On holomorphy and compactness in Banach spaces

Mário C. Matos

Universidade Estadual de Campinas

If E and F are complex Banach spaces and U is a non-void open subset of E, $\mathcal{H}(U; F)$ denotes the complex vector space of all holomorphic mappings from U into F. There are several locally convex topologies which may be considered on $\mathcal{H}(U; F)$. Among them some are natural in the sense that they coincide with the usual topology on $\mathcal{H}(U; F)$ for E finite dimensional. This paper presents results about the characterization of the relatively compact subsets of $\mathcal{H}(U; F)$ for one of these topologies. Theorems of Nachbin and Aron appear as special cases of these results.

Let \mathcal{T} be the family of all continuous mappings τ from U into \mathbf{R} such that $0 < \tau(x) \leq d(x, \partial U) = \text{distance of } x$ to the boundary ∂U of U. For each $\tau \in \mathcal{T}$ let $\mathcal{B}_{\tau}(U)$ be the collection of all the finite unions of closed balls $\overline{B}_{\varrho}(x)$ with center $x \in U$ and radius $\varrho < \tau(x)$. $\mathcal{H}_{\tau}(U; F)$ denotes the complex vector space of all the holomorphic mappings from U into F which are bounded over the elements of $\mathcal{B}_{\tau}(U)$. In $\mathcal{H}_{\tau}(U; F)$ we consider the topology of uniform convergence over the elements of $\mathcal{B}_{\tau}(U)$.

PROPOSITION 1. Let p be a seminorm defined in $\mathcal{H}_{\tau}(U; F)$. The following statements are equivalent:

(i) There are $\iota > 0$ and $B \in \mathcal{B}_{\tau}(U)$ such that

 $p(f) \leq c \sup \{ ||f(t)||; t \in B \}$ for every f in $\mathcal{H}_r(U; F)$.

(ii) There are c > 0 and $B \in \mathcal{B}_{\tau}(U)$, $B = \bigcup_{i=1}^{k} \overline{B}_{\varrho_{i}}(x_{i})$, $\varrho_{i} < \tau(x_{i})$, $i = 1, 2, \ldots, k$, such that

$$p(f) \le c \sup \{ \sum_{n=0}^{\infty} \varrho_i^n ||(n!)^{-1} \widehat{d^n} f(x_i)||; \ i = 1, 2, ..., k \}$$

for each f in $\mathcal{H}_i(U; F)$.

Proof. Let B of (i) be of the form $B = \bigcup_{i=1}^{k} \bar{B}_{\varrho_i}(x_i)$, $\varrho_i < \tau(x_i)$, $i = 1, 2, \ldots, k$. If $t \in \bar{B}_{\varrho_i}(x_i)$ and $f \in \mathcal{P}_{\ell_i}(U; F)$, we have

$$||f(t)|| \le \sum_{n=0}^{\infty} ||(n!)^{-1} d^{n} f(x_{i})(t-x_{i})|| \le \sum_{n=0}^{\infty} \varrho_{i}^{n} ||(n!)^{-1} d^{n} f(x_{i})||.$$

From this it is easy to show that (i) implies (ii).

Let *B* be as in (ii). If r > 0 is such that $r < \tau(x_i) - \varrho_i$, i = 1, 2, ..., k, we have $B' = \bigcup_{i=1}^k \overline{B}_{\varrho_i+r}(x_i) \in \mathcal{B}_i(U)$ and, for $f \in \mathcal{H}_i(U; F)$,

$$||(n!)^{-1}d^{n}f(x_{i})|| \leq (\varrho_{i} + r)^{-n} \sup \{||f(t)||; t \in B'\}, n = 0, 1, \dots,$$

via the Cauchy inequalities. Thus

$$\sum_{n=0}^{\infty} (n!)^{-1} \varrho_i^n \| \widehat{d^n f}(x_i) \| \le (1 - \varrho_i (\varrho_i + r)^{-1})^{-1} \sup \{ \| f(t) \|; t \in B' \}$$

for every f in $\mathcal{H}_{\tau}(U; F)$. From this we get that (ii) implies (i).

It is not difficult to see that

$$\mathcal{V}(U; F) = \bigcup_{\tau \in \mathcal{Z}} \mathcal{V}_{\tau}(U; F).$$

On the other hand $\mathcal{H}_{\iota}(U; F)$ is a Fréchet space if E is separable. For further details see [1], [2], [3]. Let τ_{ι} be the locally convex topology in $\mathcal{H}(U; F)$ which is the inductive limit of the topologies of the $\mathcal{H}_{\iota}(U; F)$, $\tau \in \mathcal{T}$. It is easy to see that τ_{ι} is finer than the Nachbin topology τ_{ω} . (See [4]).

Let τ_{0f} denote the topology on $\mathcal{H}(U; F)$ of uniform convergence over the finite dimensional compact subsets of U. A subset of $\mathcal{H}(U; F)$ is τ_{0f} -bounded if and only if it is locally bounded on U. See [5].

PROPOSITION 2. If \mathcal{H} is a subset of $\mathcal{H}(U; F)$ which is τ_{0f} -bounded, then there is $\tau \in \mathcal{T}$ such that \mathcal{H} is contained and bounded in $\mathcal{H}_{\tau}(U; F)$.

Proof. For each u in U let $\tau(u)$ be the supremum of the $\varrho > 0$ such that \mathscr{X} is uniformly bounded in $\overline{B}_{\varrho}(u) \subset U$. Since \mathscr{X} is locally bounded in $U, 0 < \tau(u) \leq d(u, \partial U)$. We prove that

$$|\tau(u) - \tau(v)| \le ||u - v|| \tag{(*)}$$

for all u and v in U. We have two cases: (a) $||u - v|| < \tau(u)$ and (b) $||u - v|| \ge \tau(u)$. In the first case, if $||u - v|| < \rho < \tau(u)$, we have $\bar{B}_{\rho - ||u - v||}(v) \subset \bar{B}_{\rho}(u)$ and $\rho - ||u - v|| \le \tau(v)$. It follows that $\tau(u) - \tau(v) \le ||u - v||$. In the second case this inequality holds trivially. If we interchange the

236

roles of u and v in the above reasoning we get (*). Thus $\tau \in \mathcal{T}$ and it is easy to see that this is the τ we need for the proof.

For E separable τ_l is the bornological topology on $\mathcal{H}(U; F)$ associated to τ_{of} .

Let τ_{∞} denote the topology on $\mathcal{H}(U; F)$ of uniform convergence over the compact subsets of U of f and all of its differentials. See [4].

THEOREM 3. If \mathcal{H} is a τ_{0f} -bounded subset of $\mathcal{H}(U; F)$, then τ_{1} and τ_{∞} determine the same uniform structure over \mathcal{H} . In particular τ_{1} and τ_{∞} induce the same topology on \mathcal{H} .

Proof. Let p be a τ_i -continuous seminorm on $\mathcal{H}(U; F)$. Let $\tau \in \mathcal{T}$ be such that \mathcal{H} is contained and bounded in $\mathcal{H}_r(U; F)$. Thus there are $c_r > 0$ and $B = \bigcup_{i=1}^k \bar{B}_{o_i}(x_i), \ \varrho_i < \tau(x_i), \ i = 1, 2, \ldots, k$, such that

$$p(f) \leq c_{\tau} \sup \{\sum_{n=0}^{\infty} \varrho_{i}^{n} || (n!)^{-1} d^{n} f(x_{i}) ||; \ i = 1, 2, ..., k\}$$

for each f in $\mathscr{N}_{\tau}(U; F)$. If $0 < r < \tau(x_i)$, $i = 1, 2, \ldots, k$, then the set $B' = \bigcup_{i=1}^{k} \bar{B}_{q_i+r}(x_i)$ belongs to $\mathscr{N}_{\tau}(U)$ and there is C > 0 such that

 $\sup \{ \|f(t)\|; t \in B' \} \le C$

for every f in \mathcal{H} . It follows that

$$||(n!)^{-1} d^n f(x_i)|| \le C(\varrho_i + r)^{-n}$$

for $n = 0, 1, \ldots$ and f in \mathcal{X} . Let $\mu > 0$ be such that

$$c_{i} \sup \{\sum_{n=\mu}^{\infty} C \varrho_{i}^{n} (\varrho_{i} + r)^{-n}; \ i = 1, 2, ..., k\} \le 2^{-1}.$$

If the seminorm q is defined on $\mathcal{P}(U; F)$ by

$$q(f) = c_{\tau} \sup \{\sum_{j=0}^{\mu} \varrho_i^j ||(j!)^{-1} d^j f(x_i)||; i = 1, 2, ..., k\},\$$

then q is τ_{∞} -continuous and $f \in \mathcal{H}, q(f) \leq 2^{-1}$ imply $p(f) \leq 1$. It follows that if $0 \in \mathcal{H}, \mathcal{V}$ is a neighborhood of 0 in the topology of \mathcal{H} induced by τ_{∞} if and only if \mathcal{V} is a neighborhood of 0 in the topology of \mathcal{H} induced by τ_l . Given $\mathcal{H} \subset \mathcal{H}(U; F)$ τ_l -bounded, the set $\mathcal{H} - \mathcal{H}$, of the differences between two elements of \mathcal{H} , is τ_l -bounded and contains 0. By the preceding remark the neighborhoods of 0 in the topologies of $\mathcal{H} - \mathcal{H}$ induced by τ_{∞} and τ_l are the same. It follows that the uniform structures induced over \mathcal{H} by τ_l and τ_{∞} are also the same. Denoting by τ_0 the topology of uniform convergence on all compact subsets of U we have: COROLLARY 4 (Nachbin [4]). If \mathcal{X} is a τ_0 -bounded subset of $\mathcal{H}(U; F)$, then τ_{ω} and τ_{∞} determine the same uniform structure over \mathcal{H} . In particular, τ_{ω} and τ_{∞} induce the same topology on \mathcal{H} .

PROPOSITION 5. A subset \mathcal{X} of $\mathcal{H}(U; F)$ is τ_i -relatively compact if, and only if, \mathcal{H} is τ_{∞} -relatively compact.

Proof. If \mathcal{X} is τ_{0f} -bounded, it follows that the closures of \mathcal{X} relative to τ_l and τ_{∞} coincide (Theorem 3). On the other hand these closures are τ_{0f} -bounded and τ_l and τ_{∞} induce the same topology on them. The result now follows trivially.

COROLLARY 6 (Nachbin [4]). Let \mathcal{X} be a subset of $\mathcal{H}(U; F)$. \mathcal{K} is τ_{ω} -relatively compact if, and only if, it is τ_{ω} -relatively compact.

Remark. Aron (see [6]) proved Theorem 3 and Proposition 5 for E separable.

The author was partially supported by Fundo Nacional de Ciência e Tecnologia (FINEP), Brazil.

References

- COEURÉ, G., Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Ann. Inst. Fourier (Grenoble), 20 (1970), 361-432.
- 2. MATOS, M. C., Holomorphic mappings and domains of holomorphy, Monografias de Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil, 27 (1970).
- 3. —»— Domains of τ -holomorphy in a separable Banach space, Math. Ann. 195 (1972), 273-278.
- 4. NACHBIN, L., Topology on spaces of holomorphic mappings, Springer-Verlag (1969).
- BARROSO, J. A., MATOS, M. C. & NACHBIN, L., On bounded sets of holomorphic mappings. Proceedings on infinite dimensional holomorphy, University of Kentucky, 1973. Lecture Notes 364, Springer-Verlag 1974.
- ARON, R., The bornological topology on the space of holomorphic mappings on a Banach space, Math. Ann. 202 (1973), 265-272.

Received March 7, 1974; in revised form May 29, 1974 Mário C. Matos Instituto de Matematica Universidade Estadual de Campinas Caixa Postal 1170 13.100 Campinas, SP, Brasil