi(t)=\left(1-c_{1} t+c_{2} t^{2} \cdots \cdots c_{k} t^{k}\right)\left(b_{1} t-b_{2} t^{2}+b_{3} t^{3} \ldots\right)=$ $=($ terms of degree $<\nu) \pm\left(b_{\nu}+c_{1} b_{\nu-1}+\ldots+c_{k} b_{\nu-k}\right) t \pm$

$$
\pm\left(b_{v+1}+c_{1} b_{v}+\ldots+c_{k} b_{v-k+1}\right) t^{p+1}+\ldots
$$

Here all terms of degree higher than v vanish and the coefficient of t^{v} is zero unless $k=\nu$ in which case it is $(-1)^{v-1} c_{k} \operatorname{Tr} 1_{P}$. The exponential trace formula gives

$$
t \lambda_{t}(f)^{-\mathbf{1}} \frac{d}{d l} \lambda_{t}(f)=\psi(t)
$$

and multiplying by $\tilde{q}(t)$ finishes the proof.
Remark 4.4. If A contains the rational numbers \mathbf{Q} then $\lambda_{l}(f)$ is determined by a minimal polynomial q of f and $b_{1}, b_{2} \ldots, b_{v-1}$ where $v=$ degree of q.

Example 4.5. Assume that $A \supseteq Q$. Let $f: P \rightarrow P$ have minimal polynomial $q(t)=t^{2}-t$, i.e., f is a non-trivial idempotent in End $A_{A} P$. Then $\tilde{q}(t)=1+t$ and if we apply 4.3 we get (since $q(0)=0$)

$$
t \lambda_{t}(f)^{-1} \frac{d}{d t} \lambda_{t}(f)=\frac{\left((1+t)\left(b_{1} t-b_{2} t^{2} \ldots\right)\right)\left(\bmod t^{2}\right)}{1+t}=\frac{b_{1} t}{1+t}
$$

which implies $\lambda_{t}(f)=(1+t)^{b_{\mathbf{r}}}=(1+t)^{T_{r} f}$.
If $f^{3}=f$, i.e. $q(t)=t^{3}-t$ one finds similarly

$$
\lambda_{t}(f)=(1+t)^{\frac{b_{2}+b_{1}}{2}} \cdot(1-t)^{\frac{b_{2}-b_{1}}{2}}
$$

Example 4.6. Let G be a finite group of order n and $A[G]$ the group algebra. Let $f: A[G] \rightarrow A[G]$ be given by left multiplication with $\sigma \in G$. If σ has order k then the minimal polynomial of f is $q(t)=t^{k}-1$ and $\tilde{q}(t)=1+(-1)^{k t^{k}}$. Using 4.3 and the fact that $b_{1}=b_{2}=\ldots=b_{k-1}=0$ and $b_{k}=n$ we get

$$
\lambda_{t}(f)=\left(1-(-1)^{k} t^{k}\right)^{\frac{n}{\bar{k}}}
$$

5. Endomorphisms of modules having finite resolutions of finitely generated projective modules

Let $X(A)$ denote the category of A-modules M such that M has a finite resolution in $\mathscr{P}(A)$. We want to define $\lambda_{t}(f)$ for $f: M \rightarrow M$ when $M \in \mathscr{X}(A)$. For this we need some preparations.

Definition 5.1. Let End $\mathscr{P}(A)$ denote the category of endomorphisms of modules in $\mathscr{P}(A)$, i.e. the objects are endomorphism $f: P \rightarrow P$ with $P \in \mathscr{F}(A)$ and a morphism u from f to $g: Q \rightarrow Q$ (where $Q \in \mathscr{P}(A)$) is a commutative diagram

Then $K_{0}(\operatorname{End} \mathscr{P}(A))$ is defined as the free abelian group generated by (the isomorphism classes of) the objects in End $\mathscr{P}(A)$ modulo the sulbgroup generated by all $[f]-\left[f^{\prime}\right]-\left[f^{\prime \prime}\right]$ where

is commutative with exact row. Similarly we define End $\mathscr{X}(A)$ and K_{0} (End $\left.\mathscr{X}_{(A)}\right)$.
Proposition 5.2. The embedding End $\mathscr{P}(A) \rightarrow$ End $\mathscr{X}(A)$ induces an isomorphism i : $K_{0}($ End $\mathscr{P}(A)) \underset{0}{\geqq}$ (End $\mathscr{X}^{(}(A)$).

Proof. The usual proof does not apply since $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$ is not a projective object in the abelian category of all endomorphisms (which is isomorphic to the category of modules over $A[t])$. Fortunately Swan has formulated a theorem general enough for our purposes (see [12] p. 235. Theorem 16.12). Put $\mathscr{P}=$ End $\mathscr{P}(A)$ and $\mathscr{M}=$ End $\mathscr{X}(A)$. Then the assumptions in 16.12 are fulfilled. Indeed,
(1) Clearly End $\mathscr{P}(A)$ and $\mathscr{C}(A)$ are closed under direct sums
(2) If

is exact and commutative then $P, P^{\prime \prime} \in \mathscr{P}(A)$ implies $P^{\prime} \in \mathscr{P}(A)$ and $P, P^{\prime \prime} \in \mathscr{X}(A)$ implies $P^{\prime} \in \mathscr{X}(A)$ (see Bass [2], p. 122, Proposition 6.3).
(3) Given any $f: M \rightarrow M$ with $M \in \mathscr{X}(A)$ there exists a finite resolution in End $\mathscr{P}(A)$, i.e.

is commutative with exact row and all $P_{i} \in \mathscr{P}(A)$. This is easily proved.
Now the inverse ψ of $i: K_{0}($ End $\mathscr{P}(A)) \rightarrow K_{0}($ End $\mathscr{C}(A))$ is given by

$$
\psi([f])=\sum_{0}^{d}(-1)^{i}\left[f_{i}\right]
$$

and it is shown in [12] that the right hand side is independent of the choice of the resolution (*).

Theorem 5.3. Given $f: M \rightarrow M$ with $M \in \mathscr{X}_{(A)}$. Consider the resolution (*) in End $\mathscr{P}(A)$ above. Then

$$
\sum_{0}^{d}(-1)^{i} \operatorname{Tr} f_{i} \text { and } \prod_{0}^{d} \lambda_{i}\left(f_{i}\right)^{(-1)^{i}}
$$

are independent of the choice of the resolutions and the liftings f_{i} of f.
Proof. For $f: P \rightarrow P$ with $P \in \mathscr{F}(A), f \mapsto \lambda_{t}(f)$ is a map from (isomorphism classes in) End $\mathscr{F}(A)$ to \tilde{A}. If $0 \rightarrow\left(P^{\prime}, f^{\prime}\right) \rightarrow(P, f) \rightarrow\left(P^{\prime \prime}, f^{\prime \prime}\right) \rightarrow 0$ is exact in End $\mathscr{P}(A)$ we have (by (1.5) $\quad \lambda_{t}(f)=\lambda_{t}\left(f^{\prime}\right) \lambda_{t}\left(f^{\prime \prime}\right)$.

Hence by the universal property of $K_{0}(\operatorname{End} \mathscr{P}(A))$ we have a factorization

$$
\text { End } \left.\mathscr{F}(A) \xrightarrow{[]} K_{\lambda_{t}} \text { (End } \mathscr{F}(A)\right)
$$

Assume now that (M, f) in End $\mathscr{C}(A)$ has two resolutions

$$
0 \rightarrow\left(P_{d}, f_{d}\right) \rightarrow \ldots \rightarrow\left(P_{0}, f_{0}\right) \rightarrow,(M, f) \rightarrow 0
$$

and

$$
0 \rightarrow\left(P_{d^{\prime}}^{\prime}, f_{d^{\prime}}^{\prime}\right) \rightarrow \ldots \rightarrow\left(P_{0}^{\prime}, f_{0}^{\prime}\right) \rightarrow(M, f) \rightarrow 0
$$

in End $\mathscr{P}(A)$. By the proof of 5.2 we have

$$
\sum_{0}^{d}(-1)^{j}\left[f_{j}\right]=\sum_{0}^{d^{\prime}}(-1)^{j}\left[f_{j}^{\prime}\right] \text { in } K_{0}(\text { End } \mathscr{P}(A)
$$

and thus

$$
\prod_{0}^{d} \lambda_{t}\left(f_{j}\right)^{(-1)^{j}}=\prod_{0}^{d^{\prime}} \lambda_{t}\left(f_{j}^{\prime}\right)^{(-1)^{j}} \text { in } \tilde{A}
$$

The statement about the trace follows from taking the coefficient of t in the formula for λ_{t}.

Now we can safely make the
Definition 5.4. For $f: M \rightarrow M$ with M in $\mathscr{X}(A)$ we define

$$
\chi(f)=\sum^{d}(-1)^{i} \operatorname{Tr} f_{v} \text { and } \lambda_{t}(f)=\prod^{d} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}}
$$

where the f_{i} :s are given in $(*)$.
Proposition 5.5. Let

be a commutative diagram with exact row and all M_{i} in $\mathscr{X}(A)$. Then

$$
\sum_{0}^{k}(-1)^{i} \chi\left(f_{i}\right)=0 \text { and } \prod_{0}^{k} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}}=1
$$

Proof. Consider the diagram (see the proof of 5.2)

where we denote λ_{t} by $\tilde{\lambda}_{z}$ on End $\mathscr{H}(A)$. The definition of ψ and $\tilde{\lambda}_{t}$ means exactly that $\tilde{\lambda}_{t}=\lambda_{t} \circ \psi$. Now given an exact sequence

$$
0 \rightarrow\left(M_{k}, f_{k}\right) \rightarrow \ldots \rightarrow\left(M_{0}, f_{0}\right) \rightarrow 0
$$

in End $\mathscr{X}(A)$ we get $\sum_{0}^{k}(-1)^{i}\left[f_{i}\right]=0$ in $K_{0}($ End $\mathscr{X}(A))$ and hence

$$
\prod_{0}^{k} \tilde{\lambda}_{L}\left[f_{i}\right]^{(-1)^{i}}=1
$$

Taking the coefficient of t we get the formula for χ.
Corollary 5.6. $\quad \chi(f \oplus g)=\chi(f)+\chi(g)$ and $\quad \lambda_{t}(f \oplus g)=\lambda_{t}(f) \cdot \lambda_{t}(g)$.
Next we generalize the exponential trace formula
Proposition 5.7. If $f: M \rightarrow M$ with $M \in \mathscr{X}(A)$ then

$$
-t \lambda_{t}(f)^{-1} \frac{d}{d t} \lambda_{t}(f)=\sum_{1}^{\infty} \chi\left(f^{i}\right)(-t)^{i} \quad \text { in } \tilde{A}
$$

Proof. Let $0 \rightarrow\left(P_{d}, f_{d}\right) \rightarrow \ldots \rightarrow\left(P_{0}, f_{0}\right) \rightarrow(M, f) \rightarrow 0 \quad$ be a resolution in End $\mathscr{P}(A)$. Taking logarithmic derivatives of

$$
\lambda_{t}(f)=\prod_{j=0}^{d} \lambda_{t}\left(f_{j}\right)^{(-1)^{j}}
$$

we get (using the exponential trace formula)

$$
\begin{gathered}
-t \lambda_{t}(f)^{-1} \frac{d}{d t} \lambda_{t}(f)=\sum_{j=0}^{d}(-1)^{j}\left(-t \lambda_{t}\left(f_{j}\right)^{-\mathbf{1}} \frac{d}{d t} \lambda_{t}\left(f_{j}\right)\right)= \\
=\sum_{j=0}^{d}(-1)^{j} \sum_{i=1}^{\infty}(-1)^{i} \operatorname{Tr}\left(f_{j}^{i}\right) t^{i}=\sum_{i=1}^{\infty}(-1)^{i}\left(\sum_{j=0}^{d}(-1)^{j} \operatorname{Tr}\left(f_{j}^{i}\right)\right)=\sum_{i=1}^{\infty}(-1)^{i} \chi\left(f^{i}\right) t^{i}
\end{gathered}
$$

since

$$
0 \rightarrow\left(P_{d}, f_{d}^{i}\right) \rightarrow \ldots \rightarrow\left(P_{0}, f_{0}^{i}\right) \rightarrow\left(M, f^{i}\right) \rightarrow 0
$$

is a resolution of $\left(M, f^{i}\right)$.
Theorem 5.8. Let $f: M \rightarrow M$ with $M \in \mathcal{X}^{(}(A)$ be nilpotent, $f^{m+1}=0$. Then there is a resolution

$$
0 \rightarrow\left(P_{d}, f_{d}\right) \rightarrow \ldots \rightarrow\left(P_{0}, f_{0}\right) \rightarrow(M, f) \rightarrow 0
$$

in End $\mathscr{P}(A)$ such that all $f_{i}^{m+1}=0$.

Assume that $\mathrm{rk} P_{i}=n_{i}$ and $\lambda_{t}(f)=1+\sum_{1}^{\infty} c_{i} i^{i}$. Then all the c_{i} :s are nilpotent and $c_{1}^{\nu} c_{2}^{\nu_{2}} \ldots c_{k}^{\nu_{k}}=0$ if the weight $\nu_{1}+2 v_{2}+\ldots+k v_{k}>m \sum_{0}^{d} n_{i}$. It follows that $\lambda_{t}(f)$ is a polynomial of degree

$$
\leq n_{0}+m n_{1}+n_{2}+m n_{3}+\ldots+\left\{\begin{array}{llll}
n_{d} & \text { if } & d & \text { is even } \\
m n_{d} & \text { if } & d & \text { is odd }
\end{array}\right.
$$

Proof. The existence of the projective resolution such that $f_{i}^{m+1}=0$ is precisely Proposition 6.2, p. 653 in Bass [2]. Now $\lambda_{t}(f)$ is a product of factors

$$
\lambda_{t}\left(f_{i}\right)=1+a_{1} t+\ldots+a_{n_{i}} t^{n_{i}}
$$

or their inverses. By 1.7 any monomial in the a_{j} :s vanishes provided its weight is larger than $m n_{i}$. Inverting the polynomial $\lambda_{l}\left(f_{i}\right)=1+a_{1} t+\ldots+a_{n_{i}} t^{n_{i}}$ we find that $\lambda_{1}\left(f_{i}\right)^{-1}$ is a polynomial of degree at most $m n_{i}$ and the coefficient of t^{v} is a polynomial in the a_{j} :s where every term has weight ν. Taking the alternating product of the $\lambda_{t}\left(f_{i}\right)$:s we get $\lambda_{t}(f)=1+c_{1} t+c_{2} t^{2}+\ldots$ where c_{v} is a sum of terms of the type

$$
\begin{equation*}
a_{1}^{r_{1}} \ldots a_{n_{0}}^{r_{n_{0}}} \ldots b_{1}^{s_{1}} \ldots b_{n_{d}}^{s_{n_{d}}} \tag{**}
\end{equation*}
$$

if $\quad \lambda_{t}\left(f_{0}\right)=1+a_{1} t+\ldots+a_{n_{0}} t^{n^{0}} \ldots, \lambda_{l}\left(f_{d}\right)=1+b_{1} t+\ldots+b_{n_{d}} t^{n^{n}}$.
Furthermore the weight of the monomial (**) is

$$
v=r_{1}+2 r_{2}+\ldots+n_{0} r_{n_{0}}+\ldots+s_{1}+2 s_{2}+\ldots+n_{d} s_{n_{d}} .
$$

Let now $c=c_{1}^{\nu} c_{2}^{\nu} 2 \ldots c_{k}^{\nu}$ be a monomial in the c_{i} :s of weight

$$
v_{\mathbf{1}}+2 v_{2}+\ldots+k v_{k}>m \sum_{i=0}^{d} n_{i} .
$$

Then c is a sum of monomials of type (**) such that their weight $r_{1}+2 r_{2}+\ldots+n_{0} r_{n_{0}}+\ldots+s_{1}+2 s_{2}+n_{d} s_{n_{d}}=v_{1}+2 v_{2}+\ldots+k v_{k}>m \sum_{0}^{d} n_{i}$.

Hence at least one of the factors

$$
\left(a_{1}^{r_{1}} \ldots a_{n}^{r_{n}}\right), \ldots,\left(b_{1}^{s_{1}} b_{2}^{s_{2}} \ldots b_{n_{d}}^{s_{n}}\right)
$$

has weight $>m n_{1}, \ldots, m n_{d}$ respectively and this factor is zero by 1.7.
The estimate of the degree of $\lambda_{t}(f)$ is clear from the previous considerations.
Corollary 5.9. Assume that the ring A is reduced, i.e. the nilradical $N(A)=0$. Then $\lambda_{t}(f)=1$ for all nilpotent $f: M \rightarrow M$ with $M \in \mathscr{X}(A)$.

We denote the projective dimension of an A-module M with $d h_{A} M$.
Proposition 5.10. Let A be a local noetherian ring with maximal ideal m, residue field $k=A / \mathrm{m}$, and M a finitely generated A-module. If $d=d h_{A} M$ is finite then $M \in \mathscr{X}(A)$ and $\lambda_{t}^{A}\left(1_{M}\right)=(1+t)^{\lambda^{A}\left(1_{M}\right)}$ where

$$
\chi^{A}\left(1_{M}\right)=\sum_{i=0}^{d}(-1)^{i} \operatorname{dim}_{k} \operatorname{Tor}_{i}^{A}(M, k)
$$

Proof. Choose a minimal free resolution

$$
0 \rightarrow P_{d} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

with $n_{i}=r k_{A} P_{i}=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{A}(M, k)$ (see Serre [10] p. IV - 47). Then

$$
\lambda_{t}\left(1_{M}\right)=\prod_{0}^{d} \lambda_{t}\left(1_{P_{i}}\right)^{(-1)^{i}}=\prod_{0}^{d}(1+t)^{(-1)^{i_{i}}}=(1+t)^{\frac{d}{\sum(-1)^{i} n_{i}}} .
$$

But

$$
\chi\left(1_{M}\right)=\sum_{0}^{d}(-1)^{i} \operatorname{Tr} 1_{P_{i}}=\sum_{0}^{d}(-1)^{i} n_{i} .
$$

Proposition 5.11. Let A be a regular local noetherian ring with residue field k. Then $k \in \mathscr{X}(A)$ and $\lambda_{t}^{A}\left(1_{k}\right)=1$.

Proof. Putting $M=k$ in 5.10 we get

$$
\chi^{A}\left(1_{k}\right)=\sum_{0}^{d}(-1)^{i} \operatorname{dim}_{k} \operatorname{Tor}_{i}^{A}(k, k)=\sum_{0}^{d}(-1)^{i}\binom{d}{i}=(1-1)^{d}=0
$$

since $\operatorname{dim}_{k} \operatorname{Tor}_{i}^{A}(k, k)=\binom{d}{i}$ where $d=$ global dimension of A if A is a regular
local noetherian ring.
Proposition 5.12. Let $\phi: A \rightarrow B$ be a flat ring homomorphism, i.e. B is flat as an A-module. If $f: M \rightarrow M$ with $M \in \mathcal{X}_{(A)}$, then $M \otimes_{A} B \in \mathscr{X}(B)$ and

$$
\lambda_{t}^{B}\left(f \otimes 1_{B}\right)=\phi\left(\lambda_{t}^{A}(f)\right) .
$$

Proof. Let

be a projective resolution. Then the exactness is preserved after taking $\cdot \otimes_{A} B$ since B is A-flat. Furthermore each $P_{i} \otimes_{A} B$ is B-projective and finitely generated as B-module. Hence $M \otimes_{A} B \in \mathscr{X}(B)$ and since $\phi\left(\lambda_{t}^{A}\left(f_{i}\right)\right)=\lambda_{t}^{B}\left(f_{i} \otimes 1_{B}\right)$ by 3.1 we finish the proof by taking alternating products.

Corollary 5.13. Let A be an integral domain and K its quotient field. Then

$$
\lambda_{t}^{A}(f)=\lambda_{t}^{K}\left(f \otimes 1_{K}\right)
$$

Proof. The inclusion $A \rightarrow K$ is flat.
Corollary 5.14. Let A be an integral domain and $f: M \rightarrow M$ where M is a torsion module in $\mathscr{C}(A)$. Then $\lambda_{t}(f)=1$.

Proof. Since M is torsion we have $M \otimes_{A} K=0$ and hence

$$
\lambda_{t}^{A}(f)=\lambda_{t}^{K}\left(f \otimes \mathbf{1}_{K}\right)=\lambda_{t}^{K}(0)=1
$$

by 5.13 .
Corollary 5.15. Let A be a Dedekind ring and $f: M \rightarrow M$ A-linear where M is finitely generated. Then $M=T \oplus P$ where T is a torsion module and P is projective and torsion free.

Furthermore $f(T) \subseteq T$ and $\lambda_{t}(f)=\lambda_{t}\left(f_{P}\right)$ where $f_{P}: P \rightarrow P$ is the storsion free part) of f.

Proof. First we note that $M \in \mathscr{X}(A)$ since A is noetherian and $\operatorname{gl} \operatorname{dim} A \leq 1$. Then $M=T \oplus P$ is just Bourbaki [5] p. 79, Corollaire. Now $\operatorname{Hom}_{A}(T, P)=0$ so we get the following diagram using matrix representation

$$
\begin{aligned}
& \binom{1}{0} \quad(0,1) \\
& 0 \rightarrow T \rightarrow T \oplus P \rightarrow P \rightarrow 0 \\
& \left.\left.\right|_{\gamma} f_{T}\right|_{\gamma} f=\left.\left(\begin{array}{c}
f_{T} h \\
0 \\
f_{P}
\end{array}\right)\right|_{\gamma} \\
& 0 \rightarrow T \rightarrow T \oplus P \rightarrow P \rightarrow 0 \text {. } \\
& \binom{1}{0} \quad(0,1)
\end{aligned}
$$

From 5.6 and 5.14 it follows that

$$
\lambda_{t}(f)=\lambda_{t}\left(f_{T}\right) \cdot \lambda_{t}\left(f_{P}\right)=1 \cdot \lambda_{t}\left(f_{P}\right)=\lambda_{t}\left(f_{P}\right)
$$

We now extend the definitions of χ and λ_{t} to endomorphisms of graded modules and complexes.

Definition 5.16. Let $M=\oplus_{0}^{d} M_{i}$ be a graded A-module with all $M_{i} \in \mathscr{M}(A)$. If $f: M \rightarrow M$ is a homomorphism of degree zero, i.e. $f\left(M_{i}\right) \subseteq M_{i}$, we put $f_{i}=$ the restriction of f to M_{i} and define

$$
\chi^{g r}(f)=\sum_{0}^{d}(-1)^{i} \chi\left(f_{i}\right) \text { and } \lambda_{t}^{g r}(f)=\prod_{0}^{d} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}}
$$

Note that $\chi^{g r}(f)$ and $\lambda_{i}^{g r}(f)$ in general do not agree with $\chi(f)$ and $\lambda_{s}(f)$ where M is considered just as an A-module.

Similarly if

for short $f: C \rightarrow C$ is a chainmap of a finite complex C with all C_{i} in $\mathscr{C}(A)$, we define

$$
\chi(f)=\sum_{0}^{d}(-1)^{i} \operatorname{Tr} f_{i} \text { and } \lambda_{t}(f)=\prod_{0}^{d} \lambda_{i}\left(f_{i}\right)^{(-1)^{i}}
$$

Proposition 5.17. Let $f: C \rightarrow C$ be as above. Assume that all homology modules $H_{i}(C)$ are in $\mathscr{X}(A)$. Then

$$
\chi(f)=\chi^{g r}\left(H_{*}(f)\right) \text { and } \lambda_{t}(f)=\lambda_{t}^{g r}\left(H_{*}(f)\right)
$$

where $H_{*}(f): H_{*}(C) \rightarrow H_{*}(C)$ is the induced endomorphism of the graded homology module $H_{*}(C)=\oplus_{0}^{d} H_{i}(C)$.

Proof. Put $K_{i}=\operatorname{Ker} \delta_{i}$ and $B_{i}=\operatorname{Im} \delta_{i+1}$. Then we have exact sequences

$$
\begin{aligned}
& 0 \rightarrow K_{i} \rightarrow C_{i} \rightarrow B_{i-1} \rightarrow 0 \\
& 0 \rightarrow B_{i} \rightarrow K_{i} \rightarrow H_{i}(C) \rightarrow 0 .
\end{aligned}
$$

Now $B_{0}=C_{0} \in \mathscr{X}(A)$ and $C_{1} \in \mathscr{X}(A)$ so $K_{1} \in \mathscr{X}(A)$ by Bass [2] p. 122, Proposition 6.3. Since $H_{1}(C) \in \mathscr{X}(A)$ we also get $B_{1} \in \mathscr{P}(A)$. By induction all $B_{i}, K_{i} \in \mathscr{P}(A)$. We get induced maps

Using 5.5 several times and taking alternating products all $\lambda_{t}\left(g_{i}\right)$ and $\lambda_{t}\left(h_{i}\right)$ cancel and we get the wanted formula for $\lambda_{t}(f)$.

Remark 5.18. The condition $H_{i}(C) \in \mathscr{X}(A)$ is satisfied if A is a regular noetherian ring.

Corollary 5.19. If $f: C \rightarrow C$ and $g: C \rightarrow C$ are chain homotopic maps of complexes then $\lambda_{t}(f)=\lambda_{t}(g)$.

Proposition 5.20. Let $f: C \rightarrow C$ be a chain map as above. Then

$$
-t \lambda_{t}(f)^{-1} \frac{d}{d t} \lambda_{t}(f)=\sum_{j=1}^{\infty} \chi\left(f^{j}\right)(-t)^{j}
$$

Proof. Take the logarithmic derivative of $\lambda_{t}(f)=\prod_{0}^{d} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}}$ and use 5.7.
Proposition 5.21. Given $f: M \rightarrow M$ and $g: N \rightarrow N$ with $M, N \in \mathscr{X}(A)$. Assume that $\operatorname{Tor}_{i}(M, N) \in \mathscr{H}(A)$ for all $i \geq 0$. Then

$$
\lambda_{t}(f) * \lambda_{t}(g)=\lambda_{t}^{g r}\left(\operatorname{Tor}_{*}(f, g)\right)
$$

where $\operatorname{Tor}_{*}(M, N)=\oplus_{i \geq 0} \operatorname{Tor}_{i}(M, N)$ and $\operatorname{Tor}_{*}(f, g)$ is the induced graded map.
Proof. Let

$$
0 \rightarrow\left(P_{m}, f_{m}\right) \rightarrow \ldots \rightarrow\left(P_{0}, f_{0}\right) \rightarrow(M, f) \rightarrow 0
$$

and

$$
0 \rightarrow\left(Q_{n}, g_{n}\right) \rightarrow \ldots \rightarrow\left(Q_{0}, g_{0}\right) \rightarrow(N, g) \rightarrow 0
$$

be resolutions in End $\mathscr{P}(A)$. Then

$$
\lambda_{t}(f)=\prod_{0}^{n} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}} \quad \text { and } \quad \lambda_{t}(g)=\prod_{0}^{n} \lambda_{t}\left(g_{j}\right)^{(-1)^{j}}
$$

Taking the tensor product of the complexes we get a complex $C=\left(C_{k}\right)_{k=0}^{m+n}$ and a chain map $h=\left(h_{k}\right)_{0}^{m+n}: C \rightarrow C$ where

$$
C_{k}=\underset{i+j=k}{\oplus} P_{i} \otimes Q_{j} \text { and } h_{k}=\underset{i+j=k}{\oplus}\left(f_{i} \otimes g_{j}\right)
$$

Then

$$
H_{k}(C)=\operatorname{Tor}_{k}(M, N) \text { and } H_{k}(h)=\operatorname{Tor}_{k}(f, g)
$$

Now

$$
\lambda_{t}\left(h_{k}\right)=\lambda_{t}\left(\oplus_{i+j=k}^{\oplus}\left(f_{i} \otimes g_{j}\right)\right)=\prod_{i+j=k} \lambda_{t}\left(f_{i} \otimes g_{j}\right)=\prod_{i+j=l_{k}} \lambda_{t}\left(f_{i}\right) * \lambda_{t}\left(g_{j}\right)
$$

and

$$
\begin{aligned}
\lambda_{t}(h) & \left.=\prod_{k=0}^{m+n} \lambda_{t}\left(h_{k}\right)^{(-1)^{k}}=\prod_{i=0}^{m} \prod_{j=0}^{n} \lambda_{t}\left(f_{i}\right) * \lambda_{t}\left(g_{j}\right)\right)^{(-1)^{i+j}}= \\
& =\prod_{i=0}^{m} \lambda_{t}\left(f_{i}\right)^{(-1)^{i}} * \prod_{j=0}^{m} \lambda_{t}\left(g_{j}\right)^{(-1)^{j}}=\lambda_{t}(f) * \lambda_{i}(g)
\end{aligned}
$$

But $\lambda_{t}(h)=\lambda_{t}^{g r}\left(H_{*}(h)\right)=\lambda_{t}^{g r}\left(\operatorname{Tor}_{*}(f, g)\right)$ by 5.17 and we are done.
Remark 5.22. If $M, N \in \mathscr{H}(A)$ implies $M \otimes_{A} N \in \mathscr{X}(A)$ for all M, N then also $\operatorname{Tor}_{i}(M, N) \in \mathscr{X}(A)$ for $i \geq 1$. This is the case if A is a regular noetherian ring.

To prove this we use induction on $\mathrm{dh} M$. If $\mathrm{dh} M=0$, i.e. M is projective, we have nothing to prove. Assume that $\mathrm{dh} M=m \geq 1$. Choose an exact sequence

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

where F is free. Then dh $K=m-1$ and $K \in \mathscr{H}(A)$ since F and M are in $\mathscr{H}(A)$. The long exact sequence is

$$
\begin{aligned}
\cdots \rightarrow \underbrace{\operatorname{Tor}_{2}(F, N)}_{=0} & \rightarrow \operatorname{Tor}_{2}(M, N) \rightarrow \operatorname{Tor}_{1}(K, N) \\
& \rightarrow K \underbrace{\operatorname{Tor}_{1}(F, N)}_{=0} \rightarrow \operatorname{Tor}_{1}(M, N) \rightarrow \\
& \rightarrow K \rightarrow F \otimes_{A} N \rightarrow M \otimes_{A} N \rightarrow 0
\end{aligned}
$$

By assumption $K \otimes N, F \otimes N, M \otimes N \in \mathscr{X}(A)$ and thus $\operatorname{Tor}_{1}(M, N) \in \mathscr{X}(A)$ by Bass [2] p. 122. Furthermore by the induction hypothesis $\operatorname{Tor}_{1}(K, N) \in \mathscr{P}(A)$ and hence $\operatorname{Tor}_{2}(M, N) \cong \operatorname{Tor}_{1}(K, N) \in \mathscr{P}(A)$. Similarly $\operatorname{Tor}_{i}(M, N) \in \mathscr{P}(A)$ for $i \geq 2$.

Example 5.23 (M. Schlessinger). If $M, N \in \mathscr{P}(A)$ then $M \otimes_{A} N$ may not be in $\mathscr{X}(A)$. Let A be the local ring at the singular point $(0,0)$ of the curve $x^{3}-y^{2}=0$. Then $A /(x)$ and $A /(y)$ have homological dimension one (since $0 \rightarrow A \xrightarrow{x} A \rightarrow A /(x) \rightarrow 0 \quad$ is exact $) \quad$ but $\quad A /(x) \otimes A /(y) \cong A /(x, y)=k=$ the residue field which has infinite homological dimension (as A-module) since A is not regular.

Corollary 5.24. If M or N is projective and both are in $H(A)$ then

$$
\lambda_{t}(f \otimes g)=\lambda_{t}(f) * \lambda_{t}(g)
$$

(it is not more general to assume M only flat since M flat and $M \in \mathscr{X}(A)$ implies M is projective).

Example 5.25. Let X be a polyhedron (or any topological space such that $H_{*}(X, \mathbf{Z})$ is finitely generated) and $g: X \rightarrow X$ a continuous map. Then there is an induced homomorphism of graded abelian groups

$$
H_{*}(X)=\underset{0}{\oplus} H_{i}(X, \mathbf{Z}) \text { with } d=\operatorname{dim} X
$$

Then (since \mathbf{Q} is \mathbf{Z}-flat)

$$
\lambda_{t}\left(g_{*}\right)=\lambda_{t}\left(g_{*} \otimes 1_{Q}\right)=\prod_{i=0}^{d} \lambda_{t}\left(H_{i}\left(g_{*}\right)^{(-1)^{i}}\right.
$$

is exactly $\tilde{\zeta}_{g}(-t)$ where $\tilde{\zeta}_{g}$ is the »false» ζ-function of g (see Smale [11] p. 768). It would be interesting to consider (co-)homology with other coefficients. The Lefschetz number is just $\chi\left(g_{*}\right)=$ the coefficient of t in $\lambda_{t}\left(g_{*}\right)$.

Proposition 5.26. Assume that $A=\prod_{s}^{i=1} A_{i}$ is a direct product of rings. Then $1=e_{1}+\ldots+e_{s}$ where e_{1}, \ldots, e_{s} are orthogonal idempotents and $A_{i} \cong A e_{i}$. Given an A-linear map $f: M \rightarrow M$ with M in $\mathcal{X}(A)$ then $M=\oplus_{1}^{s} M_{i}$ where $M_{i}=e_{i} M$ can be considered as an A_{i}-module in $\mathscr{(}\left(A_{i}\right)$. Let $f_{i}: M_{i} \rightarrow M_{i}$ be the restriction of f to M_{i}. Then

$$
\pi_{i}\left(\lambda_{t}^{A}(f)\right)=\lambda_{t}^{A_{i}}\left(f_{i}\right)
$$

where $\pi_{i}: A \rightarrow A_{i}$ is the canonical projection.
Proof. Since A_{i} is a direct summand of A it follows that A_{i} is a projective (and hence flat) A-module. Then

$$
M \otimes_{A} A_{i} \in \mathscr{X}\left(A_{i}\right) \quad \text { and } \quad \pi_{i}\left(\lambda_{i}^{A}(f)\right)=\lambda_{i}^{A_{i}}\left(f \otimes 1_{A_{i}}\right)
$$

by 5.12. Finally $M \otimes_{A} A_{i} \cong e_{i} M=M_{i}$ as A_{i}-modules and $f \otimes 1_{A_{i}}$ may be identified with $f_{i}: M_{i} \rightarrow M_{i}$.

Corollary 5.27. Let A be a noetherian regular ring. Then $A=\prod_{1}^{s} A_{i}$ where the A_{i} :s are integral domains. Let M be a finitely generated A-module and $f: M \rightarrow M$ as in 5.26. Then

$$
\pi_{i}\left(\lambda_{t}^{A}(f)\right)=\lambda_{t}^{A_{i}}\left(f_{i}\right)=\lambda_{t}^{K_{i}}\left(f_{i} \otimes 1_{K_{i}}\right)
$$

where K_{i} is the quotient field of A_{i}.
Proof. First M is in $\mathscr{C}(A)$ since A is noetherian and $\operatorname{gl} \operatorname{dim} A<\infty$. The direct product decomposition of the ring is Kaplansky [7], p. 119, Theorem 168.

6. K-theory of endomorphisms

In this section we make an attempt to classify the endomorphisms of finitely generated projective A-modulus (for notation see 5.1).

We have two ringhomomorphisms

$$
K_{0}(\text { End } \mathscr{P}(A)) \rightarrow K_{0}(A)
$$

defined by

$$
(P, f) \mapsto P \quad \text { and } \quad K_{0}(A) \rightarrow K_{0}(\text { End } \mathscr{P}(A))
$$

defined by $P \mapsto(P, 0)$.

Since the latter map is the right inverse of the first one we get a split exact sequence

$$
0 \rightarrow K_{0}(A) \rightarrow K_{0}(\text { End } \mathscr{P}(A)) \rightarrow \tilde{K}_{0}(\text { End } \mathscr{P}(A)) \rightarrow 0
$$

(compare Bass [2], p. 652) which defines $\tilde{K}_{0}(\operatorname{End} \mathscr{F}(A))$. Hence

$$
K_{0}(\text { End } \mathscr{P}(A)) \cong K_{0}(A) \times \tilde{K}_{0}(\text { End } \mathscr{P}(A))
$$

and we can consider λ_{t} defined on $\tilde{K}_{0}($ End $\mathscr{P}(A))$ since $\lambda_{t}(0)=\mathbf{l}$.
Proposition 6.1. Let $A=\prod_{1}^{s} A_{i}$. Then $K_{0}(\operatorname{End} \mathscr{F}(A)) \cong \prod_{1}^{s} K_{0}\left(\operatorname{End} \mathscr{P}\left(A_{i}\right)\right)$.
Proof. We have $1=e_{1}+\ldots+e_{s}$ where $e_{1}, \ldots e_{s}$ are orthogonal idempotents (see 5.26). Given $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$ we get $f_{i}: P_{i} \rightarrow P_{i}$ where $P_{i}=e_{i} P \in \mathscr{P}\left(A_{i}\right)$. Define

$$
\Psi: K_{0}(\text { End } \mathscr{P}(A)) \rightarrow \prod_{i=1}^{s} K_{0}\left(\text { End } \mathscr{P}\left(A_{i}\right)\right)
$$

by

$$
[f] \rightarrow\left(\left[f_{i}\right]\right)_{i=1}^{s}
$$

Conversely given $\left(\left[g_{i}\right]\right)_{1}^{s} \quad$ in $\prod_{i=1}^{s} K_{0}\left(\operatorname{End} \mathscr{P}\left(A_{i}\right)\right) \quad$ where $\quad g_{i}: P_{i} \rightarrow P_{i} \quad$ with $P_{i} \in \mathscr{P}\left(A_{i}\right)$, define $[g] \in K_{0}(\operatorname{End} \mathscr{P}(A))$ by $g(x)=g\left(\sum_{1}^{s} x_{i}\right)=\sum_{1}^{s} g_{i}\left(x_{i}\right)$

$$
\text { if } x=\sum_{1}^{s} x_{i} \in P=\oplus_{1}^{s} P_{i} \text { with } x_{i} \in P_{i} \text { for } i=1,2, \ldots, s
$$

Then $P=\oplus_{1}^{s} P_{i} \in \mathscr{P}(A)$ and $g: P \rightarrow P$ is A-linear.
The maps Ψ and $\left(\left[g_{i}\right]\right)_{1}^{s} \mapsto[g]$ are easily seen to be each others inverses. Furthermore Ψ is a ringhomomorphism since f_{i} can be identified with $f \otimes \mathbf{1}_{A_{i}}$ and A_{i} is A-flat.

Definition 6.2. We define the subring of "rational functions»

$$
\tilde{A_{0}}=\left\{\frac{1+a_{1} t+\ldots+a_{m} t^{m}}{1+b_{1} t+\ldots+b_{n} t^{n}} ; \quad a_{i}, b_{j} \in A\right\}
$$

of \tilde{A} (where $\tilde{A_{0}}$ has the induced operations).
Proposition 6.3. $\lambda_{t}: \tilde{K}_{0}($ End $\mathscr{F}(A)) \rightarrow \tilde{A}$ is a λ-ringhomomorphism with image \tilde{A}_{0}.

Proof. This follows from the definitions made after 3.3.
Theorem 6.4. \tilde{A}_{0} is a direct summand (as an abelian group) of $\tilde{K}_{0}(\operatorname{End} \mathscr{P}(A))$.

Proof. We have to construct a r:ght inverse σ of

$$
\lambda_{t}: K_{0}(\text { End } \mathscr{P}(A)) \rightarrow \tilde{A_{0}}
$$

For this purpose it is convenient to view an endomorphism $f: P \rightarrow P$ as an $A[t]$-module with the action defined by $t \cdot x=f(x)$ for $x \in P$. Maps between endomorphisms correspond exactly to $A[t]$-linear maps. Let S be the multiplicative set of all monic polynomials in $A[t]$. Then $S^{-1} P=0$, i.e. P is killed by some monic polynomial, which follows from the Cayley-Hamilton theorem. Summing up, put $T_{0}(A[t], S)=K_{0}\left\{P \in \operatorname{Mod} A[t] ; P\right.$ is projective as an A-module and $\left.S^{-1} P=0\right\}$ then

$$
T_{0}(A[t], S) \cong K_{0}(\text { End } \mathscr{P}(A))
$$

Given $g(t)=1+a_{1} t+\ldots+a_{n} t^{n}$ in \tilde{A}_{0} define $\sigma: \tilde{A}_{0} \rightarrow T_{0}(A[t], S)$

$$
\text { by } \sigma(g(t))=A[t] / \tilde{g}(t) \quad \text { where } \tilde{g}(t)=t^{n} g^{-1 / t}
$$

Over in $K_{0}($ End $\mathscr{P}(A))$ this means

$$
\sigma(g(t))=\left(\begin{array}{cccccc}
0 & 0 & 0 & & 0 & \pm a_{n} \\
1 & 0 & 0 & & 0 & \pm a_{n-1} \\
0 & 1 & 0 & & 0 & \pm a_{n-2} \\
0 & 0 & 0 & 1 & 0 & -a_{2} \\
0 & 0 & 0 & 0 & 1 & a_{1}
\end{array}\right)
$$

and $\sigma(g(t))$ is an endomorphism of a free A-module.
Then σ is additive, i.e. $\sigma(g(t) h(t))=\sigma(g(t))+\sigma(h(t))$.
Indeed we have an exact sequence in $\operatorname{Mod} A[t]$

$$
0 \rightarrow A[t] /(\tilde{g}(t)) \rightarrow A[t] /(\tilde{g}(t) \tilde{h}(t)) \rightarrow A[t] /(\tilde{h}(t)) \rightarrow 0
$$

since $\tilde{g}(t)$ and $\tilde{h}(t)$ are non-zero-divisors in $A[t]$. Since

$$
\lambda_{t}\left(\sigma(g(t))=1+a_{1} t+\ldots+a_{n} t=g(t)\right.
$$

we have $\lambda_{t} \circ \sigma=i d$ as we wanted.
Corollary 6.5. Let A be a regular noetherian ring. Then \tilde{A}_{0} is a direct summand (as abelian group) of $K_{0}($ End $\mathscr{P}(A))=K_{0}($ End $\mathscr{M}(A))$ (here $\mathscr{M}(A)$ is the category of finitely generated A-modules).

Proof. If A is regular noetherian then every module has finite homological dimension and $9(A)=\mathscr{M}(A)$. By $5.27 A=\prod_{1}^{s} A_{i}$ where the A_{i} :s are integral domains. The rest follows from $\tilde{A}_{0} \cong \prod_{1}^{s} \tilde{A}_{i_{0}}, 5.27,6.1$ and 6.4.

Theorem 6.6. The map $\lambda_{t}: \tilde{K}_{0}(\operatorname{End} \mathscr{P}(A)) \rightarrow \tilde{A}_{0}$ is a ring isomorphism in the following cases
(i) A is a PID.
(ii) $A=B[X]$ where B is a PID, e.g. $A=K[X, Y]$ where K is a field.
(iii) A is a noetherian regular local ring of dimension ≤ 2.

Proof. Using the notation in the proof of 6.4 and Bass [2] p. 492 we have

$$
K_{0}\left(\text { End } \mathscr{P}(A) \cong K_{0}(\text { End } \mathscr{P}(A))=K_{0}(\text { End } M(A)) \cong G_{0}(A[t], S)=\right.
$$

K_{0} of the category of $A[t]$-modules killed by some monic polynomial.
Now $A[t]$ is noetherian so given any M as above we have a filtration in $\operatorname{Mod} A[t]$

$$
M=M_{0} \supset M_{1} \supset \ldots \supset M_{k}=0
$$

such that

$$
M_{i} / M_{i+1} \cong A[t] / \widetilde{p_{i}}
$$

where the $\widetilde{\mathcal{p}_{i}}: s$ are prime ideals in $A[t]$. Since M is killed by a monic polynomial so is M_{i} and $A[t] / \widetilde{\mathfrak{p}_{i}}$ which means that $\widetilde{\mathfrak{p}_{i}}$ contains a monic polynomial. Let $\mathfrak{p}_{i}=\widetilde{\mathfrak{p}_{i}} \cap A$ and put $\mathfrak{p}_{i}^{\prime}=\left(\mathfrak{p}_{i}, f_{i}\right)$ where f_{i} is a monic polynomial in $\widetilde{\mathfrak{p}_{i}}$ of minimal degree. Now we claim that $\mathfrak{p}_{i}^{\prime}$ is a prime ideal in $A[t]$.

We have

$$
A[t] / \mathfrak{p}_{i}^{\prime}=A[t] /\left(\mathfrak{p}_{i}, f_{i}\right) \cong\left(A / \mathfrak{p}_{i}\right)[t] /\left(\overline{f_{i}}\right)
$$

where $\overline{f_{i}}$ is the residue of f_{i} in $A / \mathfrak{p}_{i}[t]$. Furthermore $\overline{f_{i}}$ is irreducible in $A / \mathfrak{p}_{i}[t]$ since $\overline{f_{i}}=\overline{g_{i} h_{i}}$ implies $f_{i}=g_{i} h_{i}+q_{i}$ with $q_{i} \in \mathfrak{p}_{i} A[t]$. We can choose g_{i} and h_{i} monic and $g_{i} h_{i} \in \widetilde{\mathfrak{p}_{i}}$ since f_{i} and q_{i} are in $\widetilde{\mathfrak{p}_{i}}$. Hence g_{i} or h_{i} is in $\widetilde{\mathfrak{p}_{i}}$ since $\widetilde{\mathfrak{p}_{i}}$ is prime. But f_{i} has minimal degree so $g_{i}=1$ or $h_{i}=1$ and we have shown that $\mathfrak{p}_{i}^{\prime}$ is prime in $A[t]$. Evidently $\mathfrak{p}_{i}^{\prime} \subseteq \widetilde{\mathfrak{p}_{i}}$ and $\mathfrak{p}_{i}^{\prime} \cap A=\widetilde{\mathfrak{p}_{i}} \cap A$ so $\mathfrak{p}_{i}^{\prime}=\widetilde{\mathfrak{p}_{i}}$ by Serre [10] p. III. 17, Lemma 3.

Hence $G_{0}(A[t], S)$ is generated by all $A[t] /(\mathfrak{p}, f)$ where $\mathfrak{p} \in \operatorname{Spec} A$ and f is a monic polynomial such that \bar{f} is irreducible in $A / \mathfrak{p}[t]$. We will show that only the case $\mathfrak{p}=0$ is interesting. We treat the three cases separately.
(i) Assume that A is a PID and $0 \neq \mathfrak{p}=p A$. Then there is an exact sequence

$$
0 \rightarrow A[t] /(f) \xrightarrow{p} A[t] /(f) \rightarrow A[t] /(\mathfrak{p}, f) \rightarrow 0
$$

This shows that $[A[t] /(\mathfrak{p}, f)]=0$ if $\mathfrak{p} \neq 0$.
(ii) If $A=B[X]$ where B is a PID then a prime ideal $\mathfrak{p} \neq 0$ in A is either principal or of the form $\mathfrak{p}=(p, g)$ where $p \in B$ is a prime element in B and $g \in B[X]$ is such that $\bar{g} \in B / p B[X]$ is irreducible.
The case \mathfrak{p} principal is treated as in (i) and in the second case

$$
0 \rightarrow A[t] /(p, f) \xrightarrow{\bar{g}} A[t] /(p, f) \rightarrow A[t] /(p, g, f) \rightarrow 0
$$

is exact.

Hence $[A[t] /(\mathfrak{p}, f)]=0$.
(iii) Let now A be a noetherian regular local ring of dimension ≤ 2. If $\operatorname{dim} A=0$ or 1 then A is a field or a PID. Assume therefore $\operatorname{dim} A=2$. Let $\mathfrak{p} \neq 0$ be a prime ideal in A. If ht $\mathfrak{p}=1$ then \mathfrak{p} is principal since A is a UFD (Bourbaki [5], p. 33) and we are back in case (i). If ht $\mathfrak{p}=2$ then \mathfrak{p} is the maximal ideal in A and $\mathfrak{p}=\left(x_{1}, x_{2}\right)$ where x_{1}, x_{2} is an A-sequence. Hence the map

$$
A /\left(x_{1}\right) \xrightarrow{\bar{x}_{2} .} A /\left(x_{1}\right)
$$

is injective. Then

$$
0 \rightarrow A[t] /\left(x_{1}, f\right) \xrightarrow{\bar{x}_{2} .} A[t] /\left(x_{1}, f\right) \rightarrow A[t] /\left(x_{1}, x_{2}, f\right) \rightarrow 0
$$

is exact and

$$
[A[t] /(\mathfrak{p}, f)]=0
$$

Hence in all three cases $G_{0}(A[t], S)$ is generated by all $A[t] /(f)$ where f is an irreducible monic polynomial. Recall the maps in the proof of 6.4

$$
G_{0}(A[l], S) \underset{\sigma}{\stackrel{\lambda_{t}}{\rightleftarrows}} \tilde{A_{0}}
$$

where we saw $\lambda_{t} \circ \sigma=i d$. The subgroup $K_{0}(A) \cong \mathbf{Z} \quad$ of $\quad K_{0}(\operatorname{End} \mathscr{P}(A))=$ $G_{0}(A[t], S)$ has the generator $A[t] /(t)$. It follows that $\sigma \circ \lambda_{t}=i d$ on the rest of the generators $A[t] /(f)$ and hence $\tilde{K}_{0}(\operatorname{End} \mathscr{P}(A)) \cong \tilde{A_{0}}$ which ends the proof.

We now turn to the study of the K_{0}-groups of some full subcategories of End $\mathscr{P}(A)$. The first one is (see Bass [2] p. 652)

$$
\mathscr{N} \mathscr{C} \mathscr{P}(A)=\{f \in \text { End } \mathscr{P}(A) ; f \text { is nilpotent }\}
$$

Definition 6.7. Let $\tilde{N(A)_{0}}$ denote the subring of $\tilde{A_{0}}$ consisting of all mrational functions»

$$
\frac{1+a_{1} t+\ldots+a_{m} t^{m}}{1+b_{1} t+\ldots+b_{n} t^{n}}
$$

where all a_{i}, b_{j} are nilpotent. Since $\left(1+b_{1} t+\ldots+b_{n} t^{n}\right)^{-1}$ in this case is a polynomial we have

$$
\widetilde{N(A)_{0}}=\left\{1+c_{1} t+\ldots+c_{k} t^{k} ; \quad c_{i} \in N(A)\right\}
$$

Proposition 6.8. $\lambda_{i}: K_{0}\left(\mathcal{N _ { i \ell }} \mathscr{P}(A)\right) \rightarrow \widetilde{N(A)_{0}}$ is a surjective ringhomomorphism. Furthermore $\tilde{N(A)_{0}}$ is a direct summand (as abelian group) of $K_{0}(\mathcal{1} \mathcal{I} \mathscr{P}(A)$).

Proof. We only have to check that all the a_{i} :s in $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ are nilpotent if f is nilpotent. This was done in 1.7 and 1.8. The last part follows from 6.4.

Remark 6.9. The subcategory of $\mathcal{A} \mathscr{\ell} \mathscr{P}(A)$ consisting of all zero maps $0: P \rightarrow P$ can be identified with $\mathscr{P}(A)$. It follows that $K_{0}\left(\mathscr{N}_{\mathscr{\ell}} \mathscr{P}(A)\right)$ contains $K_{0}(\mathscr{P}(A))=$ $K_{0}(A)$ as a direct summand (see Bass [2] p. 652)

$$
K_{0}\left(\operatorname{Vef}_{\mathscr{L}}(A)\right)=K_{0}(A) \oplus \operatorname{Nil}(A)
$$

Since $\lambda_{t}(0)=1$ we have $K_{0}(A) \subseteq$ Ker λ_{t} so the proposition shows that Nil (A) contains $\widetilde{N(A)_{0}}$ as a direct summand.

Proposition 6.10. The map
$\Psi: K_{0}(A) \rightarrow\left\{\sum_{i=1}^{s} e_{i}(1+t)^{n_{i}} ; n_{i} \in \mathbf{Z}\right.$ and e_{1}, \ldots, e_{s} are orthogonal idempotents with sum 1$\}$ defined by $[P] \mapsto \lambda_{\boldsymbol{r}}\left(\mathbf{1}_{P}\right)$ is a split surjective ring homomorphism. The right hand side considered as a subring of \tilde{A} is isomorphic to the ring of all continuous functions from $\operatorname{Spec} A$ to \mathbf{Z} (where \mathbf{Z} has the discrete topology). The kernel of Ψ is equal to the Jacobson radical of $K_{0}(A)$, which is also equal to $N\left(K_{0}(A)\right)$.

Proof. Given $P \in \mathscr{P}(A)$ with $r k P=n$ let

$$
X_{j}=\left\{p \in \operatorname{Spec} A ; r k P_{p}=j\right\} \quad \text { (compare the proof of 2.2.) }
$$

Let $e_{0}, e_{1}, \ldots, e_{n}$ be the corresponding indempotents in A. Then

$$
\lambda_{t}\left(1_{P}\right)=\sum_{i=0}^{n} e_{i}(1+t)^{i} \text { defines } \Psi
$$

To construct a right inverse Θ of Ψ consider the map

$$
\sum_{i=1}^{k} e_{i}(1+t)^{n_{i}} \stackrel{\ominus}{\mapsto}\left[\underset{n_{i} \geq 0}{\oplus} A_{i}^{n_{i}}\right]-\left[\underset{n_{j}<0}{\oplus} A_{j}^{-n_{j}}\right]=[P]-[Q]
$$

where e_{1}, \ldots, e_{k} are orthogonal idempotents with sum one, $n_{i} \in \mathbf{Z}$, and $A_{i}=A e_{i} \in \mathscr{P}(A)$. One verifies that Θ is a ring homomorphism. We want $\lambda_{t} \circ \Theta=i d$.

First

$$
\left(A e_{i}\right)_{p}=A_{\mathfrak{p}} e_{i p}= \begin{cases}A_{\mathfrak{p}} & \text { if } \mathfrak{p} \in X_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where X_{i} is the closed and open subset of $\operatorname{Spec} A$ corresponding to e_{i}. Hence $r k_{\mathfrak{p}} P=n_{i}$ and $\left(\lambda_{t}\left(1_{P}\right)\right)_{p}=(1+t)^{n_{i}}$ for $p \in X_{i}$.

But

$$
\left(\sum_{i=1}^{k} e_{i}(1+t)^{n_{i}}\right)_{p}=(1+t)^{n_{i}} \text { for } \mathfrak{p} \in X_{i}
$$

Furthermore

$$
\left(\sum_{n_{j}<0} e_{j}(1+t)^{-n_{j}}\right)^{-1}=\sum_{n_{j}<0} e_{j}(1+t)^{n_{j}}
$$

and we have shown that $\lambda_{t} \circ \Theta=i d$.
The map

$$
\sum_{1}^{k} e_{i}(1+t)_{0}^{n_{i}} \stackrel{\xi}{\mapsto} f
$$

where $f(x)=n_{i}$ if $x \in X_{i}$, gives the isomorphism between the ring on the right hand side above and the ring of all continuous functions $f: \operatorname{Spec} A \rightarrow \mathbf{Z}$.

The composite $\xi \circ \Psi$ is precisely the rank map rk. It follows that
$\operatorname{Ker} \Psi=\operatorname{Ker}(r k)=$ the Jacobson radical of $K_{0}(A)$
(for the last statements see Swan [12] p. 169).
Corollary 6.11. Let A be noetherian. Then A has a finite number, say k, of irreducible idempotents and $K_{0}(A)$ contains \mathbf{Z}^{k} as a direct summand.

By the previous results the study of the structure of \tilde{A}_{0} seems interesting. In case A contains the rational numbers \tilde{A}_{0} is related to sequences of traces of the powers of a matrix (see 6.13).

Definition 6.12. A sequence $\left(b_{1}, b_{2}, \ldots\right)$ of elements in A is called a trace sequence if there is some $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$ such that $b_{i}=\operatorname{Tr}\left(f^{i}\right)$ for all $i \geq 1$.

One may of course assume that P is free.
Proposition 6.13. Assume that $A \supseteq \mathbf{Q}$.
(i) Then there is a ringisomorphism $\phi: \tilde{A} \rightarrow \prod_{1}^{\infty} A$ where the latter ring can be identified with all sequences under componentwise addition and multiplication.
(ii) $\tilde{A_{0}}$ is isomorphic to the ring of all sequences which are differences of trace sequences.

Proof. (i) Define ϕ as the composition

$$
1+a_{1} t+\ldots \mapsto \frac{a_{1} t+2 a_{2} t^{2}+\ldots}{1+a_{1} t+a_{2} t^{2}+\ldots}=b_{1} t-b_{3} t^{3} \ldots \mapsto\left(b_{1}, b_{2}, b_{3}, \ldots\right)
$$

The inverse is given by

$$
\left(b_{1}, b_{2} \ldots\right) \mapsto \exp \int_{0}^{t}\left(b_{1}-b_{2} s+b_{3} s^{3} \ldots\right)
$$

where \int_{0}^{t} is A-linear and $\int_{0}^{t} s^{k}=\frac{t^{k+1}}{k+1}$.
Clearly ϕ is additive (essentially it is the logarithmic derivative). To see that ϕ is multiplicative one uses the same technique as in the proof of 3.4, the key fact being $\operatorname{Tr}(f \otimes g)^{i}=\operatorname{Tr}\left(f^{i}\right) \operatorname{Tr}\left(g^{i}\right)$.
(ii) The restriction of ϕ to \tilde{A}_{0} will do. By the exponential trace formula

$$
\phi\left(\frac{\lambda_{i}(f)}{\lambda_{i}(g)}\right)=\left(b_{i}\right)_{1}^{\infty}-\left(c_{i}\right)_{1}^{\infty} \quad \text { where } \quad b_{i}=\operatorname{Tr} f^{i} \text { and } c_{i}=\operatorname{Tr} g^{i}
$$

Remark 6.14. If A is a finite field with q elements then ϕ in (i) is neither injective nor surjective. Indeed $\lambda_{t}\left(f^{q^{\nu}}\right)=\lambda_{t}(f)$ for $\nu=1,2, \ldots$ In particular $b_{q} y=b_{1}$ and hence every $\left(b_{i}\right)_{1}^{\infty}$ in the image of ϕ must have this property.

Definition 6.15. The Witt ring $W(A)$ of A consists of all sequences $\left(x_{i}\right)_{1}^{\infty}$ where $x_{i} \in A$ (Witt vectors) with addition and multiplication defined such that for every $n \geq 1$

$$
\left(x_{i}\right)_{1}^{\infty} \mapsto \sum_{\mathbf{d} \mid n} d x_{d}^{n / d}
$$

is a ring homomorphism $W(A) \rightarrow A$. The right hand side $b_{n}=\sum_{d \mid n} d x_{d}^{n / d}$ is called the n :th ghost component of $\left(x_{i}\right)_{1}^{\infty}$. We have a ring isomorphism $W(A) \rightarrow \tilde{A}$ defined by

$$
\left(x_{i}\right)_{1}^{\infty} \mapsto \prod_{i=1}^{\infty}\left(\mathbf{1}-x_{i}(-t)^{i}\right) .
$$

Many of the previous results can be formulated in the Witt ring instead of \tilde{A}. E.g. 6.6. becomes

Proposition 6.16. If A is a PID $(A=B[X]$ where B is a PID) or A is a regular local ring of dimension ≤ 2 then $K_{0}(\operatorname{End} \mathscr{P}(A))$ is isomorphic with the subring $W_{0}(A)$ of $W(A)$ consisting of all Witt vectors having differences of trace sequences as ghosi components.

Thus we have four rings: K_{0} (End $\left.\mathscr{P}(A)\right), \tilde{A}_{0}$, the ring of differences of trace sequences and $W_{0}(A)$. They are all isomorphic if A is a field of characteristic zero. In case A is also algebraically closed they are also isomorphic to the group ring $\mathbf{Z}\left[A^{*}\right]$ where ${\underset{\sim}{A}}^{*}$ is the multiplicative group of non-zero elements in A. The isomorphism $\tilde{A_{0}} \rightarrow \mathbf{Z}\left[A^{*}\right]$ is given by

$$
\prod_{i}\left(1+\lambda_{i} t\right)^{y_{i}} \mapsto \sum_{i} v_{i} \lambda_{i}
$$

and is actually defined for any algebraically closed field.

Assume now that $f: P \rightarrow P$ is nilpotent, say $f^{m+1}=0$ and $r k P=n$. Consider the image $\left(x_{i}\right)_{1}^{\infty}$ in $W(A)$ of $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$. Since x_{k} is a polynomial of weight k in $a_{1}, a_{2}, \ldots, a_{k}$ we find (using 1.7) that all x_{i} are nilpotent and $x_{k}=0$ if $k>m n$. We can now reformulate 6.8 as follows.

Proposition 6.17. There is a surjective ring homomorphism from $K_{0}(\mathcal{A} \ell \mathscr{P}(A))$ onto the ring of Witt vectors $\left(x_{i}\right)_{1}^{\infty}$ where almost all $x_{i}=0$ and all x_{i} are nilpotent. The latter is a direct summand (as abelian group) of $\operatorname{Nil}(A)$.

Proposition 6.18. The following are equivalent for a sequence $\left(b_{1}, b_{2}, \ldots\right)$ in A
(i) $\left(b_{1}, b_{2}, \ldots\right)$ is a trace sequence,
(ii) there exist $a_{1}, a_{2}, \ldots, a_{n}$ in A such that

$$
b_{1}=a_{1}
$$

$b_{2}=a_{1} b_{1}-2 a_{2}$
$b_{3}=a_{1} b_{2}-a_{2} b_{1}+3 a_{3} \quad$ (Newton's formulas)
$b_{n}=a_{1} b_{n-1}-a_{2} b_{n-2}+\ldots+(-1)^{n} a_{n-1} b_{1}+(-1)^{n+1} n a_{n}$
and
$b_{n+i}-a_{1} b_{n+i-1}+\ldots+(-1)^{n} a_{n} b_{i}=0$ for all $i \geq 1$,
(iii) there exists an integral extension $A^{\prime} \supseteq A$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in A^{\prime}$, zeroes of a monic polynomial in $A[t]$ of degree n, such that

$$
b_{i}=\sum_{\nu=1}^{n} \lambda_{\nu}^{i} \text { for all } i \geq 1
$$

(iv) (if $A \supseteq \mathbf{Q}$)

$$
\exp \left(-\sum_{1}^{\infty} \frac{b_{i}}{i}(-t)^{i}\right)
$$

is a polynomial.
Proof. (i) \Rightarrow (ii): Assume that $b_{i}=\operatorname{Tr}\left(f^{i}\right)$ where $f: P \rightarrow P$ with $P \in \mathscr{P}(A)$ and $r k P=n$. Assume that $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$. Comparing the coefficients on both sides in the exponential trace formula we get Newton's formulas.
(ii) \Rightarrow (i): Assume that $\left(b_{1}, b_{2}, \ldots\right.$) satisfies the condition (ii). Let $f: A^{n} \rightarrow A^{n}$ be such that $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$. The exponential trace formula then gives $b_{i}=\operatorname{Tr}\left(f^{i}\right)$.
(i) \Rightarrow (iii): Assume that $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ and $b_{i}=\operatorname{Tr}\left(f^{i}\right)$. Since $t^{n} \lambda_{1 / t}(f)$ is a monic polynomial there exists an integral extension A^{\prime} of A such that $t^{n} \lambda_{1 / t}(f)$ splits into linear factors in $A^{\prime}[t]$ (Bass [2], p. 118, Lemma 5.10). It follows that

$$
\lambda_{t}(f)=\prod_{\nu=1}^{n}\left(1+\lambda_{\nu} t\right) \text { with } \lambda_{\nu} \in A^{\prime}
$$

Taking logarithmic derivatives on both sides and comparing with the exponential trace formula gives $b_{i}=\sum_{p=1}^{n} \lambda_{\nu}^{i}$.
(iii) \Rightarrow (ii): Assume that $\lambda_{1}, \ldots, \lambda_{n}$ are zeroes of $t^{n}-a_{1} t^{n-1}+\ldots+(-1)^{n} a_{n}$ with a_{1}, \ldots, a_{n} in A. Then $b_{i}=\sum_{v=1}^{n} \lambda_{v}^{i}$ and a_{1}, \ldots, a_{n} satisfy Newton's formulas in (ii). In particular we have $b_{i} \in A$.
(i) \Rightarrow (iv): see 1.10 .
(iv) \Rightarrow (ii): Taking logarithmic derivatives of

$$
\exp \left(-\sum_{1}^{\infty} \frac{b_{i}}{i}(-t)^{i}\right)=1+a_{1} t+\ldots+a_{n} t^{n}
$$

and comparing coefficients we get (ii).
Example 6.19. The Fibonacci sequence (1, 3, 4, 7, 11, 18, . .) is a trace sequence in Z. We have $b_{i+2}-b_{i+1}-b_{i}=0$, so $a_{1}=1$ and $a_{2}=-1$. The initial conditions $b_{1}=a_{1}=1$ and $b_{2}=a_{1} b_{1}-2 a_{2}=3$ are satisfied. We get $\lambda_{t}(f)=$ $\mathrm{I}+t-t^{2}$ and the corresponding matrix

$$
f=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Proposition 6.20. If A is a finite ring then a trace sequence is periodic. If the trace sequence comes from $f: P \rightarrow P$ with $\mathrm{rk} P=n$ then the period is at most $k^{n}-1$ where k is the number of elements in A.

Proof. Assume that $b_{i}=\operatorname{Tr}\left(f^{i}\right)$ with $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$. Then $b_{n+i}=a_{1} b_{n+i-1}-a_{2} b_{n+i-2}+\ldots \pm a_{n} b_{i}$ for $i \geq 1$ by 6.14 (ii).

Hence an element in the trace sequence is completely determined by the n preceding elements. There are only k^{n} choices of these preceding n elements. Thus among $k^{n}+n$ consecutive b_{i} :s there must be two identical sets of n consecutive b_{i} :s. Thus the period is at most $k^{n}-1$.

Remark 6.21. The maximal period $k^{n}-1$ may occur as the Fibonacci sequence $(\bmod 2)$ shows $(1,1,0,1,1,0, \ldots)$ with $k=2$ and $n=2$. (See 6.19.)

Remark 6.22. The sequence of maps f, f^{2}, f^{3}, \ldots is also periodic if A is finite. If A has k elements and f is represented by an $n \times n$-matrix then two maps in the sequence $f, f^{2}, \ldots, f^{n^{n^{2}}+1}$ must coincide since there are at most $k^{n^{2}}$ distinct $n \times n$-matrices.

Proposition 6.23. Let A be a finite field with q elements. Assume that $b_{i}=\operatorname{Tr}\left(f^{i}\right)$ with $\lambda_{t}(f)=1+a_{1} t+\ldots+a_{n} t^{n}$ irreducible in $A[t]$. Then the period of the trace sequence $\left(b_{1}, b_{2}, \ldots\right)$ divides $q^{n}-1$.

Proof. Let $\lambda_{t}(f)=\prod_{\nu=1}^{n}\left(1+\lambda_{\nu} t\right)$ be the factorization of $\lambda_{t}(f)$ with $\lambda_{\nu} \in K$ where K is the splitting field of $\lambda_{t}(f)$ over A.

Then $b_{i}=\sum_{v=1}^{n} \lambda_{v}^{i}$. Now $A\left[\lambda_{v}\right]$ is a field with q^{n} elements and $\lambda_{v}^{q^{n}-1}=1$ in $A\left[\lambda_{v}\right]$ and hence in K. It follows that $b_{i+q^{n}-1}=b_{i}$ for all $i \geq 1$. Thus the period of $\left(b_{1}, b_{2}, \ldots\right)$ divides $q^{n}-1$.

Corollary 6.24. If $\lambda_{t}(f)$ is a product of irreducible polynomials of degrees $n_{1}, n_{2}, \ldots, n_{s}$ respectively then the period of the trace sequence $\left(\operatorname{Tr}\left(f^{i}\right)\right)_{1}^{\infty}$ divides the l.c.m. of $q^{n_{1}}-1, q^{n_{2}}-1, \ldots, q^{n_{s}}-1$.

Remark 6.25. It seems to be quite hard to predict the period from the characteristic polynomial $\lambda_{i}(f)$. The following results are not too useful for practical computations.

Proposition 6.26. Given $b_{i}=\operatorname{Tr}\left(f^{i}\right)$.
(i) Let $q \in A[t]$ be any polynomial such that $q(f)=0$ (e.g. $q=t^{n} \lambda_{-1 / t}(f)$ or $q=a$ minimal polynomial of $f)$. If $q \mid t^{r}-1$ then $\left(b_{i}\right)_{1}^{\infty}$ is periodic and the period s divides r.
(ii) Conversely assume that $\left(b_{i}\right)_{1}^{\infty}$ is periodic with period s. Assume further that A is a UED and $\lambda_{t}(f)$ is irreducible of degree ≥ 1. Then $t^{n} \lambda_{-1 / 2}(f) \mid t^{s}-1$.

Proof. (i) We have $t^{r}-1=q(t) h(t)$ for some h in $A[t]$. Since $q(f)=0$ we get $f^{r}=1$ so $f^{r+v}=f^{\nu}$ for all $v \geq 1$. It follows $b_{p+r}=b_{\nu}$ and $s \mid r$.
(ii) The exponential trace formula gives
$\frac{d}{d t} \lambda_{t}(f)=\lambda(f)\left(b_{1}-b_{2} t+b t^{2} \ldots\right)=\lambda_{t}(f)\left(b_{1}-b_{2} t+\ldots-(-1)^{s} b_{s} t^{s-1}\right)\left(1-(-t)^{s}\right)^{-1}$ since $b_{i+s}=b_{i}$.

Hence $\quad \lambda_{t}(f) \left\lvert\,\left(1-(-t)^{s}\right) \cdot \frac{d}{d t} \lambda_{t}(f) \quad\right.$ and $\quad \lambda_{t}(f) \mid\left(1-(-t)^{s}\right) \quad$ which implies $t^{n} \lambda_{-1 / t}(f) \mid\left(t^{s}-1\right)$.

Corollary 6.27. Assume that A is a UFD and that $\lambda_{s}(f)$ is irreducible. Then $\left(b_{i}\right)_{1}^{\infty}$ is periodic if and only if

$$
t^{n} \lambda_{-1 ; t}(f) \mid t^{r}-1
$$

for some $r \geq 1$ and the period s is the smallest r with this property.
Remark 6.28. If $\lambda_{t}(f)$ is not irreducible but the product $\lambda_{t}(f)=h_{1} h_{2} \ldots h_{k}$ where h_{1}, \ldots, h_{k} are irreducible of degrees n_{1}, \ldots, n_{k} respectively, then the period is the l.c.m. of $s_{1}, s_{2}, \ldots, s_{k}$ where s_{i} is the smallest integer >0 such that

$$
t^{n_{i}} h_{i}(-1 / t) \mid t^{s_{i}}-\mathrm{I}
$$

Example 6.29. Let $A=Z /(13)$ and

$$
f=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Then $\quad \lambda_{t}(f)=1+t+t^{3}=(1-2 t)\left(1+3 t-6 t^{2}\right) \quad$ where $\quad 1+3 t-6 t^{2} \quad$ is irreducible. We get

$$
t^{3} \lambda_{-1 / t}(f)=(t+2)\left(t^{2}-3 t+6\right)
$$

Now $t+2 \mid t^{6}-1$ and $t^{2}-3 t+6 \mid t^{168}-1$ since the splitting field of $t^{2}-3 t+6$ has $13^{2}=169$ elements.

Thus $6 \mid s$ and $s \mid 168$ where s is the period of $\operatorname{Tr}\left(f^{i}\right)=(1,1,4,5,6,10, \ldots)$. By actually computing the period one finds $s=168$ and hence 168 is the smallest integer $r \geq 0$ such that $t^{2}-3 t+6 \mid t^{r}-1$.

Added in proof: In a paper »The Grothendieck ring of the category of endomorphisms", to appear in J. Algebra, the author proves Theorem 6.6 for any commutative ring.

References

1. Atiyah, M. F. and Tall, D. O., Group representations, λ-rings and the J-homomorphism. Topology 8 (1969), 253-297.
2. Bass, H., Algebraic K-theory. Benjamin, New York, 1968.
3. Bourbaki, N., Algèbre, Ch. II. Hermann, Paris, 1968.
4. —》一 Algèbre commutative, Ch. I and Ch. II. Hermann, Paris, 1961.
5. -»- Algèbre commutative, Ch. VII. Hermann, Paris, 1965.
6. Goldman, O., Determinants in projective modules. Nagoya Math. J. 18 (1961), 27-36.
7. Kaplansky, I., Commutative rings. Allyn and Bacon, Boston, 1970.
8. Keldey, J, and Spanier, R., Euler characteristics. Pacific J. Math. 26 (1968), 317-339.
9. Lang, S., Algebra. Addison-Wesley, Readings, Massachusetts, 1965.
10. Serre, J.-P., Algèbre locale. Multiplicités. Lecture notes, Vol. 11. Springer, Berlin, 1965.
11. Smale, S., Differential dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747-817.
12. Swan, R., Algebraic K-theory. Lecture notes, Vol. 76. Springer, Berlin, 1968.

[^0]: * This research was partly supported by the Swedish Natural Science Foundation.

