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1. Introduction 

Let M and N be two complex manifolds of complex dimensions m and n 
respectively. A holomorphic map f: M - +  N is called nondegenerate if in each 
component of M, there exists a point p, such that  the induced linear map of the 
holomorphic tangent spaces f , :  Te(M)--> Tf(p)(N) is surjective. This can only 
happen if m _ ~ n .  

I f  L is a holomorphic line bundle on a complex manifold N and R is a positive 
integer, then we say tha t  R has property P with respect to L if there exists a 
positive holomorphic line bundle T and a positive integer s, such that  

H~ R Q K N )  8 |  -1) # 0  (].1) 

where KN is the canonical bundle of N. 
The main result of  this paper is the following generalization of the big Picard 

Theorem. 

THEOREM ] .2. Let N be a smooth projective algebraic variety and L a holomorphic 
line bundle on N. Suppose further that F 1 . . . .  , F n are sections of L in normal 
position, where R has property P with respect to L, and put F = F 1 • . . . Q F ~. 
Let M be a complex manifold and f: M ~ S --> N ~ IDFI a nondegenerate holo- 
morphic mapping, where S is an analytic subvariety of M. Then f can be extended 
to a meromorphic map from M into N. 

COROLLARY 1.3. Let f: M ~ S --> Pn be a nondegenerate holomorphic mapping, 
where S is an analytic subvariety of M and Pn is the n-dimensional complex 
projective space. I f  f fails to meet R d-dimensional hypersurfaces in normal position 
and R ~_ (n ~- 1)/d, then f can be extended to a meromorphic mapping of M into Pn. 
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Le t  us br ief ly  outl ine the idea of  the  proof  of  Theorem 1.2. After  a suitable 
imbedding of  N into a Pq has been chosen, f can be represented  by  certain 
analyt ic  f imctions gl . . . . .  gq. To show tha t  f has a meromorphic  extension, i t  is 
sufficient to show tha t  the growth  of  gl . . . .  , gq is not  too wild near  S. We control  
the growth  wi th  potent ia l - theore t ic  methods,  which are out l ined in section 3. 

I t  m a y  be po in ted  out  t ha t  the R iemann  extension theorem implies t h a t  i f  
codim (S) > 2, t hen  any  holomorphic  mapping  f: M ~ S -~  N can be ex tended  to  

meromorphic  mapping  of M into N,  whenever  N is a smooth  project ive  var ie ty .  
For  a background  to  this paper  we refer to  the survey  article b y  Griff i ths  [3] 

and  Carlson-Griffi ths [2]. 
The plan of  the  paper  is the following. In  section 2 we give the necessary back- 

ground material .  We prove  in section 3 some technical  results, and  in section 4 
we prove  Theorem 1.2. 

2. Notations and terminology 

Let  M be a complex manifold.  Rela t ive  to  a suitable open covering { Ui} of  
M, a holomorphic  line bundle  L is given b y  holomorphic  t ransi t ion funct ions 
fq: Ui A Uj --> C* = C ~ {0}, satisfying the cocycle condit ion 

f,k = f,,fik in U, n u j  n u k  . 

The  tensor  p roduc t  L 1 @ L 2 of  two line bundles L 1 and L 2 is given by  mult i -  
pl icat ion of  the  corresponding t rans i t ion  functions.  A holomorphic  section F = {F~) 
of L is given by  holomorphic  funct ions Fi: Ui -~  C, satisfying the compat ib i l i ty  
re la t ion 

F,  = f q F j  in U, n u j  . 

The  vector  space of  all holomorphic  sections of  L is denoted  b y  H ~  L).  

We observe t h a t  a section F of  L in a na tura l  way  gives rise to  a divisor D F 
on M. We denote  by  [DF[ the  suppor t  of DF, which is the set {z C M: F~(z) = 0 
for some i}. Suppose F 1 , . . . , F  P are s~ctions of  L and pu t 

F = F 1 @ . . .  @ F ~ E H ~  Lp).  

We say t ha t  F 1, . . . ,  F P are in normal  pos i t ion  i f  for eac21 point  x C ]DFI we can 
fired an i, such t ha t  x E Ui and {F~: s C Z(x)} can bz t aken  as pa r t  of  a coordinate  
sys tem around x, where Z(x)  - -  {s: F~(x) = 0}. I~ is easy to see tha*~ a collection 
of  hype~planes meets  this condit ion i f  and only  if  t hey  are in general position. 

A metr ic  in L is given b y  posi t ive C ~ funct ions a~ in Ui, sa+Asfying 

in n 
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Thus for a holomorph~e section F = {F~} E H~ L), the  length  

]]Fll 2 =  ]Fi 12a~ 1 

is well defined.  
I n  part icalay,  i f  we let  { U~} be a covering of  M wi th  coordinate  neighbour-  

hoods U i wi th  holomorphic  coordinates Z i : (z~ . . . .  , zm), t hen  the  canonical 
bundle  K M of M is given by  the  t rans i t ion ~unctions 

g~j -= det  ~zjl) in u i n u ~ .  

Thus,  if  F = {F~} is a section of  KM, t hen  the locally given holomorphic  (m, 0)- 
forms F~dz~ A . . .  A dz7 pa tch  t o g e t h e r  to a holomorphic  (m, 0)-form on M. 
In  the  same way,  we observe t ha t  the  metrics on KM are in one-to-one 
correspondence wi th  the  posi t ive (m, m)-forms on M. 

I f  h is a C ~ real form of type  (1, 1), then  h is given locally b y  

h = V - -  l ~ h,jdz, A dSj (hij = h j i ) .  

We Shall say t ha t  h is posit ive if  (h~j) is a posi t ive defini te  Hermi t i an  matr ix .  
We are now in a posit ion to define wha t  is mean t  b y  a posi t ive line bundle.  

Definition 2.1. Le t  L be a holomorphic  line bundle  on the complex manifold M. 
Then  L is said to be positive, if  there  exists a metr ic  {ai} on L, such t h a t  the 
real (1, 1)-form h on M, given in U~ by  

h --  ~r  1 a~ log a~ 

is positive. This metr ic  is t hen  said to  be positive. 

3. Some technical results 

Since we are going to work in C m, w e  s ta r t  b y  collecting some nota t ion.  

][Zll 2 = [Z!] 2 -~- . . .  Jr- [Zm[ 2 for z = ( z l , . . . ,  Zm) E Ca m, 

- 2 - 2 {Za JAd J} j = l  

V k ~-- V 1 A V 1 A . . . A V 1, V 0 = 1, 

A = 4 ~- . . .  @ , the Laplace operator .  

( 3 . 1 )  
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We shall f rom now on assume tha t  N is a smooth  connected n-dimensional  
project ive  va r ie ty  and  tha t  L is a holomorphic  line bundle  on N and  t h a t  R 
has p rope r ty  P with respect  to L. 

Le t  F 1 , . . . ,  F R E H~ L) be in normal  posit ion and p u t  

F = F 1 | . . . | F R C H~ LR). 

Hence,  we can f ind a posit ive bundle  T, an integer s > 0 and an 

H c H~ (L R | KN)" | T -~) 

such t h a t  H ~ 0 .  Le t  { a t } = a  be a posit ive metr ic  on T, and let  e be an y  
posit ive number .  We observe t h a t  

R 

cr • (alHI2)" 11F]-2 1-1" [log (ellFJll2)] -2 
j=l 

is a section of  K N Q R ~  in N ~ IDFI, and therefore  gives rise to a non-negat ive  
(n, n)-form W in N ~ IDFI, given locally by  

W =  \ 2 / (a, iH, l:) '-t]F,I-2 ]-[ [log (eliFJH2)]-2dwl A dffh A . . . A dw~A dff;,. 

We are now in a posit ion to formula te  the main resul t  of  this section. F o r  a 
re la ted resul t  see Carlson-Griffi ths [2]. 

THEOREM 3.3. There exist two positive numbers e and c with the following 
property: For any domain M in G '~ (open, connected set) and any nondegenerate 
holomorphic function f: M --> N ~ IDF] the nonnegative function uf in M defined 
by 

f * W  A V" -"  = ufV m 

is such that log u I is plurisubharmonic and 

A log uf ~ c(uy) 1!~ in M ~ {z E M: uy(z) : 0}. (3.4) 

Proof. Le t  W 1 be any  (n, n)-form on N given locally b y  

W1 ~ \ 2 / hdwl A d ~  A . . . A dw~ A d~ ,  

and  let  Q be the  class of  subsets of  { 1 , . . . ,  m} containing exac t ly  n elements.  
I f  we wri te  f = ( f ~ , . . . ,  f , )  in local coordinates,  then  one f inds easily t h a t  

f *W~  A V " -~  = h o f d e t \ o z j / j e s  

Since f is assumed to  be nondegenerate ,  we have  t h a t  
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is not  identical ly zero. B y  using Corollary 1.6.8 in HSrmande r  [5], we f ind t h a t  
log Jf is ph r i subharmonic .  To show (3.4) it  is therefore  sufficient to prove t h a t  
there  exists a c > 0 such t h a t  the inequal i ty  

R 

C(~f) 1In ~ A l o g  {(ai o f l H i  oflZ)s-llFi of[ -2  ]7- l o g  (e l lF"  o fl12) -2} 
r = l  

holds in M 1 = M ~.  {z e M: uf(z) = 0}. Since bo th  log [Hi o f]~ and log IFi o f]2 
are harmonic  in M 1 it is enough to  show th a t  

C(Uf) x/n < UO, (3.6) 

where we have pu t  u0 = s-l{A log (ai of)}  - -  ~ ,~1  A log (log (eHF o f  H2)) 2. 
We s ta r t  by  choosing e so small t ha t  cHFI] 2 < 1 in N for 1 < r  < R .  This 

is possible by  the  compactness  of  N. We localize a round  ]DFI. F r o m  the  assump- 
t ions about  F and  the  compactness  of  N, it  follows t h a t  we can cover ]DFI 
wi th  f ini te ly  m a n y  coordinate  neighbourhoods  {U}, wi th  local coordinates  
(wl . . . .  ,w, ) ,  such t ha t  for some p, 1 < p  < n ,  there  exist  kl . . . .  , k  v 
1 < k 1 < k S < . . .  < k~ _< R, wi th  w 1 = • k l ,  . . . ,  W p  = F ~ ,  and if k q { k , , . . . ,  kp}; 
t he n  irrf~euIIFk(z)ll > 0. Fur the rmore ,  there  exists a posit ive bECk(U) ,  such 
t h a t  if  G E H~ L), t hen  IIGII2 = b]Ggl 2. W i th o u t  loss of general i ty  we m a y  
assume tha t  wj = F[  for 1 _< j < p. Since we have assumed t h a t  T is positive, 
there  exists a number  c > 0, such t ha t  

s-lA log (a~ o f )  > c - -  . (3.7) 
- -  i = I  k = l  OZk 

I f  v > 0, t hen  A log v = v-iAv -- 4 v - 2 ~ = 1  IOv/Ozkl 2. We apply  this  re la t ion 
to  v = (log (e]]F of[j2)) 2. Then  we have in f - l ( U )  [3 M 1 

A log (log (~IIF ~ o f i t2 ) )  ~ = 2 ( l o g  ( ~ i l f  ~ o f l i 2 ) ) - l A  log II F~ o f i l  ~ - -  

O log liE" ~ 2 2 (3.8) 
8 (log of[J2)) -2 

k=l/" azk " 

I t  is obvious t h a t  there  exists a n u m b e r  C > 0, such t h a t  if  1 < r < R, t hen  

IA log ]IF" o fit 2 ] _< C ~  
i=1"= k=l 

and  if  p +  1 < r  < R ,  then  

0 log IIF" ofll 2 < C Z Ofi2 
- -  O z ~  " k=l OZlt i=1 k=l 
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Therefore,  by  combining the  est imates  above with (3.7) and  by  choosing 
suff icient ly small, we get the  following es t imate  of %, wi th  possibly a different  
c > 0  

Ofi 2 0 log] iF  , ofl)-~ 2   l/ roJll )) 
- -  i = 1  k = l  r = l  k = l  OZk " 

Now we have t h a t  

0 log IIF ~ o fll 2 0 log b o f 0fi 
0z~ - 0zk + (w~ o f ) - I  0z~" 

We recall the following e lementa ry  inequal i ty .  I f  ~1 and ~2 are two complex 
numbers ,  then  ]~1 + ~2[ 2 ~> 1/21~1]2 --  r~212. By  using this inequal i ty  wi th  
~ =  Ofl/Ozk and  ~2 ~ 0log b of/Ozk we f ind f rom (3.9) t h a t  

n & Ofi 2 l, ~ 2__Of f  
U o > C ~  k~__li~Zk l + 4  Z Iw~ofl-2(log(ellF~ofll2)) -2 

- -  i = 1  r = l  k = l  I OZk 

- -  8 Z (log (~IIF r ofl12)) -~ I 0 log b 
,=l k=i 0zk " 

We m a y  as before absorb the  th i rd  t e rm of the  r ight  hand  side of the  inequal i ty  
above into the  f i rs t  t e rm by  choosing e suff icient ly small, and we are left  with 

u~ > c ~ Of, p 
-- i = 1  k = l  0Z~k @ 4 ~  Iw~of[-2(log(elIF'of[I2))-2 Off2 2 ~:l k=~ Ozk > c ~(i) , 

- -  i = 1  k = l  ~ k  

where we have pu t  

~(i) = { 
I + ]w~ of]_2 (log (e]]F ~ of]l=))-= if I < i < p  

1 i f  p + l < i < n .  

Hence  we can f ind a c >  0, such t ha t  

0fl 2 

SEQ i = 1  kES 
(3.10) 

F rom the  inequal i ty  be tween the  ar i thmet ica l  and the  geometr ical  mean  we have  

T ke s  OZk - -  \ i = 1  i = 1  = kfiS i = 1  

Now we have  f rom H a d a m a r d ' s  inequal i ty  t h a t  

of, 2 i I~-t/Ofi\l<-i<n 2 fr : 
i=I k6S 

Since inf{]lF~(z)l]: z e U} > 0 for p + 1 < r < R, it  follows t h a t  
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R 

~(i) ~ cI[F ofl/-~ T-[ (log (~IIF" o f[12))-% 
i = 1  r ~ l  

for some c > 0 in f I(U). B y  combining this with (3.10) we get, wi th  some c > 0 

Uo >--c( l lF~ (l~ ~ ))- ) / Z tdet~-~/ I �9 

2in 

r = l  S ~ Q  ~ \ U ~ ' k / k E S  i 

F r o m  this inequal i ty  (3.6) follows by  observing t h a t  the  te rms  a~ and 1H~] can 
be t aken  to be bounded  and  by  applying the inequal i ty  ~ x~/"~ (~. x;) 1/~ to  
the  last fac tor  of  the  inequal i ty  above.  To complete the  proof  we have  to  show th a t  
we can choose e such t h a t  log uf is also plur isubharmonic,  b u t  t h a t  is done in 
the  same way,  and is therefore  omit ted.  

We shall now tu rn  to  some consequences of Theorem 3.3. Suppose P0 C N ~ ID~[ 
~nd t ha t  there  exists an H E H ~  R Q K N )  ~ |  -1) with H(po) r  F ix  a 
coordinate  ne ighbourhood U a round  P0 wi th  local coordinates  (wl . . . .  , w~). 
I f  f: Bm(r) -~ N is a holomorphic  mapping,  where B"(r) ~- {z e C,m: Hzll < r}, 
with  f ( 0 ) =  Po, t hen  we pu t  

/af~\,<,<o2 t J j  i - - 

s~ e d e t t ~  ) for z E f - ' ( U ) .  g l  ( ~ ) =  Q, ~ ' 

Here  Q is the  set of all subsets of  {1 . . . . .  m} containing n elements  and  we 
have wr i t ten  f ~ (fl, �9 �9 fn) in local coordinates  (Wl . . . .  , wn). 

As an applicat ion of Theorem 3.3 we shall prove  the  following general izat ion of  
Landau ' s  theorem (cf. Koda i ra  [7] and  Carlson-Griffi ths [2]). 

THEOREM 3.11. To each m >_ n there exists a constant r, > 0 with the following 
properties: For any holomorphic mapping f: Bin(@) ----> N Nx 1DFI with f(O) ~ Po and 
Jf(O) > 1, the intequality @ <_ r o holds. 

F r o m  this resul t  we deduce the following var ian t  of  the  (small) P icard  theorem.  

COROLLARY 3.12. Any  holomorphic mapping f: C'~--> N "~ IDF] is degenerate. 

Proof of Corollary 3.12. P i c k  a G C H~ (L R Q KN) s (~ T - I )  with G r 0. 
Le t  M be the  set of  all points z C {3 m such t h a t  f , :  T~(C')-+Tf(z)(N ) is 
surjective.  Suppose t ha t  M is not  empty .  Then  M is open and  hence f (M) is 
open in N. Therefore  f (M) contains a point  P0 such t h a t  G(po) r 0. W e  m a y  
assume f(0)--~ P0 and 0 C M. We can choose a coordinate  sys tem around  Po 
such t h a t  Jf(0) - -  1. Theorem 3.11 implies t h a t  f can be def ined only in a bounded  
domain  and this contradic t ion finishes the  proof. 
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Proof of Theorem 3.11. We wish to each t > 0 construct  a positive infini tely 
differentiable funct ion V, in B"(t) with the following properties: 

(a) A log V, < V~/~, 

(b) tim V,(z) = oo for all zo 60Bm(t), 
z-+ z o 

(c) lira Vr(z) = V,(z) for each f ixed z e Bin(r), 
r ~ t  

(d) lim Vt(O) = O. 
t-+o0 

I f  t >  0 is given, then  we pu t  g t ( r ) = n l o g ( 8 n ( m +  1))+log( t2~( t  2 - r 2 ) - 2 " ) ,  
0 < r < t. We construct  the family { E} by  put t ing  

We now have 

V,(~) = e x p  g,(r), I l z l /=  r. 

) A log Vdz) = r -2"+1 --  dr (g&)) = 
d 

r r 2 m - -  1 

2m(t ~ - r  2) @ 2r u 
--- 4n -4 8n(m + 1)te(t 2 -- r2) -2 = (Vt(z)) l/n, 

(t 2 - -  r2)2 

and hence the family  { Vt} satisfies (a). The rest is s t rMghtforward verification. 
Next  we consider the funct ion uf as constructed in Theorem 3.3. F rom the assump- 
tions about  f ,  it  follows tha t  there exists a number  B > 0, such tha t  

uf(O) > B, for all f E ~e (3.13) 

where T is the set of all holomorphie mappings f: Bm(~) --~ N ~ [D / ,  satisfying 
f(0) ----P0 and Jr(O) _> 1. Le t  9 (  be the set of all nondegenerate  holomorphie 
mappings f: B"(~) -~  N ~ IDFI. We wan t  to  show, t h a t  there exists a number  
A >  0, such tha t  for all Q >  0 and all f C g ~  we have 

uf < AV~. (3.14) 

We prove relation (3.14) with the aid of a classical t r ick due to Ahlfors [1]. F rom 
proper ty  (c) of Vt and  the cont inui ty  of uf, it  follows t h a t  to each t < ~, there 
exists a point  ~ E B'~(t), such tha t  

uf(~)/Vt(~) -- sup {uf(z)/V,(z): z e Bin(t)}. 

Since f is nondegenerate,  we mus t  have t h a t  uf(~) > O, and hence uf is infini tely 
differentiable in a neighbourhood of ~. Moreover, since ~ is a local max imum 
for log (uf/V,), we have 

A log (ugV,)(~) <_ O. 

Now we have from Theorem 3.3 t h a t  
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(u:(~)) :/" <_ CA log uf(~) <_ CA log V,(~) _< C(V,(~)) ,/~, 

and hence uf(~) < A V~(~). Therefore, we have for all z E B~(~) 

uf(z) <_ A lim V,(z) = A V~(z). 

This proves relation (3.14). In particular, we have from (3.13) tha t  if f C ~o, then 

B < uf(O) <_ AV(O) = A{8n(m + 1)}~ -2~, 

and this gives 

~_ (A/B):/2~8n(m ~- 1), 

which completes the proof of Theorem 3.11. 
From the proof of Theorem 3.11 we have the following corollary. 

COROLLARY 3.15. To each m >_ n there exists a constant K > 0 with the following 
property: For all domains M in C m and all holomorphic mappings f: M --> N ~ IDoL 
the inequality 

uf(z) < K(d(z, M)) -2~ (3.15) 

holds, where d(z, M) = dist {z, aM} and f is nondegenerate. 

Proof. We continue using the notation of the proof of Theorem 3.11. I t  is sufficient 
to treat the case z = 0. For each Q < d(0, M) we have f C 9(~ and from (3.14) 
we have 

u2(0 ) < A V~(O) = A{Sn(m + 1)}n( 2n. 

Letting ~ --~ d(0, M) we have (3.16), and this finishes the proof. 
I t  is possible to prove Theorem 3.11 along different lines. 

Second proof of Theorem 3.11. We continue using the notation of the previous 
proof of Theorem 3.11. Let G be the Green function of B'~(r) with pole at  0. 
This function is given by 

log if m = 1 
G(z) = g(llzLI) = I ~  

{[lz[] 2 - : ~ - r  : - :~  if  m > 2 .  

We have from the Ricsz representation formula applied to the subharmonic 
function log uf tha t  there exists a positive measure /~f on Bm(~), such tha t  for 
all r, 0 < r  < ~, 

u (o) = <, f l o g  - .fa(z)d j(z). (a.16) log 

0B"(:) Bin(r) 
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Here  da is the area measure on 0B'~(1), ~,~ the  area of  0Bin(l), f i l  = (271;) - 1  and 
fin --~ {%(2m --  2)} -1 if  m > 2. F rom Theorem 3.3 we have  dlq > c(uf)~/nV m. 
P u t  Pf(r) = fB~(0 (uf)l/'~V~" Hence  we have 

r 

Bin(r) 0 

A part ia l  in tegra t ion  gives t ha t  

r 

~., f P)(t)g(t)dt 
0 

= ~,., fP+(t)t~-:"~dt, 
0 

where ~m is a constant .  Recall ing (3.13) and (3.16) we have 

r 

o OB~O) 

Arguing as in Koda i r a  [7], one can f rom inequal i ty  (3.17) f inish the  proof. We omi t  
the  argument .  

4. The generalized Pieard Theorem 

Le t  B = {z e C: [zl < 3}, B* = B ~ {0}, 
D - - B • 2 1 5  We nex t  prove  Theorem 1.2. 

D* = B* x B • . . . • B and 
m ~ l  

Proof of Theorem 1.2. Since the  set of  singular points  of  S are of  codimcnsion 
> 2, we m a y  assume tha t  S is nonsingular.  Localizing, we can assume t h a t  f 
is def ined in D*. We  have to show t h a t  the pull back  of  the ra t ional  funct ions on 
N can be ex tended  to  meromorphic  funct ions on D. There  exists b y  Koda i r a  [6] 
a posi t ive line bundle  E on N,  such t ha t  if  {s ~ . . . ,  s q} is a basis of  H~ E), 
t h e n  the  mapping  F:  N - +  Pq, def ined by  

v :  z - ~  [s~  . .: sq(z)]  ( 4 . 1 3  

is an imbedding.  Le t  s eH~ E), s r 0, and  p u t  G =f-l(JDs]).  We s ta r t  b y  
demons t ra t ing  t h a t  0 is an analyt ic  subset  of D. We m a y  assume th a t  IIs]] < 1. 
I t  follows f rom Bishop's  Theorem (Theorem F of  Stolzenberg [8]), t h a t  it  is suff icient  
to  show t h a t  there  exists a ne ighbourhood U of  {z E D: zj = 0}, such t h a t  

j V real < o9. (4.2) 

*sN U 
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I t  follows f rom the proof  of  Theorem 3.3, t h a t  there  exists a ($ > 0, such t h a t  
the  funct ion vf = log II s o fllsuf is p lur isubharmonic  in D*. W i th o u t  loss of  general- 
i ty, we m a y  assume t h a t  there  exists a zl, such t h a t  vf(zl, 0 . . .  0) > - -  oo, other~ 
wise we change our  coordinate  system. We can also assume, possibly af te r  a change 
of the coordinate  system, t ha t  if  IzlL = l,  lz21 _< 1 , . . . ,  Iz,n[ <__ 1, t hen  
vf(zl, z2 , . . . , z~)  > --  ~ .  Le t  Bin_ 1--{~6Gm-1:11~11 < 1} and n(r,~) be the 
number  of roots,  counted  with mult ipl ici ty,  of the  equat ion  8(f(%, ~))= 0 in 
{ Z l :  r < [Zl] < 1 } .  Fix  ~ 6 B .... 1 and pu t  v~(z) = v f ( z ,  ~). We can f ind  a sequence 
{v/}~l of twice cont inuously  differentiable subharmonic  funct ions in B*, such 
t ha t  vj \ %. For  each j ,  an applicat ion of Green's  formula  gives 

2z  2:r 

fo f 3rr v/(e/-~'~)dv~ -- r ~r vj(re/~)dvQ 4 0z105~ vj(zl)dV(zl) . 
0 0 r<[%]<l 

Here  d V is the planar  Lebesgue measure on G. Dividing b y  r and then  integrat ing,  
we have  

2z  2~ 

f vj(re/-~i<>) d o -  f v j ( e / -~ )  dv~ + 
0 0 

2~ 1 (4.3) 

fo f @ (log r 1) 3r vj(eV-~'~)dO ~ 4t-1 aZl~l vj(zx)dV(zl). 
0 r t < l z ~ l < l  

I t  is clear t ha t  there  exists a constant  K,  such t h a t  if  lZll = 1, t hen  [vj(zl) I < K 
for all j .  Moreover,  this cons tant  can be chosen independent  of ~ 6 B~_~. The 
funct ions vj can be t aken  as i t e ra ted  mean  values. F r o m  the explici t  representa t ion  
of the der ivat ives  of  such functions,  see Helms  [4, p. 20], it  is clear t h a t  there  exists 
a cons tant  K,  also independen t  of ~ E Bb _ l ,  such t h a t  if  ]Zll = 1, t hen  
iOvj(zi)/~rl < K. Let t ing  j t end  to oo in such a way  t h a t  the  measures 
(a2/OziOgl)VflV t end  weakly to  the Riez measure of  v~, we f ind t h a t  

1 2~ 2~ ( 4 . 4 )  

f t - ln( t , .~)dt -  f log Hsof(re/-~,9, $),,dO ~_ f log uf(re 1/-~,  ~)d~ + K log r - k  

r 0 0 

One consequence of (4.4) should be no ted  here.  I f  we take  ~ = 0, t h en  an in tegra t ion  
gives 

I t  follows f rom Corollary 3.15, t ha t  
independent  of ~ 6 Bin_l, 

1 

f v+(=l, 0) v+ >_ - f t log t - ld t  ~ -- K. (4.5) 

r < ]%1 < 1 r 

log us(ref-~'~, ~) < K log r - t ,  wi th  K 
and hence we have  f rom (4.4) 
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1 2 ~  

f t-in(t, ~)dt --  ~ f log [[so f(re l/-~'~, ~)][dv ~ < K log r -1. (4.6) 

r 0 

W e  ge t  f r o m  (4.6) t h a t  

n(t, ~) < K for  all ~ E B,n_ 1. (4.7) 

W e  m a y  t h e r e f o r e  a s s u m e  t h a t  vf(z 1,0) > - -  oo for  0 < ]zl[ _< 1. I f  z C B * ,  
t h e n  we de f ine  vz(~ ) =- v/(z, ~), ~ E Bin_ 1. L e t  A,n_ 1 be  t he  L a p l a c e  o p e r a t o r  on  
C ~-1.  Since v~ is s u b h a r m o n i c  in Bin_l, we h a v e  b y  the  Riesz  r e p r e s e n t a t i o n  
f o r m u l a  

vo(o) = f vo(t)d m_l(t) -- f ( 4 . 8 )  

0 B m _  1 B m  - -  1 

w h e r e  d % _ 1  is t h e  su r face  m e a s u r e  on  ~B ~-1, n o r m a l i z e d  so fos,~_da. ._l  = 1, 

dVm_l is t he  L e b e s g u e  m e a s u r e  on cm--l,g,,(~) = [~l 4 - 2 ' n -  i ,n~  >__ 3,92(~ ) = 

= log l~i 1 a n d  c% = (2m - -  4) (2m - -  2) fB,=_l dV~-I  for  m >_ 3 a n d  ~2 = 

= (2~) -1. L e t  /t(z) be  t h e  2(m - -  2 ) - v o l u m e  of  G [3 {z} X {~ E C~-1: II~ll < 1/2}. 
Since g~(~) > ~ 1  > 0 if  ]l~]] < 1/2, we h a v e  f r o m  (4.8) t h a t  

/~(z) < K l o g  Iz1-1 - -  ~m2mV(Z, 0). 

I f  we  n o w  m a k e  use  o f  (4.5), t h e n  an  i n t e g r a t i o n  g ives  

f # ( z ) d V ( z )  K fo r  all 0 1. (4.9) < T, < < 

r<!~[<l 

NOW t h e  r e l a t i o n s  (4.7) and .  (4.9) e s t ab l i sh  B i s h o p ' s  cond i t i on  (4.2). 
P i c k  a n y  t w o  sec t ions  s I a n d  s 2 o f  E ,  s 2 r 0. T o  c o m p l e t e  t h e  p roof ,  i t  is 

su f f i c i en t  t o  show t h a t  t he  m e r o m o r p h i c  f u n c t i o n  h = (s 1 ofl)/(s2 o f )  has  a m e r o -  
m o r p h i e  e x t e n s i o n  to  D.  I n  v i ew  of  (4.2), we  m a y  a s s u m e  t h a t  

f-~(ID,~I) c {z e D: z~ - -  0}. 

H e n c e  we  m a y  a s s u m e  t h a t  h is a n a l y t i c  in D*.  L e t  g h a v e  t h e  L a u r e n t  e x p a n s i o n  

g(z,  z2 . . . .  , zm) = zlAj(z2, �9 �9 zm). 
j ~ - c o  

F i x  ~ e B~_  1. W e  n o t e  t h a t  ]h I = l[sl ~ ~ a n d  since we  m a y  a s s u m e  t h a t  
IIs~l I _< 1, i = 1, 2, we  h a v e  t h a t  (log+ = m a x  (0, log)) 

2zr 2,~ 

flog+ - [ log IIs o  )ll ,a _< log (4.10) tg(re d ~ ,  f(re ~ 1 ~ ,  < K r - 1 ,  

0 0 
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where the last inequal i ty  follows from inequal i ty (4.6). F r o m  the Nevanl inna  theory  

it now follows t h a t  there exists a number  k ~ 0 such t h a t  A j ( ~ ) =  0 for all 
j ~ - - k .  I f  we for r C Z  + pu t  H ( r ) = { ~ C B m _ ~ : A j ( $ ) =  0 for all j G - - r } ,  

then  we have just  shown tha t  [J, H(r) - -  B,~_I. Since the sets H(r)  are closed, 

at  least one, H(r2) say, contains an open subset of  Bm_~. Since the functions Aj 
are analytic,  we have t h a t  A i ~ 0 for j ~ r 0 and this proves Theorem 1.2. 

Proof  of Corollary 1.3. Le t  H be the hyperplane  bundle of P~ and  K the 
canonical bundle of  P~. Since K = H , - 1  it is easily seen t h a t  if R C Z + and 

R >  ( n +  1)/d, then  R has p roper ty  P with respect  to H 4. 
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