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1. Introduction 

In  [3] Ahlfors and Beurl ing gave a charac ter iza t ion  in te rms of  ex t remal  distances 
of  the  removable  singularities for the  class of  analyt ic  funct ions wi th  f ini te  Dirichlet  
integral.  The purpose of this paper  is to generalize and ex t end  this resul t  in several 
directions. 

Le t  A(G) be a class of  ana ly t ic  or harmonic  funct ions def ined for any  open 
set G in the complex plane C or in d-dimensional  Eucl idean space Il  a. We say  
t h a t  a compac t  set E is removable  for A if  for some open G containing E eve ry  
funct ion  in A(G ~ E) can be ex tended  to a funct ion in A(G).  

I f  G c {3 we denote  b y  ADP(G), :p > O, the  class of analyt ic  funct ions f in 
G such t h a t  fG Ef'(z)Epdm(z) < 0% m being plane Lebesgue measure.  

Ahlfors and  Beurl ing [3] p roved  t ha t  a set E is removable  for A D  2 i f  and  only  
if  the  removal  of  E does not  change ex t r ema l  distances. (See Theorem 7 below for 
a more precise s ta tement . )  Thei r  p roof  uses the  conformal  invar iance  of  the  class 
A D  2, so it does not  immedia te ly  generalize to p # 2. 

In  order  to  t r ea t  this problem for all p,  1 < p < oo, we f i rs t  re formula te  it  
by  means  of  dua l i ty  as an approx imat ion  problem in the  Sobolev space 
W~, q ~ :p/(p - -  1). (Theorem 1.) I t  is t h en  quite  easy  to give a necessary and  
sufficient  condi t ion for a set to be removable  for ADs,  1 < p < oo. Our condi t ion 
(Theorem 4) is t h a t  E be a >>null set>> for a cer ta in  condenser  capaci ty ,  which for 
p ~- 2 is ~)eonjugate>> to the  ex t remal  dis tance considered b y  Ahlfors and  Beurl ing 
(Lemmas 3 and  4). 

Our main  result ,  however ,  is t ha t  this necessary and  sufficient  condit ion is 
equiva len t  to  a local, appa ren t ly  much  weaker  condi t ion (Theorem 6). Thus,  con- 
denser capaci ty  has an ins tabi l i ty  p r o p e r t y  similar to the  ins tabi l i ty  t h a t  a wide 
class of  capacities is known to have.  

The above approx ima t ion  problem in W~ can just  as well be fo rmula ted  and  
solved in d dimensions,  and  this d-dimensional  problem is also equiva len t  to  a 
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problem of removability. In fact, instead of considering functions in AD~ in plane 
regions it is equivalent to consider their real parts, i.e. real valued harmonic functions 
u with vanishing periods and such that  f [grad u ledm < co. This class of functions 
can also be defined in R d. 

Thus, following Rodin and Sario [25; p. 254] we denote for G c R ~ by FDe(G) 
the class of real valued harmonie functions u in G such tha t  f. lgrad ul~dme < 

(m,i is d-dimensional Lebesgue measure), and such that  u has no flux, i.e. 
fc,d =fo /O dS---o for all (d--1)-cycles  c in G. By t h e d e R h a m  

theorem the last condition is equivalent to saying tha t  the (d -- 1)-form *du is 
exact. Since our results extend to d dimensions at little extra cost, this is the 
generality in which we shall t reat  the removability problem. 

For comparison we also include characterizations of the removable singularities 
for the spaces ALe of analytic functions in plane L p and (which is equivalent for 
d = 2) HDe of harmonic functions u with f Igrad u]edmd < ~ .  (Theorems 1 
and 2.) 

There are also possibilities of generalizing to solutions of more general elliptic 
equations, but we leave these aside. Cf. Harvey and Polking [11]. 

In the last section of the paper we discuss mainly the case of linear sets in the 
plane. We give conditions for removability (Theorem 13) which for p = 2 improve 
a theorem of Ahlfors and Beurling [3]. 

For more information about removable singularities we refer in addition to [3] 
to the book by Sario and Nakai [27], and the bibliography given there. Some results 
on _FD 2 are due to Yamamoto [31]. 

2. Preliminaries 

For any open G in R d and 1 _<q < oo we denote by W~(G) the Sobolev 
space of locally integrable real valued functions f on G whose derivatives in the 
distribution sense are functions in Lq(G). We write Wxq(R d) = W~. As usual 
C~(R ~) = C~ and C~(G) denote the infinitely differentiable functions with 
compact support (in G). When G is bounded [[]gradfIlILq(G ) is a norm on C~(G) 
by the Poincar6 inequality, and the closure of C~(G) in this norm is denoted 

o 
W~(e). 

I t  is well known tha t  for q > d functions in Wq~ are continuous but for q _< d 
this is no longer true. The deviation from continuity is measured by a q-capacity 
which in a natural way is associated with the space W~. For compact sets K this 
q-capacity is defined by 

Cq(K) = inf f lgrad 09 [qdm, 
~o d 

R d  
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where the infimum is taken over all co E C[  such tha t  ~o > 1 on K. In  the case 
q < d the co are restricted to C[(B) for some fixed large ball B which contains 
K in its interior. 

The definition is extended to arbi t rary E C 1R e by setting 

C~(E) = sup {C~(K); K c E, K compact}. 

For q > d only the empty  set has q-capacity zero. Ca is a conformal invariant 
in R e, called conformal capacity. C2 is classical Newtonian (logarithmic for 
d = 2) capacity. 

For  an account of some of the properties of C~ and Wql we refer to T. Bagby 
[4]. See also Meyers [22], Adams and Meyers [1], Maz'ja and Havin [21], Hedberg 
[~5]. 

3. The dual problem 

We show by means of duali ty tha t  the problem of characterizing the removable 
sets for FD p (ADP), 1 < p < 0% is equivalent to an approximation problem in 
W~, q = p/(p -- 1). For comparison we include the corresponding characterization 
for HDP (ALP). For p = 2 the result is found in Royden [26]. 

C ~ R a ~ C~(G) the subset of Co ~ or C~(G) which We denote by E( ) =  CE or 
consists of functions r such that  g r a d e  belongs to C~(CE). I.e. C~ is the 
subalgebra of C~ which consists of functions tha t  are constant on each component 
of some neighborhood of E. 

THEOREM 1. a) E is removable for HDP or ALP, 1 < p < co, i f  and only i f  
o 

C ~ ( G ~  E) is dense in W~(G), q = p / ( p - -  1), for some bounded open G ~  E. 
b) E is removable for FDP or AD p, 1 < p < 0% if  and only i f  C~(G) is dense 

o 
in W~(G), q = p/(p -- 1), for some bounded open G ~ E. 

Proof. We prove the theorem for HDp and FDP. For A L  p and ADP the proof 
is simpler and is omitted. 

o 
Suppose C~(G) is dense in W~(G). Then dear ly  rodE= O, so if 

u C HDP(G ~ E) the partial derivatives ui are defined almost everywhere in G 
and belong to LP(G). We claim that  there is a distribution T in G whose partial 
derivatives D~T equal ui. By a theorem of L. Schwartz a necessary and sufficient 
condition for this is tha t  the distribution partial derivatives Dju~ satisfy Diul -~ 
Dfuj for all i and j.  In other words, we claim tha t  fG u,DjCdm = u~D,r 

for all r C C~(G). But  for all r E C~(G) it is easily seen tha t  

G G \ E  G ~ E  G \ E  G 
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I f  C~(G) is dense in C~(G) the assertion follows from Hhlder's inequality. Thus 
there is a distribution T in G which coincides with u in G ~ E. By another 
theorem of L. Schwartz T is a function in Wf(G), i.e. u has an extension to 
Wf(G), in particular u is locally in L v. 

Suppose now C~(G ~ E) is dense in VVlq(G). For any u E HDP(G ~ E) and 
r E C~(G ~, E) we have by  Green's formula 

f u A C d m = -  f grad u-grad Cdm= f cAudm=O. 
G \ E  G ~ E  G \ E  

I t  follows that  f .  ~ r  = - f~ grad u .  grad Cdm= 0 for all r E C[(G). By 

Weyl's lemma u is harmonic in G, i.e. u E HDP(G). o 
Then let u C FDP(G ~ E) and suppose tha t  C~(G) is dense in W~(G). Let 

r E C~(G). The support of grad r is a compact set in G ~ E. Only finitely many 
components of its complement z9 intersect E, and we denote these by s On 

�9 each of these r equals acons tan t ,  a ,  Let  y b e a  ( d - -  1)-cyclein ( G ~ E )  N-(2 
which is homologous to zero in G ~ E, and set 7 f~ ~9i = y~. By Green's formula 

fuACd.~=-- f gradu.gradCdm= f Cdudm-- f ~(*~)= 
G \ E  G ~ E  G ~ E  7 

7i 

I t  follows as before tha t  f .  uACdm = 0 for all r C C~(G), so again u is harmonic 

in G, i.e. u E FDe(G). o 
Suppose conversely that  C~(G ~ E) is not  dense in Wql(G). Then there is a 

o 
non-zero distribution T with support in E and continuous on W~(G). Clearly 
S = T *  Ix] 2 d is harmonic in G ~ E .  We claim tha t  S belongs to HDP(G~E). 

There are functions u, E LP(G) such tha t  for r e C:(G) (T, r = f~,,u,D,r 
Then (S, r = (T, r �9 Ixl 2-d) = f ~, u,D,(r �9 [x?-')dm. Thus 

r = - ( s . . . r  = - f y [xl2-d)dm. 
J 

By the CMder6n-Zygmund theory 

IlDjD~(r * ]xf-d)[ILq < Cl[r so  

I t  follows tha t  DjS E L ~, i.e. S E W~(G). 
I f  in addition C~(G) is not  dense in 

i(DjS, r --< c Z il~&Pllr 

(See also Theorem 2 below.) 
o 

W~(G) there is a distribution T with 

the same properties as above and which also annihilates C~(G). S = T * Ixl 2-~ 
again belongs to W~(G) and to HDP(G~,E), and we claim tha t  S now has 
vanishing periods, i.e. S E FDP(G ~ E). 
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Le t  r E C~(G) and  let  y be a (d - -  l ) -cycle as above o f f t h e  suppor t  of  grad r 
Then  (S, At )  = (T, [x[ 2-d �9 At )  = C(T, r = 0, so b y  Green's  formula  

G V G ~ E  Y 

Since the  ai are a rb i t ra ry ,  �9 d S  = 0 for all i. I t  follows t h a t  f~ * dS = 0 for 

all (d - -  1)-cycles in G ~ , E .  
The following corollaries are obvious.  

COROLLARY 1. Let A be HD ~, ALp, FDP or ADv for 1 < p < o0, and let 
E be compact. I f  all functions f in A(G ~ E) can be extended to A(G) for some 
bounded open G containing E, then the same is true for all such G. 

COROLLARY 2. The property of being removable for HDP, A L  e, F D  p or ADP, 
1 < p < co, is local, i.e. E is removable i f  and only i f  every x in E has a compact 
neighborhood whose intersection with E is removable. 

Theorem 1 says t ha t  proving t h a t  E is removable  for  FDP (or ADQ is 
o 

equivalent  to proving  a )>Stone-Weierstrass property)) for  C~(G) in W~(G). For  
o o 

q >  d W~(G) is an algebra, bu t  for  q _ ~ d  it  is not .  T h e s u b s p a c e  Wq~(G) f l L  ~~ 
however,  is a Banach  a lgebra  under  the  norm llfJ] = J]fJ]~ q - { f  lgradflqdm} l/q, 

and the  closure of  C~(G) in the  same norm is again an algebra, which we denote  
o 

by  ~ ( G ) .  I t  consists of  the  funct ions  in W~(G) t h a t  are cont inuous  and  t en d  to  
zero a t  the  boundary .  Such ~)t~oyden algebras)> have  been s tudied b y  R o y d e n  and  
recen t ly  by  L. Lewis [18] and  J.  Le long-Fer rand  [17]. We shall la ter  prove  a )>Stone- 
Weiers t rass  theorem)) (Theorem 12) for  these algebras also, i.e. we shall character ize  
the  compac t  sets E such t h a t  C~(G) is dense in c)J~q0(G), 1 < q < oo. A necessary 
condi t ion is obviously  t h a t  C~ is poin t  separat ing,  which is the  ease i f  and only  
if  E is comple te ly  disconnected.  

4. Necessary and sufficient conditions for removability 

The removable  sets for HDP and ALP, 1 < p < 0% allow a simple charac- 
te r iza t ion  which is undoub t ed ly  known.  However ,  it  does no t  seem to be given 
expl ic i t ly  in the  l i tera ture ,  excep t  for p = 2 which is classical (see e.g. Carleson 
[6; Th. VII : I ] ) ,  so for completeness we include it  here. 
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T~EO~EM 2. A compact set E C R d is removable for HD s (ALe), 1 < p < 0% 
i f  and only i f  Cq(E) = 0 (i.e. i f  and only i f  E = 0 in the case p < d/(d -- 1)). 

Pro@ First assume Cq(E) > 0. Then there is a measure # > 0 supported by 
E such tha t  the potential U~(x) = f Ix -- yll-dd/~(y) is in L~or (see e.g. Meyers 

[22; Th. 14]. The potential V~(x) = f Ix --  yl2-dd#(y) ( f  log 1/[x --  yldtt(y) in 

case d = 2) is harmonic in C E, and its gradient in the distribution sense is 
Yl #(y), which is majorized by Uf(x). Thus U~ grad U~(x) = f grad~ lx -- :-dd 

belongs to HDS(G ~ E) for all bounded G, but clearly not to HDP(G). Note 
however tha t  U~ C Wf(G). 

In  the other direction the theorem follows from Theorem I and the following 
lemma. 

LEMlV[A 1. Suppose E is compact and Cq(E) = O, 1 < q < oo. Then C[(G ~ E) 
o 

is dense in Wql(G) for all bounded open G. 

Proof. I t  is enough to show tha t  any q~ in C~(G) can be approximated. Let 
e > 0 be arbitrary. There exists an r E C~ ~ such tha t  ~ = 1 in a neighborhood of 
s u p p ~ [ ' l E  and f Igrado)Iqdm < e .  Then r162 C C ~ ( G ~ E ) ,  and 

/ igrad r lqdm = f grad ~o d- ~o grad r lqdm <_ 

__< 2 q-1 max Ir + 2 ~-1 max Igrad r q f lolqdm <_ eonst. �9 e 

G 

by the Poincar6 inequality. 

The removable sets for FD s (and ADs) cannot be characterized in such simple 
terms. However the following simple theorem may be worth recording. 

THEOR~ 3. Let E c C be compact and let G ~ E be open. Then every function 
f in Wf(G) f ' I A D S ( G ~ E ) ,  I < p  < 0% belongs to ADS(G) i f  and only i f  
m2E = O. 

Pro@ Let f e Wf(G) fl ADS(G ~ E), G D E. Then Of/~5 C LS(G) and vanishes 
on G ~ E. I f  m2E = 0 it follows by Weyl's lemma tha t  f is analytic in G. 

Conversely, suppose m2E > 0. Then f(z) = fE  (~ -- z)-ldm2(~) is analytic off 

E, and f is not identically zero, because limz~ ~ Izf(z) l =- m2E. By the Calder6n- 
Zygmund theorem f C Wf(G) for all p > 1. 

In order to characterize the removable sets for FD s and AD s we introduce a 
kind of condenser q-capacity, q = p / ( p -  1). 
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Definition. Let R be a d-dimensionM, open rectangle with, say, sides parallel 
to the coordinate planes. Let E be compact. The d condenser q-capacities of R 
with respect to E are 

I~O(R/E) = inf f lgrad ~o lqdm, i = 1, 2 , . . . ,  d, 
r , ]  

n 

where the infimum is taken over all ~o E C~ such that  ~o(x) = 0 on one of the 
sides of R parallel to the coordinate plane xl = 0, and o)(x) = 1 on the opposite 
side. I f  E = O we write F~i)(R), which is the ordinary condenser q-capacity of 
R. 

By the usual strict convexity and variation argument one sees that  there is a 
unique extremal function u in W~(R) which satisfies the equation 

d i v ( [ g r a d u l q - 2 g r a d u ) = 0  in R ~ E ( A u = O  for q = 2 ) .  

When E = O the solution is linear. As is well known it follows that  if R has 
edges of length a~ perpendicular to the plane x i = 0, then / '~0(R)= ai-qmdR. 

THEOREM 4. Let E be a compact set in t l  d. For E to be removable for F D  p (ADe), 
1 < p < oo, it is necessary and sufficient that 

l~(~)(R/E) = F(~)(R), i = 1, 2 , . . . ,  d, q = p / (p  --  1), 

for some open rectangle (or all open rectangles) R containing E. 

Proof. Suppose first E is removable. Then by  Theorem 1 C~ is dense in C~ 
in the W~ sense. I t  follows immediately that  the capacities I~O(R/E) and F~)(R) 
are the same for all R containing E. 

Suppose conversely that  there is a rectangle R containing E such that  
F~O(R/E) = F~O(R), i = 1, 2 , . . . ,  d. By Theorem 1 it is clearly enough to show 
that  the restriction of C~ to R is dense in W~(R). For each i, i =  1 , 2 , . . . , d ,  
there is a sequence {r in C~, such that  the r take the prescribed boundary 
values, and such that  fR  Ig rad ~ nlqdm ~ I~O(R/E) = I~')(R)" By strict convexity 

{r tends strongly in W~ to the extremal function for /~)(R), which is of the 
form az~ ~ b. I t  follows that  all polynomials of the first degree can be approximated 
in W~(R) by functions in C~. Since W~ is closed under truncation (see e.g. Deny 
and Lions [7; Th. 3.2]) we can also assume that  the approximating functions are 
bounded, and the theorem then follows from the following lemma and the density 
of polynomials in Wql(R). 

L~MMA 2. Suppose r and ~f belong to W~(R), and that IIr ~_ M,  and 
}I~vI[o ~ ~ M.  Let {r ~ and {%}~ be sequences such that 
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lim f igrad (r -- r = O, 

R 

lim f/grad (~ - -  %)Iqdrn 
n ---~ oo 

R 

= O, 

]ir ~ M,  and IlF.IJ~ < 3 1 .  Then there is a subsequence {r 
lim,_.~ f. fgrad (r - -  r qdm = O. 

such that 

Proof. grad (r -- r = Cgradw + w grad r -- r grad w- -- % grad r = 
(r -- r grad W ~- r grad (~ -- ~,) ~- (~ -- %) grad r -~ ~ grad (r -- r 

f [ r  grad (W -- W-)l qdm ~ Mq f [grad (W -- %)i dm -~  O, and similarly for the 

fourth term. We can choose a sequence {n~} such that  both r and %i converge 

pointwise almost everywhere to r and W. The convergence to zero of 

f [ ( r  -- r grad ~l~dm and f 1(~ -- %~) grad r 

follows from the Lebesgue convergence theorem. 

The following corollaries to Theorem 4 are due to Ahlfors and Beurling [3] for 
p = d = = 2 .  

COROLLARY 1. E is removable for F D s  (ADs), 1 < p < ~ ,  i f  the projection 
of E on each of the coordinate axes has one-dimensional measure zero. 

C O R O L L A R ~  ~ 2. Let E be a Cartesian product of a compact one-dimensional set 
with itself, e.g. a d-dimensional Cantor set. Then E is removable for F D  s (ADs), 

1 < p < 0% i f  and only i f  maE = O. 

Corollary 1 follows easily from the theorem. The sufficiency in Corollary 2 then 
follows. The necessity was already observed in the course of the proof of Theorem 1. 

That the vanishing of rodE is by no means sufficient for removability in general 
is well known (see Ahlfors-Beurling [3; Th. 14]). 

Since removability is a local property it is desirable to have a local condition for 
removability in terms of condenser capacity. For this reason we need to apply the 
definition of F~O(R/E) in a situation where E is allowed to intersect the boundary 
of R. 

Now, one complication arises from the fact that  when q < d -  1 there are 
continua with zero q-capacity. (For q > d -- 1 this cannot happen, because for 
a continuum E with diameter ~ one then has Cg(E) > const. 8. (See e.g. Maz'ja 
[20; Lemma 5].)) This :means that  a set E can be removable for FDP although 
there are rectangles R such that  no function in C~ can be 1 on one side of R 
and 0 on the opposite side. On the other hand, no continuum E with Cq(E) > 0 
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can be removable  for FDP. In  order  to see this one only  has to  set # =/~1 --/z2 
where /~ and #2 are posi t ive measures wi th  suppor t  in different  par t s  of  E such 
t h a t  #~(E) = #2(E) and such t ha t  U~'~(x) ~ f [ x  - -  yll-~d#r i ~ 1, 2, are in 

Lp. This is possible b y  Meyers [22; Th.  14]. Then  Uf(x) ~ f Ix - -  yl2-dd#(y) is 

in F D  p for some ne ighborhood of E and does not  vanish identically.  
Therefore,  if  a set E is removable  for FDP it  has to be comple te ly  disconnected 

af te r  a set of  q-capaci ty  zero has been removed.  We can thus  wi thou t  loss of  
genera l i ty  assume tha t  E is comple te ly  disconnected.  

We prefer  now to work wi th  capacit ies of  ring domains instead of rectangles.  
B y  a ring we mean  a bounded  domain  G such t h a t  the complement  C G has 
exac t ly  two components .  

Definition. Le t  G be a ring in R d, and let E be closed. The condenser  
q-capaci ty  of  G wi th  respect  to E is 

I~(G/E) = inf  f Igrad m [~dmd, 
09 " /  

G 

where the i n f imum is t aken  over  all m E C~ such t h a t  m = 1 
component  of  C G and m = 0 on the  unb o u n d ed  component .  

The condit ion for r emovab i l i ty  then  takes  the  following form. 

on the  bounded  

THEOREM 5. Let E C R d be compact and completely disconnected. Then E is 
removable for FDe  (ADe), 1 < p < Go, i f  and only i f  _Fq(G/E) = Fq(G), 
q = p / ( p - -  1), for all rings G. 

The necessi ty  is p roved  as in Theorem 4. A proof  of the  suff iciency of the  con- 
di t ion can easily be given, bu t  since this also follows from Theorem 6 below, we 
do not  give it  here. 

The main resul t  of this paper  is t ha t  the  condit ion in Theorem 5 is equivalent  
to  an appa ren t ly  much  weaker  condition.  The s i tua t ion is comparable  to  the  ))in- 
stability)) of ana ly t ic  capaci ty  and poten t ia l  theore t ic  capacities (see e.g. Vitu~kin 
[30; Ch. VI: 1], GonSar [10], Hedberg  [14; p. 162] and [15; Th. 9]). 

We denote  the  annulus  { y C R d ; r  < lY--X]  < R }  b y  A ( x , r , R ) .  

THEOREM 6. Let E c R d be compact with m~E ~ O, and let 1 < q < Go. 
Suppose that for all x E E,  with the possible exception of a compact set Eo C E with 
Cq(Eo) = O, there exist a number K(x)  < oo, and sequences {rn(x)}~ and {R,,(x)}~ 
decreasing to zero in such a way that 

1 Rn(x) 
1 + K(x) < to(x) < K(x), (1) 

and so that 
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Fq(A(x, r,(x), R,(x))/E) < K(x) . F~(A(x, r,~(x), I~(x)) (2) 
for all n. 

o 

Then C~ is dense in W~, i.e. E is removable for FDP (ADP), p = q / ( q -  1), 
and I~(G/E) = I~(G) for all rings G. 

The proof of this theorem is somewhat technical. We shall therefore first discuss 
how Theorems 4 and 5 compare with the characterization of removable sets for A D  S 
given by Ahlfors and Beurling, and then give the proof of Theorem 6 and some 
related results. 

5. Comparison wi th  the Ahlfors-Beurl ing  theorems  

In [3] Ahlfors and Beurling gave a characterization of the removable sets for 
A D  S in terms of extremal lengths. Let  the plane compact set E be contained in a 
rectangle R with, say, sides parallel to the coordinate axes. We denote the extremal 
distance between the vertical sides of /~ with respect to R ~ E by ~(~)(R ~ E), 
and between the horizontal sides by 2(2)(R ~ E). Then the theorem of Ahlfors and 
Beurling is the following. 

T~IEOm~ 7. E is removable for AD 2 i f  and only i f  for some rectangle (or all 
rectangles) R containing E in its interior 

X(')(R ~ E) = 2(O(R), i = 1, 2. 

The sufficiency of this condition was obtained as a consequence of the following 
theorem, also proved in [3]. 

T~OgEM 8. E is removable for A D  ~ i f  and only i f  every region which is con- 
formally equivalent with 0 E has a complement of zero area. 

We shall show directly tha t  Theorem 4, when specialized, is equivalent to 
Theorem 7, and we thus obtain new proofs of Theorems 7 and 8. 

We first define, for a d-dimensional rectangle /~, another condenser p-capacity 
with respect to E. 

Definition. F(0(R ~ E) = inf~ f R \ E  ]grad ~o ]Pdx, i = 1, 2 , . . . ,  d, where the 

infimum is taken over all co E C~(C E) such that  ~o = 1 on one of the sides of R 
parallel to the hyperplane xl = 0, and co = 0 on the other one. 

Note tha t  always 
F(O(R ~ E) < F(')(R) < F(~)(R/E). 

The bridge between Theorems 4 and 7 is provided by Lemmas 3 and 4 below. 
They are of course not new (see the remarks below), but for the reader's convenience 
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we give some details.  We again assume t h a t  E is a plane compact  set conta ined in 
the  inter ior  of  a rectangle  R. 

L n ~ t  3. I'(~)(R/E)= 1/F(2J)(R'~ E), i =  1, j =  2 or i =  2, j =  1. 

Proof. Let  R have  ver t ica l  sides J ~ l  and  F~ of length  a and  hor izonta l  sides 
F2 and  av~ of length  b. F i r s t  assume t h a t  E is bounded  b y  f in i te ly  m a n y  analy t ic  
c u r v e s .  

The  sets of  funct ions o) compet ing  in the  ex t remal  problems def ining /~1)(R/E) 
and /'~:)(R ~ E) are convex in W~(R) and  W~(R ~ , E )  respect ively .  Therefore  
there  are unique  ex t r ema l  funct ions  u in W~(R) and v in W ~ ( R ~ E ) .  B o t h  
are harmonic  in _ R ~ E ,  u =  0 on F1, u =  1 on F'I, and  v =  0 on F: ,  v =  1 
on F '  2. u is clearly cons tan t  on each componen t  of  the  in ter ior  of  E .  Bo th  u 
and  v can be cont inued  harmonica l ly  b y  ref lect ion over  the  boundaries ,  so t h ey  
have  cont inuous b o u n d a r y  values and b o u n d a r y  derivatives.  

The  usual  va r ia t ion  shows t h a t  f .  gradu-gradCdm = 0 for all r in C~ 

wi th  suppor t  off  F1 O F'I. B y  Green 's  formula  

f 4(, a u )  = r = 0, 
OR U OE OR U ON 

for all such r and it  follows t h a t  Ou/On-~ 0 on F 2 U F~, and  t h a t  
f (Ou/On)d  = 0 for eve ry  componen t  c of  OE, i.e. u has no periods in _R ~ E.  

Similarly grad v �9 grad  Cdm = 0 for all r in C ~ wi th  suppor t  off  

F 2 U F ~ .  Thus  foRooEr for all such r and  it  follows t h a t  
I 

av ian= 0 on OE and  on F 1 U F  1. 
Moreover,  Green 's  formula  

f Igrad ( u l -  u2)[2dm = f (u, .) 0 ( u l  - -  u2) On ds 
G OG 

shows t h a t  bo th  u and  v are un ique ly  de t e rmined  b y  these b o u n d a r y  conditions. 
Since u does no t  have  any  periods i t  has a single-valued conjugate  harmonic  

funct ion  u* in R ~ E.  The  f low lines for u are level lines for u*, and  conversely.  
Therefore  Ou*/On= 0 on aE and on F 1UF~,  and  u * = e o n s t ,  on F 2 and  on 
F '  2. We can assume tha t  u* ---- 0 on F2, and then  it  follows f rom the  uniqueness  
of v t ha t  u * =  cv for  some constant  c. 

Again applying Green's  formula  we f ind  

f IV~I)(R/E) = lgrad ul2dm = u ~n ds = ds ~- u*(F'~) =- c. 
R ~ E  OR U OE FI" 

On the  other  hand  
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f }" f [grad u 12din = ]grad u* 12din = c 2 ]grad v ]2dm = e2F~2)(R ~ E). 

R \ E  R \ E  ~ \ E  

T h u s  r ~ : ) ( n / E )  = c = 1/r(~)(R \ E). 
Moreover the analytic function f = u 4- iu* maps R \ E univalently onto 

a region bounded by a rectangle S and finitely many vertical slits. The length of 
the horisontal sides of S is 1 and of the vertical sides c. Clearly /'~I)(R) 
alri:)(R) = a/b, so ~ >_ alb. 

In order to finish the proof we have to prove tha t  if E = N~ E,, E,+a C E,,  
then l i m , ~  l~O(R \ E,) = F~O(R ~ E), and l im~|  I~(~)(R/E,) = I'(O(R/E). 
This is easily done by arguments similar to those used by Ziemer [32; Lemma 3.9]. 

LnM~A 4. /~(j)(R ~ E) = 1/2(J)(R ~ E), j ---- 1, 2. 

Proof. Assume first, as before, that  E is bounded by finitely many analytic 
curves. Let v be the extremal function defined above (for j =- 2), i.e. v is harmonic 
in R ~,  E, v = 0 on F2, v ---- 1 on f'2, and 0v/0n = 0 on 0E O F1 O E'l, and 

f ' f Igrad vl2dm ~-- F(22)(R ~ E). Then 2(2)(R ~ E) -- [grad vl2dm. 
n \ E  R \ E  

This is Theorem 4--5 in Ahlfors [2; p. 65], and ~)almost certainly due to Beurling)). 
(See [2; p. 81].) 

The extension to general E is again easy. Details are found in Ziemer [32; 
Th. 2.5.1] or [33; Lemma 2.3]. 

In a similar way one obtains a counterpart to Theorem 5. I f  G is a ring domain 
in R d we denote by Mp(G ~ E) the p-modulus of the family of hypersurfaees 
(curves for d = 2) in G \ E tha t  separate the components of C G. I.e. for 
p = d =  2 M 2 ( G ~ E ) =  2 ( G ~ E )  -~, where 2 ( G ~ E )  is the extremal length 
of this family of curves. 

THEOlCEM 9. I f  E C (~ and G is a ring then F2(G/E ) = M2(G ~ E) -1. 
E is removable for A D  2 if and only if  

M2(G \ E) = l~2(G) 

for all rings G. 

Thus 

Remarlcs. Capacities of the types F(i)(R ~ E) and Fp(G ~ E) have been 
studied extensively. Thus Lemma 4 is a special case of a theorem of J. Hesse [16] 
who extended earlier work of Beurling, Fuglede [8], Gehring [9], Ziemer [33] and 
others. See also Ohtsuka [23]. Nullsets for these capacities have been investigated 
by Vi~isg~l~ [29] and Ziemer [32; Th. 3.14]. Capacities of the type I'(~)(R/E) and 
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Fp(G/E) on the other hand do not seem to have been studied before. A theorem 
similar to Lemma 3 in a general situation on open Riemann surfaces, but in terms 
of conjugate extremal lengths, was given by Marden and Rodin [19]. See also the 
monograph by Rodin and Sario [25; p. 124]. Generalizations of Lemma 3 and 
Theorem 9 to p # 2 and to higher dimensions do not seem to be known. A )>con- 
jugate~> problem was solved, at least for p ~ 2, by Ziemer [32], and Bardet and 
Lelong-Ferrand [5], who extended earlier results of Fuglede [8], Gehring [9], and 
others. 

In view of these results the following conjecture seems reasonable: For any 
compact E and any ring G C R e I'q(G/E) ~/q = Mp(G ~ E) -l/p, 1 < p < oo, 

6. Proof of Theorem 6 

In order to prove Theorem 6 it is by Theorem 1 enough to show that  every 
o 

function in C~~ E0) can be approximated in the W~ q norm by functions in C~. 
The proof is by a direct construction of the @proximation functions. The con- 
struction is similar to one used previously by the author in [13]. 

oo o oo We denote the closure of C E in W~ by C~. Various constants independent 
of x are denoted by C. 

LI~sI~IA 5. Under the assumptions of Theorem 6 

F~(A(x, r.(x), Rn(x))) < CK(x)~ 'R.(x) e-~, 1 < q < oo. 

Proof. I t  is well known that  
R 

{f Fq(A(x, r, R)) = C t(d-1)/(1-q)dt , 

r 

corresponding to the extremal function u ( y ) =  C l y -  xl (e q)/(1 q). The assump- 
tion Rn(x)/rn(x) > 1 + 1/K(x) gives the result after a short computation. 

We shall start  by covering the set E ~ E 0 with balls in a special way by means 
of the following well-known lemma. See e.g. Stein [28; I. 1.7] for a proof. 

LEMMA 6. Let E be a measurable subset of R d which is covered by the union of a 
fami ly  of balls {B(x,  r)} with bounded diameter. Then f rom this fami ly  a subsequence 
{B(xl, ri)}~=l can be selected so that E c [.J~ B(x~, ri) but the balls B(xi, ri/5) 
are all disjoint. 

For every integer i ~  1 we set E ~ = { x C E ; i  <_K(x)  < i +  1}, 
E = [.Ji~o Ei, where by assumption C~(Eo) = O. 

SO 
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F or  c3> 0 we set G~ ---- {x; dist (x, E)  < 5 } .  Since m a E = O  b y  assumption,  
have  lim~+ 0 maG ~ = O. We choose an  a rb i t r a ry  e > 0 which will be kep t  w e  

f ixed,  and  then  we choose a sequence {~}~=1 such t h a t  

~ id+qmeG~i < e. 
i=1 

}'or x C E i ,  i > 1, we can also assume t h a t  /~n(x) < dl for all n. 
I t  follows f rom L e m m a  6 t h a t  each E~, i = 1, 2 . . . . .  can be covered b y  a 

(possibly infinite) sequence of  balls B(xi, rj), xj E El, rj = r~(xj), so t h a t  
B(xi, Ri) C G~, Rj = R~(xj), and  so t ha t  

<_ (i + 1) < 
J J 

Taking the  union of  these coverings and  reenumera t ing  we obta in  a covering 
of E ~ E  o by  balls B(xj, rj) so t h a t  /?j < ~1 and  

j=l  i=1 

For  each of  these balls there  is b y  assumpt ion  and  L e m m a  5 a func t ion  Cj. C C~ 
so t h a t  C j z  1 on B(xi,~?.), C y =  0 off  B(xj, Rj), and  

f Igrad < CK(xSRJ- . C j l ' d ~  

Thus  

f Rj j tgrad CjLqdm < Cs. (3) 

Le t  g be the  funct ion to be approx imated .  We can assume t h a t  0 _< g < 1 
and t h a t  ]grad gI ~< 1. We shall cons t ruc t  an approx ima t ion  to  g in an induct ive  
way  by  using the  funct ions r and the  following lemma.  

LEM~A 7. I f  r and r belong to C~, then the functions m ax  (r162 and 
rain (r r belong to C~. 

A similar l emma was p roved  in [13; L e m m a  2] and we omit  the  proof  here. 
Denote  the  suppor t  of  g by  S. Then  E I 3  S is compact ,  so we can select a 

f ini te  subseqnence {B(xj, rj)}~=l t h a t  covers E gl S. We choose V so 
0 <~]__<min{Rj ;1  < _ j < J } ,  and  so t h a t  1/7 is an integer.  

Then  we set 

L k = { x ; g ( x )  > k~}, k =  0 ,1 ,2  . . . .  , 1/~], 

and define gk(x) for each k b y  
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~0, x ~ L k  
gk(x) ~-- ~g(x) -- kv, x 6 L k ~ Lk+ 1 

[~, x 6 Lk+i. 

For  e~ch j --~ 1, 2, . . . ,  J there is an integer #(j)  such t h a t  B(x1, Rj) c L,(i), 
but  B(x~.,Rj) ~ L,(j)+~, and there is an integer v(j) > / ~ ( j )  such t h a t  
B(~ ,  r~) [3 L~(i) # O, but  B(x~, r~) f3 L(~)+~ = O. 

Set VJ ~- (v(j) -- #(J))vr if  v(j) > #(j) ,  and  Y~i ---- Vr otherwise. Since 
Ig t ad  gl --< 1, dist (~ L~, L~+i) >_ V- Thus 

(v(j) --  #(j)  --  1)V _< dist (O L,(j)+I, L~(i) ) < Bj + r~. 

Since V <--B~ we have ~vj<3Rjr  so by  (3) 

f Igrad vjIqdm <_ Cs. (4) 

Set ~2 ---- [.J~B(x~,rj), and set e ---- dist (0 f2, E VI S). Define a funct ion 
Z(x) by  

[0, dist (x, E [3 S) _< ~/2 
Z ( x ) = ] 2 / e d i s t ( x ,  E V I S ) - -  1, e / 2 < d i s t ( x ,  E91S)  < 

[1, dist (x, E f3 S) >_ 

Then gkz = 0 in a neighborhood of E, so gkg 6 CE, and gkz =- gk outside f2. 
Now, set T0(x ) ---- max  {~/(x); B(xi, Ri) c L0}, and  set ho(x ) ---- max  {go(X)Z(x), 
T0(x)}. Then h o 6 C  ~ by  L e m m a  7, ho(x) >--V on L1 and  ho(x ) = g ( x )  on 
C L1 \ (supp T0). 

Set lo(x ) = min{h0(x), V}- Then 10 6 C~, by  L e m m a  7 and  lo(x ) ----V on L1. 
Next ,  set Tx(X) ---- max  {Vi(x); B(xi, R]) c LI}, and set hl(x ) ---- m a x  {g~(x)x(x), 

Tl(x)}. Then hi 6 C~, and  hl(X ) = 0 outside LI. Set kl(x) = max  {h0(x), lo(x) + 
hi(x)}. Then also kl 6 C~, and  we claim t h a t  kl(x ) > 2 v on L 2. In  fact,  if  x 6 L2, 
and  x belongs to some B(xj, ri) such t h a t  B(xj, R~) intersects G LI, then  
Vj(x) > 2  v, so ho(x ) > 2  v. I f  x 6 L  2 and  x belongs to some B(xj.,ri) such t h a t  
B(xi, Ri) C L  1, t hen  Vi(x) ~ V  so lo(x ) + h ~ ( x )  > 2  v. I f  x 6 L 2 \ 9 ,  then  
hi(x) > _ g x ( x ) z ( x ) = g x ( x ) = v ,  so again ka(x) > 2  v. On C L  1 we have hl(x ) =  O, 
so k~(x) = ko(x) = ho(X). 

Moreover, if  x 6 L~, i > 2, and  x belongs to some B(xj, rj) such t h a t  B(xj, Rj) 
intersects C L 2, then  kj(x) > i~. In  fact,  either B(xj,_Rj) intersects CL1, 
and  then  Vi(x) >_iv, so ho(x ) > i v, or else B(xi, Rj) c L1, and then  Tl(X) > 
~pj(x) ~ (i -- I)V, and ]Cl(X ) ~ 10(X ) -~ TI(X ) ~ i v. 

Set ll(x) = rain {kl(x), 2V} , and  continue the construct ion in the same way.  

Assume t h a t  k~_ 1 6 C ~  has been constructed,  so t ha t  k~_1(x ) = k~_2(x) on 
G L~_I, k ~ _ l ( x ) > n  v on L~, and  k,_l(x  ) > i  v if  x 6 L ,  i >  n, and  i if  x 
belongs to some B(xj, ri) such t h a t  B(xj, Rj) intersects C L~. 
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Then set 

and 

ln_~(x) = rain {kn ~(x), nv}, 

T~(x) = m a x  { ~ / x ) ;  B(% ~ )  C L~}, 

h~(x) = m a x  {g~(x)z(x), V~.(x)}, 

~o(x) = m a x  {kn_l(x), Zo_l(.) + h.(x)}. 

Clearly ]cn(x ) C C~, and k~(x)= kn_~(x ) on G L~. 
I f  xCL~+I ,  we claim t h a t  k ,~(x)~(nJr  1)~. In  fact, if  x ELf+ l ,  and x 

belongs to some B(xj, rj) such t h a t  B(xj, Rj) intersects CL~, then  by  the 
induct ion hypothesis  k~ ~(x) ~_ (n q- 1)~, so ]c,~(x) ~ (n -k 1)~. I f  x E B(x/, rj), 
and B(x], Rj) C L., t hen  T.(x) > V, so k~(x) ~_ I~_I(X ) ~- V = (n ~ 1)~. Final ly ,  
i f  x C L~+I ~ .(2, t hen  gn(x)z(x ) = g.(x) = ~, so again kn(X) ~ (n ~- 1)~. 

I f  x E L .  i >  n ~  1, and  if  x belongs to some B(xj, rj) such tha t  B(xj, Ri) 
intersects 0 L~+I, we claim t h a t  k.(x) ~_ i~. In  fact, ei ther B(xj, Rj) intersects 
C L. ,  and  then  k,~_l(X) ~ i~, by  the induct ion hypothes i s ,  so k,,(x) ~ i~, or else 
B(Xj, R/) C L,, in which c a s e  ~l)j(x) ~ ( i  - -  n)v, so k~(x) ~ 1,_l(x) Jr (i -- n)v = i v. 

I f  u = lfl~ we f ind t h a t  ]c~+~ = ]c~. We f inal ly  set ]c =/q/~ ,  and claim t h a t  
/c approximates  the given funct ion g. 

I t  is clear t h a t  ]c(x) = g(x) outside G~ = G O . ~oreover ,  for almost  all 
x E L n ~ L , + >  n =  0, 1 . . . .  , we have either grad]c(x) =grady~i(x)  for some j, 
or grad/c(x) = grad (g,(x)z(x)) (see e.g. Deny-Lions [7; Th. 3.2], and 

!grad (g~(x)z(x)) ] = ]g.(x) grad Z(x) ~- Z(x) grad g(x)] ~_ 3. 

Thus 

f i g  rad ] (Ig rad g] ~- Igrad kl)~dm ~- 
f 

(g ]c) ]~dm CmdGo 

Go 

-~- C ~j f Igrad y3j[qdm ~ CmdGo -~- Ce 

by  (4). Since s and m~Go are arbi t rar i ly  small, the theorem follows. 
We also observe t h a t  Ig(x) -- k(x) l < 3 max /R j  < 3~1, so ]c also approximates  

g uniformly.  

Variants  of the proof of Theorem 6 also give the following results. 

THEOREM 10. a ) S u p p o s e  E is contained in a Cl-submanifold M C R ~ of 
dimension a, and that m~(E) = O. Then the conclusion cf Theorem 6 is still true if  
(2) is replaced by 

Fq(A(x, r.(x), Rn(x))/E) < K(x)Rn(z) ~-q (5) 

for all n. 
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b) Suppose that the a-dimensional Hausdorff  measure As(E ) ~ 0 for some 
< d. Then the conclusion of Theorem 6 is true i f  there exists a compact Eo with 

Cq(Eo) ~ 0 so that for all x C E ~ Eo there is a K = K(x),  0 < K(x)  < ], so that 

- -  Fq(A(x, K R ,  R)/E) 
lim < oo: 
R-~O R S  q 

Proof. To prove  the  theorem one only  has to modi fy  the  covering a rgumen t  in 
the  f irs t  pa r t  of  the  proof  of  Theorem 6. We keep the  no ta t ion  f rom th a t  proof. 

In  ease a) we know t h a t  l i m ~  0 ms(G ~ fl M)  = O. We now choose {5;} so t h a t  

• iS+qm~(G~i N M) < e, 
i = 1  

and  then  (3) follows as before.  
In  ease b) we wri te  E ' ~ E o  = [3~ El, where E~ is the  set where 

i -1 < K(x)  < 1 - -  i -1, and where _Pq(A(x, K(x)R ,  R) /E)  < iR s-q for all R < i -1. 
We choose a sequence {d/} so t h a t  

• i~+ldl < e 
1 

and  cover each Ei with  balls B(x;,r~) so t h a t  rj. < i -2 
can assume, by  doubling the  rj if  necessary,  t h a t  xj C E~. 
Rj = r/K(x~), t h a t  

(' 

JR]Fq(A(xj, rj, Ri)/E ) < i ~+1 ~ r? < i~+ld,. 
J J 

(3) follows, and t hen  the  t heo rem follows as before.  

and  ~ i r ~  < bi. We 
I t  follows, if  we set 

THEORE~I 11. a) I f  in Theorems 6 and 10 a) the function K(x)  is uniformly 
bounded, the conclusion is still true i f  the hypotheses me(E ) ~-- 0 or ms(E ) = 0 are 
removed. 

b) Suppose that As(E ) < oo for some ~ < d. Then the conclusion of Theorem 
6 is true i f  for every e > 0 there exists a compact E o with Cq(Eo) < e and a number 
M < oo so tha t f o ra l l  x C E ~ E  o there i s a  K = - K ( x ) ,  1/M < K ( x )  < 1 - -  1/M, 
so that 

lira" l~q(A(x' K R ,  R)/E)  < M.  
R-->O j ~ s - -  q 

Proof. We can no longer claim tha t  f ]grad (g --  k)lqdm in the  proof  of Theorem 

6 is small, bu t  in all cases f Igrad k lqdm is bounded  independen t ly  of  e, so there  

is a weakly convergent  sequence of funct ions  k. B y  the  Banach-Saks  theorem 
there  is a subsequenee k (1) such t h a t  Kn = 1/n ~ k (i) converge s trongly.  The 
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k (0, and therefore the Kn, also converge uniformly to g, so g is also the strong 
limit of the K=. 

THEOREM 12. Under the additional assumption that E is completely disconnected 
the equivalent conditions in Theorems 5 and 6 are necessary and sufficient, and the 
conditions in Theorems 10 and 11 are sufficient for C~(G) to be dense in the Royden 
q-algebra c)'lZ~(G) for any bounded domain G ~ E. 

In fact, a modification of the proof of Lemma 1 shows tha t  C~(G) is dense in 
c)Jlq(G) if E is completely disconnected and Cq(E) -~ O. Theorem 12 then follows 
easily, since, as we noted above, the approximating functions in the proof of Theorem 
6 actually converge uniformly. 

We finally remark tha t  a Baire category argument (see Sario and Nakai [27; 
Th. VI. 1. L, p. 371]) shows tha t  if E is compact, and E = [J~ E~, where the 
Ei are compact and removable for FDe, then E is also removable. 

7. Sets on hyperplanes 

In this section we give some further results in the case when the set E is con- 
tained in a hyparplane, especially when d = 2 and E is a linear set, in which ease 
we improve a theorem of Ahlfors and Beurling. The discussion also serves to 
illuminate the difference between the capacities I'~(R/E) and _Pq(R ~ E). 

We denote the hyperplane {x ERa; x d = O} by R s-a, and the halfspaces 
{x E Ild; x~ > 0 (x d < 0)} by R~ (Rd_). Suppose the compact set E belongs to 
R d-1. I t  is well known that  the restriction of W q to R d 1 can be identified with 

A q ,  q / ' l~d - -  l'~ the Besov or Lipschitz space ~11p~l, j, i.e. the space of boundary values of 
harmonic functions u E wq(R~). See e.g. Stein [28; VI. 4.4] and references given 
there. I t  is easy to see tha t  C~(R a) is dense in W~(R d) if and only if C~(R d 1) 
is dense in Aq, V~d-l~ I.e. the problem can be reduced to the same problem in a �9 ~Xl/p\~,~, ] .  

Lipschit'z space, and for d > 2 a solution requires a study of condenser capacities 
q,q in these spaces. For d ~ i a linear functional on A1/p(tl ) tha t  annihilates C~(It) 

P,P can be identified with a function f C A1/q (R) such tha t  fRfr = 0 for all 

CEC~(R) .  I t  follows tha t  f = 0  on CE,  i.e. C~ is dense in A[i ~ if and only 
P,P if every function f C A1/q (tl) with support on E has to be identically zero. We 

P,P say tha t  E is a set of uniqueness for A1/q (R). A good description of these 
sets of uniqueness can be given in terms of >>Bessel eapacities~> C~,e (see e.g. Meyers 
[22] for definitions and properties), which are equivalent to the classical t{iesz 
capacities for 2o == 2. We denote the space of Bessel potentials of order ~ (or 
equivalently lgiesz potentials with respect to the kernel lxl 1-~) of functions in 

P LP(tl) by ~ ( t l ) ,  and note the following inclusion relations (see Stein [28; V. 5.3], 
where there are misprints in the statement of the theorem, however). 
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A~'P G ~ c A~ "2, 1 < p < 2 .  

AP~'2cc-~3cAP~ 'p, 2 < p <  oo. 

/ + '  p,  A~',/ ~ , Moreover A [ ' 2 c A ~  , < p ,  and C A [ '  p < p ,  ut least locally. 
Necessary and sufficient conditions for a set to be a uniqueness set for ~ have 
been given by  Polking [24] and the author [15; Th. 9]. For p~ > d functions 
in QPP are continuous, and then the condition is that  E has no interior. 

We summarize the result. We denote the interval [x -- 8, x ~ 8] by  I,(8). 

THEORn~[ 13. Let E C C be compact, and suppose E C R, the real axis. 
For E to be removable for A D  p, 1 < p < 2, it is sufficient that E is a set of 

uniqueness for ~/q(R) .  I t  is necessary that E is a set of uniqueness for ?~iq(R) 
for all p '  < p. 

For E to be removable for A D  2 it is necessary and sufficient that E is a set of 
uniqueness for ~/2 (R) .  

For E to be removable for ADP, p > 2, it is necessary and sufficient that E 
is totally disconnected. 

E is a set of uniqueness for ~ / q ,  1 < p < 2, i f  and only i f  one of the following 
equivalent conditions is satisfied: 

(a) Cl,q,p(I ~ E) ~ C1/q,r(I ) for some interval I containing E. 
(b) C1/q,p(I \ ,  E) = C1/q,p(I  ) for every interval I .  

(c) lira 
&+O 8 

- -  G / + / = ( 8 )  \ E) 
> 0 for almost all x E E .  

The capacity C~/2, 2(E) is equivalent to the plane logarithmic capacity C2(E), 
and the result is that  E is removable for A D  z if and only if either 

(a) C2(I ~ E) = C2(I ) for some interval I containing E, 
(b) C2(I ~ E) = C2(I ) for every interval I,  

o r  

- -  Cdlx(8 ) ~ E) 
(c) lim > 0 for ahnost all x C E .  

Note that  Q(I~(8)) = 1/(log 4/8). Similar results can be given for sets on circles. 
The characterization (a) is due to Ahlfors and Beurling [3]. Their result was 

extended to sets on C 2 curves by  Carleson [6; VI. 3]. See also [12; Th. 1] where 
a related theorem of Carleson was published. 

Sharp comparison theorems between the C~,p and Hausdorff  measures, and 
between the C~,p for different ~ and p have been given by  Maz'ja and IIavin 
[21], and by  Adams and Meyers [1]. 

Suppose again that  E ~ R e-1 C R e, and consider F(+(R ~ E) for a rectangle 
/~ that  is symmetrically situated with respect to R e-1. Let  u be the corresponding 
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ex t remal  funct ion.  Then  1 -  u ( . , -  x~) is also an ex t remal  funct ion  and since 
the  ex t remal  is unique it  follows t h a t  u ~ �89 on R ~-1 ~ E. 

p d The res t r ic t ion of  u to  R d + belongs to  WI(R+), and  i t  can be ex t ended  to 
W[(R d) by  set t ing u ( . , -  x d ) ~  u( ' ,xd).  The res t r ic t ion of  W[(R d) to R d-1 is 

P,P again A1/q, and it  follows t h a t  F(pd)(R ~ E) z F(pd)(R) if  E is a set of  unique-  
ness for A~]~(Rd-~). B y  the  inclusion relat ions above and [15; Th.  9] this is 

the  case if  lim~_>oC1/q,p(B(x,(~)~E)~l-d> 0 for (md ~) a.e. x in E, in 
par t icu lar  if m d I(E) ~ 0. For  p ~- 2 C1/2, 2(E) is again equivalent  to C2(E), i.e. 
to classical capac i ty  wi th  respect  to the  Newton  kernel  ]x] 2-d in R d. Cf. V/~iss 
[29], and  Ziemer [32; Th. 3.14]. 
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