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Abstract 

L e t  Ck(p) deno te  t h e  g roup  of  t h e  k - th  powers  ( m o d p ) ,  p a p r ime  w i t h  (k, p - -  1) > 1. 
A new e l e m e n t a r y  r e su l t  for  t h e  l eas t  k - th  power  non- re s idue  is g iven  a n d  t h e  r e su l t  is app l ied  
to  f i nd ing  a new e l e m e n t a r y  b o u n d  for t h e  m a x i m u m  n u m b e r  of  consecu t ive  in tegers  in  a n y  
coset  of  Ck(p). 

1. Introduction 

Throughout this paper k will be an integer ~ 2 and /9 a prime with 
(k,p -- 1) > 1. Let Ck(p) denote the group of k-th powers (modp) and let S 
be the maximum number of consecutive integers in any eoset of Cl~(p). Finally, 
let g(p, k) denote the least positive k-th power non-residue. 

Vinogradov [12], A. Brauer [2], Davenport and ErdSs [5], l~6dei [1% Burgess [4], 
and the author [6], [7], have given estimates for S. In particular, Vinogradov [12] 
showed that  there exists at least one quadratic non-residue in each set of 3[p ~/2] -- 1 
consecutive integers (mod p). 

A. Brauer [2], using purely elementary arguments, showed that  for every p and k, 

S < (2p) 1/2 + 2. (I.i) 

Using deep and non-elementary algebraic arguments, Burgess [4] showed that  
S = O(p I/4 log p), an enormously stronger result than has been obtained using 
elementary methods alone. 

Tile major contribution of this paper is to give a small improvement of the 
elementary upper bounds of Brauer and Reynolds [3], Skolem [il l ,  N~gell [9], 
and Rddei [10], for g(p, k). Namely, we show that  

g(p, k) < (p13) ~/2 d- 2 (1.2) 
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for all p except p = 23 and p = 71. While much stronger results are known 
using analytic methods, the proof of (1.2) for each prime p for which -- 1 is a 
k-th power residue is not only elementary, but synthetic, and possibly even simple 
enough to be included in a textbook on elementary number theory. 

We also note that  (1.2) can be used to improve (1.1), for the author has given 
a purely elementary argument in [7] tha t  

s < max  {p~/z + (3/4)2~/:p ~/~ + 2, (1/2)(g(p, ~) + (g(p, ~)~ + 4p)~/2)}. (1.3) 

From (1.2) and (1.3) it follows that  

S < ( ( % / ~  ~- 1)/2 %/' 3--)p :/2 + (p/3) '/4 -~ 2 ~ 1.3295 pl]2 _~ (p/3)1/4 _~_ 2. (1.4) 

Results such as (1.2) and (1.4) are of interest almost solely for the method by which 
they are obtained. However, they have additional interest for small primes where 
results such as Burgess's may be un-informative. 

2. The proof of (1.2) and (1.4) 

THEOREM 1. For each k _> 2 and p :/: 23 or 71, g(p, k) < (p/3) 1/2 -~ 2. 

Proof. Henceforth, for simplicity, we denote g(p, k) by g. Let p be a prime 
for which -- 1 is a k-th power residue and assume tha t  g > (p/3) 1/2 ~- 2 so tha t  
g >  3. Then each integer I,  such tha t  ( p - - g ) / 3 < I < ( p ~ - g ) / 3 ,  is a k-th 
power residue. Further, each odd integer J satisfying either of the following in- 
equalities is a k-th power residue. 

(p -- 2g)/3 < J < (p -- g)/3. (2.1) 

(p + g)/3 < J -< (p ~- 2g)/3. (2.2) 

For if, (2.1) holds, then the positive integer (p -- 3J)/2 is less than g, and since 
-- 1, 2, and 3 are k-th power residues, it follows tha t  J is a k-th power residue. 
Likewise, if (2.2) holds, J is a k-th power residue since, then, ( 3 J -  p)/2 is a 
positive integer less than g. 

Now the number of integers in the closed integer interval A --~ [(p -- 2g)/3, 
(p -~ 2g)/3] exceeds g and, consequently, A must contain a multiple of g, say ag. 
Note tha t  a > 0 for obviously g < p/2. Now 

a < ( p / 3 )  1/2-~ 1 < g - -  1. (2.3) 

For if a > ( p / 3 )  ~/2+ 1, then 

ag > ((p/3) lr2 + 1)((p/3) 1~2 + 2) = p/3 + (3p) ll2 + 2 > (p + 2g)/3 (2.4) 
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since it  is well known  t h a t  g < p~/2. (See, for example ,  Wes te rn  and  Miller [13, 
pp.  x i - -x i i ] ) .  Thus  a and  a § 1 are ]c-th power  residues. Now ag =/= (p - -  bg)/3, 
b = • 1, ~= 2, for ag = ( p - -  bg)/3 ~ p = (3a § b)g, bu t  p is pr ime.  Hence,  ag is 
an  even  integer  lying e i ther  in the  in te rva l  (2.1) or in the  in te rva l  (2.2). Fo r  ag is a 
k- th  power  non-res idue since a < g - -  1 and,  consequent ly ,  cannot  be an in teger  
in the  in te rva l  [(p - -  g)/3, (p § g)/3], nor  can it  be an  odd in teger  in e i ther  of  the  
in terva ls  (2.1) or (2.2). I f  ag lies in the  in te rva l  (2.1) no te  t h a t  (a § 1)g is an  
odd non-res idue in the  in te rva l  (2.2), a contradic t ion.  I f  ag lies in the  in te rva l  
(2.2), t hen  (a - -  1)9 is an  odd non-res idue in the  in te rva l  (2.1), again,  a contradic t ion.  
We  conclude t h a t  g < (p/3) ~/2 § 2 if  - -  1 is a /c-th power  residue. 

I f - -  1 is a k- th power  non-res idue it  follows f rom [1] t h a t  

g(p, k) < (2p) 2/~ § 3(2p) ~/5 § 1. (2.5) 

I t  is easy  to see t h a t  (2/)) : / 5 §  3 (2p) ~/~ § 1 ~  (p/3) ' / 2 §  2 for p ~  10 ~ and  it  
can be ver i f ied  f rom exist ing tables,  (see, for example ,  D. H.  Lehmer ,  E m m a  Lehmer ,  
and  Daniel  Shanks  [8]), t h a t  g ~  (p/3) ~/~§ 2 for 7 1 ~ p  ~ 10 ~. 

THeOreM 2. S < + 1)/2 + (p/3) + 2. 

Proof. The  resul t  is easily checked if  p ~ 71. 
I f  p >  71 we see f rom Theo rem  1 t h a t  

(1/2)(g -~ (g2 § 4p)~/2) < (1/2)((p/3)1/2 § 2 § (13/)/3 § 4(p/3) ~l: § 4) ~/2) 

< (1/2)((p/3) + 2 § (13p/3) § 2(p/3) § 2) (2.6) 

= ( ( ~  § 1)/2 ~ 3 ) p l / 2  § (p/3)1/4 § 2 ~ 1.3295 V p  § (p/3) 1/r § 2, 

and  the  resul t  follows f rom (1.3). 
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