A class of II_{1} factors without property P but with zero second cohomology

B. E. Johnson
University of Newcastle upon Tyne, England

If \mathfrak{H} is a von Neumann algebra, or indeed any Banach algebra, $\mathscr{X}^{2}(\mathfrak{X}, \mathfrak{X})$ is the quotient of the space of continuous bilinear maps $S: \mathfrak{A} \times \mathfrak{A} \rightarrow \mathfrak{A}$ such that

$$
\delta S(a, b, c) \equiv a S(b, c)-S(a b, c)+S(a, b c)-S(a, b) c=0 \quad(a, b, c \in \mathfrak{Q})
$$

by the subspace of those maps of the form

$$
S(a, b)=a R(b)-R(a b)+R(a) b=(\delta R)(a, b)
$$

for some continuous linear map $R: \mathfrak{A} \rightarrow \mathfrak{Y}$. The background to the present paper is the three papers [6], [7] and [5], in which it is shown that $\mathcal{X}^{2}(\mathfrak{A}, \mathfrak{Y})=0$ for type I von Neumann algebras and for hyperfinite von Neumann algebras. In this paper we construct some non hyperfinite Π_{1} factors which have this property. Besides the three papers above we shall also use ideas from [4].

Lemma 1. Let G be a group of permutations of a set $X, x_{0} \in X$ and $H=\{g$: $\left.: g \in G, g x_{0}=x_{0}\right\}$. Suppose H is amenable and G is 3 -fold transitive on X. Then $x^{1}\left(G, \ell^{\infty}(X) / \mathbf{C} 1\right)=0$.
$\ell^{\infty}(X)$ is the space of bounded functions on X and if $f \in \ell^{\infty}(X), g \in G$ we define $g f$ by $(g f)(x)=f\left(g^{-1} x\right)(x \in X)$. C 1 is the set of constant functions in $\ell^{\infty}(X)$ and is closed under multiplication by elements of G so that if $F \in \ell^{\infty}(X) / \mathbf{C} 1, g F$ is well defined. Saying $\mathscr{X}^{1}\left(G, \ell^{\infty}(X) / \mathbf{C} 1\right)=0$ means that whenever Φ is a map $G \rightarrow \imath^{\infty}(X) / \mathbf{C} 1$ with

$$
\begin{aligned}
\|\Phi(g)\| & \leq K \quad g \in G \\
\Phi\left(g g^{\prime}\right) & =\Phi(g)+g \Phi\left(g^{\prime}\right)
\end{aligned} \quad g, g^{\prime} \in G,
$$

that is, if Φ is a bounded crossed homomorphism, then there is $F \in \imath^{\infty}(X) / \mathbf{C} \mathbf{1}$ with

$$
\Phi(g)=g F-F \quad g \in G,
$$

that is Φ is a principal crossed homomorphism. Saying that G is 3 -fold transitive means that if $\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\}$ are two sets of 3 distinct points of X then there is $g \in G$ with $g x_{i}=x_{i}^{\prime} \quad i=1,2,3$. Amenability of groups is discussed in [3, §17].

Proof. If X is finite the result is a consequence of [4, Theorem 3.4]. Accordingly we assume X has at least 3 points. Let Φ be a bounded crossed homomorphism as above. As H is amenable and as $\ell^{\infty}(X) / \mathbf{C 1}$ is the dual of $\ell_{0}=\{a$; $\left.a \in \iota^{1}(X),(a, 1)=0\right\}$ and $F \mapsto g F$ is the adjoint of the map $a \mapsto a g$ where $a g(x)=a(g x)$ on ℓ_{0}, there is F in $\ell^{\infty}(X) / \mathbf{C} 1$ with $\Phi(h)=h F-F$ for all h in H [4, Theorem 2.5]. Replacing Φ by $\Psi: g \mapsto \Phi(g)-g F+F$ we see that Ψ is a bounded crossed homomorphism and Ψ is principal if and only if Φ is. Ψ is zero on H so $\Psi(g h)=\Psi(g), g \in G, h \in H$. Thus Ψ is constant on the left cosets of H, which are in one to one correspondence with the points of X, and so can be considered as a function $\Psi^{\prime \prime}$ on X which is zero at x_{0}. If $\ell^{0}=\{f$: $\left.f \in \ell^{\prime \infty}(X), f\left(x_{0}\right)=0\right\}$ then the quotient map q onto $\ell^{\infty}(X) / \mathbf{C} 1$ is one to one on \imath^{0} and if we define

$$
(g \circ f)(x)=f\left(g^{-1} x\right)-f\left(g^{-1} x_{0}\right) f \in \ell, \quad g \in G, \quad x \in X
$$

then $g \circ f \in \epsilon_{\iota}{ }^{0}$ and $q(g \circ f)=g q(f)$. Thus we can assume that Ψ^{\prime} takes values in 2^{0} rather than $\ell^{\infty}(X) / \mathbf{C} 1$ and we have

$$
\Psi^{\prime}\left(g g^{\prime}\right)=\Psi^{\prime}(g)+g \circ \Psi^{\prime}\left(g^{\prime}\right)
$$

Let $\Theta(x, y)=\left(\Psi^{\prime}(x)\right)(y)(x, y \in X)$. Then Θ is a bounded complex valued function on $X \times X$ which is zero if either variable is x_{0}. The crossed homomorphism property for Ψ shows

$$
\Theta\left(x, g^{-1} y\right)-\Theta\left(x, g^{-1} x_{0}\right)-\Theta(g x, y)+\Theta\left(g x_{0}, y\right)=0 \quad g \in G, x, y \in X
$$

If $x, y \in X \backslash\left\{x_{0}\right\}$ then there is $g \in G$ with $g x_{0}=x_{0}, g x=y$ and the above equation yields $\Theta(x, x)=\Theta(y, y)$. If $g x_{0}=x_{0}, z=g^{-1} y$ we get $\Theta(x, z)=\Theta(g x, g z)$ so that, because G is 3 -fold transitive on X, Θ is constant off the diagonal of $\left(X \backslash\left\{x_{0}\right\}\right) \times\left(X \backslash\left\{x_{0}\right\}\right)$. If α is the value of Θ on the diagonal and β the value off the diagonal then writing $g^{-1} y=z$ and choosing g with $g x=x_{0}$ we have

$$
\Theta(x, z)-\Theta(x, x)+\Theta\left(g x_{0}, g z\right)=0
$$

so that if x, x_{0}, z are distinct then $\alpha-\beta+\alpha=0$. Defining $\varphi(x)=-\beta$ if $x \neq x_{0}$, $\varphi\left(x_{0}\right)=0$ we easily check that $\Theta\left(g x_{0}, y\right)=\varphi\left(g^{-1} y\right)-\varphi\left(g^{-1} x_{0}\right)-\varphi(y)$ for all $g \in G, y \in X . \varphi \in \varepsilon^{0}$ and this equation can be rewritten $\Psi^{\prime}\left(g x_{0}\right)=g \circ \varphi-\varphi$ from which we see $\Psi(g)=g q(\varphi)-q(\varphi)$.

Theorem 2. Let (Z, ν) be a locally compact, σ-compact measure space and G a group of homeomorphisms of Z such that $\nu \circ g$ is absolutely continuous with respect
to v for all g in G ．Let K be an amenable normal subgroup of G and H an amenable subgroup containing K ．We suppose that
（i）$a \cap a U_{g}=\{0\}$ if $g \neq e$
（ii）K is ergodic on Z
（iii）G is 3－fold transitive on the left coset space G / H
where the notation is that of $[1, \mathrm{p} .134]$ ．Let ， 3 be the von Neumann algebra con－ structed from $Z, v, G\left[1\right.$, p．133－135］．Then $\mathcal{C}^{2}(\mathcal{P}, \mathcal{B})=0$ ．

Proof．We shall use the notation of［1，Ch．1，§9］，in particular that of Ex．1 p． 137. Let \mathfrak{N}_{0} be the norm closed＊subalgebra of $\mathscr{L}(\mathfrak{L})$ generated by the operators $\{\Phi(T) ; T \in \mathbb{Z}\},\left\{\tilde{U}_{k} ; k \in K\right\}, \mathfrak{A}$ the weak closure of $\mathfrak{A}_{0}, \mathfrak{B}_{0}$ the norm closed algebra generated by $\left\{\Phi^{\prime}(T) ; T \in \mathbb{Z}\right\}$ and $\left\{\tilde{U}_{h}^{\prime} ; h \in H\right\}$ and \mathfrak{B} the weak closure of \mathfrak{B}_{0} ．It is easy to see that the subgroup \mathscr{U} of the unitary group of \mathfrak{A}_{0} generated by the $\left\{\Phi(U) ; U^{-1}=U^{*} \in A\right\}$ and $\left\{\widetilde{U}_{k} ; k \in K\right\}$ is an extension of the abelian group $\left\{\Phi(U): U^{-1}=U^{*} \in a\right\}$ by a group isomorphic with K and so \mathcal{U} is amenable［3，Theorems 17.5 and 17．14］．Thus \mathfrak{A}_{0} is strongly amenable［4，Pro－ position 7．8］．Similarly \mathfrak{B}_{0} is strongly amenable．If M is a translation invariant mean on \mathscr{U} then defining

$$
(P X \xi, \eta)=\underset{U \in u}{M}\left(U^{*} X U \xi, \eta\right) \quad \xi, \eta \in \tilde{\mathfrak{F}}, \quad X \in \mathscr{L}(\tilde{\mathfrak{H}}),
$$

where the right hand side indicates the value of M at the function $U \mapsto\left(U^{*} X U \xi, \eta\right)$ ， we define a projection $P: \mathscr{L}(\tilde{\mathfrak{E}}) \rightarrow \mathfrak{Y}_{0}^{\prime}=\mathfrak{H}^{\prime}$ with $P(X B)=P(X) B, P(B X)=$ $=B P(X)$ for $B \in \mathfrak{H}^{\prime}, X \in \mathscr{L}(\tilde{\mathfrak{F}})$ ．There is a similar projection Q onto \mathfrak{B}^{\prime} ．

By［5，Lemma 5．4］to show $\mathscr{H}^{2}\left(\mathcal{Y}, \mathscr{B}^{2}\right)=0$ it is enough to show that if S ： $9 \times$ 脱 \rightarrow is separately ultraweakly continuous，$\delta S=0$ and $S(a, b)=0$ if either a or b lies in $9 Y_{0}$（and so too if a or b lies in \mathfrak{Y} ）then $S=\delta R_{0}$ for some norm continuous map R_{0} ：影 \rightarrow 讷．Using［7，Theorem 2．4］we see that there is a norm continuous map $R: \mathscr{B} \rightarrow \mathscr{L}(\tilde{\mathfrak{y}})$ with $S=\delta R$ and by［5，Lemma 5．5］ with $\quad m=\mathscr{L}(\tilde{\mathfrak{F}})$ we can take R to be ultraweakly continuous．As $R(a b)=$ $=a R(b)+R(a) b$ for all a in \mathfrak{A} using the definition of amenable algebra［4，§5］ we see that there is $x \in \mathscr{L}(\tilde{\mathfrak{S}})$ with $R(a)=a x-x a$ for all a in \mathfrak{A}_{0} and so， by ultraweak continuity，for all a in \mathfrak{A} ．Replacing R by $a \mapsto R(a)-a x+x a$ if necessary we can assume R is zero on \mathfrak{A} ．Replacing R by $Q R$ if necessary we can assume in addition that R maps T into \mathfrak{B}^{\prime} ．We have $0=S(a, b)=$

The set of generators of \mathfrak{N}_{0} is mapped onto itself under the automorphism $X \mapsto \tilde{U}_{g}^{*} X \tilde{U}_{g}$ of $\mathscr{L}(\tilde{\mathfrak{F}})$ so $\tilde{U}_{g}^{*} \mathfrak{M} \tilde{U}_{g}=\mathfrak{M}$ for all g in G ．Hence $R\left(\tilde{U}_{g}\right) \tilde{U}_{g}^{*} A \tilde{U}_{g}=$
$=R\left(A \tilde{U}_{g}\right)=A R\left(\tilde{U}_{g}\right)$ for all $A \in \mathfrak{A}, g \in G$, so that $R\left(\tilde{U}_{g}\right) \tilde{U}_{g}^{*} \in \mathfrak{Y}^{\prime}$. Also $R\left(\tilde{U}_{g}\right) U_{g}^{*}$ $\in \mathfrak{B}^{\prime}$ because $R\left(\tilde{U}_{g}\right)$ and \tilde{U}_{g} are.
$\tilde{\mathfrak{V}}$ is a direct sum of copies of \mathfrak{S} so any element L of $\mathscr{L}(\tilde{\mathfrak{W}})$ can be represented as a $G \times G$ matrix with entries from $\mathscr{L}(\mathfrak{F})$. We shall investigate the special form this matrix takes when $L \in \mathfrak{X}^{\prime} \cap \mathfrak{B}^{\prime}$. As $L \Phi(T)=\Phi(T) L$ we have $L_{s, u} T=$ $=T L_{s, u}$ for all T in \mathcal{Q}, s, u in G. As \mathcal{Q} is maximal abelian this shows $L_{s, u} \in \boldsymbol{Q}$. A similar calculation starting from $L \Phi^{\prime}(T)=\Phi^{\prime}(T) L$ shows $L_{s, u} \in U_{s} Q U_{u}^{*}=$ $=C \mathcal{U} U_{s u^{-1}}$ so $L_{s, u} \in \mathscr{Q} \cap \not U_{s u^{-1}}=\{0\}$ if $s \neq u$. Thus $L_{s, u}=\delta_{s, u} Y_{s}$ where for each s in $G, Y_{s} \in \mathcal{C}$. The equation $L \tilde{U}_{k}=\tilde{U}_{k} L$ shows $Y_{k u}=U_{k} Y_{u} U_{k}^{*}$ for $k \in K, u \in G$. The equation $L \tilde{U}_{h}^{\prime}=\tilde{U}_{h}^{\prime} L$ shows $Y_{u h}=Y_{u}$ for all $u \in G$, $h \in H$. Thus $Y_{u}=U_{k}^{*} Y_{k u} U_{k}=U_{k}^{*} Y_{u u^{-1 k u}} U_{k}=U_{k}^{*} Y_{u} U_{k}, u \in G, k \in K$. As K is ergodic on Z this implies $Y_{u}=y_{u} I_{\mathfrak{w}}$ for some $y_{u} \in \mathbf{C}$. Thus if $L \in \mathfrak{X}^{\prime} \cap \mathfrak{B}^{\prime}$ then

$$
L_{s, t}=\delta_{s, t} y_{t} I_{\mathfrak{y}}
$$

for some complex valued function y on G which is constant on the left cosets of H. Clearly y is bounded. Writing $J L$ for y we see that J is a linear isometry of $\mathfrak{U}^{\prime} \cap \mathfrak{B}^{\prime}$ onto $\ell^{\infty}(X)$ where X is the space of left cosets of H in G. Moreover $\tilde{U}_{g} L \tilde{U}_{g}^{*} \in \mathfrak{A}^{\prime} \cap \mathfrak{B}^{\prime}$ and $J\left(\tilde{U}_{g} L \tilde{U}_{g}^{*}\right)=g J L$ where the product of $g \in G$, $J L \in \ell^{\infty}(X)$ is as defined in Lemma 1. Another calculation shows that $J\left({ }^{\circ} \cap \mathfrak{H} \cap{ }^{\prime}\right)=$ $=\mathrm{C} 1$.

Put $\quad \Phi_{0}(g)=J\left(R\left(\tilde{U}_{g}\right) \tilde{U}_{g}^{*}\right)$. The equation $S\left(\tilde{U}_{g}, \tilde{U}_{g^{\prime}}\right)=\delta R\left(\tilde{U}_{g}, \tilde{U}_{g^{\prime}}\right) \quad$ where $S\left(\tilde{U}_{g}, \tilde{U}_{g^{\prime}}\right) \tilde{U}_{g^{\prime}}^{*} \tilde{U}_{g}^{*} \in \mathcal{B}$ and $R\left(\tilde{U}_{g^{\prime \prime}}\right) U_{g^{\prime \prime}}^{*} \in \mathfrak{A} \mathfrak{A}^{\prime} \cap \mathfrak{B}^{\prime}$ for all $g^{\prime \prime} \in G$ shows that $\delta R\left(\tilde{U}_{g}, \tilde{U}_{g^{\prime}}\right) \tilde{U}_{g^{\prime}}^{*} \tilde{U}_{g}^{*} \in \mathcal{T}^{\prime} \cap \mathfrak{H}^{\prime}$ from which we see $g \Phi_{0}\left(g^{\prime}\right)-\Phi\left(g g^{\prime}\right)+\Phi(g) \in \mathbf{C} 1$. Thus $q \Phi_{0}$ is a bounded crossed homomorphism from G into $\ell^{\infty}(X) / \mathbf{C} 1$. Let $z \in \ell^{\infty}(X)$ with $q^{\Phi_{0}}(g)=q q(z)-q(z) \quad$ (using the Lemma) and let $L_{0} \in \mathfrak{X}^{\prime} \cap \mathfrak{B}^{\prime}$ with $J L_{0}=z$. We have

$$
J\left(R\left(\tilde{U}_{g}\right) \tilde{U}_{g}^{*}-\tilde{U}_{g} L_{0} \tilde{U}_{g}^{*}+L_{0}\right) \in \mathbf{C} 1
$$

so that $R\left(\tilde{U}_{g}\right) \tilde{U}_{g}^{*}-\tilde{U}_{g} L_{0} \tilde{U}_{g}^{*}+L_{0} \in \mathbf{C} I_{\tilde{\mathfrak{p}}} \subset 93$. Thus defining $R_{0}(B)=R(B)-$ $-\left(B L_{0}-L_{0} B\right)$ for all B in B we see that R_{0} is an ultraweakly continuous map from ${ }^{T}$ into \mathfrak{B}^{\prime}.

Because $L_{0} \in \mathfrak{U}^{\prime} \quad$ and $\quad R(A B)=A R(B), R(B A)=R(B) A \quad$ and $\quad R(A)=0$ if $A \in \mathfrak{A}, B \in \mathscr{Z}, R_{0}$ has the same properties. In addition if $g \in G$ then $R_{0}\left(\tilde{U}_{g}\right)=$ $=\left(R\left(\tilde{U}_{g}\right) \tilde{U}_{g}^{*}-\tilde{U}_{g} L_{0} \tilde{U}_{g}^{*}+L_{0}\right) \tilde{U}_{g} \in \mathscr{B}$. Thus if $T \in a, g \in G$ then $R_{0}\left(\Phi(T) \tilde{U}_{g}\right)=$ $=\Phi(T) R_{0}\left(\widetilde{U}_{g}\right) \in M$. As R_{0} is ultraweakly continuous and the ultraweakly closed linear span of the $\Phi(T) \tilde{U}_{g}$ is \mathscr{S} we see that $R_{0}(\mathscr{B}) \subseteq \mathscr{B}$. For all B_{1}, B_{2} in \mathscr{B} we have
$S\left(B_{1}, B_{2}\right)=B_{1} R\left(B_{2}\right)-R\left(B_{1} B_{2}\right)+R\left(B_{1}\right) B_{2}=B_{1} R_{0}\left(B_{2}\right)-R_{0}\left(B_{1} B_{2}\right)+R_{0}\left(B_{1}\right) B_{2}$.

Thus to provide our example we have only to show that the hypotheses can be satisfied in some situation in which \quad is a type I_{1} factor without property P [8, Definition 1]. To facilitate this we simplify condition * [1, p. 135].

Lemma 3. Let Z be a locally compact σ-compact metrizable space, v a positive Radon measure on Z, s a homeomorphism of Z. Then the following condition * is satisfied if and only if $\nu(\{z: z \in Z, s z=z\})=0$.
$\left.{ }^{*}\right)$ For each measurable set Z^{\prime} in Z with $v\left(Z^{\prime}\right) \neq 0$ there is a measurable subset $Z^{\prime \prime}$ of Z^{\prime} with $v\left(Z^{\prime \prime}\right) \neq 0$ and $Z^{\prime \prime} \cap s Z^{\prime \prime}=\emptyset$.

Proof. If $F=\{z: z \in Z, z=s z\}$ has $v(F)=0, Z^{\prime} \subseteq Z, v\left(Z^{\prime}\right)>0$ and d is a metric on Z compatable with the topology then

$$
Z_{n}=\left\{z: z \in Z^{\prime}, \quad d(z, s z)>n^{-1}\right\}
$$

defines a monotonic increasing sequence of measurable subsets of Z with union $Z \backslash F$ where $v(Z \backslash F)=v(Z)>0$. Thus for some $n, v\left(Z_{n}\right)>0$. Taking a compact subset K of Z_{n} with $\nu(K)>0$ and a ball B centre z_{0} of radius $(2 n)^{-1}$ with $v(B \cap K)>0$ we put $Z^{\prime \prime}=B \cap K$. Then if $z \in Z^{\prime \prime}$ we have $d\left(z_{0}, s z\right) \geq$ $\geq d(z, s z)-d\left(z_{0}, z\right)>(2 n)^{-1}$ showing $s z \notin Z^{\prime \prime}$. The converse is obvious.

Example 4. In Theorem 2 let $Z=\mathbf{Z}_{2}^{\mathbf{Q}^{2}}$, that is the product of a countable number of copies of the group of integers mod 2, the factors being indexed by pairs of rational numbers, with the usual product topology and let v be Haar measure on Z with $v(Z)=1$. Thus Z is a compact metrizable group. Let $Z_{0}=$ $\left\{z: z \in Z, z_{p}=0\right.$ for all but a finite number of $\left.p \in \mathbf{Q}^{2}\right\}$ and let K be the set of all mappings of Z onto itself of the form $z \mapsto z+z_{0}$. K is then an abelian group of homeomorphisms preserving ν and, in particular, is amenable [3, Theorem 17.5]. If $F \in L^{\infty}(\nu)$ has $F(k z)=F(z)$ for almost all z in Z for each $k \in K$ then we have $\int f\left(z-z_{0}\right) F(z) d v(z)=\int f(z) F(z) d v(z)\left(f \in C(Z), z_{0} \in Z_{0}\right)$. As $y \mapsto \int f(z-y) F(z) d \nu(z)$ is continuous and Z_{0} is dense in Z this shows $F v$ is an invariant integral on $C(Z)$ and hence F is a constant. Thus K is ergodic on Z.

For any one to one map α of \mathbf{Q}^{2} onto itself $\alpha^{\prime}: z \mapsto\left\{z_{\alpha(p)} ; p \in \mathbf{Q}^{2}\right\}$ is an automorphism of the topological group Z and so is a homeomorphism preserving \boldsymbol{v}. G is the group of homeomorphisms of Z generated by K and the α^{\prime} with $\alpha \in$ $\mathrm{SL}(2, \mathbf{Q})$ where the matrix group acts on \mathbf{Q}^{2} in the usual way. Every element of G can be written $k \alpha^{\prime}, k \in K, \alpha \in \operatorname{SL}(2, \mathbf{Q})$ in exactly one way. If $\alpha \in \operatorname{SL}(2, \mathbf{Q})$, and α is not the identity then α has an infinite number of non fixed points in its action on \mathbf{Q}^{2} so we can find an infinite subset E of \mathbf{Q}^{2} with $E \cap \alpha(E)=\emptyset$. If $k \in K$ is the homeomorphism $z \mapsto y+z$ then the equation $k \alpha^{\prime} z=z$ is equivalent to the system $z_{p}=z_{\alpha(p)}+y_{p}\left(p \in \mathbf{Q}^{2}\right)$ so that if E_{0} is a subset of E containing exactly n elements the set of fixed points of $k \alpha^{\prime}$ is a subset of

$$
\left\{z: z \in Z, z_{p}=z_{\alpha(p)}+y_{p}, p \in E_{0}\right\}
$$

where this latter set has v measure 2^{-n}. Thus the set of fixed points of $k \alpha^{\prime}$ has measure zero. If $k \in K$ then k has no fixed points unless k is the identity. Thus by Lemma 3 we see that G satisfies condition *. G is ergodic on Z because K is. Thus [1, p. 135] condition (i) of Theorem 3 holds.

Let H be the subgroup of G containing K and those homeomorphisms α^{\prime} where $\alpha \in \Gamma_{1}=\left\{\alpha: \alpha \in \operatorname{SL}(2, \mathbf{Q}), \alpha_{21}=0\right\}$ and H_{1} the group generated by K and the α^{\prime} with

$$
\alpha \in \Gamma_{2}=\left\{\alpha: \alpha \in \mathrm{SL}(2, \mathbf{Q}), \quad \alpha_{11}=1, \alpha_{21}=0\right\} .
$$

Γ_{2} is normal in Γ_{1} and H_{1} and H are the inverse images of Γ_{2} and Γ_{1} under the isomorphism $\quad \chi: k \alpha^{\prime} \mapsto \alpha$ of G / K onto $\mathrm{SL}(2, \mathbf{Q})$ so that K is normal in H_{1}, H_{1} is normal in H and $K, H_{1} / K$ and H / H_{1} are abelian. Thus [3, Theorems 17.5 and 17.14] H is amenable. In the usual way $\mathrm{SL}(2, \mathbf{Q})$ acts on the rational projective line and I_{1} is the subgroup leaving $(0,1)$ fixed. Under x the action of G on G / H is mapped onto this action and it is well known that the action of $\mathrm{SL}(2, \mathbf{Q})$ on the projective line is 3 -fold transitive. Thus condition (iii) of Theorem 2 is satisfied. By [1, p. 135] $T 3$ is a Π_{1} factor.

To complete our example we copy the argument in [8, Lemma 7] to show that Th does not have property P. As G contains a group isomorphic with $\operatorname{SL}(2, \mathbb{Z})$ which in turn contains a free group on two generators ($[2, \mathrm{p} .26]$), G is not amenable [3, Theorem 17.16]. However ${ }^{\prime 2}$ is spatially isomorphic with M' $^{\prime}$ [1, p. 137, Ex. I] so that if has property P so has ${ }^{\prime \prime}{ }^{\prime}$ ' and in this case there is a state τ on $\mathscr{L}(\tilde{\mathfrak{y}})$ with $\tau\left(U^{*} A U\right)=\tau(A)$ whenever $A \in \mathscr{L}(\tilde{\mathfrak{F}})$ and U is unitary in \mathscr{B}^{\prime} [8, Corollary 6]. If $F \in \ell^{\infty}(G)$ and A_{F} is the element of $\mathscr{L}(\tilde{\mathfrak{F}})$ defined by $\left(A_{F}\right)_{s, t}=F(s) \mathrm{I}_{\mathfrak{j}}$ if $s=t,\left(A_{F}\right)_{s, t}=0$ otherwise, then denote $\tau\left(A_{F}\right)$ by $M(F)$. M is then a state on $\ell^{\infty}(G)$ and $M(g F)=\tau\left(A_{g F}\right)=\tau\left(\tilde{U}_{g}^{\prime} A_{F} \tilde{U}_{g}^{*}\right)=\tau\left(A_{F}\right)=M(F)$ so that M is an invariant mean for $\ell^{\infty}(G)$.

References

1. Dixmier, J., Les algèbres d'opérateurs dans l'espace Hilbertien, 2nd edition, Gauthier-Villars, Paris, 1969.
2. Hall, P. and Hartley, B., The stability group of a series of subgroups, Proc. London Math. Soc. (3) 16 (1966), 1-39.
3. Hewitt, E. and Ross, K. A., Abstract harmonic analysis, Vol. 1, Springer, Berlin, 1963.
4. Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
5. - - Kadison, R. V. and Ringrose, J. R., Cohomology of operator algebras III, Reduction to normal cohomology, Bull. Soc. Math. France 100 (1972), 73-96.
6. Kadison, R. V. and Ringrose, J. R., Cohomology of operator algebras I, Type I von Neumann algebras, Acta Math. 126 (1971), 227-243.
7. - - - Cohomology of operator algebras II, Extended cobounding and the hyperfinite case, Ark. Mat. 9 (1971), 55-63.
8. Schwartz, J. T., Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 14 (1963), 19-26.
B. E. Johnson

University of Newcastle Newcastle upon Tyne England.

