# An example of a strongly convex metric space 

B. Krakus

## 1. Introduction

It is known (see [2, Sections 7 and 8]) that if ( $X, d$ ) is a convex metric space ${ }^{1}$ ) and every point of $X$ is locally passing, then every two points of $X$ are joined by a geodesic. If every two points of $X$ are joined by exactly one geodesic and every point is locally passing, then every point is passing and every geodesic is a straight line. Hence $(X, d)$ is a strongly convex space. On the other hand the following theorem is a consequence of the results in [3].

Theorem 1. If $(X, d)$ is a strongly convex finitely-dimensional space and every point of $X$ is locally passing, then every point of $X$ is passing (cf. [2, Problems and Theorems]).

Our aim is to give an example of a strongly convex 2-dimensional space ( $Y, \varphi$ ) such that every point of $Y$ is passing, but $Y$ has a geodesic which is not a straight line (cf. [2, Problems and Theorems]).

## 2. Definitions and notations

Let $(X, d)$ be a metric space with a metric $d$. If $x, y, z \in X$ then we say that $z$ lies between $x$ and $y$ (writing $x z y$ ) provided that

$$
d(x, z)+d(z, y)=d(x, y)
$$

A midpoint of the pair $x, y$ is a point $m$ such that

$$
d(x, m)=d(m, y)=\frac{1}{2} d(x, y)
$$

[^0]Evidently every midpoint of the pair $x, y$ lies between $x$ and $y$. A space $(X, d)$ is said to be convex if each pair of points of $X$ has at least one midpoint, strongly convex if each pair of points has exactly one midpoint.

It is well known that in a complete (in particular finitely-compact) convex space $(X, d)$ every two distinct points $x, y$ are joined by a segment with end-points $x, y$, i.e. by a subset of $X$ containing $x$ and $y$ and isometric to a real interval of length $d(x, y)$. For complete spaces, strong convexity is equivalent to the condition that each pair of distinct points $x, y$ determines exactly one segment with end-points $x, y$.

A subspace $\left(X_{1}, d_{1}\right)$ of a metric space $(X, d)$ is said to be a convex subspace if $X_{1}$ contains all points of $X$ which lie between two points of $X_{1}$.

A point $z$ of a metric space $(X, d)$ is said to be a passing point in $X$ if for every point $x \in X$ there exists a point $y \in X \backslash\{z\}$ such that $x z y$. We say that $z$ is a locally passing point if there exists a neighbourhood $U$ of $z$ such that $z$ is a passing point in $U$.

A subset $G$ of a metric space $X$ is said to be a geodesic (straight line) if $G$ is locally isometric (isometric) to the space of real numbers.

## 3. Sums of strongly convex spaces

Let $\left(X_{1}, d_{1}\right)$ and ( $X_{2}, d_{2}$ ) be two metric spaces such that $X_{1} \cap X_{2} \neq \varnothing$ and if $x, y \in X_{1} \cap X_{2}$, then $d_{1}(x, y)=d_{2}(x, y)$. We define (see [1, Section 6] and [4, Section 10]) the function $d_{T}$ as follows:

$$
d_{T}(x, y)= \begin{cases}d_{1}(x, y) & \text { if } x, y \in X_{1}  \tag{1}\\ d_{2}(x, y) & \text { if } x, y \in X_{2} \\ \min _{z \in X_{1} \cap X_{2}}\left[d_{1}(x, z)+d_{2}(z, y)\right] & \text { if } x \in X_{1}, y \in X_{2}\end{cases}
$$

This definition is correct, because the minimum exists, the spaces $X_{1}, X_{2}$ being finitely-compact. It is clear that the function $d_{T}$ is a metric for the sum $X_{1} \cup X_{2}$.

Let $Y, Z$ be the subsets of a convex space $(X, d)$. We consider the following three properties:
(a) If $x, y \in Y, z \in Z$ and all these points are distinct, then

$$
2 d(z, m)<d(x, z)+d(y, z)
$$

for every midpoint $m$ of the pair $x, y$.
( $\beta$ ) If $x, y \in Y, z \in Z$, then

$$
2 d(z, m) \leq d(x, z)+d(y, z)
$$

for every midpoint $m$ of the pair $x, y$.
$(\gamma)$ If $x, y \in Y, p, q \in Z$ and $m, m^{\prime}$ are the midpoints of $x, y$ and $p, q$ respectively, then

$$
2 d\left(m, m^{\prime}\right) \leq d(x, p)+d(y, q)
$$

We shall write: $(Y, Z) \in(\alpha) /(\beta),(\gamma) /$ in the space $(X, d)$ or $(Y, Z) \in(\alpha) /(\beta),(\gamma) /$ if the latter does not lead to misunderstanding.

It is easy to see, that
3.1. $(\gamma)$ implies $(\beta)$.
3.2. Let $\left(X_{1}, d_{1}\right)$ be a convex subspace of the convex space $(X, d)$ and let $Y, Z$ be subsets of $X_{1}$. Then $(Y, Z) \in(\alpha) /(\beta),(\gamma) /$ in the space $\left(X_{1}, d_{1}\right)$ if and only if $(Y, Z) \in(\alpha) /(\beta),(\gamma) /$ in the space $(X, d)$.

Since the metric-function is continuous, we have
3.3. $(\bar{Y}, \bar{Z}) \in(\beta) /(\gamma) /$ if and only if $(Y, Z) \in(\beta) /(\gamma) /$.
3.4. If $(X, d)$ is a convex space and $(X, X) \in(\alpha)$, then $(X, d)$ is strongly convex.

Proof. Suppose on the contrary that there exist two midpoints $p, q$ of the pair $x, y$ of the points of $X$. Let $z$ be a midpoint of the pair $p, q$. Then from the definition of the property $(\alpha)$ we obtain

$$
d(x, y) \leq d(x, z)+d(y, z)<\frac{1}{2}[d(x, p)+d(x, q)]+\frac{1}{2}[d(y, p)+d(y, q)]=d(x, y)
$$

which is impossible.
3.5. Let $\left(Y, d_{i}\right)$ be a convex subspace of a convex space $\left(X_{i}, d_{i}\right)(i=1,2)$ such that $Y=X_{1} \cap X_{2} \neq \emptyset$ and $d_{1}(x, y)=d_{2}(x, y)$ for every two points $x, y \in Y$. Let $Z$ be a subset of $Y$. If $(Z, Y) \in(\gamma)$ in $\left(X_{1}, d_{1}\right)$ and $\left(Y, X_{2}\right) \in(\beta)$ in $\left(X_{2}, d_{2}\right)$, then $\left(Z, X_{2}\right) \in(\beta)$ in $\left(X_{1} \cup X_{2}, d_{T}\right)$.

Proof. Since ( $Y, d_{i}$ ) is a convex subspace of a convex space ( $X_{i}, d_{i}$ ), we infer that $\left(Y, d_{i}\right)$ and $\left(X_{i}, d_{i}\right)$ are convex subspaces of $\left(X_{1} \cup X_{2}, d_{T}\right)$ for $i=1,2$. It follows that $\left(X_{1} \cup X_{2}, d_{T}\right)$ is a convex space. Let $x, y \in Z$ and $z \in X_{2}$. Then there exist two points $p, q \in Y$ such that $x p z$ and $y q z$. Let $m, m^{\prime}$ be the midpoints of $x, y$ and $p, q$, respectively. Applying 3.2 we infer that $(Z, Y) \in(\gamma)$ in $\left(X_{1} \cup X_{2}, d_{T}\right)$ and $\left(Y, X_{2}\right) \in(\beta)$ in $\left(X_{1} \cup X_{2}, d_{T}\right)$. This implies that

$$
\begin{gathered}
2 d_{T}(m, z) \leq 2 d_{T}\left(m, m^{\prime}\right)+2 d_{T}\left(m^{\prime}, z\right) \leq d_{T}(x, p)+d_{T}(y, q)+d_{T}(p, z)+d_{T}(q, z)= \\
=d_{T}(x, z)+d_{T}(y, z)
\end{gathered}
$$

hence $\left(Z, X_{2}\right) \in(\beta)$ in the space $\left(X_{1} \cup X_{2}, d_{T}\right)$.
Now we shall prove the following:
3.6. Let $\left(Y, d_{i}\right)$ be a convex subspace of a strongly convex space $\left(X_{i}, d_{i}\right)(i=1,2)$ such that $Y=X_{1} \cap X_{2} \neq \emptyset$ and $d_{1}(x, y)=d_{2}(x, y)$ for every two points $x, y \in Y$.

If $\left(Y, X_{1} \backslash Y\right) \in(\alpha)$ in the space $\left(X_{1}, d_{1}\right)$ and $\left(Y, X_{2}\right) \in(\beta)$ in the space $\left(X_{2}, d_{2}\right)$, then the space $\left(X_{1} \cup X_{2}, d_{T}\right)$ is strongly convex.

Proof. Since $\left(Y, d_{i}\right)$ is a convex subspace of a strongly convex space $\left(X_{i}, d_{i}\right)$, we infer that $\left(Y, d_{i}\right)$ and ( $X_{i}, d_{i}$ ) are strongly convex subspaces of ( $X_{1} \cup X_{2}, d_{T}$ ) for $i=1,2$. It follows that $\left(X_{1} \cup X_{2}, d_{T}\right)$ is a convex space. Moreover, $\left(X_{1} \cup X_{2}, d_{T}\right)$ is a finitely-compact space. Thus for every two distinct points $x, y \in X_{1} \cup X_{2}$ there exists at least one segment with end-points $x, y$.

Now let us suppose that there exist two distinct segments $L_{1}, L_{2}$ with endpoints $x, y$. Since $\left(X_{i}, d_{i}\right)$ is a strongly convex subspace of $\left(X_{1} \cup X_{2}, d_{T}\right)$ we may assume that $x \in X_{1} \backslash Y$ and $y \in X_{2} \backslash Y$. Then there exist two distinct points $a \in Y \cap\left(L_{1} \backslash L_{2}\right)$ and $b \in Y \cap\left(L_{2} \backslash L_{1}\right)$. Since ( $\left(Y, d_{i}\right)$ is a strongly convex subspace of ( $X_{1} \cup X_{2}, d_{T}$ ), we infer that there exists exactly one midpoint $m$ of the pair $a, b$ and $m \in Y$. Applying 3.2 we infer that $\left(Y, X_{1} \backslash Y\right) \in(\alpha)$ in $\left(X_{1} \cup X_{2}, d_{T}\right)$ and $\left(Y, X_{2}\right) \in(\beta)$ in $\left(X_{1} \cup X_{2}, d_{T}\right)$. This implies that

$$
\begin{gathered}
2 d_{T}(x, y)=d_{T}(x, a)+d_{T}(a, y)+d_{T}(x, b)+d_{T}(b, y)> \\
>2 d_{T}(x, m)+d_{T}(a, y)+d_{T}(b, y) \geq 2 d_{T}(x, m)+2 d_{T}(m, y) \geq 2 d_{T}(x, y)
\end{gathered}
$$

which is impossible.

## 4. Cone over a strongly convex space

Let $X$ be a compact space and $\mathbf{R}^{+}=\{t \in \mathbf{R} ; t \geq 0\}$. The space obtained from the cartesian products $X \times \mathbf{R}^{+}$by identifying the set $X \times\{0\}$ to one point will be called a cone over $X$. The point corresponding to the set $X \times\{0\}$ in the identification space will be called a vertex.

Let ( $X, d$ ) be a compact metric space with diameter $<2$ and let $X_{1}$ be a cone over $X$ with a vertex $v$. We define a function $d_{1}$ by the following equations:

$$
\begin{gather*}
d_{1}\left(\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right)=\min \left(t_{1}, t_{2}\right) d\left(x_{1}, x_{2}\right)+\left|t_{1}-t_{2}\right|  \tag{2}\\
d_{1}((x, t), v)=d_{1}(v,(x, t))=t  \tag{3}\\
d_{1}(v, v)=0 \tag{4}
\end{gather*}
$$

The proof of the following two propositions runs as in [4, § 11].
4.1. The function $d_{1}$ is a metric for $X_{1}$.
4.2. Let $(X, d)$ be a strongly convex space and $p_{1}=\left(x_{1}, t_{1}\right), p_{2}=\left(x_{2}, t_{2}\right)$, $0<t_{1} \leq t_{2}$ be two distinct points of $X_{1}$. Then
(i) The space $\left(X_{1}, d_{1}\right)$ is strongly convex.
(ii) The segment with end-points $p_{1}, p_{2}$ is the sum of the sets

$$
\left\{p \in X_{1} ; \quad p=\left(x, t_{1}\right), d\left(x_{1}, x\right)+d\left(x, x_{2}\right)=d\left(x_{1}, x_{2}\right)\right\}
$$

and

$$
\left\{p \in X_{1} ; \quad p=\left(x_{2}, t\right), \quad t_{1} \leq t \leq t_{2}\right\} .
$$

(iii) The set

$$
\left\{p \in X_{1} ; \quad p=\left(x_{1}, t\right), \quad 0<t \leq t_{1}\right\} \cup\{v\}
$$

is the segment with end-points $p_{1}, v$.
Let $y, z \in X$ and let

$$
Y=\left\{p \in X_{1} ; \quad p=(y, t), \quad t>0\right\} \cup\{v\}
$$

and

$$
Z=\left\{p \in X_{1} ; \quad p=(z, t), \quad t>0\right\} \cup\{v\}
$$

be two subsets of the space $\left(X_{1}, d_{1}\right)$.
We shall prove the following:
4. $(Y, Z) \in(\gamma)$ in the space $\left(X_{1}, d_{1}\right)$.

Proof. By 3.3. it is sufficient to prove that $(Y \backslash\{v\}, Z \backslash\{v\}) \in(\gamma)$. Let $p_{1}, p_{2} \in Y \backslash\{v\}, q_{1}, q_{2} \in Z \backslash\{v\} \quad$ and $\quad p_{i}=\left(y, t_{i}\right), q_{i}=\left(z, s_{i}\right)$ for $i=1,2$. It follows from 4.2 (ii) that $m=\left(y, \frac{1}{2}\left(t_{1}+t_{2}\right)\right)$ and $m^{\prime}=\left(z, \frac{1}{2}\left(s_{1}+s_{2}\right)\right)$ are the midpoints of $p_{1}, p_{2}$ and $q_{1}, q_{2}$, respectively. Applying (2) and the formula

$$
2 \min (a, b)=a+b-|a-b|
$$

we have

$$
\begin{aligned}
& d_{1}\left(p_{1}, q_{1}\right)+d_{1}\left(p_{2}, q_{2}\right)=\left[\min \left(t_{1}, s_{1}\right)+\min \left(t_{2}, s_{2}\right)\right] d(y, z)+\left|t_{1}-s_{1}\right|+\left|t_{2}-s_{2}\right|= \\
& =\frac{1}{2}\left[t_{1}+t_{2}+s_{1}+s_{2}-\left|t_{1}-s_{1}\right|-\left|t_{2}-s_{2}\right|\right] d(y, z)+\left|t_{1}-s_{1}\right|+\left|t_{2}-s_{2}\right|= \\
& = \\
& \frac{1}{2}\left[2 \min \left(t_{1}+t_{2}, s_{1}+s_{2}\right)+\left|t_{1}+t_{2}-s_{1}-s_{2}\right|-\left|t_{1}-s_{1}\right|-\left|t_{2}-s_{2}\right|\right] d(y, z)+ \\
& \quad+\left|t_{1}-s_{1}\right|+\left|t_{2}-s_{2}\right|= \\
& =\left\{2 \min \left[\frac{1}{2}\left(t_{1}+t_{2}\right), \frac{1}{2}\left(s_{1}+s_{2}\right)\right]+\frac{1}{2}\left|t_{1}+t_{2}-s_{1}-s_{2}\right|\right\} d(y, z)+ \\
& \quad+\left(\left|t_{1}-s_{1}\right|+\left|t_{2}-s_{2}\right|\right)\left[1-\frac{1}{2} d(y, z)\right]
\end{aligned}
$$

Since $X$ is a space with diameter $<2$, we infer that $1-\frac{1}{2} d(y, z)>0$. Thus we have

$$
\begin{aligned}
& d_{1}\left(p_{1}, q_{1}\right)+d_{1}\left(p_{2}, q_{2}\right) \geq \\
& \geq\left\{2 \min \left[\frac{1}{2}\left(t_{1}+t_{2}\right), \frac{1}{2}\left(s_{1}+s_{2}\right)\right]+\frac{1}{2}\left|t_{1}+t_{2}-s_{1}-s_{2}\right|\right\} d(y, z)+ \\
& \quad+\left\lvert\, t_{1}+t_{2}-s_{1}-s_{2}\left[1-\frac{1}{2} d(y, z)\right]=\right. \\
& =2 \min \left[\frac{1}{2}\left(t_{1}+t_{2}\right), \frac{1}{2}\left(s_{1}+s_{2}\right)\right] d(y, z)+2\left|\frac{1}{2}\left(t_{1}+t_{2}\right)-\frac{1}{2}\left(s_{1}+s_{2}\right)\right|=2 d_{1}\left(m, m^{\prime}\right)
\end{aligned}
$$

## 5. The spaces $\left(Y_{1}, \varphi_{1}\right),\left(Y_{2}, \varphi_{2}\right)$

Let $X=\left\{(x, y) \in R^{2} ; x, y \geq 0, x^{2}+y^{2}=1\right\}$ and $a, b \in X$. Setting

$$
\begin{equation*}
\left.d(a, b)=\arccos a b^{1}\right) \tag{5}
\end{equation*}
$$

we obtain a metric $d$ for $X$. It is plain that $(X, d)$ is a compact strongly convex space with diameter $<2$. Let $\left(X_{1}, d_{1}\right)$ be a cone over the space $(X, d)$ with a vertex $v$. Setting

$$
\begin{equation*}
f((a, t))=t a \text { for } a \in X \text { and } t \geq 0 \tag{6}
\end{equation*}
$$

we get a function $f: X_{1} \rightarrow \mathbf{R}^{2}$. It is easy to see that $f$ is continuous and $1-1$. Moreover, we have

$$
\begin{equation*}
Y_{1}=f\left(X_{1}\right)=\left\{(x, y) \in \mathbf{R}^{2} ; x, y \geq 0\right\} \tag{7}
\end{equation*}
$$

Now let us put

$$
\begin{equation*}
\varphi_{1}\left(q_{1}, q_{2}\right)=d_{1}\left(f^{-1}\left(q_{1}\right), f^{-1}\left(q_{2}\right)\right) \tag{8}
\end{equation*}
$$

for every two points $q_{1}, q_{2} \in Y_{1}$. Evidently $\varphi_{1}$ constitutes a metric for $Y_{1}$. Applying the notation just introduced we shall prove the following
5.1. The space $\left(Y_{1}, \varphi_{1}\right)$ is strongly convex. Moreover,
(i) If $q_{1}, q_{2}$ are two distinct points of $Y_{1}$ such that $0<\left\|q_{1}\right\| \leq\left\|q_{2}\right\|$, then the segment with end-points $q_{1}, q_{2}$ is the union of the sets

$$
A=\left\{q \in Y_{1} ;\|q\|=\left\|q_{1}\right\|, d\left(\frac{q_{1}}{\left\|q_{1}\right\|}, \frac{q}{\|q\|}\right)+d\left(\frac{q}{\|q\|}, \frac{q_{2}}{\left\|q_{2}\right\|}\right)=d\left(\frac{q_{1}}{\left\|q_{1}\right\|}, \frac{q_{2}}{\left\|q_{2}\right\|}\right)\right\}
$$

and

$$
B=\left\{q \in Y_{1} ; q=s q_{2},\left\|q_{1}\right\| \leq s\left\|q_{2}\right\| \leq\left\|q_{2}\right\|\right\}
$$

(ii) If $q_{i} \in Y_{1} \backslash\{(0,0)\}$ and $L_{i}=\left\{q \in Y_{1} ; q=s q_{i}, s \geq 0\right\} \quad(i=1,2)$, then $\left(L_{1}, L_{2}\right) \in(\gamma)$ in the space $\left(Y_{1}, \varphi_{1}\right)$.

Proof. Since $(X, d)$ is a compact strongly convex space with diameter $<\mathbf{2}$, we infer by 4.2 (i) that ( $X_{1}, d_{1}$ ) is a strongly convex space. It follows from (8) that $\left(Y_{1}, \varphi_{1}\right)$ is a strongly convex space.

In order to prove (i) let us observe that (6) implies that

$$
f^{-1}(q)=\left\{\begin{array}{cl}
(q /\|q\|,\|q\|) & \text { for } \quad q \neq(0,0)  \tag{9}\\
v & \text { for } q=(0,0)
\end{array}\right.
$$

Thus

$$
f^{-1}(A)=\left\{p \in X_{1} ; \quad p=\left(q /\|q\|,\left\|q_{1}\right\|\right), \quad q \in A\right\}
$$

[^1]and
$$
f^{-1}(B)=\left\{p \in X_{1} ; \quad p=\left(q_{2} /\left\|q_{2}\right\|, s\left\|q_{2}\right\|\right),\left\|q_{1}\right\| \leq s\left\|q_{2}\right\| \leq\left\|q_{2}\right\|\right\}
$$

It follows from 4.2 (ii) that the set $T=f^{-1}(A) \cup f^{-1}(B)$ is a segment with endpoints $p_{1}=f^{-1}\left(q_{1}\right), p_{2}=f^{-1}\left(q_{2}\right)$. Then (8) implies that the set $f(T)=A \cup B$ is a segment with end-points $q_{1}, q_{2}$.

Passing to (ii), let us observe that (9) implies that

$$
f^{-1}\left(L_{i}\right)=\left\{p \in X_{1} ; p=\left(q_{i}\left\|q_{i}\right\|, s\left\|q_{i}\right\|\right), s>0\right\} \cup\{v\} .
$$

According to 4.3, we have $\left(f^{-1}\left(L_{1}\right), f^{-1}\left(L_{2}\right)\right) \in(\gamma)$ in $\left(X_{1}, d_{1}\right)$. Then (8) implies that $\left(L_{1}, L_{2}\right) \in(\gamma)$ in $\left(Y_{1}, \varphi_{1}\right)$.

Remark. Let $q_{1}, q_{2}$ be the points of $Y_{1}$. According to the definition of the metric $d_{1}$ (see 4) and (5), (9), (8), we have

$$
\begin{gather*}
\varphi_{1}\left(q_{1}, q_{2}\right)=\min \left(\left\|q_{1}\right\|,\left\|q_{2}\right\|\right) \arccos \left(\frac{q_{1}}{\left\|q_{1}\right\|} \cdot \frac{q_{2}}{\left\|q_{2}\right\|}\right)+\left\|\left|q_{1}\|-\| q_{2} \|\right| \text { for } q_{1} \neq(0,0) \neq q_{2}\right.  \tag{10}\\
\varphi_{1}\left(q_{1},(0,0)\right)=\left\|q_{1}\right\| . \tag{11}
\end{gather*}
$$

Let $Y_{2}=\left\{(x, y) \in \mathbf{R}^{2} ; 0 \leq x, y \leq 0\right\}$ and we put in $Y_{2}$ the ordinary euclidean metric $\varphi_{2}$. It is easy to see, that $\varphi_{1}(x, y)=\varphi_{2}(x, y)$ for every two points $x, y \in Y=$ $Y_{1} \cap Y_{2}$. We put in $Y_{1} \cup Y_{2}$ the metric $\varphi_{T}$, i.e.

$$
\varphi_{T}(x, y)= \begin{cases}\varphi_{1}(x, y) & \text { for } x, y \in Y_{1} \\ \varphi_{2}(x, y) & \text { for } x, y \in Y_{2} \\ \min _{z \in Y}\left[\varphi_{1}(x, z)+\varphi_{2}(z, y)\right] & \text { for } x \in Y_{1}, y \in Y_{2}\end{cases}
$$

We shall prove the following:

### 5.2. The space $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$ is strongly convex.

Proof. It is sufficient to show that the hypotheses in 3.6 hold. Indeed, by the definition of ( $Y_{2}, \varphi_{2}$ ) and 5.1 the spaces $\left(Y_{1}, \varphi_{1}\right)$ and ( $Y_{2}, \varphi_{2}$ ) are strongly convex. Evidently, $\left(Y_{2}, Y_{2}\right) \in(\alpha)$ in the space $\left(Y_{2}, \varphi_{2}\right)$, hence $\left(Y, Y_{2} \backslash Y\right) \in(\alpha)$ in the space $\left(Y_{2}, \varphi_{2}\right)$. According to 5.1 (ii) and 3.1 we have $\left(Y, Y_{1}\right) \in(\beta)$ in the space $\left(Y_{1}, \varphi_{1}\right)$.

Let $\varrho$ denote the ordinary euclidean metric. Applying (10) and (11) we obtain the following
5.3. $\varrho(p, q) \leq \varphi_{T}(p, q)$ for every two points $p, q \in Y_{1} \cup Y_{2}$.

Now we shall prove the following:
5.4. Let $L=\left\{(x, y) \in \mathbf{R}^{2} ; x=0\right\}$. For every point $z \in Y_{1} \cup Y_{2}$ and every point $m \in L$ there exists a neighbourhood $U$ of $m$ in $L$ such that $(U,\{z\}) \in(\beta)$ in the space $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$.

Proof. Let $A=\left\{(x, y) \in \mathbf{R}^{2} ; x=0, y<0\right\}, B=\left\{(x, y) \in \mathbf{R}^{2} ; x=0, y>0\right\}$. Let us show that for every point $z \in Y_{1} \cup Y_{2}$ we have $(A,\{z\}) \in(\beta)$ and $(B,\{z\}) \in(\beta)$ in $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$. We distinguish between two cases:

Case 1: $z \in Y_{1}$. By 5.1 (ii), 3.2 and 3.1 we obtain that $(B,\{z\}) \in(\beta)$ in $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$. It follows from 3.5 that $(A,\{z\}) \in(\beta)$ in $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$, because $\left(A, Y_{1} \cap Y_{2}\right) \in(\gamma)$ in $\left(Y_{2}, \varphi_{2}\right)$ and by 5.2 (ii), $\left(Y_{1} \cap Y_{2},\{z\}\right) \in(\beta)$ in ( $\left.Y_{1}, \varphi_{1}\right)$.

Case 2: $z \in Y_{2}$. Evidently $(A,\{z\}) \in(\beta)$ in $\left(Y_{2}, \varphi_{2}\right)$ hence from 3.2 we infer that $(A,\{z\}) \in(\beta)$ in $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$. By 5.1 (ii), $\left(Y_{1} \cap Y_{2}, B\right) \in(\gamma)$ in ( $Y_{1}, \varphi_{1}$ ) and applying 3.5 we obtain that $(B,\{z\}) \in(\beta)$ in $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$.

Hence for every point $z \in Y_{1} \cup Y_{2}$ and every point $m \in L \backslash\{(0,0)\}$ there exists a neighbourhood $U$ of $m$ in $L$ such that $(U,\{z\}) \in(\beta)$ in $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$.

Now let $p, q \in L, m=(0,0)=m(p, q), z \in Y_{1} \cup Y_{2}$ and all these points are distinct. Applying 5.3 and (11) we have

$$
\varphi_{T}(p, z)+\varphi_{T}(q, z)-2 \varphi_{T}(z, m) \geq \varrho(p, z)+\varrho(q, z)-2 \varrho(z, m)>0 .
$$

Since the metric-function $\varrho$ is continuous, there exists a neighbourhood $V$ of $m=(0,0)$ in $Y_{1} \cup Y_{2}$ such that the inequality

$$
\varphi_{T}(x, z)+\varphi_{T}(y, z)>2 \varphi_{T}(z, m(x, y))
$$

holds for every two distinct points $x, y \in V$. Let $U=V \cap L$. Then $(U,\{z\}) \in(\beta)$ in the space $\left(Y_{1} \cup Y_{2}, \varphi_{T}\right)$.

## 6. Construction of the space $(Y, \varphi)$

Let $Y_{3}=\left\{(x, y) \in \mathbf{R}^{\mathbf{2}} ; x \leq 0\right\}$ and let $\varphi_{3}$ be the ordinary euclidean metric in $Y_{3}$. Then for every two points $x, y \in L=Y_{3} \cap\left(Y_{1} \cup Y_{2}\right)$ we have $\varphi_{3}(x, y)=$ $\varphi_{T}(x, y)$. Let $Y=Y_{1} \cup Y_{2} \cup Y_{3}$ and we define the metric $\varphi$ as follows:

$$
\varphi(x, y)= \begin{cases}\varphi_{T}(x, y) & \text { for } x, y \in Y_{1} \cup Y_{2}  \tag{12}\\ \varphi_{3}(x, y) & \text { for } x, y \in Y_{3} \\ \min _{z \in L}\left[\varphi_{T}(x, z)+\varphi_{3}(z, y)\right] & \text { for } x \in Y_{1} \cup Y_{2}, y \in Y_{3}\end{cases}
$$

It is not difficult to verify that the space $(Y, \varphi)$ is topologically a plane $E^{2}$. We shall prove that
6.1. The space $(Y, \varphi)$ is strongly convex.

Proof. Evidently the space ( $Y_{3}, \varphi_{3}$ ) is strongly convex, hence by (12) and 5.2 it is sufficient to show that for every two points $p \in\left(Y_{1} \cup Y_{2}\right) \backslash L, q \in Y_{3} \backslash L$ there exists exactly one segment with end-points $p, q$.

It is easy to see that $(Y, \varphi)$ is a complete convex space. Thus there exists at least one segment with end-points $p, q$. Suppose on the contrary that $p, q$ are joined by at least two segments in $Y$ with end-points $p, q$. Let $F$ be the set of all points $x$ of the set $Y_{3} \backslash L$ such that there exist at least two segments in $Y$ with end-points $x, p$. We shall show that the set $F$ is closed in $Y_{3}$. Let $x_{n} \in F$ and $x=\lim _{n \rightarrow \infty} x_{n}$. Then there exist $y_{n}, z_{n} \in L$ such that $y_{n} \neq z_{n}, x_{n} y_{n} p$ and $x_{n} z_{n} p \quad(n=1,2, \ldots)$. Since $\left(Y_{3}, L\right) \in(\alpha)$ in $(Y, \varphi)$, we infer by 5.4 that $\inf _{n} \varphi\left(y_{n}, z_{n}\right)>0$. Without loss of generality suppose that $y=\lim _{n \rightarrow \infty} y_{n}$, $z=\lim _{n \rightarrow \infty} z_{n}$. Then $y \neq z$ and $x y p, x z p$, because $x_{n} y_{n} p$ implies that $\lim _{n \rightarrow \infty} y_{n}$ is between $\lim _{n \rightarrow \infty} x_{n}$ and $p$. It follows that $x \in F$, hence $F$ is closed in $Y_{3}$.

Since $F$ is a closed subset of the complete space $\left(Y_{3}, \varphi_{3}\right)$ and ( $Y_{1} \cup Y_{2}, \varphi_{T}$ ) is strongly convex, there exists $q \in F$ such that

$$
\begin{equation*}
r=\varphi(p, q)=\inf _{x \in F} \varphi(p, x) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
r>\inf _{x \in L} \varphi(p, x) . \tag{14}
\end{equation*}
$$

Let us observe that for every point $x \in Y_{3} \backslash(F \cup L)$ there exists exactly one point $f(x) \in L$ such that $x f(x) p$. It is not difficult to see that the function $f: Y_{\mathbf{3}} \backslash(F \cup L) \rightarrow L$ defined in this way is continuous.

Since $q \in F$, there exist $a, b \in L$ such that $a \neq b$ and $q a p, q b p$. Let $x_{n}, y_{n}$ be points such that $x_{n} \neq q \neq y_{n}, q x_{n} a, q y_{n} b \quad(n=1,2, \ldots)$ and $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=q$. Since $\varphi\left(x_{n}, q\right)<r$ and $\varphi\left(y_{n}, q\right)<r, x_{n}, y_{n} \in Y_{3} \backslash(F \cup L)$. It follows that $f\left(x_{n}\right)=a$ and $f\left(y_{n}\right)=b$. Since the set $D_{n}=\left\{z \in Y ; x_{n} z y_{n}\right\}$ is connected, there exists $z_{n} \in D_{n}$ such that $f\left(z_{n}\right)=m$, where $m$ is a midpoint of the pair $a, b$. Since $\lim _{n \rightarrow \infty} z_{n}=q$, we infer that $q m p$. It follows that the set $C=\{x \in L ; q x p\}$ is convex and $\operatorname{dim} C=1$. Choose $a_{n}, b_{n} \in C$ such that $0<\varphi\left(a_{n}, b_{n}\right)<1 / n$ and let $m_{n}$ be a midpoint of the pair $a_{n}, b_{n}$ for $n=1,2, \ldots$ It follows from 5.4 that an index $N$ exists such that

$$
\varphi\left(a_{n}, p\right)+\varphi\left(b_{n}, p\right) \geq 2 \varphi\left(m_{n}, p\right) \text { for } n>N
$$

Since $\left(Y_{3}, L\right) \in(\alpha)$ in $(Y, \varphi)$, we obtain

$$
\begin{aligned}
2 \varphi(p, q) & =\varphi\left(p, a_{n}\right)+\varphi\left(a_{n}, q\right)+\varphi\left(p, b_{n}\right)+\varphi\left(b_{n}, q\right)> \\
& >2 \varphi\left(m_{n}, q\right)+\varphi\left(p, a_{n}\right)+\varphi\left(p, b_{n}\right) \geq \\
& \geq 2 \varphi\left(m_{n}, q\right)+2 \varphi\left(p, m_{n}\right) \geq 2 \varphi(p, q)
\end{aligned}
$$

which is impossible.

### 6.2. Every point of the space $(Y, \varphi)$ is passing in $Y$.

Proof. Supposing the contrary, we have two distinct points $p, q \in Y$ such that $p q x$ implies $x=q$. Since $(Y, \varphi)$ is strongly convex, for every $x \in Y$ and $0 \leq t \leq 1$, there exists exactly one point $h(x, t) \in Y$ such that

$$
\varphi(x, h(x, t))=t \varphi(p, x)
$$

and

$$
\varphi(p, h(x, t))=(1-t) \varphi(p, x)
$$

It is not difficult to verify that the function $h:(Y \backslash\{q\}) \times[0,1] \rightarrow Y$ is continuous and $h(x, t) \neq q$ for every $x \in Y \backslash\{q\}$ and $t \in[0,1]$. But $h(x, 0)=x$ and $h(x, 1)=p$ for every point $x \in Y \backslash\{q\}$ hence $Y \backslash\{q\}$ is contractible into itself, which is impossible, because $(Y, \varphi)$ is topologically a plane $E^{2}$.
6.3. $(Y, \varphi)$ has a geodesic which is not a straight line.

Proof. Consider the sets

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbf{R}^{2} ; x, y \geq 0,\|(x, y)\|=a\right\} \\
& B=\left\{(x, y) \in \mathbf{R}^{2} ; x=0, y \geq a\right\} \\
& C=\left\{(x, y) \in \mathbf{R}^{2} ; x \geq a, y=0\right\}
\end{aligned}
$$

where $a>0$. It follows from (7), (5) and 5.1 (i) that the sets $A \cup B$ and $A \cup C$ are isometric to the real closed half-line. By the same argument we infer that the set $A$ is a segment in the space $(Y, \varphi)$. This implies that the set $G=A \cup B \cup C$ is a geodesic in $Y$.

On the other hand let $q_{1}=(2 a, 0), q_{2}=(0,2 a)$. It follows from 5.1 (i) that the set

$$
D=\left\{(x, y) \in \mathbf{R}^{2} ; \quad x, y \geq 0,\|(x, y)\|=2 a\right\}
$$

is a segment with end-points $q_{1}, q_{2}$. Since $D \cap G=\left\{q_{1}, q_{2}\right\}$, we infer from 6.1 that $G$ is not isometric to the real line. Thus $G$ is the desired geodesic.

Applying 6.1, 6.2 and 6.3 we obtain the following result
Theorem 2. There exists a strongly convex 2-dimensional space ( $Y, \varphi$ ) such that every point of $Y$ is passing, but $Y$ has a geodesic which is not a straight line.

## References

1. Borsuk, K., On a metrization of polytopes, Fund. Math. 47 (1959), 325-341.
2. Busemann, H., The geometry of geodesics, New York 1955.
3. Krakds, B., Some properties of convex metric spaces, Fund. Math. 73 (1972), 193-198.
4. Lelek, A., \& Nitka, W., On convex metric spaces I, Fund. Math. 49 (1961), 183-204.

Received December 18, 1972
B. Krakus

Department of Mathematios
Royal Institute of Technology
S-100 44 Stockholm Sweden


[^0]:    ${ }^{1}$ ) In this paper by "space" we understand "finitely-compact space". For terminology and notation see Section 2 in this paper and [1], [2], [4].

[^1]:    ${ }^{\text {1) }}$ If $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$ are points of $\mathbf{R}^{2}$ and $t \in \mathbf{R}$, then $a b=a_{1} b_{1}+a_{2} b_{2}, t a=$ $\left(t a_{1}, t a_{2}\right)$ and $\|a\|^{2}=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}$.

