On Absolutely Convergent Fourier Series

C. W. Onneweer

1. Introduction

Let T denote the circle group and let Z denote the group of integers. We shall consider functions f which are integrable on T and we shall denote their Fourier coefficients by $\hat{f}(n)$, where $n \in Z$. For $\beta>0$ the set of all $f \in L_{1}(T)$ such that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{\beta}<\infty$ will be denoted by $A(\beta)$. Among the classical results in the theory of absolutely convergent Fourier series are the following theorems [6, Vol. 1, Chapter VI, 3].

Theorem 1 (Bernstein). If $f \in \operatorname{Lip} \propto$ for some $\alpha>\frac{1}{2}$, then $f \in A(1)$.

Theorem 2 (Zygmund). If f is of bounded variation on $T(f \in \mathrm{BV})$ and if $f \in \operatorname{Lip} \alpha$ for some $\alpha>0$, then $f \in A(1)$.

Attempts to generalize these theorems have led to the following.

Theorem 1A (Szász). If $f \in \operatorname{Lip} \alpha$ for some α with $0<\alpha \leq 1$, then $f \in A(\beta)$ for all β such that $\beta>2 /(2 \alpha+1)$.

Theorem 1B (Hardy). If $f \in \operatorname{Lip} \alpha$ for some α with $0<\alpha \leq 1$, then $\sum_{0<|n|<\infty}|n|^{-\beta}|\hat{f}(n)|<\infty$ for all β such that $\beta>(1-2 \alpha) / 2$.

Definition 1. Let f be a function defined on T and for $r \geq 1$, let

$$
V_{r}[f]=\sup \left(\sum_{k=0}^{n-1}\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|^{r}\right)^{1 / r},
$$

where the supremum is taken over all finite partitions $0 \leq x_{0}<x_{1}<\ldots<x_{n}<2 \pi$ of T. The function f is of r-bounded variation $\left(f \in r\right.$-BV) if $V_{r}[f]<\infty$.

Theorem 2A (Hirschman [2]). If $f \in r$ - BV for some r with $1 \leq r<2$, and if $f \in \operatorname{Lip} \alpha$ for some $\alpha>0$, then $f \in A(1)$.

It is well-known that each of the foregoing theorems is the best possible in a certain sense [6, Vol. 1]. In [4, Exercise I.6.6] Katznelson gave a new and very simple example of a function in Lip $\frac{1}{2}$ that does not belong to $A(1)$. In the remainder of this section we shall give a simple extension of Katznelson's example which can be used to show that all the previous theorems are sharp. We first give the definition of the so-called Rudin-Shapiro polynomials $P_{n}(x)$ and $Q_{n}(x)$. Let $P_{0}(x)=Q_{0}(x)=1$, and for $m \geq 0$, let

$$
P_{m+1}(x)=P_{m}(x)+e^{i 2^{m} x} Q_{m}(x) \text { and } Q_{m+1}(x)=P_{m}(x)-e^{i 2^{m} x} Q_{m}(x)
$$

Next, let $f_{m+1}(x)=P_{m+1}(x)-P_{m}(x)$ and for each α with $0<\alpha<1$, let

$$
g_{\alpha}(x)=\sum_{\mathbf{k}=1}^{\infty} 2^{-k\left(\alpha+\frac{1}{2}\right)} f_{k}(x) .
$$

It follows immediately from the definition of g_{α} that $\hat{g}_{\alpha}(n)=0$ if $n \leq 0$ and that $\hat{g}_{\alpha}(n)=\varepsilon(n) 2^{-k\left(\alpha+\frac{1}{2}\right)}$ if $2^{k-1} \leq n<2^{k}$ for some $k \geq 1$ and with $\varepsilon(n)= \pm 1$.

A proof similar to the one given by Katznelson for the case $\alpha=\frac{1}{2}$ yields the following.

Theorem 3. For each α with $0<\alpha<1$ we have
(i) $g_{\alpha} \in \operatorname{Lip} \alpha$ and $g_{\alpha} \notin \operatorname{Lip} \gamma$ for any $\gamma>\alpha$,
(ii) $g_{\alpha} \in \alpha^{-1}-\mathrm{BV}$,
(iii) $\quad g_{\alpha} \notin A(2 /(2 \alpha+1))$,
(iv) $\quad \sum_{n=1}^{\infty} n^{(2 \alpha-1) / 2}\left|\hat{g}_{\alpha}(n)\right|=\infty$.

2. Convolution functions

Throughout this section we shall denote the conjugate of a number $p>1$ by q, that is, $1 / p+1 / q=1$. For $f, g \in L_{1}(T)$ the convolution $f * g$ is defined by

$$
(f * g)(x)=\int_{T} f(x-t) g(t) d t
$$

Then $(f * g)^{\wedge}(n)=\ddot{f}(n) \hat{g}(n)$ for all $n \in Z$. The following theorem is due to M. Riesz (6, Vol. 1, page 251].

Theorem 4. A continuous function f has an absolutely convergent Fourier series if and only if there exist functions $g, h \in L_{2}(T)$ such that $f=g * h$.

The next theorem gives a partial extension of this result.
Theorem 4A. If $g, h \in L_{p}(T)$ for some p with $1<p \leq 2$, then

$$
g * h \in A(p /(2 p-2))
$$

Proof. It follows from Young's inequality and the Hausdorff-Young inequality that

$$
\sum_{n=-\infty}^{\infty}|\hat{g}(n)|^{q / 2}|\hat{h}(n)|^{q / 2} \leq \frac{1}{2} \sum_{n=-\infty}^{\infty}|g(n)|^{q}+\frac{1}{2} \sum_{n=-\infty}^{\infty}|\hat{h}(n)|^{q} \leq \frac{1}{2}\|g\|_{p}^{q}+\frac{1}{2}\|h\|_{p}^{q}<\infty
$$

that is, $g * h \in A(q / 2)=A(p /(2 p-2))$.
We next show that Theorem 4A is sharp.

Theorem 5. For every p with $1<p \leq 2$ there exist functions $g, h \in L_{p}(T)$ such that $g * h \notin A(\beta)$ for any $\beta<p /(2 p-2)$.

Proof. We define the functions g and h by

$$
\hat{g}(n)=\hat{h}(n)= \begin{cases}\left(n^{1 / q} \log n\right)^{-1} & \text { if } n>1 \\ 0 & \text { if } n \leq 1\end{cases}
$$

Clearly, $\hat{g}^{\prime}(n) \searrow 0$ as $n \rightarrow \infty$ and

$$
\sum_{n=2}^{\infty}(\hat{g}(n))^{p} n^{p-2}=\sum_{n=2}^{\infty} n^{p-2-p ; q}(\log n)^{-p}=\sum_{n=2}^{\infty} n^{-1}(\log n)^{-p}<\infty,
$$

because $p>1$. A theorem due to Hardy and Littlewood [6, Vol. 2, page 129] implies that g, and hence also h, belongs to $L_{p}(T)$. Furthermore, if $\beta<p /(2 p-2)$ then

$$
\sum_{n=-\infty}^{\infty}\left|(g * h)^{\wedge}(n)\right|^{\beta}=\sum_{n=2}^{\infty}\left(n^{1 / q} \log n\right)^{-2 \beta}=\infty
$$

because $2 \beta / q<1$. Therefore, $g * h \notin A(\beta)$.
Theorem 6. If $g \in L_{p}(T)$ with $1<p \leq 2$ and if $h \in \operatorname{Lip} \alpha$ with $0<\alpha \leq 1$, then $g * h \in A(\beta)$ for all β such that $2 p /(2 \alpha p+3 p-2)<\beta$.

Proof. First choose β such that $2 p /(2 \alpha p+3 p-2)<\beta<q$. Then Young's inequality implies that

$$
\sum_{n=-\infty}^{\infty}|\hat{g}(n) \hat{h}(n)|^{\beta} \leq \frac{\beta}{q} \sum_{n=-\infty}^{\infty}|\hat{g}(n)|^{q}+\frac{q-\beta}{q} \sum_{n=-\infty}^{\infty}|\hat{h}(n)|^{\beta q \mid(q-\beta)}=A+B .
$$

Since $\beta>2 p /(2 \alpha p+3 p-2)$, we have $\beta q /(q-\beta)>2 /(2 \alpha+1)$. Hence, Theorem 1A implies that B is finite. Also, the Hausdorff-Young inequality implies that A is finite. Therefore, $g * h \in A(\beta)$.

Choosing $\beta=1$ in Theorem 6 we obtain the following corollary. It shows how we can ameliorate functions in $\operatorname{Lip} \alpha$ with $0<\alpha \leq \frac{1}{2}$, which are not necessarily in $A(1)$, into functions in $A(1)$ by means of the convolution operator.

Corollary 1. Let $g \in L_{p}(T), 1<p \leq 2$, and $h \in \operatorname{Lip} \alpha, 0<\alpha \leq \frac{1}{2}$. If $(2 \alpha+1) p>2$, then $g * h \in A(1)$.

We now show to what extent Theorem 6 and Corollary 1 are the best possible.
Theorem 7. Let p and α satisfy the conditions $1<p \leq 2$ and $0<\alpha<1 / p$. Then, (i) for all α_{1} with $0<\alpha_{1}<\alpha$ there exist functions g and h with $g \in L_{p}(T)$ and $h \in \operatorname{Lip} \alpha_{1}$ and such that $g * h \notin A(2 p /(2 \alpha p+3 p-2))$, (ii) for all p_{1} with $1<p_{1}<p$ there exist functions g and h with $g \in L_{p_{1}}(T)$ and $h \in \operatorname{Lip} \alpha$ and such that $g * h \notin A(2 p /(2 \alpha p+3 p-2))$.

Proof. (i) If γ is defined by $\gamma=\alpha+1 / q$, then $2 /(2 \gamma+1)=2 p /(2 \alpha p+3 p-2)$. Let $h=g_{\alpha_{1}}$, then, according to Theorem $3(\mathrm{i}), h \in \operatorname{Lip} \alpha_{1}$. Let g be defined by

$$
\hat{g}(n)= \begin{cases}2^{-k\left(\gamma-\alpha_{1}\right)} & \text { if } 2^{k-1} \leq n<2^{k} \text { for some } k \geq 1 \\ 0 & \text { if } n \leq 0\end{cases}
$$

Then $\hat{g}(n) \searrow 0$ as $n \rightarrow \infty$ and

$$
\sum_{k=1}^{\infty} \hat{g}(n)^{p} n^{p-2} \leq \sum_{k=0}^{\infty} 2^{k-1} 2^{-k\left(y-\alpha_{1}\right) p} 2^{(k-1)(p-2)}<\infty
$$

because $1-\left(\gamma-\alpha_{1}\right) p+p-2=\left(\alpha_{1}-\alpha\right) p<0$. Thus, $g \in L_{p}(T)$. Furthermore, if $n \in Z$ and if $2^{k-1} \leq n<2^{k}$ for some $k \geq 1$, then

$$
\hat{g}(n) \hat{h}(n)=2^{-k\left(\gamma-\alpha_{1}\right)} \varepsilon(n) 2^{-k\left(\alpha_{1}+\frac{1}{2}\right)}=\varepsilon(n) 2^{-k\left(y+\frac{1}{2}\right)}=\hat{g}_{y}(n),
$$

that is, $g * h=g_{\gamma}$. Since, according to Theorem 3(iii), $g_{\gamma} \notin \mathrm{A}(2 p /(2 \alpha p+3 p-2))$, we have established (i).
(ii) The proof of (ii) is similar to the proof of (i). In this case the functions g and h are chosen as follows. Let $h=g_{\alpha}$ and let $\hat{g}(n)=0$ if $n \leq 0$ and let $\hat{g}(n)=$ $2^{-k(\gamma-\alpha)}$ if $2^{k-1} \leq n<2^{k}$ for some $k \geq 0$ and with $\gamma=\alpha+1 / q$. Then it is clear that the functions g and h satisfy the conditions mentioned in (ii).

Remark 1. The following case of Theorem 7 is of special interest. For each p such that $1<p<2$ and each α such that $0<\alpha<(2-p) / 2 p$ there exist functions g and h with $g \in L_{p}(T), h \in \operatorname{Lip} \alpha$ and $g * h \notin A(1)$. This improves
a result of M. and S. Izumi [3, Theorem 3] who proved for each p with $1<p<2$ and each s with $s>2$ the existence of functions g in $L_{p}(T)$ and h in $L_{s}(T)$ such that $g * h \notin A(1)$.

3. Multipliers of type $\left(l_{p}\left(Z^{n}\right), l_{p}\left(Z^{n}\right)\right)$

In this section we shall define a collection of functions on the n-dimensional torus T^{n}. We shall use these functions to show that certain results of Hahn [1] about p-multipliers on T^{n} are the best possible. Furthermore, for $n=1$ these new functions will be the same as the functions g_{α} which were defined in Section 1. Throughout this section we shall use the notation $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ for \boldsymbol{x} in T^{n} and $\boldsymbol{m}=\left(m_{0}, m_{1}, \ldots, m_{n-1}\right)$ for \boldsymbol{m} in Z^{n}.

Definition 2 [2]. A bounded and measurable function f defined on T^{n} is a p-multiplier, $\quad 1 \leq p \leq \infty$, if for every function F in $l_{p}\left(Z^{n}\right)$, the function $T(f) F$ is again in $l_{p}\left(Z^{n}\right)$, where $T(f) F$ is defined by

$$
T(f) F(\boldsymbol{m})=\sum_{k \in Z^{n}} F(\boldsymbol{m}-\boldsymbol{k}) \hat{f}(\boldsymbol{k})
$$

The set of p-multipliers will be denoted by M_{p}.
Definition 3 [1, page 327]. Let α be a positive real number and let α_{*} be the largest integer less than α. For $1 \leq p \leq \infty, \operatorname{Lip}(\alpha, p)$ is the class of all functions f defined on T^{n} such that for $|k|<\alpha_{*}$ we have $(\partial / \partial x)^{k} f \in L_{P}\left(T^{n}\right)$ and for $|k|=\alpha_{*}$ we have

$$
\begin{aligned}
& \left\|\Delta_{h}\left(\frac{\partial}{\partial x}\right)^{k} f\right\|_{p}=O\left(|\boldsymbol{h}|^{\alpha-\alpha_{*}}\right) \quad \text { if } \alpha-\alpha_{*}<1 \\
& \left\|\Delta_{h}^{2}\left(\frac{\partial}{\partial x}\right)^{k} f\right\|_{P}=O(|\boldsymbol{h}|) \quad \text { if } \alpha-\alpha_{*}=1
\end{aligned}
$$

where for each \boldsymbol{h} and \boldsymbol{x} in T^{n} we set $A_{\boldsymbol{h}} f(\boldsymbol{x})=f(\boldsymbol{x}+\boldsymbol{h})-f(\boldsymbol{x})$.
Obviously, if $p_{1} \geq p_{2}$, then $\operatorname{Lip}\left(\alpha, p_{1}\right) \subset \operatorname{Lip}\left(\alpha, p_{2}\right) ;$ so, in particular, $\operatorname{Lip}(\alpha, \infty) \subset \operatorname{Lip}(\alpha, p)$ for all $p \geq 1$ and for all $\alpha>0$. Hahn proved the following [1, Theorems 12' and 20].

Theorem 8.
(a) If $1<p \leq 2$ and $\alpha>n / p$, then $\operatorname{Lip}(\alpha, p) \subset M_{r}$ for $1 \leq r<\infty$.
(b) If $p>2$ and $\alpha>n / p$ then $\operatorname{Lip}(\alpha, p) \subset M_{r}$ for $2 p /(p+2) \leq r \leq$ $\leq 2 p /(p-2)$.
(c) If $n / p<\alpha \leq n / 2$, then $\operatorname{Lip}(\alpha, p) \subset M_{r}$ for $2 n /(n+2 \alpha)<r<$ $<2 n /(n-2 \alpha)$.

We shall prove that these results are sharp in the sense that for $p \geq 2$ we cannot replace $\alpha>n / p$ by $\alpha \geq n / p$ in Theorem 8(a) and (b), whereas the conclusion of Theorem $8(\mathrm{c})$ does not hold for $r=2 n /(n+2 \alpha)$ or $r=2 n /(n-2 \alpha)$. We do not know whether the conclusion of Theorem 8(a) holds if $1<p<2$ and $\alpha=n / p$.

Theorem 9.

(a) If $p \geq 2$ and if $\alpha=n / p$, then $\operatorname{Lip}(\alpha, \infty) \nsubseteq M_{2 p /(p+2)}$; in particular, $\operatorname{Lip}(n / 2, \infty) \not \subset M_{1}$.
(b) If $0<\alpha \leq n / 2$, then $\operatorname{Lip}(\alpha, \infty) \notin M_{2 n /(n+2 \alpha)}$.

In order to prove Theorem 9 we first define functions $h_{\alpha}(x)$ for each $\alpha>0$. For convenience we shall write \tilde{n} for 2^{n} and ω_{n} for $\exp (2 \pi i \mid \tilde{n})$. For $i=\mathbf{0}, \mathbf{1}$, $2, \ldots$ and $l=0,1, \ldots, \tilde{n}-1$ we define the trigonometric polynomials $P_{i l}(x)$ inductively. Let $P_{00}(x)=\ldots=P_{0 \hat{n}-1}(x)=1$ for all $x \in T^{n}$. Next, assume that the polynomials $P_{k l}(x)$ have been defined for some $k \geq 0$ and all l with $0 \leq$ $\leq l<\tilde{n}$. Each j with $0 \leq j<\tilde{n}$ has a unique representation of the form

$$
j=j_{0}+2 j_{1}+\ldots+2^{n-1} j_{n-1},
$$

with $j_{i} \in\{0,1\}$. Let $\boldsymbol{j}=\left(j_{0}, \ldots, j_{n-1}\right) \in Z^{n}$ and let $\boldsymbol{j} \cdot \boldsymbol{x}=j_{0} x_{0}+\ldots+j_{n-1} x_{n-1}$. Next, for l with $0 \leq l<\tilde{n}$ we define $P_{k+1 l}(x)$ by

$$
P_{k+1 l}(x)=\sum_{j=0}^{\tilde{n}-1} \omega_{n}^{l j} e^{i j \cdot x^{2}} P_{k j}(x) .
$$

Since

$$
\sum_{j=0}^{\tilde{n}_{-1}} \omega_{n}^{l j}=\left\{\begin{array}{l}
\tilde{n} \text { if } l=0, \\
0 \text { if } l=1,2, \ldots, \tilde{n}-1,
\end{array}\right.
$$

we have for arbitrary complex numbers c_{0}, \ldots, c_{n-1}

$$
\sum_{l=0}^{\tilde{n}-1}\left|\sum_{j=0}^{\tilde{n}-1} c_{j} \omega_{n}^{l j}\right|^{2}=\tilde{n} \sum_{j=0}^{\tilde{n}-1}\left|c_{j}\right|^{2}
$$

Therefore,

$$
\sum_{l=0}^{\tilde{n}-1}\left|P_{k l}(x)\right|^{2}=\sum_{l=0}^{\tilde{n}-1}\left|\sum_{j=0}^{\tilde{n}-1} \omega_{n}^{l j} e^{i j \cdot x 2^{k-1}} P_{k-1 j}(x)\right|^{2}=\tilde{n} \sum_{j=0}^{\tilde{n}-1}\left|P_{k-1 j}(x)\right|^{2}=\tilde{n}^{k+1}
$$

Hence, for each $k \geq 0$ we have

$$
\left\|P_{k 0}(x)\right\|_{\infty} \leq \tilde{n}^{(k+1) / 2}
$$

Also, $\left|\hat{P}_{k 0}(\boldsymbol{m})\right|=1$ if $\boldsymbol{m}=\left(m_{0}, \ldots, m_{n-1}\right)$ with $0 \leq m_{i}<2^{k}$ for $i=0,1, \ldots$, $n-1$, and $P_{k 0}(m)=0$ otherwise. For $k \geq 1$ let $f_{k}(x)=P_{k 0}(x)-P_{k-10}(x)$, and for $\alpha>0$ let

$$
h_{\alpha}(x)=\sum_{k=1}^{\infty} \tilde{n}^{-k\left(\frac{\alpha}{n}+\frac{1}{2}\right)} f_{k}(\boldsymbol{x}) .
$$

We can show that $h_{\alpha} \in \operatorname{Lip}(\alpha, \infty)$. The proof requires a long and tedious computation which we shall omit. We only observe that we need an n-dimensional version of Bernstein's inequality: if f is a trigonometric polynomial on T^{n} of degree k, that is,

$$
f(x)=\sum_{j \in Z^{j}} c_{j} e^{i j \cdot x}
$$

with $\max _{j}\left(\left|j_{0}\right|+\left|j_{1}\right|+\ldots+\left|j_{n-1}\right|\right)=k$, then for each of the first order partial derivatives of f we have

$$
\left\|\frac{\partial f}{\partial x_{i}}\right\|_{\infty} \leq k\|f\|_{\infty} .
$$

Proof of Theorem 9. (a) Consider the function F which is defined on Z^{n} by $F(0)=F(0, \ldots, 0)=1 \quad$ and $\quad F(\boldsymbol{m})=0 \quad$ for $\boldsymbol{m} \neq \mathbf{0}$ and $\boldsymbol{m} \in Z^{n}$. Clearly, $F \in l_{p}\left(Z^{n}\right)$. We shall prove that $h_{n / p} \notin M_{2 p /(p+2)}$. For each $\boldsymbol{m} \in Z^{n}$ we have

$$
T\left(h_{n ; p}\right) F(\boldsymbol{m})=\sum_{\boldsymbol{k} \in Z^{n}} F(\boldsymbol{m}-\boldsymbol{k}) \hat{h}_{n / p}(\boldsymbol{k})=\hat{h}_{n ; p}(\boldsymbol{m}) .
$$

Also,

$$
\begin{aligned}
\sum_{k \in Z^{n}}\left|\hat{h}_{n!p}(k)\right|^{2 p /(p+2)} & =\sum_{k=1}^{\infty}\left(2^{k n}-2^{(k-1) n}\right) 2^{-n k(p+2) / 2 p \cdot 2_{p /(p+2)}} \\
& \geq \frac{1}{2} \sum_{k=1}^{\infty} 2^{k n} 2^{-k n}=\infty,
\end{aligned}
$$

that is, $T\left(h_{n / p}\right) F \notin l_{2_{p /(p+2)}}$. Therefore, $h_{n / p} \notin M_{2_{P:(p+2)}}$.
Since $M_{2 p(p+2)}=M_{2 p(p-2)}$ we also have $h_{n / p} \notin M_{2 p /(p-2)}$.
(b) For each α such that $0<\alpha \leq n / 2$ we have

$$
\sum_{k \in Z^{n}}\left|\hat{h_{\alpha}}(k)\right|^{2 n(n+2 \alpha)} \geq \frac{1}{2} \sum_{k=1}^{\infty} 2^{k n 2^{-n k(2 \alpha+n) / 2 n} \cdot 2 n(2 \alpha+n)}=\infty .
$$

Therefore, an argument as in (a) shows that $h_{\alpha} \notin M_{2 n /(n+2 \alpha)}$, and hence also, $h_{\alpha} \in M_{2 n /(n-2 \alpha)}$.

Remark 2. For each n the function $h_{n / 2}$ provides an example of a function in $\operatorname{Lip}(n / 2, \infty)$ which does not have an absolutely convergent Fourier series. Hence the n-dimensional version of Theorem 1 is sharp. This and related results were established by Wainger [5].

Remark 3. The functions g_{α} as defined in Section 1 also provide new examples that show that several of the results of Hirschman on p-multipliers cannot be improved as was already pointed out by Hirschman in [2].

The author would like to thank Professor L.-S. Hahn for a number of helpful conversations on the subject of this paper.

References

1. Hahn, L.-S., On multipliers of p-integrable functions, Trans. Amer. Math. Soc. 128 (1967), 321-335.
2. Hirschman, I. I. Jr., On multiplier transformations, Duke Math. J. 26 (1959), 221-242.
3. Izumi, M. and S.-I., Absolute convergence of Fourier series of convolution functions, J. of Approx. Th. 1 (1968), 103-109.
4. Katznelson, Y., An Introduction to Harmonic Analysis, J. Wiley and Sons, Inc., New York, 1968.
5. Watnger, S., Special trigonometric series in k-dimensions, Memoirs Amer. Math. Soc. 59 (1965).
6. Zygmund, A., Trigonometric Series, Vols. 1 and 2, 2nd ed., Cambridge Univ. Press, New York, 1959.
C. W. Onneweer

Dep. of Mathematics and Statistics The University of New Mexico Albuquerque, New Mexico 87131 USA

