
Multipliers on homogeneous Banach 
spaces on compact groups 

~-~ARALD E. KROGSTAD 

O. Introduction 

The first section is motivated by a result of K. de Leeuw [9, th. 4.2] and is con- 
cerned with Banach modules where the elements of the algebra act as weakly com- 
pact  operators on the Banach space. In  w 2 and w 3 the general properties of such 
modules are used to characterize the multipliers on homogeneous Banach spaces 
on compact groups. The results are par t ly  taken from the author 's  dissertation for 
the licentiat degree at the Technical Universi ty of Norway which was writ ten under 
the direction of Professor Olav Njgstad. 

1. Banach modules with weakly compact action 

We start  by recalling some basic definitions. I f  A is a Banach algebra and V 
is a Banach space, then V is a left Banach A-module if it is a left A-module in 
the algebraic sense, and ]lavl[ < [jail ][vii for all a C A, v E V. A right Banach module 
is defined similarly. The closed linear subspace of V spanned by  A V is called 
the essential part  of V and is denoted by Ve ([10 l, p. 454). I f  Ve = V, then V 
is called an essential A-module. I t  is well known tha t  if A has a bounded approxi- 
mate identity, then V , = A V e ,  i.e. for al vE  Ve, there exists an a 6 - A ,  w E  V8 
such that  v = aw. (In what  follows, we always assume the bound on a bounded 
appr. id. to be 1.) I f  V is a left A-module, then V* is a right A-module under 

the adjoint action: (att)(v) D #(av),  a 6- A ,  v 6- V, # 6. V*. The essential par t  of V* 
is called the contragradient of V and is denoted by  g c ([10], p. 455). 

I f  V and W are Banaeh A-modules, then HomA(V, W) as usual denotes 
the space of linear, continuous operators T from V to W such tha t  T(av)  = a(Tv)  
for all a 6. A ,  v 6. V. 
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We say t ha t  a ~ A is weakly  compact  if  the  opera tor  v -~  av is weakly  compact .  
Le t  ~: V--~ V** be the  canonical  injection.  

LEM~[A 1.1. Let V be an essential A-module.  Then u ( V ) ~ - ( V * )  ~ i f  and only 
i f  every a ~ A is weakly compact. 

Proof. Let  a E A, v C V, # C V*. Then  ,~(av)(#) = #(av) = z(v)(a#) = au(v)(#), 

that  is, u(av) C V *~. Since the  l inear span of A V is dense in V, ~ is a l inear iso- 
merry ,  and V *~ is closed, it follows t ha t  z ( V ) c  V *~. The lemma is now an 
immedia te  consequence of the  fac t  t h a t  a l inear opera tor  on V is weakly  compact  
if  and only  if  its second adjoints  maps V** into x(V) ([2], p. 482). 

Ln~MA 1.2. Let A have a bounded appr. id. {in} , and let 
module. Then there exists a natural isometric isomorphism 

~: Vc___~ V ~~ 

such that 

(e~)(~) = ~(~),  r e V *~ ~ e V ~ 

V be a Banach A -  

Proof. One easily checks t ha t  ~ commutes  wi th  the act ion of  A which implies 
t h a t  e (V  *~) - -  V% 

Le t  f C  V% Then  there  exists and a C A ,  g E  V ~ such t h a t  f ~ a g .  I f  now 
C V** is a cont inuous  ex ten t ion  of  g to V**, t hen  

q(a~)(~) : a~(/~) ~-- ~(a/~) = g(att) : f(tt)  for all ~ C V ~. 

Thus  ~ is onto. Clearly l]o~bl[ ~ EIr and  to  complete  the  proof,  it remains  to  
prove  the  opposite  inequal i ty :  

Le t  ~b E V *c. Since {i~} also acts as an  approx ima te  iden t i ty  for V *c, there  
is an i n such t h a t  Hi~q~- ~11 < s/2. 

Let  /t E V*, L/#ll = 1, so t h a t  l~5(#)i > l/~ll - -  e/2. Then  ( ~ ) ( i ~ # )  = q~(i~/~) --~ 
q~(#) _ qS(/~) + q)(i~#), hence 

( ~ :  Read  " isometr ic  isomorphic" . )  

PROPOS[TIO~ 1.1. Let A have a bounded appr. id., and let V be an essential 
Banach A-module.  Then the following are equivalent: 

(i) V ~ (V*) c ~-- V% 

(ii) Al l  a E A are weakly compact. 

(iii) A have a bounded appr.  id. consisting of weakly compact elements. 
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Proof. The equivalence of (i) and (ii) is obvious from the lemmas. Clearly (ii) 
implies (iii), and since the algebra norm majorizes the operator norm, and the 
composition of a bounded linear operator and a weakly compact operator is weakly 
compact, (iii) implies that  every a E A is the limit in the uniform operator topology 
of weakly compact operators, and therefore is weakly compact. Thus (iii) implies (ii). 

Let V @y W be the projective tensor product of the Banach A-modules V 
and W, and let M be the closed linear span of elements of the form 
av @ w --  v @ aw. The quotient space V @~ W / M  is an A-module tensor product 
and is denoted by  V @A W (See [10], [11]). 

Each element cf of V @A W has an expansion ~v = ~ - 1  vi @ wi where 
~iml  [IVi[lllWi[I < DO. The norm of qo is defined by ]l~[I = i n f ~ L 1  ][vi[lHwill where 
the infimum is taken over all possible representations of ~0 (See [5], [10]). A bilinear 
operator gJ from V • W to a Banach space D is called A-balanced if it is con- 
tinuous and T(av,  w ) =  ga(v, aw) for all v q  V, w E  W, a E A .  I f  g*: V •  
is A-balanced, there is a unique linear operator W: V @A W - +  D such that  

T 
1) V x  W - - ~  D 

(~)A o / ~  

V @A W /  

2) LI~IL = I1~1[. 
We refer to [10] for further properties of V @A W. 

PROPOSITION 1.2. Let A be a Banach algebra with a bounded appr. id. Let V 
and IV be essential A-modules and let the action of A on W be weakly compact. 
Then 

Hom~ (V, W) ~ (V |  W~) * ~ (V | W*)*. 

The isomorphism carries T E Horn A ( V, W) to lZT E ( V @ A Wc) * (resp. 
(V @A W*)*) defined by 

#T(V @A W*) = w*(Tv),  v C V, w* C W e (resp. W*) 

Proof. The conditions assert that  W ~ W co, and since the natural isomorphism 
from W to W cc commutes with the action of A, we obviously have 
HomA (V, W) ~ HomA (V, Wcc). Thus 

HomA (V, W) ~ HomA (V, W ~c) 

Horn A (V, W c*) ([10], cor. 3.8) 

~ (V @A We) *. ([10], cor. 3.21) 
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t{omA (V, W) ~_ (V @A W*)* is proved similarly, and it is easily verified t h a t  
the result ing isomorphism has the form stated.  (Actually, if  V and W are essential 
A-modules and  A has a bounded appr. id., then  V @A W c ~-- V @~ W*: 

Viewing A as both  a left  and a r ight  A-module one has: 

V @A W* ~_ (V | A) @A W* ~ V @A (A @A W*) ~ V @ A ( W * ) ~ _ V @ A W t )  

PROt'OSITION 1.3. I f  A,  V, and W are as in prop. 1.2, and in addition the 
action of A on V is weakly compact, then: 

Horn A (V, W) ~ Hom A (W *, V *) ~_ I-Iota A (~g*, V*). 

Proof. 

Hom A (W*, V*) ~ (W* @A V)* ~ (V @A W*)* 

--~- Horn A (V, W) ~ (V @A W*) * ~ ( W* @A V*~) * 

HomA (W ~, Vc). 

_Remark 1.1. Proposi t ion 1.1 generalizes a result  of K.  de Leeuw ([9], thm.  4.2). 
I f  G is a locally compact  group and  {Tg}~eG is an isometric, s t rongly continuous 
representat ion of G on a Banach  space V, then  V becomes an essential Banach 
Ll(G)-module by  the composition 

f o v = f Tgvf(g)dg, f 6 LI(G), v C V. (1.1) 

In  this case V c is exact ly  the  closed linear subspace of V* on which the adjoint  
representat ion is s t rongly continuous,  de Leeuw states t h a t  if  G is compact  and 

Abelian, then  V ~ V ~ if  for each character  (x, y), y 6 G, (x, y) o V has a f ini te  
dimension, or at  least is a reflexive subspace of V. Now the  first  of these con- 
ditions implies t h a t  the operator  v -+ (x, y) o v is compact,  and  the second t h a t  it  
is weakly  compact  by  Corollary 3, p. 483 in [2]. When  G is compact,  LI(G) has a 
bounded apr. id. consisting of t r igonometr ic  polynomials,  and so condit ion (iii) in 
prop. 1.1 is clearly satisfied in de Leeuw's  case. 

_Remark 1.2. For  an example where V QL__ VcC, take  A = LI(R), V = C~ 
wi th  the  usual convolution as composition: 

Then V* = M(R),  V r --~ LI(R), V ~* = L~(R),  and V cc = C~(R), the space of 
bounded,  uniformly continuous functions. 

2. Homogeneous Banach spaces 

Let  V and  T be as in Remark  1.1, and let the group G be infinite,  compact,  
and Abelian. I f  we denote Ta f  by  fo, We have 
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(i) f ( - + 0 =  (f~)b, f e  V, a, b C G .  

(ii) [lf~l[ =/[flL for all f ~ V, a C a.  (2.1) 

(iii) lira - fll ~ o  ~" O. 
We also assume the existence of a Four ier  t ransform on V which has the  usual  

properties: 

(i) f---~f(7) is a continuous linear functional  for every y q G. 

(ii) f = 0 i f  and  only i f  f(7) = 0 for all 7 e G. (2.2) 

(iii) fa(7) = (--  a, y)f(y). 
We denote a Banach space which satisfies 2.1 and  2.2 a homogeneous Banach 

space (HBS). This not ion has been used by  various authors  for certain subspaces 
of LI(G) where the Fourier  t ransform has been inheri ted from LI(G), and T has 
been the regular representat ion,  i.e. f a ( x ) = f ( x -  a). The spaces C(G) and 
Lo(G), 1 < p < 0% are well known examples. Bu t  it  is convenient  not  to restr ict  

oneself to spaces of functions on G: LP(G), 1 < p < 0% becomes a HBS if  we take  
the "Four ier  t rans form"  to be the iden t i ty  mapping and  the act ion of G to be the 
mult ipl icat ion wi th  a character: (Taf)(7) ~ (-- a, 7)f(7). 

A H B S  is an essential Ll(G)-module i f  the act ion is def ined as in eq. 1.I. Ob- 
/ \  

viously, g of(y) = ~(y)f(7) for all 7 C G , f  E V, g E L~(G), and by  2.2 (ii), (x, 7) o V 
is either {0} or a one diment ional  subspace of V. Thus the action of LI(G) on V 
is compact,  and  the results of w 1 apply. Define {ev}re ~ by  %(~) = ~ if  
(x, 7) o V r  0 i f  (x, 7) o V = { 0 } .  Then clearly {e~} spans V. 

The adjoint  representat ion of G on V* is def ined by  #~(f) = #(fa), I ~ E V*, 
f C V. I t  will be isometric bu t  not  necessarily s trongly continuous. We define the 
Fourier  t ransform of a continuous linear funct ional  by  

~(r) = ~(e),  u e v*, r c ~. 

The mapping /~-+/~ satisfies 2.2, and  therefore, i f  P inheri ts  the Four ier  
t ransform from V*, it  becomes a H B S .  

PROPOSITION 2.1. Let V and W be H B S ' s  which we also consider as 
modules. Then V @L~(r W is a H B S  i f  we define 

(i) ( f @ g ) a = f Q g o ,  f e V ,  g e W ,  a c G .  
/ \  

(ii) f @ g(y) = f(7)~(7), f e V, g C W, y E G. 

LI(G) 

Proof. I t  is well known and  easily proved tha t  (i) defines an isometric, s trongly 
continuous representat ion on V @n, W (See [I0], cor. 3.10). The Four ier  t ransform 
def ined by  (ii) clearly satisfies eq. 2.2 (i) and  (iii). Le t  
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o9 

c v | w,  v = ~ L  o g,, Z [ILl[Hail < 00. 
i = I  i 

I f  we define the act ion of LI(G) on V @L1 W by eq. (1.1), we see t h a t  

if  and only if  (x, 7) o ~ =  0 fo r  all 7 E G .  But  

= X f ,  r ((x, 7) o g,) 
i 

= E L  | ((x, 7)~ (x, 7)~ g,) 
i 

= ~ ((x, 7) o f,) | ((x, 7) ~ g,) 
i 

~ g 

= ~f,(r)g,(r)e~ 0 e~, 
i 

which shows tha t  ~ ~ 0 if  and only if  

f d Y ) g , ( Y ) = F ( 7 ) =  0 for all y e G .  
i 

3. Multipliers on HBS's  

I f  X and Y are HBS's  or possibly the duals of  such spaces, we say t h a t  

= {r is a (X, Y)-multiplier if  for all f e X, ~f  is the Fourier  t ransform 
of an element in Y. The set of all (X, Y)-multipliers is denoted by (X, Y). The 
connection between multipliers and  " t rans la t ion  invar ian t"  operators is well known: 

PROPOSITION 3.1. Let V and W be HBS's  and let U: V-+ W be a linear 
operator. Then the following are equivalent: 

(i) There is a r C (V, W) such that U f ( 7 ) = r  for all f C V, T C G. 
(ii) U is continuous and (Uf)o = U(fa) for all f C V, a E G. 

(iii) U is continuous and U(h o f )  ---- h o Uf for all f C V, h C Li(G). 

We omit  the proof, bu t  remark  tha t  while (iii) ~=~ (i) ~ (ii) holds even if  we 
subst i tu te  V and W by  V*, W* resp., (ii) does not  necessarily imply  (i) in this 
ease. (See [12], p. 220 for a counter  example).  

The next  proposit ion is also simple to prove: 

PROPOSITIOS; 3.2. I f  V and W are HBS's,  then the following identities obtain: 
(i) (v ,  w )  = (w* ,  v*)  = ( w  ~, vo), 

(ii) (V, W * ) =  (V, W~), 
(iii) (V, W*) = (W, V*). 
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We assign to each r C (V, W) a corresponding multiplier operator U~ defined 

by  Ur = r We identify multipliers which generate the same operators, 
and we norm (V, W) by  setting 1[r = HU~H �9 This gives us by  prop. 3.1 an isometric 
isomorphism of (V, W) onto HomL~(c ) (V, W). 

PROPOSITION" 3.3. Let V and W be HBS's .  Then there exists an isometric iso- 
morphism 

i: (V, W) -~ (V @.(c) Wg* 

such that 
I x ,  

i r 1 6 2  for all C e ( V ,  W ) , y e G .  

Proof. The existence and the natural definition of i follows immediately from 
A ,  

prop. 1.2 and the remarks above. I t  remains to prove that  ir = r 
/ x  

l;[ie ~ 
i r  : i r  ff @L 1 e• ) 

W c V = er (Ucer) (Prop. 1.2) 
V ^  = (U+e~) (~,) 

V ^  = (r (~) = r 

We remark that  by prop. 2.1, V @L~ Wc is a HBS,  and thus the multipliers 
between two arbitrary HBS' s  can always be identified with the dual space of a 
HBS.  

COROLLARY 3.1. I f  V is a HBS,  then (V, V) ~ (V @L~(G ~Vc) *. 

As in the case of the LP-spaces, 1 < p  < 0% (See [4], [11]), we can identify 
V @Ll(c) V ~ with a Banach space of continuous functions: 

Let •: V @LI(~)Vc---~C(G) be the lifting of the Ll(G)-balaneed operator 
T: V•  Vc-+ C(G), T( f ,  #)(t) = # ( f , ) .  We first prove that  ~ is injective: 

Let ~ = Z ' f '  | ~' e ker W, Z '  Ilf, ti/)**i[ < oo. 
( ~ ) ( t )  = ~ tti((fi)_,), and, as the series converges uniformly, we calculate its 

Fourier transform: 

o = ~r  

= Z ~,((fl-,l^(Y) 
i 

(3.1) 
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i 

= ~ #,(7)fi(7). 
i 

B y  prop. 2.1, ~ ~ 0. 

Le t  A r  denote  the  range of T .  To make  A v  a Banach  space, it  now suffices 
~o define ]ITalIA V ~ 1]~]1. Observe also t ha t  the  induced represen ta t ion  and Four ie r  

t r ans form on A ~. coincide wi th  the  canonical. 

Remark 3.i .  G non Abelian. Le t  G be a non-Abel ian compact  group wi th  dual  
object  X, t h a t  is, the  set of equivalence classes of cont inuous irreducible repre-  
senta t ions  of G. Fo r  each ~ E X, we choose a f ixed  represen ta t ion  U ~ on the  
t I i lber t  space H a, and the  set ]-[oez H o m  (H ~ is deno ted  ~(X) (See [6], ch. 7). 

I t  is now convenient  to define a H B S  V as a Banach  space on which G acts 
isometr ical ly  and s t rongly  cont inuous in a way  resembling bo th  the  left  and the  
r ight  regular  representa t ions .  Moreover,  we assume to have  a mapping  f rom V t o  

~ ( X ) , f - + f ,  similar to  (2.2): 

(i) f = 0  i f  and  only  i f  f (a)  - 0  for  all r  
/ ~ ,  _ _ ^  

(ii) Laf(a)-~ U:f(a), for  a e G ,  a E X ,  
/%.  ~ - -  

(iii) R,f(a) ~-f(~)U:, for a E G, a e X. 
Famil iear  spaces like LP(G), 1 < 29 < oo, C(G), and also (~P(Z), 1 < p < oo, 

def ined in [6] p. 77, have all these propert ies .  The results in w 2 and 3 can now be 
generalized with appropr ia te  modificat ions.  The tensor  p roduc t  V @ L  l W equals 
V @7 W /K  where K is the  closed subspaee of  V @r W spanned  by  e lements  of  
the  form (fG R~fh(x)dx) @ g -- f @ ( fc  L,gh(x)dx), f C V, g C W, h E I_P(G). 

V QL, W becomes a H B S  i f  we define: 

(i) L~(f Q g) -~ (L~f) Q g, 
(ii) R , ( f  ~ g) = f ~ (Rag), 

/ \  
(iii) f ~ g(a) - f(a)g(a). 
Proposi t ion  3.1 has one left  and  one r ight  handed  version, and  in proposi t ion 3.2, 

the class of  left  mult ipl iers  f rom V to W, def ined in the  obvious way,  is equal 
to the  class of  r ight  mult ipl iers  f rom W* to V*. 

Remark 3.2. Applicat ions of prop.  3.3. Rieffel [10] has shown t h a t  

L~(G) ~L,(V) V ~ V GL,(G) L~(G) ~- V 

i f  V is an essential Ll(G)-module and LI(G) is considered as an essential  LI(G) - 
module  over  itself. This gives us the  identif icat ions:  

(L~(G), V) ~_ (LI(G) Qc~(G) V~) * ~ ( V~) *, 

(V, C(G)) ~ (V QL~(G) L~(G)) * ~ V*. 
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Then (LI(G), L~(G)) ~ C(G)* ~ M(G), (LI(G), LP(G)) ~ Lq(G)* ~ LP(G), (LI(G), 
C(G)) ~ LI(G) * ~ L~(G) etc. 

I f  we look at the table p. 410--411 in [6], proposition 3.3 provides a tensor 
product .characterization of all pairs (X, Y) in the table where X is a HBS 
(Recall that  (V, W*)--~ (V, We)). That is, all rows except the ones for 
~+, M(G), L~176 But if X and Y both are dual spaces, we may use prop. 3.2 (i). 

Multipliers between Lmspaces have been characterized by means of tensor 
products by I~ieffel [11]. I f  1 < p, q < o9, one identifies the tensor products with 
Banach spaces of integrable (or even continuous) functions by examining the lifting 
of the operator ~P: LP(G) • Lq(G) --+ LI(G), ~(f ,  g) = f * g. One can prove that  ~P 
is injective by a similar calculation to eq. 3.1. 

R. Larsen has considered the multipliers on the spaces 

Ap(G) = {f; Ilf[IL~(G) + llfl[L~(~) < ~}. 

I f  1 _< p < ~ ,  these are easily seen to be HBS's, in particular, if G is compact, 
(Ae(G), Ap(G)) can be identified with the dual space of a Banach space of continuous 
functions as proved by Larsen [8], pp. 207. 

Remark 3.3. Further results. Here we mention some other simple results which 
might be of interest: 

a) In prop. 3.3, i({r U~ is compact}) = (V @L1 We) c. The proof is essentially 
the same as the proof of thm. 3.1 (ii) in [1]. 

b) The representation of multipliers as Fourier transforms of continuous linear 
funetionals on certain Banach spaces is essentially unique: I f  V, M, X, Y 
are HBS's and X* ~ (V, W) ~ Y*, then there exists a continuous iso- 

/ N  

morphism j from X onto Y such tha t  jx(y) = y(~). This can be used 
to identify the tensor products if the multiplier classes are known. 

e) I f  V is a HBS such that  (x,y) o V #{0}  for all y C G ,  then 

A(G) = { f i f e  LI(G)} ~ Av C__ C(G). 

d) (Ar, A v ) ~ ( V ,  V). 

Remark 3.4. G non-compact. I f  G is non-compact, much of the above theory 
breaks down. First, to assume the existence of a mapping like (2.2) is now a more 
serious restietion than it was in the compact ease. Secondly, as the example in 
remark 1.2 shows, it is easy to find eases where the action of LI(G) is not weakly 
compact. In this particular example, the conclusion of proposition 1.3 is nevertheless 
true: 

HomL1 (C ~ C ~ ~ M (We omit the elementary argument) 
HomLI(L 1,L 1 ) ~ M  (See e.g. [8], p. 3) 
Hom L, (M, M) ~ (M @L~ CO) * -~ M. 
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However, if we compute Horn v (L ~, L~), we get 

HOME1 (L ~, L ~) ~ (L ~ @L~ L1) * --~ (C~) *, 

that  is, 

H0mL~ (L 1, L 1) ~ -  HomL~ (L ~, L~). 
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