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0. Introduction 

Hilber t  algebras (for references and  defini t ions see w l) have been found to be 
useful in various ways in analysis, t~eferring to t h em  in his book [4], Dixmier  s ta tes  
~)Elles const i tuent ,  on le verra ,  un puissant  moyen  d 'd tude  des algebres de yon  
Neumann.)> F o r  o ther  instances see the  work of Godement  [6] and Rieffel  [15]. 

In  this paper  we present  a r a the r  sys temat ic  s t u d y  of  Hi lber t  algebras f rom the  
point  of  view of  the  t heo ry  of  topological  algebras. This leads f irs t  (but no t  
exclusively) to an invest igat ion of  ideals in Hi lber t  algebras as well as to quot ien t  
algebras fo rmed  by  a Hi lber t  a lgebra modulo  a closed ideal. 

I n  several  s i tuat ions below proper t ies  of  a Hi lber t  a lgebra A are ob ta ined  by  
f i rs t  embedding A in its ful f i l lment  Ab (all the  bounded  elements  in its complet ion,  
see w 1 for nota t ion) ,  then  working in Ab and f inal ly  dropping back  to A. In  this 
way  it  is shown tha t  if  K is a elosed ideal in A then  K =  K* so t h a t  K is a 
Hi lber t  algebra. Also this procedure  is used to  show t h a t  A/K is a Hi lber t  a lgebra 
in the  quot ien t  algebra norm. Ye t  again we follow this route  to see t h a t  an y  topo-  
logically simple Hi lber t  a lgebra wi th  a minimal  one-sided ideal is equiva len t  to  a 
dense *-subalgebra of  an H*-a lgebra  and  to see t h a t  a homomorph i sm of  a Ban aeh  
algebra onto  a Hi lbe r t  a lgebra mus t  be continuous.  The  success of  this p rog ram 
is made  possible b y  the  t heo ry  of  full Hi lbe r t  algebras (A = A~) as developed f i rs t  
by  Godemen t  [6] and  then  fu r the red  by  Rieffel [15]. 

We consider some special classes of  Hi lber t  algebras in w 2 as well as full H i lbe r t  
algebras. E v e r y  full Hi lber t  a lgebra A is o r thocomplemen ted  (A ---- J �9 J •  for  
all closed r ight  (left) ideals J ) .  E v e r y  o r thocomplemen ted  t t i lbe r t  a lgebra is 
a dual  Hi lber t  algebra. The notions of  dual  Hi lber t  algebra and annihi la tor  Hil- 

1 This research was supported in part by NSF GI~ANT GP 20226. Much of this work was 
reported in an invited address to the North British Functional Analysis Seminar, Edinbttrgh, 
Scotland, on March 9, 1970. 
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bert algebra turn out to be the same. For K a closed ideal in A it is shown in 
w 2 that ,  if A is full or orthocomplemented or dual, then so are K and A/K. 

The work of t~ieffel [15] was also drawn upon to help develop in w 4 a theory 
for Hilbert algebras with dense socle (see Corollary 4.7 and, for full Hilbert algebras, 
Corollary 4.8). For a full Hilbert algebra A with dense socle its completion H is 
the Hilbert space direct sum of the minimal closed ideals of A each of which is 
equivalent to an H*-algebra. (It is stressed tha t  the >>simple components~> of the 
decomposition of A are complete (Banach algebras) while A is, in general, in- 
complete.) As a by-product of this investigation we obtain a characterization of 
H*-algebras. A Hilbert algebra A is equivalent to an H*-algebra if and only if 
A is full and there exists c > 0 such that  IIPll ~ e for all non-zero projections p 
in A. Again note that  A turns out to be complete from a set-up which is a priori 
incomplete. 

In many examples of Hilbert algebras such as C(G), where G is a compact 
group, made into an algebra by convolution multiplication, multiplication is com- 
pletely continuous [10, p. 700]. Every c.c. Hilbert algebra is the (Hilbert space) 
direct sum of its minimal closed ideals each being a full finite-dimensional matrix 
algebra. See Theorem 6.4. 

In  w 3 and w 4 we consider some more analytical aspects of the theory of Hilbert 
algebras. A starting point is the discovery in Theorem 3.1, tha t  the involution in a 
full Hilbert algebra is symmetric. This avenue is explored for Hilbert algebras not 
full. The relation of a Hilbert algebra to the natural C*-algebra in which it is 
embedded is examined in detail there. 

1. Notation 

For convenience and to set forth notation we start  with a definition for Hilbert 
algebras. Our notation is tha t  of [15] with some minor changes. For references to the 
original papers on Hilbert algebras we refer the reader to [4] as well as to [15]; 
we call at tention to [6]. 

A Hilbert algebra is an algebra A over the complex field with an involution 
x - +  x* which is a pre-Hilbert space with inner product (x, y) where 

(a) ( x , y ) =  (y*,x*) for all x, y C A ;  
(b) (xy, z ) =  (y,x*z) for all x ,y ,  z E A ;  
(c) for each a EA the linear operator La defined by La(x)= ax, x EA,  

is continuous; 
(d) the set of elements of the form xy, where x, y C A, is dense in A. 
Let  ~= be the operation on A of right multiplication by a C A. We denote 

the completion of A by H = H(A). The operators La and Ra extend to bounded 
linear operators on H which are denoted by Lo and /~  respectively. 
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I t  is known [6, p. 51] tha t ,  in the presence of (a), (b) and (c), the condit ion (d) 
is equivalent  to the  requirement  t ha t  x lies in the  closure of xA (Ax) for each 
x E A. This fact  is used below. F rom this, or by  the more e lementary  a rgument  of 
[3, p. 331], the  mapping x --~ L~ of A into the algebra B(H) of all bounded linear 
operators on H is a *-isomorphism. Therefore, by  [14, Theorem 4.1.19], A is 
semisimple. 

For  a 6 A, HL,II = llLa*[l as L, .  is the adjoint  of L,. Likewise IIRolf = I1-~.11. 
I t  turns  out  t ha t  all four norms are equal. For  

HRa(x)ll = [I(xa)*r[-- [lLa,(x*)ll < llLo,l[llxll. 

Thus [L/~all =< ILL~,ll and similarly HL~,II =< IIR, II. 
For  the theory  of bounded elements for Hilbert  algebras see [6] and [15]. An 

element  a in H = H(A) is left (right) bounded if the mapping La(R,) defined on 
A with values in H by  L,(x) = Ilx(Ct) (tl~(x) = L,(a)) is bounded.  For tuna te ly ,  
a is left  bounded if  and only if  a is r ight  bounded; we then  call a bounded. We 
denote the set of bounded elements of H(A) by Ab. As shown in [6], A~ is i tself 
a Hilbert  algebra in the inner product  of H with  a mult ipl icat ion and involut ion 
extending t h a t  of A. 

The Hilbert  algebra A is called full i f  A = Ab. We shall sometimes refer to 
Ab as the fulfillment of A. This is the language used by  Rieffel in [15]; in [6] and  
elsewhere other terminology is adopted.  

For  a s u b s e t  S in A we set S ;  = {x 6 A: (x, S) = (0)}, L ( S ) = { x e A : x S =  
(0)} and  II(S) = {x 6 A: Nx = (0)}. Arguments  of Kap lansky  [10, Theorem 12] 
show tha t  L ( K ) = K  • I l L ( K ) =  K "J-, R ( J ) =  J• and  L i l ( J ) = J •  for 
every dosed right  ideal K (left ideal J) .  We shall consider Hilbert  algebras which 
arc annihi lator  algebras and  dual  algebras in the sense of [14, Chapter  2]. 

As in [15, Definit ion 7.1] by  the C*-aIgebra C*(A) of A is meant  the operator  
norm closure of {L~: x 6 A} in the algebra B(H) of all bounded linear operators  
on H = H(A). I t  is convenient  to th ink  of A as being algebraically embedded in 
C*(A) via the algebraic *-isomorphism x -+ L,. 

2. Some basic theory for Hilbert algebras 

We are mainly  concerned here wi th  closed ideals K in a Hilber t  algebra A 
and  with the quot ient  algebras A/K. These are studied also in sp3cial classes of 
Hilbert  algebras --  full, dual  and or thocomplemented (see Defini t ion 2.3 for the  
lat ter  term). 

As is well known [8] even for a semi-simple Banach  algebra B, B can be an 
annihi lator  algebra wi thout  being dual  (the reverse implication is trivial). For  
certain classes of topological algebras the two notions agree. This is the ease for 
B*-algebras [2] and, as we now see, for Hilbert  algebras. 
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THEOREM 2.1. The following statements about a Hilbert algebra A are equivalent. 
(1) A is an annihilator algebra. 
(2) Every right or left ideal K in A for which K • = (0) is dense in A. 
(3) J - ~ - J •  is dense in A for each right or left ideal J in A. 
(4) A is a dual algebra. 

Proof. I t  was shown in [22, L e m m a  3.2] t h a t  (1) and  (2) are equivalent.  Clearly 
(2) implies (3). Next  assume (3). Consider a closed r ight  ideal K in A. As noted  
in w 1, t l  L(K) = K l• Le t  K ~ be the closure of  K in the  Hilber t  space completion 
H of A and K ce be its orthogonal  complement  in H. We must  show tha t  
K a ~ c K .  Le t  x E K  l• and write x = l i m ( u , ~ @ v ~ )  where each u ~ E K  and 
v n E K  • Whereas also u ~ E K  ~ and v ,~EK ~# we see t h a t  {u,} an d {v,} are 
Cauchy sequences in the Hilbert  space H.  Then there exist a E K c, b E K ~ where 
u , - + a  and  v~-+b  and x = a - ~ b .  As x C K  •177 we have 0 = ( x , v ~ ) - ~ ( x , b ) .  
Thus (b,b)--~ ( x , b ) - -  ( a , b ) =  0. Therefore x = a E K  ~c lA = K .  In  the same 
way  L R I  = I for a closed left  ideal I .  Inasmuch  as A is semisimple, (4) implies 
(1). 

As shown by  Kap lansky  [10, Theorem 2] a closed ideal I in a semisimple dual  
algebra is a dual  algebra. This can fail if I is not  closed. Again we have a contrast  
with the s i tuat ion for Hilbert  algebras. 

COROLLARY 2.2. A *-ideal W (not necessarily closed) in a dual Hilbert algebra A 
is a dual Hilbert algebra. 

Proof. As shown by  Dixmier  [4, p. 72], W is a Hilbert  algebra (in the involut ion 
*). So also is its closure IF. Bu t  by  the result  of K a p l a n s k y  cited just  above W 
is a dual  algebra. Therefore, wi thout  loss of generali ty,  we m a y  assume t h a t  W 
is dense in A. 

We must  distinguish between or thogonal i ty  in W and in A. As usual for 
a set S c A ,  S • 1 6 3  (0)} whereas for a set T in W we let T # =  
{xE W: (x ,T)  = (0)}. Le t  J be a r ight  ideal in W. By  Theorem 2.1 our task is 
to show t h a t  J is dense in W if J #  = (0). Now o r is a r ight  ideal in A and 
it suffices, by  Theorem 2.1, to show tha t  J• = (0). 

Clearly J A W c J •  W = J #  = (0). As W is dense in A, we get J~A = (0) 
so t ha t  J ~ = ( 0 )  (see w 1). 

Definition 2.3. We say t h a t  the Hilbert  algebra A is an orthocomplemented 
Hilber t  algebra if  A = J | J~  for every closed r ight  or left ideal J in A. 

Example 2.4. By  Theorem 2.1, an or thocomplemented Hilbert  algebra is a dual 
algebra. A Hilbert  algebra can be dual  wi thout  being orthocomplemented.  Consider 
the algebra C(G) of all complex valued continuous functions on the compact  topo- 
logical group G. Here the mult ipl icat ion operat ion is convolution 
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fg(s) = f f(st ~)g(t)d# 
G 

where # is normalized Haar  measure on G and 

(f, g) -~ f f( )ONd, 
G 

The involution is given by f * ( t ) =  f(t-~). 
C(G) is an *-ideal in the H*-algebra L2(G ) (see [10, p. 700]) and hence dual 

in the pre-Hilbert space topology by Corollary 2.2 (other arguments could be used 
to see this). 

Take the special case G = T, the multiplieative group of all complex numbers 
of absolute value one. Each f C C(T) has a Fourier expansion f --~ ~ a~ exp (int). 
Let I = { f C C ( T ) : a n =  0, n <  0}. Then I is a closed ideal in C(T) in t hep re -  
Hilbert space topology, I • = {f E C(T): an = 0, n > 0}, I | I ! is dense in C(T) 
and I @ I • ~ C(T). 

TgEO~E~ 2.5. A full  Hilbert algebra A is an orthocomplemented Hilbert algebra 
and is dual. 

Proof. Let J be a closed right ideal in A and jc its closure in H = H(A). 
We show tha t  Jr is a right-invariant subspace of H in the sense of [15, p. 272], 
tha t  is, /~,(~)CJr for each a E A  and ~EJc .  Let ~ = l i m w n ,  w n E J .  Then 
/~a(~) = lira/?a(Wn) = lim wna E J~. Let P be the orthogonal projection of H 
onto jc. As shown in the proof of [15, Proposition 2.7], P(A) ~- A fl (J~) = J. 
:For a s e t  S in H, let S ~ = { x C H : ( x , S ) =  (0)}. Then H =  J ~ 1 7 4  (jc)~. Given 
x E A  we can write x ~ u + v ,  uEJC,  vE(J~)~. As u = P ( x ) ,  we have u C J  
and v E (jc)~ ffl A = J• That A is dual now follows from Theorem 2.1. 

Example 2.6. At this point it is appropriate to point out tha t  not every ortho- 
complemented Hilbert algebra is full. Consider the algebras %, i ~ p ~ 2, studied 
by McCarthy [ l l ]  and others. This is the class of operators on a Hilbert space for 
which the % norm ITIr ~ [trace (T*T)P/2] I/r is finite. Let the Hilbert space be 
infinite-dimensional. The algebra c~ is the trace class algebra (~c) in the notation 
of Schatten's book [16] while c2 is the H*-Mgebra (ac), the Schmidt-class of 
operators. :For 1 =<p ~ 2, c~ is contained in c2. I f  %,1 ~ p <  2, is given the 
pre-Hilbert space topology inherited from % then it becomes an orthocomplemented 
Hilbert algebra which is not full. The author is indebted to Professor James :F. Smith 
for pointing this out to him. See [18] where this author, in a manuscript just com- 
pleted, has shown more general results. For another example obtained from different 
considerations see Example 4.4 below. 
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TltEORE~ 2.7. Suppose that K is a closed ideal in a Hilbert algebra A.  Then 
K = K* and K is a Hilbert algebra. I f  A is ful l  or orthocomplemented or dual then 
so is K .  

Proof. I f  we show t h a t  K = K*,  we have  K a Hi lbe r t  a lgebra b y  [4, p. 72]. 
We suppose at  f i rs t  t h a t  A is a full Hi lber t  algebra. Le t  x E K.  We claim t h a t  

x* E K.  Since A is full this follows f rom Theorem 2.5 i f  we show x* E K z• Le t  
w E A ,  z E K  • Clearly xz = O =  (xz, w) = (z, x*w). Therefore  x*A C K •177 so 
t h a t  x* E K s• N e x t  we show t h a t  K is full. 

Consider the  complet ion H(K)  of  K;  clearly H ( K ) c  H(A) .  Le t  a E Ks be 
a bounded  e lement  for K.  Then  La def ined b y  La(x) = ]},(a) is a l inear opera to r  
on A and  is bounded  as a mapping  of K into K(H)  with opera tor  bound  M. 
There  is a s e q u e n c e  {vn} in K wi th  a = l i m v , .  F o r  y E K  • we have  L a ( y ) =  
l i m v n y =  0 since each v , y E K N K  • For  z E A  we can write,  b y  Theorem 2.5, 
z = x q - y  wi th  x E K ,  y E K  • Then,  as [[zl] ~=]]x]l eq-IiyI] 2, we get  

[[La(z)][ = IlLo(x)[l ~ MlIx] /~  Milzll. 

Consequent ly  a E A b = A .  Hence  a = l i m v n  lies in K.  
Now we t u rn  to  the  case when A is an a rb i t r a ry  Hi lbe r t  algebra. Le t  K ~ denote  

the  closure of  K in the  full  Hi lber t  a lgebra A~. The  involut ion on Aa ex tends  
t ha t  of  A and  moreover  K ~ is a closed ideal in As. Then,  b y  the  above,  if  x E K,  
we get  x * e K  ~ N A  = K .  Therefore  K is a H i l b e r t  algebra. 

Since K = K*  the  s t a t emen t  on dual  algebras is immedia te  b y  Corollary 2.2. 
Suppose t h a t  A is o r thocomplemen ted  and let  J be a closed r ight  ideal in K.  
As K is dual, J is a r ight  ideal in A b y [ 1 0 ,  Theorem 2] and  so A = J |  J• 
F r o m  this i t  is readi ly  seen t h a t  K = J | J •  N K.  

B y  cont ras t  wi th  Corollary 2.2, a *-ideal in a full (or thocomplemented)  Hi lber t  
algebra need not  be full (or thocomplemented) .  In  the  posi t ive direct ion we have  
the  following result.  

PROI'OSITION 2.8. A *-ideal W in an orthoeomplemented Hilbert algebra A with 
identity 1 is an orthocomplemented Hilbert algebra. 

Proof. Let  J be a r ight  ideal of  W, J closed in W. Now J is not  necessari ly 
a r ight  ideal in A bu t  its closure or in A is ~ r ight  ideal in 1~ and therefore ,  b y  
[10, Theorem 2] and Theorem 2.1, is a r ight  ideal in A. We can then  wri te  
l = u ~ v  where u E o  r and  v E J ' .  Fo r  each z E  W we have  z = u z q - v z  
where uz C orW c J and vz E J"  N W. 

We ma ke  a detai led s t udy  of  the  quot ien t  algebra A / K  where A is a Hi lbe r t  
a lgebra and  K is a closed ideal in A. F i rs t  of  all, by  Theorem 2.7, A / K  is a 
*-algebra where the  involut ion is given by  

(x -~ K)* = x* q- K.  (2.1) 
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We consider the quot ien t  algebra norm 

[ix + KII = inf  fix 4- Y[I- (2.2). 
y E K  

E l e m e n t a r y  a rguments  show tha t ,  for each x, y E A, 

Iix + y 4- Kll 2 4- Ilx - y 4- KI[ ~ = 2(lix 4- KII 2 4- Ily 4- KIln) �9 

Therefore ,  in the norm of (2.2), A / K  becomes a pre-Hi lber t  space where the  inner  
p roduc t  (x 4- K,  y 4- K) is given by  the  quan t i t y  

[llw 4- y 4- KI[ 2 - - [ ix  - -  y + KI[ 2 + il[x 4- iy 4- KI[ 2 --  • -- iy + K1[2]/4 (2.3) 

THEOREM 2.9. Let K be a closed ideal in a Hilbert algebra A. Then A / K  is a 
Hilbert algebra in terms of the involution (2.1) and the inner product (2.3). I f  A is 
full or orthocomplemented or dual then so is A/K.  

Proof. Since I[x* 4- KI[ = [ix + Kll for each x E A we see immedia te ly  t h a t  

( x 4 - K ,  y 4- K) = (y* 4- K,  x* + K) 

for each x, y E A .  Also 

l[(x 4- K)(y 4- K)II = [Lxy 4- K[i <_ inf  IIx(y 4- z)ll _< IILxll]Iy 4- K[[ 
z E K  

so t h a t  left  mul t ip l icat ion by  x 4- K is a bounded  linear opera tor  on A/K.  The  
na tu ra l  homomorph i sm of  A onto A / K  is continuous.  This makes the  set o f  
p roduc ts  {(x 4- K)(y 4- K): x, y C A} a cont inuous image of a dense set in A an d  
therefore  dense in A/K.  I t  remains for us to show th a t  

(xy 4- K, z 4- K) = (y 4- K, x*z + K) (2.4) 

for each x , y ,  z E A .  
We demons t ra te  (2.4) f i rs t  in the special case where A ---- K �9 K • I t  is readi ly  

shown tha t  the  mapping  Q(x) = x 4- K of K z onto  A / K  is an algebraic *-iso- 
morphism and as seen above Q preserves inner  products ,  B y  Theorem 2.7, we get  
(2.4) and the fact  t h a t  A / K  and  K • are equivalent  as Hi lber t  algebras. Using 
Theorem 2.5 and 2.7 we now see our  s t a tements  in the  full or o r thocomplemen ted  
C a s e s .  

Now we consider an a rb i t r a ry  Hi lber t  algebra A. Le t  K c denote  the  closure 
of K in the  fulf i l lment  Ab of  A. B y  the above,  Ab/K ~ is a Hi lber t  a lgebra in 
te rms of  the quot ien t  space norm. The mapping a def ined b y  

a ( f 4 -  K) : f 4 -  K c 

for f C A is an algebraic *-isomorphism of  A / K  into Ab/K c since K c f'l A = K.  
B y  the defini t ion of  the  quot ien t  algebra norms, []a(f)jl ~ -~ Hf][ ~. Now we have a l r ead y  
seen t ha t  A / K  is a pre-Hi lber t  space in the  quot ien t  algebra norm. T h e r e f o r e  
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(f  + K, g + _1;) = (,V, ~g) (e.5) 

for  all f ,  g E A. Fo rmu la  (2.4) for A follows direct ly  f rom (2.5) and the  va l id i ty  
of  (2.4) for A~/K ~. 

Fina l ly  suppose t h a t  A is dual. ]Let :r be the  na tura l  homomorph i sm of  A 
on to  A / K  and  le t  W be a closed r ight  ideal in A / K ,  W =/- A / K .  Then  n-I(W) 
is a closed r ight  ideal in A, :r-l(W) =/= A, :~-I(W) ~ K.  Since, for  some x E A, 
x @ 0 and  xzl- l (W) = (0) we see t h a t  L(W) r (0) in A / K .  B y  Theorem 2.1, 
A / K  is a dual  Hi lber t  algebra. 

This a rgumen t  shows t h a t  if  B is a topological a lgebra which is a cont inuous 
homomorph ie  image of a dual  Hi lber t  algebra A, then  B is a semisimple annihi la tor  
algebra.  

3. Hilbert algebras in the Rieffel norm 

F or  an e lement  x in the Hi lbe r t  a lgebra A we set 

IEx[I, = It~]i + I!Li]. (3.1) 

We refer  to (3.1) as the  Rieffel norm for x. As no ted  in [15, p. 270] A is a n o rm ed  
algebra in this norm and,  if A is full, A is complete  in this norm. Le t  A~ denote  
the  complet ion of  A in the  Rieffel norm and call A replete i f  A = A~. Clearly 
A~ is a *-subalgebra of  the fulf i l lment  Ab of  A. In  generM A~ ~ Ab (see E x a m p l e  
4.4 below). The  Rieffel norm is especially useful to  us in discussing spectral  propert ies  
for  A and the connect ion be tween A and its C*-algebra C*(A). 

A st ra ight - forward  computa t ion  yields 

[Izy]lr <= ]ILx]tliyII~ (3.2) 
for all x, y C A .  

LES~MA 3.1. I f  A is replete, A is a *-ideal in C*(A)  and the involution on A 
is symmetric. 

Proof. Let  y E A  and W C C * ( A )  where W - - l i m L z n ,  z n E A ,  n =  1 , 2 , . . .  
Using (3.2) we see t ha t  

l(zny - -  z,,YlI, <= IIL~ --  Lz,,lll!yll, ~ o 

as m, n --~ oo. Therefore  there  exists v E A where lfv --  z,~yllr --~ O. Then  also 
]FL~- Lznx]]--~ 0. On the o ther  hand  

I I W L , .  - L~jII =< Hw - L@ILyi]-~ 0. 

We see then  t ha t  WLy = L~ and  A is a left  ideal in C*(A),  indeed a two-sided 
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ideal as A is a *-subalgebra of C*(A). The s y mme t r y  of the involut ion on C*(A) 
forces the involut ion to be symmetr ic  on its ideal A. 

I t  is obvious t h a t  no t  all Hilbert  algebras have the s y m m e t r y  property.  We next  
seek a larger class of Hilber t  algebras (see Corollary 3.5) t han  the  replete ones 
where we can be sure of having a hermi t ian  involut ion (sp(h) real for h self-adjoint, 
where sp(h) is the  spectrum of h). 

We shall use the  nota t ion  v~(x) ---- lira llx~ll~/~. 

L E ~ I A  3.2. I f  x is normal in A then v,(x) = IlL, l{ and v~(xx*) = (v,(x)) 2. 

Pro@ Since L~ is a normal  operator on H,  we get 

IIL~II = IIL~-II ~/" =< l lx"l/Y '~ 

for each positive integer n. Then IIEII ~ ~(x). 
We have also 

Ilx~il~ = llLxn-~(x)lL + llL~oI! < iIL~/L"-IIIxI[~. 

Taking n th roots and  let t ing n - +  ov we see t ha t  v~(x)<= !lL~li. We also have 
~,(xx*) = llLx~.ll  = IIL~-II 2 = ( ~ , ( x ) )  ~- 

By a Q-algebra [9] is meant  a topological algebra whose quasiregular elements 
form an open set. Obviously every Banach  algebra is a Q-algebra. We consider a 
normed  Q-algebra B and  use the nota t ion  v(x) = lira ]lx"]I 1/'~ and 9(x) for the 
spectral  radius of x C B. We use the fact  [20, L e m m a  2.1] t ha t  the  normed Q- 
algebras are just  those normed algebras B for which v(x) =- 9(x) for all x C B. 

THEOREM 3.3. Let B be a complex normed Q-algebra with an involution x ~ x*. 
Then ~(xx*) = (v(x)) ~ for all normal x C B i f  and only i f  the involution is hermitian. 

Proof. Assume the condit ion on normal  elements and  let h be self-adjoint. I f  
h has a complex number  a + bi, a, b real, b # 0, in its spectrum, there is a self- 
adjoint  element w ~ eh + dh ~, e, d real, such tha t  i E sp (w). We now modify  
an a rgument  of Arens [1] (see also [14, p. 190]) for our purposes. Consider the  normal  
element 

z = (w + ni)r~w 

where n, m are positive integers. Then 

- -  [i(1 + n)]  2" e sp (z2). 

Therefore, using the remarks on Q-algebras given above, and the rules of [14, 
p. 10] we get 

(1 -}- n) 2"~ ~ 9(z 2) = [v(z)] 2 = v(zz*) -- v[(w 2 + n2)~w 2] 

~ v(w)2(~+l)n2(,, k )=  [~(w 2) ~_ n2]mv(w2). 
0 
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I f  we f ix  n, take  mth roots  and let  m - ~  o~, we get  

(1 + n) 2 __< ~(w 2) + n 2 

for all n = 1, 2 , . . .  Clearly this is impossible for n suff icient ly large. Therefore  
sp (h) is real. 

Suppose the condit ion on the spectra  and  let  x C B be normal .  We consider B 
as embedded  in its Banach  algebra complet ion B *. The  involut ion on B need  
not  ex t end  to an involut ion on B * bu t  in any case there  is a maximal  c o m m u t a t i v e  
subalgebra E of B * containing x and x*. E is a commuta t ive  Banach  algebra 
with space of modular  maximal  ideals 9H. Consider z C E.  B y  [14, Theorem 1.6.14] 
we have  sp (zJE) ~ sp (zIB ~) c sp (zIB). I t  t hen  follows f rom our hypothes is  t h a t ,  
for each M E 9~ ,  (x + x*)(M), i(x --  x*)(M) are real  numbers .  Therefore  x*(M) = 
x M  for each M E c}7~. Consequent ly  v (xx* )=  (v(x)) ~. 

COROLLARY 3.4. Let B be a complex Banach algebra with an involution x --~ x*. 
The involution is symmetric i f  and only i f  v(xx*) = (v(x)) 2 for all normal elements x. 

Proof. This is immedia te  f rom Theorem 3.3 and  the  work of Shirali  and F o r d  
[17]. 

In  [13] P t s  made  an interest ing and detai led s tudy  of  the  funct ion p(x) ~- 
o~(x*x) 1/2 on a Banach  *-algebra with hermi t ian  involut ion (and ident i ty) .  Th eo rem  
3.3 shows t ha t  a no rmed  *-Q-algebra has hermi t ian  involut ion if  and only  if  p(x) = 
~(x) for all normal  x. 

COROLLARY 3.5. The involution is hermitian in a Hilbert algebra which is a 
Q-algebra in its Rieffel norm. 

Proof. This is immedia te  f rom Theorem 3.3 and L e m m a  3.2. 
Ins tances  of  Hi lber t  algebras which are incomplete  O-algebras in the  Rieffel  

norm occur quite natural ly .  Consider the  Hi lber t  a lgebra C(G) of  Ex am p le  2.4. 
The norm Ffi = sup If(t) j is a Banach  algebra norm re la ted  to the  Hi lber t  a lgebra  
norm by  the  inequalit ies J[fll ~ If[ and [fg] ~ ]]fllllgI[ for all f ,  g E C(G). I f  C(G) 
were complete  in the  Rieffel norm we would have,  for  some K > 0, if[ ~ KHfli 
for all f e C(G) and  C(G) would be complete  in the  norm lffl]. B u t  the  complet ion 
of C(G) in t ha t  no rm is L2(G ). To see t ha t  C(G) is a Q-algebra in the  Rieffel no rm 
take  any  f C C(G) with I]f[Ir < 1. Then  If21 < 1 so t h a t  f2 and hence also f is 
quasi-regular.  B y  [9, L e m m a  2] C(G) is a Q-algebra in the  no rm ][gJlr. 

B y  a minimal idempotent we mean  an idempoten t  genera tor  for  a minimal  one- 
sided ideal. Fo r  a minimal  idempoten t  e in a I t i lber t  a lgebra A we have eAe = 
{ce: c complex}. This follows f rom the  fact  t h a t  A is a no rmed  algebra in the l~ieffel 
norm so t h a t  the  Gelfand-Mazur  theorem applies to the  no rmed  division algebra 
eAe. 
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W e  r e tu rn  to the  s tudy  of the  re la t ion of a replete  Hi lbe r t  a lgebra to its 
C*-algebra. W hen  convenient  we consider A as embedded  in U*(A) (see w 1). 

L ~ A  3.6. For a replete Hilbert algebra A,  A and C*(A) have the same minimal 
one-sided ideals. 

Proof. F or  convenience set B = C*(A). Le t  p be a minimal  idempoten t  in A. 
T h e n  {cLp: c complex} ~ {LeLxLe: x e A}. As this set is closed in B it  coincides 
wi th  LeBLp. T h u s  p is a minimal  i dempo ten t  in B. Take  a minimal  idempoten t  
W in B. Then  W A W  = {cW:ceomplex}  as A is dense in B. Inasmuch  as 
W A  W c A by  L e m m a  3.1, W is a minimal  i dempo ten t  of A. 

Le t  p be a minimal  idempotent .  Using L e m m a  3.1 we get  p B  C A. Then  
obvious ly  p B  = pA.  

A fact  relat ing a closed r ight  ideal I in A to its closure I c in C*(A) is the  
following. I f  j is an idempoten t  in A and j $ I  t h en  j $Ic .  F o r  otherwise 
t l L j -  L @ I - + 0  for some sequence {x,,} in I .  Then  Lx(j)-->Li( j)  or x n j - ~ j  

This is impossible as each xnj E I. 

THEOREM 3.7. Let A be a replete Hilbert algebra where C*(A) is dual. Then A 
is dual i f  and only i f  A has dense socle. 

Proof. Suppose t ha t  A has dense socle. Le t  I be a closed r ight  ideal in 
A,  I r A. There  exists a minimal  idempoten t  p no t  in I .  B y  the  above remark ,  
p ~ I c. As C*(A) is dual, there  exists a minimal  idempoten t  q of  C*(A) with  
qI c = (0). B y  L e m m a  3.6, q E A so t ha t  L( / )  ~ (0). Apply  Theorem 2.1. 

The converse follows wi th  the  aid of  [14, Corollary 2.8.16]. For  more on the  
ques t ion  of when C*(A) is dual  see Theorem 4.3 below. 

4. Projections in Hilbert algebras 

We first  use project ions (self-adjoint idempotents)  to cont inue  our  s t u d y  of the  
re la t ion of  A to C*(A). However  our  main  in teres t  here  is to discuss the  t heo ry  
of  Hi lber t  algebras with dense socle. 

Following I~ieffel [15, p. 272] we use E = E(A) to  denote  the  set of all non-zero 
project ions  in Ab. Note  t h a t  we consider the  project ions in Ab r a the r  t h a n  A. 
B y  [15, Theorem 2.31, Ab can be r ich in project ions whereas A has no non-zero 
project ions.  An example  of this is the  Hi lber t  a lgebra of  all complex cont inuous 
funct ions f(t) on [0, 1] with f(0) = 0 with the  inner  p roduc t  
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1 

(f, g) = [ f(t)ff-~dt 
~ r  

0 

and the usual pointwise operations.  
Definition 4.1. We say tha t  A is projection bounded from above (below) if there  

exists c >  0 such tha t  [[PI[ ~c(][P]l  >----e) for all p C E .  
B y  s tandard  Hi lber t  space theory,  E is a par t ia l ly  ordered space if we define 

Pl  ~ P 2  to mean Pl =PlP~ and liP1]] ~ ]IP~II if  p l  ~ P 2 -  Consequent ly  A is 
project ion bounded  from above if A has an identi ty.  

T~EO~E~ 4.2. The following statements about a Hilbert algebra A are equivalent. 
(1) A is projection bounded from above. 
(2) There exists K > 0 such that ilxll <= KllLxII for all x E A. 
(3) There exists K > 0 such that ]lhll ~ KHLh]I for all self-adjoint elements h 

in A. 
(4) A,  is equivalent, in its Rieffel norm, to a B*-algebra. 
(5) At = C*(Ar), where A~ is viewed as a Hilbert algebra. 
(6) Ab is equivalent, in its Rieffel norm, to a B*-algebra. 
(7) A~ = C*(A~). 

Proof. Assume (1). B y  [15, Proposi t ion 2.12] Ab has an approx imate  iden t i ty  
{Pr}" Here  the set of  norms {HPy]I} is bounded  above b y  some K < oo. Then, as 
xp~ --> x in A, J[Lx(py)[ j =< KHL~H and HLx(p~)l I --~ IIxl[. This yields (2). 

Assume (3). Let  a be any  self-adjoint e lement  in At. I t  is clear tha t  there 
exist self-adjoint  elements h,, in A such tha t  [[a --  h~ilr -~  0. Bu t  then ][a --  hn[[-+ 0 
and ][La --  Lh[[--~ 0. Therefore (3) gives [lall < KIILalI. From this and L e m m a  3.1 

and 3.2 we see tha t  sp (a) is real and 2v~(a) >= min (1, K-1)[[aI[r. Then (4) follows 
from [23, Corollary 1]. 

Assume (4). The embedding mapping of  A~ (in its g ieffe l  norm) into C*(Ar) 
is b icont inuous b y  [14, Theorem 4.8.5]. Therefore A~ -~ C*(A~). 

Note  tha t  (5) implies (4) by  the uniqueness of  norm proper ty  for B*-algebras.  
F rom (4) and (5) there  is some M > 0 such tha t  ]Ixl[ + IlLxll < MilLxIi for all 
x C A,. This gives (2). 

N o w  suppose (2) and a E Ab. B y  [15, Proposi t ion 1.17] there  exists a sequence 
{a,} in A such tha t  ] [ a , -  aI]-~ 0 and IILaol] < [ILoll for n = 1, 2 , . . .  Then (2) 

allows us to conclude tha t  Ilall < KllLoll and so the inequal i ty  of  (2) persists on A~. 
The above  a rgument  tha t  (2) implies (5), now applied to Ab, gives (6). F rom (6) 
we deduce (7) b y  [14, Theorem 4.8.5] again. 

Nex t  suppose tha t  (7) holds. Argmnents  above give (2) val id on Ab for some 
K > 0. For  p E E we then have llpll < KIILp[I < K. This completes  the proof. 

For  the  notion of  modular  annihilator algebra see [21]. 
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THEOREM 4.3. Let A be a replete Hilbert algebra which is projection bounded from 
above. Then C*(A) is dual i f  and only i f  A is a modular annihilator algebra. In  that 
case A is orthocomplemented and has the same closed right and left ideals as C*(A). 

Proof. Suppose t ha t  C*(A) is dual. Then  the socle S is dense in C*(A) b y  
[14, Corollary 2.8.16]. By  Theorem 4.2, A = C*(A) and  the i den t i t y  mapping  of  
C*(A) onto A is continuous.  Therefore  S is dense in A. I t  follows f rom Theorem 
3.7 t h a t  A is dual. Since I = I lL(I)  for closed r ight  ideals in A (or C*(A)) the  
con t inu i ty  of  mul t ipl icat ion shows t ha t  a closed r ight  ideal in e i ther  topology  is 
closed in the  o ther  topology.  Therefore  A is clearly a modular  annihi la tor  algebra. 
Fo r  a closed r ight  ideal K we have,  as C*(A) is a dual  B*-algebra ,  t he  
rule C*(A) = K | L(K)* via [2, Theorem 3]. Howeve r  (see w 1) L(K)* = K a. 
Thus A is o r thoeomplemented .  

Now suppose t h a t  A is a modular  annihi la tor  algebra. This not ion is pure ly  
algebraic so t ha t  C*(A) is a modular  annihi la tor  B*-algebra.  B u t  t hen  C*(A) 
must  be a dual  algebra by  [21, Theorem 4.i].  

Example 4.4. Theorem 4.3 shows how to f ind  o r thocomplemented  Hi lber t  algebras 
which are not  full ye t  are replete.  Le t  A be the set of all sequences c = {c,}, 
n = 1, 2 . . . .  , of  complex numbers  such t h a t  

~lc~12/k ~ <  co and l i m c k =  0 
k = l  

made into an algebra by  defining the algebraic operat ions componentwise.  I f  c, d E A 
we set c * :  {g,,} and 

(c, d) = ~ (ek&)//c ~ 
k = I  

A is a commuta t ive  Hi lber t  algebra. Simple computa t ions  show th a t  A = Ar 
bu t  t h a t  Ab is the  larger algebra of  all sequences {a,} such t h a t  

~ iakL2/l~ .2 < cc and sup [ak] < oo. 
k = l  

Thus  A is reple te  bu t  no t  full. As any  project ion in Ab must  be a sequence {a,} 
where each a ,  = 0 or an = 1, A is project ion bounded  f rom above.  I f  M is 
modular  maximal  ideal in A it  is the null space of  a mul t ip l iea t ive  l inear funct ional  
G since A is a Banaeh  algebra in the  Rieffel  norm. S t anda rd  a rguments  show t h a t  
there  is an integer  n .  such t ha t  G(c) c,~ for each c E A. Therefore  A is 
modular  annihi la tor  algebra. Theorem 4.3 shows t h a t  A is o r thocomplemented .  

B y  a trivial renorming of a t I i lber t  a lgebra A is mean t  the  in t roduc t ion  of  a 
new inner p roduc t  (x, Y)I where,  for  some c > 0, (x, Y)I = c(x, y) for  all x, y C A.  
I f  A is equivalent ,  as a normed  linear space, to  a no rmed  algebra then,  as is easily 
seen, there  is a t r ivial  renorming in t e rms  of which it  is a n o r m e d  algebra. 

I t  is convenient  to have at  hand  a sl ightly expanded  version of [15, Theorem 1.16]. 
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LEMMA 4.5. The following statements about the Hilbert algebra A 
(a) 

(b) 
(c) 
(d) 
(e) 
(f) 

are equivalent. 
xy is a continuous function of the two variables x and y simultaneously. 
The mapping x--> Lx is a bounded linear mapping of A into B(H). 
There exists K ~ 0 such that [Ixyl] ~ K][x!]]ry]] for all x, y C A. 
The Rieffel norm is equivalent to the given norm on A. 
Ab ~ H. 
Ab is trivially renormable to be an H*-algebra. 

This is an immediate consequence of [15, w 1]. 
The involution in the Hilbert algebra A is proper (xx* = 0 implies x = 0) 

by  [3, p. 331]. By a lemma of Rickart [14, Lemma 4.10.1], every minimal one-sided 
ideal in A is generated by a projection (we call such a projection a minimalprojection 
of A). For a minimal projection p, pAp  = {cp: c complex} (see w 3). Completeness 
in the Rieffel norm is not required. Thus the arguments of Rieffel [15, Lemma 5.4] 
show that  

I[L=~I] = I lapi l / l lp l l  I I /~1]  = ] [pal l / ] rp l l  (4 .1 )  
for each a E A .  

TtIEORE~ 4.6. Let A be a topologically simple Hilbert algebra with a minimal 
idempotent. Then Ab is trivially renormable to be an H*-algebra. 

Proof. As just noted, A has a minimal projection p. Let W be the (two-sided) 
ideal of A which is algebraically generated by p. Then, in the language of [15], 
W is contained in the minimal bi-invariant subspace I of H(A) containing p. 
By [15, Theorem 5.14], we get I c A b .  But  as W is dense in A we see tha t  
I -- Ab. Another appeal to [15, Theorem 5.14] gives the desired result. 

As a consequence of Theorem 4.6 we see that  any full topologically simple 
Hilbert algebra with a minimal idempotent is automatically complete and in fact 
equivalent to an H*-algebra. For the question of when a Hilbert algebra is equivalent 
to an H*-algebra see Theorem 4.9. 

For the notion of direct topological sum see [14, p. 46]. 

COROLLARY 4.7. Let A be a Hilbert algebra with dense socle. Then A is the direct 
topological sum of its minimal closed ideals each of which is trivially renormable to be 
a dense *-subaIgebra of an H*-algebra. 

Proof. By [21, Lemma 3.11], A is the direct topological sum of its minimal 
closed ideals. Arguments of [7, p. 65] show readily that  each minimal closed ideal 
N is topologically simple. Let S be the socle of A. The socle of N is S N  ([21, 
Lemma 3.10]) which is dense in N. Moreover 2V is a Hilbert algebra by Theorem 
2.7. We apply Theorem 4.6 to complete the proof. 

We can give a more detailed analysis for full Hitbert algebras. 
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COROLLARY 4.8. Let A be a full Hilbert algebra. Then A has dense socle if  and 
only if  the completion H of A is the Hilbert space direct sum of the minimal closed 
ideals of A each of which is trivially renormable to be a topologically simple H*- 
algebra. 

Proof. Suppose t ha t  the  socle S is dense. Then  A is the direct  topological  sum 
of  its minimal  closed ideals by  Corollary 4.7. I f  ~V 1 @ N 2 are two dis t inct  minimal  
closed ideals then,  N1N 2 = N25rl = (0) and  each N* = Nj, we get (N 1, N2) = (0). 
Moreover  each minimal  closed ideal is complete  and of  the  required  form by  Theorem 
4.6. We then  get the  Hi lber t  space decomposi t ion of H.  

The converse follows readi ly  f rom the  facts t h a t  the  socle of  each minimal  closed 
ideal N is dense in N and is included in the  socle of  the  algebra A. 

THnO~n~ 4.9. A full Hilbert algebra A is equivalent to an H*-algebra if  and 
only if  A is projection bounded from below. 

Proof. The  forward  implicat ion is tr ivial .  Assume th a t  A is full and  t h a t  
I]Pll >-- c > 0 for all non-zero project ions in A. We show nex t  t h a t  a non-zero r ight  
ideal I mus t  contain a minimal  project ion.  F i rs t  of all, b y  [15, Theorem 2.3], 
I contains a non-zero projec t ion  1ol. I f  Iol is not  a minimal  project ion t h en  there  
is a r ight  ideal J, (0) :/: J (::: pl A, J 5[= plA.  Now J contains a non-zero pro jec t ion  
q. Since P l q = q ,  (Pl - -  q, q) = 0. Also 101--q  is a pro jec t ion  ~ 0  and llpl[L 2 =  
llqll 2 + E[p: - qH ~. Le t  P2 be one of q, p :  - -  q wi th  Llp~II ~< Ilp:ll/21/2. I f  1o2 is no t  
a minimal  pro jec t ion  we can f ind  a non-zero projec t ion  1oa in I wi th  IIP~II < Ilp~[1/2~/~. 
I f  we cont inue this  process for n stages wi thout  reaching a minimal  project ion,  
]rP,]/--< tlplH/2(n-1)/2. Hence  this process cannot  cont inue indefini tely.  

I t  follows f rom this t h a t  L(S) = (0) where S is the  soele of  A. Inasmuch  
as A is an annihi la tor  a lgebra by  Theorem 2.5, we see t h a t  S is dense in A. 
Now Corollary 4.8 applies to show A is the  direct  topological  sum of  its minimal  
closed ideals each equivalent  to an H*-Mgebra.  A minimal  closed ideal /V is full 
by  Theorem 2.7. Theorem 4.6 and  [15, Theorem 5.14] show th a t  [IxylI <_ c-lilxlI[lyll 
for all x, y C N .  

Le t  H be the  complet ion of  A, { N }  be the  set of  all minimal  closed ideals in 
A and  let  P~ be the  or thogonal  pro jec t ion  of H onto  its closed subspaee N~. 
Arguing as in the  p roof  of Corollary 4.8 we see t h a t  each a E A is the  Hi lbe r t  
space sum a = ~ P ~ ( a ) .  I f  also b E A ,  

ab = Z P  (a) ~ P  (b) = Z P  (a)P (b) = ZP~(ab) 

Therefore  P~(ab) -= P~(a)P(b). Then,  for x, y e A 

llxyl[ 2 = ~llP (x)P~(y)[l e < c-~[IP~(x)Ilel]P (y)ll ~ <= c-2~ll P~(x)II2~I[P=(y)II 2 = c-U[lxlI2l]yll 2. 

An appl icat ion of  L e m m a  4.5 shows t h a t  A is equiva len t  to an H*-algebra .  
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We now re la te  the  socle S of A to  the  in tersect ion Dr (Dl) of  the  closed 
modu la r  m a x i m a l  r ight  (left) ideals. 

PRO1)OSITION 4.10. For a dual Hilbert algebra A we have D r ~ D t = S • 

Proof. L e t  I be a n y  min ima l  r ight  ideal. As no ted  above  I ~ eA where e is 
a project ion.  A simple c o m p u t a t i o n  shows t h a t  ( 1 -  e)A c I • Since A--~ 
eA | (1 - -  e)A i t  follows t h a t  I i = (1 - -  e)A. I f  M is a closed modu la r  m a x i m a l  
r ight  ideal, M • # (0) b y  T h e o r e m  2.1. B u t  M • m u s t  be a min ima l  r ight  ideal 
so as A = M �9 M l we see t h a t  M ~- (M• • Consequent ly  eve ry  closed m o d u l a r  
m a x i m a l  r ight  ideal has the  fo rm (1 - -  e)A for  a min ima l  projec t ion  A. We  see 
t h a t  x E S • i f  and  only  if x lies in eve ry  closed modu la r  m a x i m a l  r ight  ideal. 
Likewise S • ~- Dj. 

Consequent ly ,  for the  dual  H i l be r t  a lgebra  A, S is dense if  and  on ly  if  

D r ---- D t = (0). 
I t  seems to us unl ikely  t h a t  Propos i t ion  4.10 is va l id  for all H i lbe r t  a lgebras  

b u t  we have  no example  a t  hand.  I n  a n y  case, Dr ~ Dl. 

PROt'OSITIO~ 4.11. For any Hilbert algebra A we have D r ----D I. 

Pro@ B y  [12, L e m m a  9.11, D r is a left  as well as a r ight  ideal. F r o m  T h e o r e m  
2.7 we have  D r = D~*. B u t  obvious ly  D~* ---- D/. 

5. Homomorphisms and Hilbert algebras 

W e  tie up the  t heo ry  of  H i l be r t  a lgebras  wi th  t h a t  of  B a n a c h  a lgebras  t h r o u g h  
a s t u d y  of  homomorph i sms .  

PROPOSITIOn 5.1. Let T be a homomorphism of a Banach algebra B onto a 
Hilbert algebra A .  Then T is continuous whether the given or the Rieffel norm is 
used for A .  

Proof. We can consider A as a *-subalgebra  of  the  H i lbe r t  a lgebra  Ab. I n a s m u c h  
as Ab is comple te  in the  Rieffel  n o r m  [15, p. 270] it  is an  A*-a lgebra  [14, p. 181]. 
B y  [14, Theo rem  4.1.20] the re  exists  K > 0 such t h a t  

llT(x)ll ~ IIT(x)llr <~ KI1xll, x c B.  

E a s y  examples  show t h a t  a h o m o m o r p h i s m  T of a H i lbe r t  a lgebra  on to  a 
B a n a e h  a lgebra  can be discontinuous.  I f  T is cont inuous  i t  has  some s t rong  
proper t ies .  
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Tn~og~M 5.2. Let T be a continuous homomorphism of a Hilbert algebra A 
onto a Banach algebra B. Then T is an open mapping and B is equivalent to an 
H *-algebra. 

Proof. Let  ~ denote  the  na tura l  homomorph i sm of  A onto  A/T-I(O) which 
is a Hi lber t  a lgebra in the  quot ien t  algebra l~orm b y  Th eo rem  2.9. W e  have  
a na tu ra l ly  def ined isomorphism T 1 of  A/T- l (0 )  onto  B. Since T1  ~ is cont inuous 
by  Proposi t ion  5.1, and ~ is an open mapping  we see readi ly  t h a t  T is an open 
mapping.  

Consider A c Ab C H = H(A). T extends  to  a bounded  l inear mapping  T '  
of  H onto  B. We show t h a t  T '  res t r ic ted  to A~ is a homomorphism.  Le t  f ,  g E Ab, 
f = l i m x , ,  g = l i m y ,  where each x~,yn lies in A. Then  

T'(fyk) = lira T(x,yk) = T'(f)T(yk). 
r ~  

Bu t  clearly fyk--~ fg. Then  T'(fg) = T'(f)T'(g). ~ o w  we res t r ic t  the  domain  of  
def ini t ion of  T '  to  Ab. B y  Theorem 2.9, Ab/K is a full Hi lbe r t  a lgebra in the  
quot ien t  algebra no rm where K is the Kerne l  of  T ' .  We have  a na tu ra l l y  def ined 
cont inuous isomorphism T'~ of Ab/K onto  B which is bi-continuous as it  is open. 
Le t  p be a non-zero project ion on A~/K. Then  T~(p) is a non-zero idempoten t  
in B. Therefore  

1 ~ IIT'~(p)ll ~ liT'~lll[pll. 

Then  Ab/K is project ion bounded  f rom below. Theorem 4.9 shows t h a t  Ab/K is 
equiva len t  to  an H*-a lgebra  and, therefore ,  so is B. 

Consider a homomorph i sm T of a Hi lber t  a lgebra A into a Hi lber t  a lgebra 
A 1. We m a y  th ink  of A (A1) as embedded  in C*(A) (C*(A1)) and ask abou t  
ex tending  T. A homomorph i sm a of  C*(A) into C*(A1) is said to  extend T 
i f  Lv(~) --~ a(L~) for all x E A. Under  cer ta in  conditions we can obta in  such an 
extension. 

THEOREM 5.3. Suppose there is an *-homomorphism T of a replete Hilbert algebra 
A onto a Hilbert algebra A 1. Then there is a continuous *-homomorphisra of C*(A) 
onto C*(A1) which extends T. 

Proof. We let  Ix]r, ]Lx] and  y(x) be the  Rieffel  norm on A 1, the  opera tor  
norm on H(A1) and  lira lxnl~/n respect ively.  We can use Proposi t ion  5.1 to  see tha t ,  
for some M > 0 ,  we have  iT(x) It <= MLIxLl, for all x E A .  B y  replacing x b y  
x ~ we are led to the  rule y(T(x)) <_ ~,r(x), x ~ A. W e use L e m m a  3.2 to obta in  

IL~(x)[ ~ = IL~(x.x)] = ~ ( T ( z * x ) )  _< ~r(x*x)  = IiLx[I ~ (5.1) 

for  all x E A. The desired homomorph i sm a when res t r ic ted  to  A is given b y  
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and is, by  (5.1), a continuous *-isomorphism there in the C*-algebra norms. I t  
extends to a *-homomorphism (r of C*(A) into C*(A~). The mapping 
determines a *-isomorphism T of  the C*-algebra C*(A)/a-I(O) into C*(A1). B y  
[14, Theorem 4.8.5], ~ is an isometry.  Bu t  its range contains A 1 which is dense 
in C*(A1). Therefore the range of a is all of C*(A1). 

6. Hilbert algebras with completely continuous multiplication 

In  m a n y  of the  s tandard  examples of Hilbert  algebras such as Example  2.4, 
mult ipl icat ion is completely continuous. Here a Hilbert  algebra is considered as 
a normed linear space, in general no t  complete. We use as the defini t ion of complete 
cont inui ty  t h a t  given for normed linear spaces, for example, in [24, p. 274]. Accord- 
ingly we say t h a t  the mult ipl icat ion in a Hilbert  algebra A is completely continuous 
if, given a bounded sequence {xn} and y 6 A, there exists a subsequence {x,k} 
and w 6 A  such tha t  yx%--->w. 

We verify this proper ty  for the Hilbert  algebra A -~ C(G) of Example  2.4. 
For  x E A, let l[x[[ denote the Hilbert  algebra norm and Ix[ denote the supremum 
norm of x. Clearly ]]x[[ < lxl for all x E A. Also, wi th  convolution mult ipl icat ion 
xy we have Ixyl ~ []x[I]ly[[ for all x, y 6 A. Moreover [10] mult ipl icat ion is com- 
pletely continuous if  the complete norm Ix I is used. :Now let {x,} be a sequence 
where each [[x,I[ ~ 1. Le t  a, b E A. Then Ibx,, I < llbll for each n. Then the  set 
{abx,} is to ta l ly  bounded in the Ix[ norm. 

Le t  y E A. There are sequences {a~} and  {b~} in A where I l Y -  anb,ll--> O. 
There is a subsequence {x~,,,} of {x.} wi th  {a~b~x~,,~} a Cauchy sequence in the  
Ix[ norm. Likewise there is a subsequenee {x2,~} of {xl,~} with {a~b2x2,~} a 
Cauchy sequence in the Ix l norm. Continuing in this way  we see t h a t  the  sequence 
{x~,~} has the proper ty  t h a t  {a,b~x~,~} is Cauchy in the  Ix I norm for each n. 
Take e > 0 and choose m so large t h a t  [lY -- amb,,ll < e/4. Now choose N 
where lamb,~(x,,,-- x,,~)l < e/2 for r, s > N.  For  such r, s we see t h a t  
ly(x,,, - -  x~,,)l ~ 2]ly --  ambmll < la,,b,~(x,,, --  x~,,)I < s. Therefore there exists 
w 6 A  with  lyx,,, --  w]---> O. Then also ]lyx,,, --  w]l-+" O. 

L~MM~ 6.1. I f  multiplication in the Hilbert algebra A is completely continuous 
then A is a *-ideal in Ab. 

Proof. Let  a 6Ab and xn-~ a where each xn CA.  Take any  y CA.  There 
exists a subsequence {,%} and an element z e A with  yx%-+ z. As yx,~-+- ya 

in Ab we see t ha t  y a = z e A ,  t ha t  is A is a r ight  ideal in A~. 
This simple result suggests a definition. 
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Definition 6.2. We call a Hi lber t  a lgebra A almost full  i f  A is an ideal in As, 
Such algebras are dual  by  Corollary 2.2. 

Consider ne x t  a dense *-subalgebra W of a full Hi lbe r t  a lgebra F .  B y  [4, p. 72] 
W is i tself  a Hi lber t  algebra. A tedious exercise on the  def in i t ion of  W~ shows t h a t  
Ws ~-- F.  This allows us to recast  Def in i t ion  6.2 to  say  t h a t  A is a lmost  full if  
(and only  if) A is a *-ideal in some full Hi lber t  a lgebra B. F o r  t h en  the  closure 

of A in B is full b y  Theorem 2.7 and  A = As, 

THEOtCE~ 6.3. Let A be an almost full  Hilbert algebra. 
(1) For a closed ideal K in A , K  and A / K  are almost full. 
(2) Any  one-sided ideal J= (0) in A contains a non-zero projection. 

Proof. F r o m  Theorem 2.7, K = K*  is a Hi lber t  algebra. Le t  x 6 K.  There  
exists a sequence {y,} in K wi th  xy , -+  x. Now let  z E As. We show xz E K.  
For  x z - -  l imx(y ,z )  and each y,z 6 A  as A is a lmost  full. Then  x(y,z) E K .  
This a rgument  shows t h a t  K is a *-ideal in the  full Hi lber t  a lgebra As. N ex t  let  
K ~ denote  the  closure of K in As. As no ted  in the  p roof  of  Theorem 2.9, there  
is an algebraic *-isomorphism a of  A / K  into As/K c which preserves inner  
products .  Thus  A / K  is ident if iable  as a Hi lber t  algebra wi th  its image in A s / K t  
Let  x - k K  c, x E A ,  be a typ ica l  e lement  in t h a t  image and  let  w + K  ~, w E A s ,  
be a ny  e lement  of As/K c. Then  ( x + K c ) ( w + K  c ) = x w - t - K  c lies in a(A/K) 
as xw 6 A. Thus  a(A/K) is almost  full being a *-ideal of  the  full Hi lber t  a lgebra 
As/K ~ (see Theorem 2.9). 

We tu rn  to  (2). Le t  F be a full Hi lbe r t  algebra. Arguments  of  ]%ieffel [15, 
Theorem 2.3] show t h a t  if  x ~ 0 in F there  exists y 6 F wi th  yx a non-zero 
pro jec t ion  in F .  Consider a non-zero lef t  ideal J in A. W e  can t ake  w ~ 0 in 
J and v E A s  such t h a t  vw is a non-zero pro jec t ion  in As. As v w v E A  we see 
t h a t  vw ~ (vwv)w lies in J .  

THEOREM 6.4. I f  the multiplication in the Hilbert algebra A is completely continuous 
then H z H(A)  is the Hilbert space direct sum of the minimal closed ideals of A 
each of which is, for some positive integer n, the algebra of all n • n matrices over the 
complex field. 

Proof. I t  is to  be unders tood  t h a t  the  in teger  n can v a r y  f rom one minimal  
closed ideal to another .  

F o r  each idempoten t  e, eA and Ae are f ini te-dimensional  b y  the  l%iesz- 
Schauder  theory .  Le t  J ~ (O) be a left  ideal in A. L e m m a  6.1 and  Theorem 6.3 
show tha t  there  is a non-zero projec t ion  Pl  in J .  I f  PI is no t  a minimal  pro jec t ion  
there  is a left  ideal I,  (0) ~ I C Apl,  I :A ApI. I n  t h a t  case there  is a non-zero 
projec t ion  P2 in I where the  dimension of Ap2 is smaller t h a n  t h a t  of  A p v  I f  
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P2 is no t  a minimal  project ion we can continue this process. This process mus t  

t e rmina te  a t  some stage with a minimal  project ion in J .  
Le t  S denote the socle of  A. I f  S"  =fi (0) then  S • would contain  a minimal  

project ion which is clearly impossible. As A is dual, by  Theorem 2.1 we see tha t  
S is dense in A. Corollary 4.7 gives A as the direct topological  sum of its minimal  

closed ideals. Le t  N be such an ideal and e be a minimal  project ion in N.  Clearly 
A e A  is f ini te-dimensional  so t h a t  A e A  = N .  Moreover N is, say by  Theorem 4.6, 

an H*-algebra  and so is the  algebra of  all n • n matr ices over the complex field 

for some N. As each such N is complete we argue as in the proof  of Corollary 4.8 
to obta in  the H as the Hilber t  space direct sum of these ideals N.  
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