On Absolutely Convergent Fourier Series

C. W. ONNEWEER

1. Introduction

Let T denote the circle group and let Z denote the group of integers. We shall consider functions f which are integrable on T and we shall denote their Fourier coefficients by $\hat{f}(n)$, where $n \in Z$. For $\beta > 0$ the set of all $f \in L_1(T)$ such that $\sum_{n=\infty}^{\infty} |\hat{f}(n)|^\beta < \infty$ will be denoted by $A(\beta)$. Among the classical results in the theory of absolutely convergent Fourier series are the following theorems [6, Vol. 1, Chapter VI, 3].

Theorem 1 (Bernstein). If $f \in \text{Lip } \alpha$ for some $\alpha > \frac{1}{2}$, then $f \in A(1)$.

Theorem 2 (Zygmund). If f is of bounded variation on T ($f \in \text{BV}$) and if $f \in \text{Lip } \alpha$ for some $\alpha > 0$, then $f \in A(1)$.

Attempts to generalize these theorems have led to the following.

Theorem 1A (Szs). If $f \in \text{Lip } \alpha$ for some α with $0 < \alpha \leq 1$, then $f \in A(\beta)$ for all β such that $\beta > 2/(2\alpha + 1)$.

Theorem 1B (Hardy). If $f \in \text{Lip } \alpha$ for some α with $0 < \alpha \leq 1$, then $\sum_{n=1}^{\infty} |n|^{-\beta} |\hat{f}(n)| < \infty$ for all β such that $\beta > (1 - 2\alpha)/2$.

Definition 1. Let f be a function defined on T and for $r \geq 1$, let

$$V_r[f] = \sup \left(\sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|^r \right)^{1/r},$$

where the supremum is taken over all finite partitions $0 \leq x_0 < x_1 \cdots < x_n < 2\pi$ of T. The function f is of r-bounded variation ($f \in r\text{-BV}$) if $V_r[f] < \infty$.
THEOREM 2A (Hirschman [2]). If \(f \in \text{r-BV} \) for some \(r \) with \(1 \leq r < 2 \), and if \(f \in \text{Lip } \alpha \) for some \(\alpha > 0 \), then \(f \in A(1) \).

It is well-known that each of the foregoing theorems is the best possible in a certain sense [6, Vol. 1]. In [4, Exercise I.6.6] Katznelson gave a new and very simple example of a function in \(\text{Lip } \frac{1}{2} \) that does not belong to \(A(1) \). In the remainder of this section we shall give a simple extension of Katznelson's example which can be used to show that all the previous theorems are sharp. We first give the definition of the so-called Rudin-Shapiro polynomials \(P_n(x) \) and \(Q_n(x) \). Let \(P_0(x) = Q_0(x) = 1 \), and for \(m \geq 0 \), let

\[
P_{m+1}(x) = P_m(x) + e^{2\pi i m}Q_m(x) \quad \text{and} \quad Q_{m+1}(x) = P_m(x) - e^{2\pi i m}Q_m(x).
\]

Next, let \(f_{m+1}(x) = P_{m+1}(x) - P_m(x) \) and for each \(\alpha \) with \(0 < \alpha < 1 \), let

\[
g_{\alpha}(x) = \sum_{k=1}^{\infty} 2^{-k(\alpha + \frac{1}{2})} f_k(x).
\]

It follows immediately from the definition of \(g_{\alpha} \) that \(\hat{g}_{\alpha}(n) = 0 \) if \(n \leq 0 \) and that \(\hat{g}_{\alpha}(n) = \epsilon(n)2^{-k(\alpha + \frac{1}{2})} \) if \(2^{k-1} \leq n \leq 2^k \) for some \(k \geq 1 \) and with \(\epsilon(n) = \pm 1 \).

A proof similar to the one given by Katznelson for the case \(\alpha = \frac{1}{2} \) yields the following.

THEOREM 3. For each \(\alpha \) with \(0 < \alpha < 1 \) we have

(i) \(g_{\alpha} \in \text{Lip } \alpha \) and \(g_{\alpha} \notin \text{Lip } \gamma \) for any \(\gamma > \alpha \),
(ii) \(g_{\alpha} \notin \text{Lip } \gamma \),
(iii) \(g_{\alpha} \notin \text{Lip } \gamma \),
(iv) \(\sum_{n=1}^{\infty} n^{\alpha-1/2} |\hat{g}_{\alpha}(n)| = \infty \).

2. Convolution functions

Throughout this section we shall denote the conjugate of a number \(p > 1 \) by \(q \), that is, \(1/p + 1/q = 1 \). For \(f, g \in L_1(T) \) the convolution \(f \ast g \) is defined by

\[
(f \ast g)(x) = \int_T f(x - t)g(t)dt.
\]

Then \((f \ast g)^\wedge(n) = \hat{f}(n)^\wedge g(n) \) for all \(n \in \mathbb{Z} \). The following theorem is due to M. Riesz (6, Vol. 1, page 251).

THEOREM 4. A continuous function \(f \) has an absolutely convergent Fourier series if and only if there exist functions \(g, h \in L_2(T) \) such that \(f = g \ast h \).
The next theorem gives a partial extension of this result.

Theorem 4A. If \(g, h \in L_p(T) \) for some \(p \) with \(1 < p \leq 2 \), then
\[
g \ast h \in A(p/(2p - 2)).
\]

Proof. It follows from Young's inequality and the Hausdorff-Young inequality that
\[
\sum_{n=-\infty}^{\infty} |\hat{g}(n)|^{q_2} |\hat{h}(n)|^{q_2} \leq \frac{1}{2} \sum_{n=-\infty}^{\infty} |g(n)|^q + \frac{1}{2} \sum_{n=-\infty}^{\infty} |h(n)|^q \leq \frac{1}{2} \|g\|_p^q + \frac{1}{2} \|h\|_p^q < \infty.
\]
that is, \(g \ast h \in A(q/2) = A(p/(2p - 2)). \)

We next show that Theorem 4A is sharp.

Theorem 5. For every \(p \) with \(1 < p \leq 2 \) there exist functions \(g, h \in L_p(T) \) such that \(g \ast h \notin A(\beta) \) for any \(\beta < p/(2p - 2) \).

Proof. We define the functions \(g \) and \(h \) by
\[
\hat{g}(n) = \hat{h}(n) = \begin{cases} n^{1/q} \log n^{-1} & \text{if } n > 1, \\ 0 & \text{if } n \leq 1. \end{cases}
\]
Clearly, \(\hat{g}(n) \searrow 0 \) as \(n \to \infty \) and
\[
\sum_{n=2}^{\infty} (\hat{g}(n))^{p-2} = \sum_{n=2}^{\infty} n^{p-2-p/q} (\log n)^{-p} = \sum_{n=2}^{\infty} n^{-1} (\log n)^{-p} < \infty,
\]
because \(p > 1 \). A theorem due to Hardy and Littlewood [6, Vol. 2, page 129] implies that \(g \), and hence also \(h \), belongs to \(L_p(T) \). Furthermore, if \(\beta < p/(2p - 2) \) then
\[
\sum_{n=-\infty}^{\infty} |(g \ast h)^(n)|^\beta = \sum_{n=2}^{\infty} (n^{1/q} \log n)^{-2\beta} = \infty,
\]
because \(2\beta/q < 1 \). Therefore, \(g \ast h \notin A(\beta) \).

Theorem 6. If \(g \in L_p(T) \) with \(1 < p \leq 2 \) and if \(h \in \text{Lip } x \) with \(0 < x \leq 1 \), then \(g \ast h \in A(\beta) \) for all \(\beta \) such that \(2p/(2xp + 3p - 2) < \beta \).

Proof. First choose \(\beta \) such that \(2p/(2xp + 3p - 2) < \beta < q \). Then Young's inequality implies that
\[
\sum_{n=-\infty}^{\infty} |\hat{g}(n)\hat{h}(n)|^\beta \leq \frac{\beta}{q} \sum_{n=-\infty}^{\infty} |\hat{g}(n)|^q + \frac{q-\beta}{q} \sum_{n=-\infty}^{\infty} |\hat{h}(n)|^{q_2(q-\beta)} = A + B.
\]
Since \(\beta > 2p/(2x + 3p - 2) \), we have \(\beta q/(q - \beta) > 2/(2x + 1) \). Hence, Theorem 1A implies that \(B \) is finite. Also, the Hausdorff-Young inequality implies that \(A \) is finite. Therefore, \(g \ast h \in A(\beta) \).

Choosing \(\beta = 1 \) in Theorem 6 we obtain the following corollary. It shows how we can ameliorate functions in \(\text{Lip} \alpha \) with \(0 < \alpha \leq \frac{1}{2} \), which are not necessarily in \(A(1) \), into functions in \(A(1) \) by means of the convolution operator.

Corollary 1. Let \(g \in L_p(T), \ 1 < p \leq 2, \) and \(h \in \text{Lip} \alpha, \ 0 < \alpha \leq \frac{1}{2}. \) If \((2x + 1)p > 2 \), then \(g \ast h \in A(1) \).

We now show to what extent Theorem 6 and Corollary 1 are the best possible.

Theorem 7. Let \(p \) and \(\alpha \) satisfy the conditions \(1 < p \leq 2 \) and \(0 < \alpha < 1/p \). Then, (i) for all \(\alpha \), with \(0 < \alpha < 1/\alpha \) there exist functions \(g \) and \(h \) with \(g \in L_p(T) \) and \(h \in \text{Lip} \alpha \) and such that \(g \ast h \notin A(2p/(2x + 3p - 2)) \), (ii) for all \(p \), with \(1 < p < p \) there exist functions \(g \) and \(h \) with \(g \in L_p(T) \) and \(h \in \text{Lip} \alpha \) and such that \(g \ast h \notin A(2p/(2x + 3p - 2)) \).

Proof. (i) If \(\gamma \) is defined by \(\gamma = x + 1/q \), then \(2/(2\gamma + 1) = 2p/(2xp + 3p - 2) \). Let \(h = g_\alpha \), then, according to Theorem 3(i), \(h \in \text{Lip} \alpha \). Let \(g \) be defined by

\[
\hat{g}(n) = \begin{cases} 2^{-k(\gamma - \alpha)} & \text{if } 2^{k-1} \leq n < 2^k \text{ for some } k \geq 1, \\ 0 & \text{if } n \leq 0. \end{cases}
\]

Then \(\hat{g}(n) \searrow 0 \) as \(n \to \infty \) and

\[
\sum_{k=0}^{\infty} \hat{g}(n)p^{p-2} \leq \sum_{k=0}^{\infty} 2^{k-1}2^{-k(\gamma - \alpha)p}2^{(k-1)(p-2)} < \infty,
\]

because \(1 - (\gamma - \alpha)p + p - 2 = (\alpha_1 - \alpha)p < 0 \). Thus, \(g \in L_p(T) \). Furthermore, if \(n \in \mathbb{Z} \) and if \(2^{k-1} \leq n < 2^k \) for some \(k \geq 1 \), then

\[
\hat{g}(n)\hat{h}(n) = 2^{-k(\gamma - \alpha)} \epsilon(n)2^{-k(\alpha + \frac{1}{2})} = \epsilon(2^{-k(\gamma + \frac{1}{2})} = \hat{g}(n),
\]

that is, \(g \ast h = g_\gamma \). Since, according to Theorem 3(iii), \(g_\gamma \notin A(2p/(2xp + 3p - 2)) \), we have established (i).

(ii) The proof of (ii) is similar to the proof of (i). In this case the functions \(g \) and \(h \) are chosen as follows. Let \(h = g_\alpha \) and let \(\hat{g}(n) = 0 \) if \(n \leq 0 \) and let \(\hat{g}(n) = 2^{-k(\gamma - \alpha)} \) if \(2^{k-1} \leq n < 2^k \) for some \(k \geq 0 \) and with \(\gamma = x + 1/q \). Then it is clear that the functions \(g \) and \(h \) satisfy the conditions mentioned in (ii).

Remark 1. The following case of Theorem 7 is of special interest. For each \(p \) such that \(1 < p < 2 \) and each \(\alpha \) such that \(0 < \alpha < (2 - p)/2p \) there exist functions \(g \) and \(h \) with \(g \in L_p(T), \ h \in \text{Lip} \alpha \) and \(g \ast h \notin A(1) \). This improves
a result of M. and S. Izumi [3, Theorem 3] who proved for each \(p \) with \(1 < p < 2 \) and each \(s \) with \(s > 2 \) the existence of functions \(g \) in \(L_p(T) \) and \(h \) in \(L_s(T) \) such that \(g \ast h \notin A(1) \).

3. Multipliers of type \((l_p(Z^n), l_p(Z^n))\)

In this section we shall define a collection of functions on the \(n \)-dimensional torus \(T^n \). We shall use these functions to show that certain results of Hahn [1] about \(p \)-multipliers on \(T^n \) are the best possible. Furthermore, for \(n = 1 \) these new functions will be the same as the functions \(g_s \) which were defined in Section 1. Throughout this section we shall use the notation \(x = (x_0, x_1, \ldots, x_{n-1}) \) for \(x \) in \(T^n \) and \(m = (m_0, m_1, \ldots, m_{n-1}) \) for \(m \) in \(Z^n \).

Definition 2 [2]. A bounded and measurable function \(f \) defined on \(T^n \) is a \(p \)-multiplier, \(1 \leq p \leq \infty \), if for every function \(F \) in \(l_p(Z^n) \), the function \(T(f)F \) is again in \(l_p(Z^n) \), where \(T(f) \) is defined by

\[
T(f)F(m) = \sum_{k \in Z^n} F(m - k)\hat{f}(k).
\]

The set of \(p \)-multipliers will be denoted by \(M_p \).

Definition 3 [1, page 327]. Let \(\alpha \) be a positive real number and let \(\alpha_* \) be the largest integer less than \(\alpha \). For \(1 \leq p \leq \infty \), \(\text{Lip}(\alpha, p) \) is the class of all functions \(f \) defined on \(T^n \) such that for \(|k| < \alpha_* \) we have \((\partial/\partial x)^{\alpha} f \in L_p(T^n) \) and for \(|k| = \alpha_* \) we have

\[
\left\| \Lambda_h \left(\frac{\partial}{\partial x} \right)^k f \right\|_p = O(|h|^{\alpha - \alpha_*}) \quad \text{if} \quad \alpha - \alpha_* < 1,
\]

\[
\left\| \Lambda_h \left(\frac{\partial}{\partial x} \right)^k f \right\|_p = O(|h|) \quad \text{if} \quad \alpha - \alpha_* = 1,
\]

where for each \(h \) and \(x \) in \(T^n \) we set \(\Lambda_h f(x) = f(x + h) - f(x) \).

Obviously, if \(p_1 \geq p_2 \), then \(\text{Lip}(\alpha, p_1) \subset \text{Lip}(\alpha, p_2) \); so, in particular, \(\text{Lip}(\alpha, \infty) \subset \text{Lip}(\alpha, p) \) for all \(p \geq 1 \) and for all \(\alpha > 0 \). Hahn proved the following [1, Theorems 12' and 20].

Theorem 8.

(a) If \(1 < p \leq 2 \) and \(\alpha > n/p \), then \(\text{Lip}(\alpha, p) \subset M_r \) for \(1 \leq r < \infty \).

(b) If \(p > 2 \) and \(\alpha > n/p \) then \(\text{Lip}(\alpha, p) \subset M_r \) for \(2p/(p + 2) \leq r \leq 2p/(p - 2) \).

(c) If \(n/p < \alpha \leq n/2 \), then \(\text{Lip}(\alpha, p) \subset M_r \) for \(2n/(n + 2x) < r < 2n/(n - 2x) \).
We shall prove that these results are sharp in the sense that for \(p \geq 2 \) we cannot replace \(\alpha > n/p \) by \(\alpha \geq n/p \) in Theorem 8(a) and (b), whereas the conclusion of Theorem 8(c) does not hold for \(r = 2n/(n + 2\alpha) \) or \(r = 2n/(n - 2\alpha) \). We do not know whether the conclusion of Theorem 8(a) holds if \(1 < p < 2 \) and \(\alpha = n/p \).

Theorem 9.

(a) If \(p \geq 2 \) and if \(\alpha = n/p \), then \(\text{Lip}(x, \infty) \subseteq M_{2p/(p+2)} \); in particular, \(\text{Lip}(n/2, \infty) \subseteq M_1 \).

(b) If \(0 < \alpha \leq n/2 \), then \(\text{Lip}(x, \infty) \subseteq M_{2n/(n + 2\alpha)} \).

In order to prove Theorem 9 we first define functions \(h_\alpha(x) \) for each \(\alpha > 0 \). For convenience we shall write \(\tilde{n} \) for \(2^n \) and \(\omega_n \) for \(\exp(2\pi n/\tilde{n}) \). For \(i = 0, 1, 2, \ldots \) and \(l = 0, 1, 2, \ldots, \tilde{n} - 1 \) we define the trigonometric polynomials \(P_i(x) \) inductively. Let \(P_{00}(x) = \cdots = P_{0\tilde{n}-1}(x) = 1 \) for all \(x \in T^n \). Next, assume that the polynomials \(P_k(x) \) have been defined for some \(k \geq 0 \) and all \(l \) with \(0 \leq l < \tilde{n} \). Each \(j \) with \(0 \leq j < \tilde{n} \) has a unique representation of the form

\[
\hat{j} = j_0 + 2j_1 + \ldots + 2^{n-1}j_{n-1},
\]

with \(j_i \in \{0, 1\} \). Let \(\hat{j} = (j_0, \ldots, j_{n-1}) \in Z^n \) and let \(j \cdot x = j_0x_0 + \ldots + j_{n-1}x_{n-1} \). Next, for \(l \) with \(0 \leq l < \tilde{n} \) we define \(P_{k+1}(x) \) by

\[
P_{k+1}(x) = \sum_{j=0}^{\tilde{n}-1} \omega_j \bar{c}_j \cdot x_{2k} P_j(x).
\]

Since

\[
\omega_j \bar{c}_j = \begin{cases} \tilde{n} & \text{if } l = 0, \\
0 & \text{if } l = 1, 2, \ldots, \tilde{n} - 1,
\end{cases}
\]

we have for arbitrary complex numbers \(c_0, \ldots, c_{\tilde{n}-1} \)

\[
\sum_{l=0}^{\tilde{n}-1} \sum_{j=0}^{\tilde{n}-1} |c_j|^2 = \tilde{n} \sum_{j=0}^{\tilde{n}-1} |c_j|^2.
\]

Therefore,

\[
\sum_{l=0}^{\tilde{n}-1} \sum_{j=0}^{\tilde{n}-1} |P_{k-1}(x)|^2 = \sum_{l=0}^{\tilde{n}-1} \sum_{j=0}^{\tilde{n}-1} \omega_j \bar{c}_j \cdot x_{2k-1} P_{k-1}(x) = \tilde{n} \sum_{j=0}^{\tilde{n}-1} |P_{k-1}(x)|^2 = \tilde{n}^{k+1}.
\]

Hence, for each \(k \geq 0 \) we have

\[
\|P_{k0}(x)\|_{\infty} \leq \tilde{n}^{(k+1)/2}.
\]

Also, \(|\hat{P}_{k0}(m)| = 1 \) if \(m = (m_0, \ldots, m_{n-1}) \) with \(0 \leq m_i < 2^k \) for \(i = 0, 1, \ldots, n-1 \), and \(\hat{P}_{k0}(m) = 0 \) otherwise. For \(k \geq 1 \) let \(f_k(x) = \hat{P}_{k0}(x) - P_{k-10}(x) \), and for \(\alpha > 0 \) let
We can show that \(h_\alpha \in \text{Lip}(\alpha, \infty) \). The proof requires a long and tedious computation which we shall omit. We only observe that we need an \(n \)-dimensional version of Bernstein's inequality: if \(f \) is a trigonometric polynomial on \(T^n \) of degree \(k \), that is,
\[
f(x) = \sum_{j \in \mathbb{Z}^n} c_j e^{i \cdot j \cdot x},
\]
with \(\max_j (|j_0| + |j_1| + \ldots + |j_{n-1}|) = k \), then for each of the first order partial derivatives of \(f \) we have
\[
\left\| \frac{\partial f}{\partial x_1} \right\|_\infty \leq k \|f\|_\infty.
\]

Proof of Theorem 9. (a) Consider the function \(F \) which is defined on \(\mathbb{Z}^n \) by
\[
F(0) = F(0, \ldots, 0) = 1 \quad \text{and} \quad F(m) = 0 \quad \text{for} \quad m \neq 0 \quad \text{and} \quad m \in \mathbb{Z}^n.
\]
Clearly, \(F \in L_p(\mathbb{Z}^n) \). We shall prove that
\[
h_{n/p} \notin M_{2p/(p+2)}.
\]
For each \(m \in \mathbb{Z}^n \) we have
\[
T(h_{n/p})F(m) = \sum_{k \in \mathbb{Z}^n} F(m - k)\hat{h}_{n/p}(k) = \hat{h}_{n/p}(m).
\]
Also,
\[
\sum_{k \in \mathbb{Z}^n} |\hat{h}_{n/p}(k)|^{2p/(p+2)} = \sum_{k=1}^{\infty} \left(2^{kn} - 2^{k-1} \right) 2^{-n(k+1)/(p+2)} \cdot 2^{k(p+2)/(p+2)} \\
\geq \frac{1}{2} \sum_{k=1}^{\infty} 2^{kn} 2^{-kn} = \infty,
\]
that is, \(T(h_{n/p})F \notin L_{2p/(p+2)} \). Therefore, \(h_{n/p} \notin M_{2p/(p+2)} \).
Since \(M_{2p/(p+2)} = M_{2p/(p-2)} \) we also have \(h_{n/p} \notin M_{2p/(p-2)} \).

(b) For each \(\alpha \) such that \(0 < \alpha \leq n/2 \) we have
\[
\sum_{k \in \mathbb{Z}^n} |\hat{h}_\alpha(k)|^{2n/(n+2\alpha)} \geq \frac{1}{2} \sum_{k=1}^{\infty} 2^{kn} 2^{-n(2\alpha+n)/(2n)} = \infty.
\]
Therefore, an argument as in (a) shows that \(h_\alpha \notin M_{2n/(n+2\alpha)} \), and hence also, \(h_\alpha \notin M_{2n/(n-2\alpha)} \).

Remark 2. For each \(n \) the function \(h_{n/2} \) provides an example of a function in \(\text{Lip}(n/2, \infty) \) which does not have an absolutely convergent Fourier series. Hence the \(n \)-dimensional version of Theorem 1 is sharp. This and related results were established by Wainger [5].
Remark 3. The functions g_α as defined in Section 1 also provide new examples that show that several of the results of Hirschman on p-multipliers cannot be improved as was already pointed out by Hirschman in [2].

The author would like to thank Professor L.-S. Hahn for a number of helpful conversations on the subject of this paper.

References

Received January 10, 1973