Some remarks on Stolt's Theorems for Pellian Equations

PETER HEICHELHEIM

Toronto, Canada

Abstract

One of the theorems of Bengt Stolt's article »On the Diophantine Equation $u^2 - Dv^2 = 4N$ » is not quite correct in its entirety. A counter-example will be given to show this. A modification of the theorem which he was trying to prove will be given for certain special cases.

1. Introduction

Here is a summary of some of the definitions and theorems given in Stolt [1]. All integer solutions (x, y) of

$$x^2 - Dy^2 = 4 \tag{1}$$

for D > 0 and not a square are given by

$$rac{x+\sqrt{Dy}}{2}=\pmigg(rac{x_1+\sqrt{Dy}_1}{2}igg)^i$$

where i is any integer and (x_1, y_1) is the smallest positive solution of (1).

Let (u^*, v^*) be any integer solution of

$$u^2 - Dv^2 = 4N \tag{2}$$

for D > 0 and not a square.

Then a class of solutions of (2) consists of all solutions (u, v) such that

$$rac{u+\sqrt{D}v}{2}=\pmigg(rac{u^*+\sqrt{D}v^*}{2}igg)igg(rac{x_1+\sqrt{D}y_1}{2}igg)^i.$$

All solutions of (2) can be divided into a finite number of classes of solutions. Two solutions which belong to the same class of solutions are called associated. A simple criteria to see if two solutions (u, v) and (u', v') are associated is if (uv' - u'v)/2N is an integer.

In every class of solutions of (2) it is well known that there is at least one solution (u, v) such that

$$0 \le v \le rac{y_1 \sqrt{|N|}}{\sqrt{x_1 + 2N/|N|}}$$
 (3)

and $0 \le |u| \le \sqrt{(x_1 + 2N/|N|)}|N|$.

In [1] Stolt claims to prove that if N is square-free then the number of classes of solutions is a *power of two*. However $u^2 - 79v^2 = 4(3)(5)(7)(13)$ has six classes of solutions. The next section will give details of this.

2. Details of counter-example

THEOREM 1. The equation $u^2 - 79v^2 = 4(1365) = 4(3)(5)(7)(13)$ has six classes of solutions.

Proof. In every class of solutions of $u^2 - 79v^2 = 4(1365)$ there will be at least one solution (u, v) such that

$$0 \le v \le 18\sqrt{1365}/\sqrt{160+2} = 2\sqrt{1365/2} = \sqrt{2730} < 53$$

v	u^2	v	u^2	v	<u>u</u> ²
1	5539	19	33 979	37	$113 \ 611$
2	$5\ 776 = (76)^2$	20	37 060	38	119 536
3	6 171	21	40 299	39	$125\ 619$
4	$6\ 724 = (82)^2$	22	43 696	40	131 860
5	7 435	23	$47\ 251$	41	$138\ 259$
6	8 304	24	$50\ 964$	42	144 816
7	9 331	25	54 835	43	$151 \ 531$
8	$10\;516$	26	$58\ 864$	44	$158\ 404 = (398)^2$
9	11 859	27	$63\ 051$	45	$165\;435$
10	13 360	28	$67 \ 396$	4 6	172 624
11	$15\ 019$	29	71 899	47	$179 \ 971$
12	16 836	30	76 560	48	$187 \ 476$
13	18 811	31	$81\ 379$	49	$195\ 139$
14	$20\ 944$	32	$86 \ 356$	50	202 960
15	$23\ 235$	33	91 491	51	$210 \ 939$
16	$25\ 684$	34	$96\ 784$	52	$219\ 076$
17	28 291	35	102 235		
18	$31\ 056$	36	107 844		

Ι	'able	
L	aore	

168

Inspection of the table of squares in Barlow's Tables and the above table show that the only solutions of $u^2 - 79v^2 = 4(1365)$ such that $0 \le v < 53$ are (u, v) = (76,2), (-76,2), (82,4), (-82,4), (398,44), and (-398,44). As none of these solutions are associated with each other, then the number of classes of solutions is six.

3. Number of classes of solutions in special cases

Details on the theory of ideals and algebraic integers in the quadratic case are given in Stolt [1] and Hancock [2].

THEOREM 2. Let

$$u^2 - Dv^2 = + 4 \prod_{i=1}^n p_i \tag{4}$$

$$u^2 - Dv^2 = -4 \prod_{i=1}^{n} p_i \tag{5}$$

where D is square-free and the p_i 's are distinct primes. At least one of (4) or (5) is solvable in integers.

Let C_1, C_2 be the number of classes of solutions of (4) and (5) respectively.

In the field $K(\sqrt{D})$ the ideal (p_i) equals $q_iq'_i$ where q_i and q'_i are prime conjugate ideals for all i. Let $q_i \neq q'_i$ for $i = 1, \ldots, l$ and $q_i = q'_i$ for $i = l + 1, \ldots, n$. Choose $r_i = q_i$ or q'_i .

Let S be the number of ways the set (r_1, r_2, \ldots, r_l) can be chosen so that $\prod_{i=1}^l r_i$ is a principal ideal.

Then $S = C_1 = C_2$ if $x^2 - Dy^2 = -4$ is solvable, $S = C_1 + C_2$ otherwise.

Proof. Suppose (α) is a principal ideal such that $(N) = (\alpha)(\alpha')$ where (α') is the conjugate of (α) . Then it is easy to see that any class of solutions of (4) will correspond to one and only one principal ideal (α) . Also two different classes of solutions of (4) will correspond to two different principal ideals (α) . The same is true for (5).

As $(N) = (\alpha)(\alpha') = (\alpha \alpha')$ then $\alpha \alpha' = N$ or $\alpha \alpha' = -N$ where α and α' are algebraic integers which are generators of (α) and (α') respectively. This shows that every (α) corresponds to a class of solutions of (4) or of (5) or of both. But it is easily shown that (α) corresponds to a class of solutions of both (4) and (5) if and only if $x^2 - Dy^2 = -4$ is solvable.

Therefore the theorem is true since (α) equals $\prod_{i=1}^{n} r_i$ uniquely for exactly one set (r_1, \ldots, r_n) and hence for exactly one set (r_1, \ldots, r_l) .

Comment. The above theorem shows how the evaluation of the number of classes of solutions becomes a combinatorial problem.

or

A case where both equations (4) and (5) are solvable while $x^2 - Dy^2 = -4$ is not, is given by $u^2 - 34v^2 = +4(3)(5)$ and $u^2 - 34v^2 = -4(3)(5)$. Now the only values of (u, v) satisfying (3) for $u^2 - 34v^2 = +4(3)(5)$ and $u^2 - 34v^2 =$ -4(3)(5) are (14,2), (-14,2) and (22,4), (-22,4) respectively. As neither pair of solutions is associated in this case, $C_1 = 2$ and $C_2 = 2$. This is somewhat different from that indicated in Stolt [1], page 119-120.

4. Evaluation of S for the class-number of $K(\sqrt{D}) \leq 6$

It is well known that all ideals in $K(\sqrt{D})$ can be divided into a finite number of equivalence classes. The set of these equivalence classes is an abelian group under multiplication. If two ideals q_1 and q_2 are in the same equivalence class then $q_1 \sim q_2$.

THEOREM 3. Suppose S is defined as in Theorem 2 and the class-number h of $K(\sqrt{D}) \leq 6$ where either (4) or (5) is solvable. Then the formulae given in sections A to E below are true.

Comment. Proofs will be given only for the cases $h \leq 3$.

A. All ideals $q_i \sim q'_i$. (This includes h = 1, 2 and h = 4 (Non-cyclic group).) Then $S = 2^l$.

Proof. All combinations (r_1, r_2, \ldots, r_l) make $\prod_{i=1}^{l} r_i$ a principal ideal. B. h = 3.

Let $q_i \not \to q'_i$ for $i = 1, ..., l_1$ and $q_i \sim q'_i$ for $i = l_1 + 1, ..., l$. Then $S = 2^{l-l_1}(2^{l_1} + 2(-1)^{l_1})/3$.

Proof. Let S_1 be the number of combinations $(r_1, r_2, \ldots, r_{l_1})$ such that $\prod_{i=1}^{l_1} r_i$ is a principal ideal.

Now $\prod_{i=1}^{l_1} r_i \sim q_1^k q_1^{\prime l_1 - k} \sim q_1^{2l_1 - k}$ (where k is the number of r_i equivalent to q_1).

Therefore $\prod_{i=1}^{l_1} r_i$ is a principal ideal if and only if $2l_1 - k \equiv 0 \mod 3$. Let b be the smallest non-negative value of k. Therefore

$$S_{1} = {l_{1} \choose b} + {l_{1} \choose b+3} + {l_{1} \choose b+6} + \cdots$$

$$= \frac{1}{3} \sum_{j=0}^{2} \left(2 \cos \frac{j\pi}{3}\right)^{l_{1}} \cos \left(\frac{(l_{1}-2b)j\pi}{3}\right)$$
(6)

by Riordan [3].

Since $l_1 - 2b \equiv 2(2l_1 - b) \equiv 0 \mod 3$,

SOME REMARKS ON STOLT'S THEOREMS FOR PELLIAN EQUATIONS

 $l_1 \equiv l_1 - 2b \mod 2, \cos \pi/3 = 1/2, \text{ and } \cos 2\pi/3 = -1/2$

then it can be shown by substitution in (6) that $S_1 = (2^{l_1} + 2(-1)^{l_1})/3$.

To complete the proof of the theorem it only remains to be seen that the number of combinations (r_{l_i+1}, \ldots, r_l) such that $\prod_{i=l_i+1}^l r_i$ is a principal ideal is 2^{l-l_i} .

C. h = 4 (Cyclic Group). Suppose $q_i \nleftrightarrow q'_i$ for $i = 1, ..., l_1$ and $q_i \sim q'_i$ for $i = l_1 + 1, ..., l$. Then $S = 2^{l-1}$ if $l_1 > 0$, $= 2^l$ if $l_1 = 0$. D. h = 5. Suppose $q_i \nleftrightarrow q'_i$ and $q_i \sim q_1$ or q_1^4 for $i = 1, ..., l_1$, $q_i \sim q_1^2$ or q_1^3 for $i = l_1 + 1, ..., l_1 + l_2$, $q_i \sim q'_i$ for $i = l_1 + l_2 + 1, ..., l$. Then

$$S = 25^{-1}2^{l-l_1-l_2}[5 \cdot 2^{l_1+l_2} + 2(-1)^{l_1+l_2}(2L_{l_1}L_{l_2} - L_{l_1+1}L_{l_2-1} - L_{l_1-1}L_{l_2+1})],$$

where $L_{-1} = -1$, $L_0 = 2$, $L_k = L_{k-1} + L_{k-2}$, k = 1, 2, ...

E. h = 6.

 $\begin{array}{l} q_i \nleftrightarrow q'_i \quad \text{and} \quad q_i^2 \bigstar q'_i \quad \text{for} \quad i = 1, \dots, l_1, \\ q_i \bigstar q'_i \quad \text{and} \quad q_i^2 \thicksim q'_i \quad \text{for} \quad i = l_1 + 1, \dots, l_1 + l_2, \\ q_i \thicksim q'_i \quad \text{for} \quad i = l_1 + l_2 + 1, \dots, l. \\ \text{Then} \quad S = 3^{-1} 2^{l - l_1 - l_2} (2^{l_1 + l_2} + 2(-1)^{l_1 + l_2}). \end{array}$

Acknowledgement. I wish to thank Professor J. H. H. Chalk for the help he has given me in the preparation of this paper.

References

- 1. STOLT, B., On the diophantine equation $u^2 Dv^2 = \pm 4N$, Part III, Ark. Mat., 3 (1954), 117-132.
- 2. HANCOCK, Foundations of the Theory of Algebraic Numbers, Vol. I, New York, 1931.
- 3. RIORDAN, An Introduction to Combinatorial Analysis, New York, New York, 1958, page 41.

Received August 1, 1973

Peter Heichelheim 666 Spadina Avenue Apartment PH9 Toronto, Ontario Canada