Some remarks on Stolt's Theorems for Pellian Equations

Peter Heichelherm
Toronto, Canada

Abstract

One of the theorems of Bengt Stolt's article »On the Diophantine Equation $u^{2}-D v^{2}=4 N$ » is not quite correct in its entirety. A counter-example will be given to show this. A modification of the theorem which he was trying to prove will be given for certain special cases.

1. Introduction

Here is a summary of some of the definitions and theorems given in Stolt [1]. All integer solutions (x, y) of

$$
\begin{equation*}
x^{2}-D y^{2}=4 \tag{1}
\end{equation*}
$$

for $D>0$ and not a square are given by

$$
\frac{x+\sqrt{D} y}{2}= \pm\left(\frac{x_{1}+\sqrt{D} y_{1}}{2}\right)^{i}
$$

where i is any integer and $\left(x_{1}, y_{1}\right)$ is the smallest positive solution of (1).
Let $\left(u^{*}, v^{*}\right)$ be any integer solution of

$$
\begin{equation*}
u^{2}-D v^{2}=4 N \tag{2}
\end{equation*}
$$

for $D>0$ and not a square.
Then a class of solutions of (2) consists of all solutions (u,v) such that

$$
\frac{u+\sqrt{D} v}{2}= \pm\left(\frac{u^{*}+\sqrt{D} v^{*}}{2}\right)\left(\frac{x_{1}+\sqrt{D} y_{1}}{2}\right)^{i}
$$

All solutions of (2) can be divided into a finite number of classes of solutions. Two solutions which belong to the same class of solutions are called associated.

A simple criteria to see if two solutions (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are associated is if $\left(u v^{\prime}-u^{\prime} v\right) / 2 N$ is an integer.

In every class of solutions of (2) it is well known that there is at least one solution (u, v) such that

$$
\begin{equation*}
0 \leq v \leq \frac{y_{1} \sqrt{|N|}}{\sqrt{x_{1}+2 N /|N|}} \tag{3}
\end{equation*}
$$

and $\quad 0 \leq|u| \leq \sqrt{\left(x_{1}+2 N /|N|\right)|N|}$.
In [1] Stolt claims to prove that if N is square-free then the number of classes of solutions is a power of two. However $u^{2}-79 v^{2}=4(3)(5)(7)(13)$ has six classes of solutions. The next section will give details of this.

2. Details of counter-example

Theorem 1. The equation $u^{2}-79 v^{2}=4(1365)=4(3)(5)(7)(13)$ has six classes of solutions.

Proof. In every class of solutions of $u^{2}-79 v^{2}=4(1365)$ there will be at least one solution (u, v) such that

$$
0 \leq v \leq 18 \sqrt{1365} / \sqrt{160+2}=2 \sqrt{1365 / 2}=\sqrt{2730}<53
$$

Table

v	u^{2}	v	u^{2}	v	u^{2}
1	5539	19	33979	37	113611
2	$5776=(76)^{2}$	20	37060	38	119536
3	6171	21	40299	39	125619
4	$6724=(82)^{2}$	22	43696	40	131860
5	7435	23	47251	41	138259
6	8304	24	50964	42	144816
7	9331	25	54835	43	151531
8	10516	26	58864	44	$158404=(398)^{2}$
9	11859	27	63051	45	165435
10	13360	28	67396	46	172624
11	15019	29	71899	47	179971
12	16836	30	76560	48	187476
13	18811	31	81379	49	195139
14	20944	32	86356	50	202960
15	23235	33	91491	51	210939
16	25684	34	96784	52	219076
17	28291	35	102235		
18	31056	36	107844		

Inspection of the table of squares in Barlow's Tables and the above table show that the only solutions of $u^{2}-79 v^{2}=4(1365)$ such that $0 \leq v<53$ are $(u, v)=$ $(76,2),(-76,2),(82,4),(-82,4),(398,44)$, and $(-398,44)$. As none of these solutions are associated with each other, then the number of classes of solutions is six.

3. Number of classes of solutions in special cases

Details on the theory of ideals and algebraic integers in the quadratic case are given in Stolt [1] and Hancock [2].

Theorem 2. Let
or

$$
\begin{align*}
& u^{2}-D v^{2}=+4 \prod_{i=1}^{n} p_{i} \tag{4}\\
& u^{2}-D v^{2}=-4 \prod_{i=1}^{n} p_{i} \tag{5}
\end{align*}
$$

where D is square-free and the p_{i} 's are distinct primes. At least one of (4) or (5) is solvable in integers.

Let C_{1}, C_{2} be the number of classes of solutions of (4) and (5) respectively.
In the field $K(\sqrt{D})$ the ideal $\left(p_{i}\right)$ equals $q_{i} q_{i}^{\prime}$ where q_{i} and q_{i}^{\prime} are prime conjugate ideals for all i. Let $q_{i} \neq q_{i}^{\prime}$ for $i=1, \ldots, l$ and $q_{i}=q_{i}^{\prime}$ for $i=l+1, \ldots, n$. Choose $r_{i}=q_{i}$ or q_{i}^{\prime}.

Let S be the number of ways the set $\left(r_{1}, r_{2}, \ldots, r_{l}\right)$ can be chosen so that $\prod_{i=1}^{l} r_{i}$ is a principal ideal.

Then $S=C_{1}=C_{2}$ if $x^{2}-D y^{2}=-4$ is solvable, $S=C_{1}+C_{2}$ otherwise.

Proof. Suppose (α) is a principal ideal such that $(N)=(\alpha)\left(\alpha^{\prime}\right)$ where $\left(\alpha^{\prime}\right)$ is the conjugate of (α). Then it is easy to see that any class of solutions of (4) will correspond to one and only one principal ideal (α). Also two different classes of solutions of (4) will correspond to two different principal ideals (α). The same is true for (5).

As $(N)=(\alpha)\left(\alpha^{\prime}\right)=\left(\alpha \alpha^{\prime}\right)$ then $\alpha \alpha^{\prime}=N$ or $\alpha \alpha^{\prime}=-N$ where α and α^{\prime} are algebraic integers which are generators of (α) and (α^{\prime}) respectively. This shows that every (α) corresponds to a class of solutions of (4) or of (5) or of both. But it is easily shown that (α) corresponds to a class of solutions of both (4) and (5) if and only if $x^{2}-D y^{2}=-4$ is solvable.

Therefore the theorem is true since (α) equals $\prod_{i=1}^{n} r_{i}$ uniquely for exactly one set $\left(r_{1}, \ldots, r_{n}\right)$ and hence for exactly one set $\left(r_{1}, \ldots, r_{l}\right)$.

Comment. The above theorem shows how the evaluation of the number of classes of solutions becomes a combinatorial problem.

A case where both equations (4) and (5) are solvable while $x^{2}-D y^{2}=-4$ is not, is given by $u^{2}-34 v^{2}=+4(3)(5)$ and $u^{2}-34 v^{2}=-4(3)(5)$. Now the only values of (u, v) satisfying (3) for $u^{2}-34 v^{2}=+4(3)(5)$ and $u^{2}-34 v^{2}=$ $-4(3)(5)$ are $(14,2),(-14,2)$ and $(22,4),(-22,4)$ respectively. As neither pair of solutions is associated in this case, $C_{1}=2$ and $C_{2}=2$. This is somewhat different from that indicated in Stolt [1], page 119-120.

4. Evaluation of S for the class-number of $K(\sqrt{D}) \leq 6$

It is well known that all ideals in $K(\sqrt{D})$ can be divided into a finite number of equivalence classes. The set of these equivalence classes is an abelian group under multiplication. If two ideals q_{1} and q_{2} are in the same equivalence class then $q_{1} \sim q_{2}$.

Theorem 3. Suppose S is defined as in Theorem 2 and the class-number h of $K(\sqrt{D}) \leq 6$ where either (4) or (5) is solvable. Then the formulae given in sections A to E below are true.

Comment. Proofs will be given only for the cases $h \leq 3$.
A. All ideals $q_{i} \sim q_{i}^{\prime}$. (This includes $h=1,2$ and $h=4$ (Non-cyclic group).) Then $S=2^{l}$.
Proof. All combinations $\left(r_{1}, r_{2}, \ldots, r_{l}\right)$ make $\prod_{i=1}^{l} r_{i}$ a principal ideal.
B. $h=3$.

Let $q_{i} \nvdash q_{i}^{\prime}$ for $i=1, \ldots, l_{1}$ and $q_{i} \sim q_{i}^{\prime}$ for $i=l_{1}+1, \ldots, l$.
Then $S=2^{l-l_{1}}\left(2^{l_{1}}+2(-1)^{l_{1}}\right) / 3$.
Proof. Let S_{1} be the number of combinations ($r_{1}, r_{2}, \ldots, r_{l_{1}}$) such that $\prod_{i=1}^{l_{1}} r_{i}$ is a principal ideal.

Now $\prod_{i=1}^{l_{k}} r_{i} \sim q_{1}^{k} q_{1}^{l_{1}-k} \sim q_{1}^{2 l_{1}-k}$ (where k is the number of r_{i} equivalent to q_{I}).

Therefore $\prod_{i=1}^{l_{i}} r_{i}$ is a principal ideal if and only if $2 l_{1}-k \equiv 0 \bmod 3$.
Let b be the smallest non-negative value of k.
Therefore

$$
\begin{align*}
S_{1} & =\binom{l_{1}}{b}+\binom{l_{1}}{b+3}+\binom{l_{1}}{b+6}+\ldots \tag{6}\\
& =\frac{1}{3} \sum_{j=0}^{2}\left(2 \cos \frac{j \pi}{3}\right)^{l_{1}} \cos \left(\frac{\left(l_{1}-2 b\right) j \pi}{3}\right)
\end{align*}
$$

by Riordan [3].
Since $l_{1}-2 b \equiv 2\left(2 l_{1}-b\right) \equiv 0 \bmod 3$,

$$
l_{1} \equiv l_{1}-2 b \bmod 2, \cos \pi / 3=1 / 2, \text { and } \cos 2 \pi / 3=-1 / 2
$$

then it can be shown by substitution in (6) that $S_{1}=\left(2^{l_{1}}+2(-1)^{l_{1}}\right) / 3$.
To complete the proof of the theorem it only remains to be seen that the number of combinations $\left(r_{l_{1}+1}, \ldots, r_{l}\right)$ such that $\prod_{i=l_{1}+1}^{l} r_{i}$ is a principal ideal is $2^{l-l_{1}}$.
C. $h=4$ (Cyclic Group).

Suppose $q_{i} \nsim q_{i}^{\prime}$ for $i=1, \ldots, l_{1}$ and $q_{i} \sim q_{i}^{\prime}$ for $i=l_{1}+1, \ldots, l$.
Then $S=2^{l-1}$ if $l_{1}>0,=2^{l}$ if $l_{1}=0$.
D. $h=5$.

Suppose $q_{i} \uparrow q_{i}^{\prime}$ and $q_{i} \sim q_{1}$ or q_{1}^{4} for $i=1, \ldots, l_{1}, q_{i} \sim q_{1}^{2}$ or q_{1}^{3} for $i=l_{1}+1, \ldots, l_{1}+l_{2}, q_{i} \sim q_{i}^{\prime}$ for $i=l_{1}+l_{2}+1, \ldots, l$.

Then

$$
S=25^{-1} 2^{l-l_{1}-l_{2}}\left[5 \cdot 2^{l_{+}+l_{2}}+2(-1)^{l_{1}+l_{2}}\left(2 L_{l_{\mathrm{x}}} L_{l_{2}}-L_{l_{1}+1} L_{l_{2}-1}-L_{l_{1}-1} L_{l_{2}+1}\right)\right],
$$

where $L_{-1}=-1, \quad L_{0}=2, \quad L_{k}=L_{k-1}+L_{k-2}, \quad k=1,2, \ldots$
E. $h=6$.
$q_{i} \nsim q_{i}^{\prime}$ and $q_{i}^{2} \nsim q_{i}^{\prime}$ for $i=1, \ldots, l_{1}$,
$q_{i} \vdash q_{i}^{\prime}$ and $q_{i}^{2} \sim q_{i}^{\prime}$ for $i=l_{1}+1, \ldots, l_{1}+l_{2}$,
$q_{i} \sim q_{i}^{\prime}$ for $i=l_{1}+l_{2}+1, \ldots, l$.
Then $S=3^{-1} 2^{l-l_{1}-l_{2}}\left(2^{l_{1}+l_{2}}+2(-1)^{l_{1}+l_{2}}\right)$.
Acknowledgement. I wish to thank Professor J. H. H. Chalk for the help he has given me in the preparation of this paper.

References

1. Stolt, B., On the diophantine equation $u^{2}-D v^{2}= \pm 4 N$, Part III, Ark. Mat., 3 (1954), 117-132.
2. Hancock, Foundations of the Theory of Algebraic Numbers, Vol. I, New York, 1931.
3. Riordan, An Introduction to Combinatorial Analysis, New York, New York, 1958, page 41.
