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To Subharmonic Functions in n-space 
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1. Introduction 

Denote  points  in n d imensional  Eucl idean  space R ~, n > 3, b y  x = 
@l, x 2 , . . . , x , ) .  L e t  r~-- Ixl and  x l = r c o s 0 , 0  < 0  < x .  A real  va lued  funct ion 
f def ined  on a subset  E of  R" is said to be  s y m m e t r i c  (with respect  to the  x 1 
axis) i f  f ( x ) = f ( y )  whenever  x , y  C E and  x and  y have  the  same r,O 
coordinates.  

t~or r >  0 let  B ( r ) = { x :  Ixl < r } ,  S ( r ) = { x :  Ix] = r }  and  S = S ( 1 ) .  F o r  
0 < ~  < ~  let  C (c~ ) - -~ S [7{x : 0< c~ } .  Given a set  E C  R n, let  E,  0E, denote  

the  closure and  b o u n d a r y  of  E in R". I f  E c S(r) let  ~E denote  the  b o u n d a r y  
of  E re la t ive  to S(r). Le t  H m denote  m dimensional  H a u s d o r f f  measure  in R n. 

I f  f is def ined  on a set E c  R n let  O(r) be def ined b y  

H"-](C(O(r))) -- H~-l(p(S(r) 17 E)) 

where p denotes  the  radia l  pro jec t ion  of  R" - -  {0} onto S. Fo r  0 < 0 < O(r) 
let  

0) = sup f,f(ry)dH~ /<r, 

where the  s u p r e m u m  is t a k e n  over  all measurab le  sets F C p ( S ( r ) n  E) with  
Hn-I(F) = Hn-I(C(O)). 

Le t  t9 be a bounded  region in R ~ of  the  fo rm 

~= U Go(r)) 
r l < r < r  2 

where O < r  x < r 2 <  ~ and  O < O ( r ) < ~  for r x < r < r  z. Le t  h be a sym-  
metr ic ,  bounded,  ha rmonic  funct ion in D such tha t ,  for r x < r < r z, h(r, O) is a 
non  increasing funct ion of  0 for 0 < 0 < O(r). Then  
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h(r, O ) :  f h(ry)dH"-~y in D. 
J c(o) 

Le t  u be a subharmonie  funct ion ( ~ - -  ~ )  in B ( R ) ~ D , _ R > r  2. 
we will prove  

I n w  3 

TREOREM 1. I f  h has a continuous extension to f2 - -  {O} and 4 <_ h + c on 

O D - - { O }  where c ~ O ,  then 4 < h  + c everywhere in D. 

We note  t ha t  Baerns te in  [2, Theorem A'] has obta ined  a similar theorem in R 2. 
We will give two applicat ions of  Theorem 1. The f irs t  is to  an ex t remal  problem 

for potentials .  Given a real n u m b e r  },, 1 ~ y < ~ ,  let  H(~) denote  the class of  
potent ia ls  

p(x) [ Ix = - -  Y l 2 - " d # ( Y ) ,  x E R "  
J S 

where # is a probabi l i ty  measure on S and 

p(x) ~ ~ whenever  x E R". 

Choose ~ so t h a t  the  Newtonian  capaci ty  of  S - -  C(~) is r -1  and let  P C H(y)  
denote  the  corresponding equil ibrium potential .  In  w 4 we prove  

THEOREM 2. I f  q5 is a nondecreasing convex .function on 

whenever r ~ O and p E H(~). 

( - -  ~ ,  ~ ) ,  then 

Thus,  i f  2 ~_ 1, qi(u) = u x for u > _ 0, and q)(u) = 0 for u < 0, we have  

whenever  r ~ 0 and  p E H(~). I t  follows t h a t  

max  {p(x): x E S(r)} _< m ax  {P(x): x E S(r)} 

whenever  r ~  0 and p E H ( ~ ) .  
We note  t h a t  the  above inequal i ty  has been ob ta ined  b y  Davis and  Lewis [6]. 
I f  u is a subharmonic  funct ion in R", let  M(r,  u) ~- max{u(x) :  x E S(r)} 

whenever  r ~ 0 and  M(0, u) ~-- u(0). As a second appl icat ion of Theorem 1 we 
prove  in w 5. 

THEOREm 3. Given 0 < # ~ 1 and O < fl < 1, there exists ~ ~-- ~(#, fi, n) ~ 0 
such that i f  u is any subharmonic function in R" with 
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H~-~(}x: u(x) > ~M(Ixl, u)} n S(r)) _ t~H~-~(S(r)) 

whenever r > O, then either u < 0 everywhere in R ~ or lim~+~ r-eM(r, u) exists 
and is positive (possibly -ff c~). 

For  0 < fl < 1 and  /~ = 0, Dahlberg [4], Hi iber  [14], and Ta lpur  [15] have 
all shown the  existence of  ~* ---- ~*(fi, n) > 0 for which the  conclusion above holds. 
In  w 6 we will show the  ~ we obta in  is best  possible for 0 < # < 1 and  0 < fi < 1. 

Baerns te in  [1] has ob ta ined  a similar resul t  in R ~. 
To prove Theorem 3 for 0 < # < 1 we use Theorem 1 to  reduce the  p rob lem 

to one considered b y  Dahlberg  [5] and Essen and  Lewis [TJ. F o r  # = 0 we use 
Theorem 1 and  arguments  similar to those of  Heins  [12, p. 114, ex. 11]. 

2. Spherical symmetrization 

Given a closed set F c R% define the  spherical symmet r iza t ion  F *  of  • as 
follows: I f  F gl S(r) = r t hen  F*  N' S(r) = r Otherwise H~-I(F * N S(r)) = 
H~-X(F n S(r)) and  F*  [~ S(r) is e i ther  the  point  (r, 0 . . . .  ,0)  or the  closed cap 
on S(r) centered  at  (r, 0, . . . ,  0). Le t  u be subharmonic  in B(R) , /~  > 0. Given 
t , - -  ~ ~ t <  ~ ,  let  F(t)~--{x:u(x) ~_t} and note  t h a t  F(t) is closed. Def ine  
an associated funct ion u* by  le t t ing 

u*(x) = sup {t: x E F*(t)} whenever  x C B(R). 

I t  is easily seen t ha t  u* is symmet r ic  and  {x: u*(x) ~ t} = F*(t) .  I t  follows t h a t  
u* is upper  semicontinuous,  u and  u* are equimeasurable,  and  

4(r, 0) = f u*(ry)dH~-Xy (2.1) 
J c(o) 

whenever  0 < r < R, 0 < 0 < ~. We note  for la ter  reference t h a t  Gehring [10, 
l emma 4] has shown t h a t  u* is Lipschi tz  in B(/~) whenever  u is. 

Consider now the  res t r ic t ion of  u and  u* (also denoted  b y  u and  u*) to  S(r) 
for f ixed  r, 0 < r < / ~ .  Assume t h a t  u and  u* are Lipschi tz  funct ions on S(r). 
Define  a Borel  measure u#H ~-1 on R b y  le t t ing 

u#H~-I(E) = H~-I(u-I(E)) 

whenever  E is a Borel  subset  of  R. Def ine  u~H n-1 analogously.  

Le t  ~ denote  the  gradient  re la t ive to the  sphere S(r), and  let  G be the  subset  

of  S(r) where V u *  exists. Def ine  a funct ion g on R b y  le t t ing 

g(t) • 0 i f  (u*)-~(t) f'l G : r 

and 
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g(t) = ]Vu*(x)[ for any  x E (u*)-~(t) CI G, otherwise. 

is symmetr ic ,  g is well defined.  Note  t h a t  g o u* (x )=  IVu*(x)I Since u* for 
H ~-1 almost  eve ry  x C S(r), Thus by  [8, 2.4.18 (1)]. 

y ~ , 
*(tx, t2) tl 

where A*(t 1, t~) = {x: t 1 < u*(x) < t2}. 
Since u//H ~-~ " * ~ - ~  = ' a ~ u  we see by  [8, 2.4.18 (2)] t h a t  g o u is H "-~ measurable  

and 

g # (g o u)2dH ~-1 

where A(tl, t~) = {x: tl < u(x) < t2}. Hence  

f A (g ~ u)2dH'~-l = L 1(Tu*12dH=-l" 
(tl, t2) *(tl, tz) 

Using the coarea formula  [8, 3.2.22 (3)] and the  sphericM isoperimetr ic  inequal i ty  
for sets of  f ini te  per imeter  (see [8, 3.243 and 4.5.9 (31)] for a similar inequal i ty  in 
the  Eucl idean case), we obtain 

L*(t.t~) ' V u * I 2 c l t t " - l =  s ( f  (o,)-.(,) e~176 2) dt 

f'(f ) s g o udH ~-2 dt = (g o u ) l V u [ d H  "-~. 
1 u--i(t) (tl, t2) 

F r o m  Holder ' s  inequal i ty ,  it  follows t ha t  

Thus 

f (go u ) l~u[dH ''-1 < 
Aft. t,) 

if jl  [f ]1j2 (g o u)2dHn 1 uL2dH,-~ 
A(t. t~) A(h. t~) 

Applying the  coarea formula  again we obta in  

I~  ujdH ~-2) dt 



A )iAXI]iIU.Yl I)RINCII)LE WITI~ AI~I~LICATIOI~S TO SUBIIARMONIC FUI~CTIOI~IS IN ~I-SPACE 257 

whenever  t~ ~ t 2. Hence  for almost  eve ry  t (with respect  to one dimensional 
Lebesque measure) 

f(,.)_~(,) ]Vu*]dH "-~ ~ f o [ JuldH n-: (2.2) 

The coarea formula  also implies t ha t  

H~-:[u-~(t)  - -  ~{x: u(x) > t}] --~ 0 

for almost  eve ry  t. Thus,  for almost  every  t, we can replace u-~(t) by 

~{x: u(x) > t} in (2.2). 
The a rgument  above was suggested by  [10, (27)]. 

3. Proof of Theorem 1 

The proof  is by  contradict ion.  Suppose there  is an x 0 E ~ such t h a t  

~(Xo) > h(xo) ~- c. Let  w(x) = h(x) -~ ~]xl 2-~ -~ ~x 1, where ~ > 0 is so small t h a t  
4(x0) - -  ~(Xo) = c 1 ~ c. Clearly w is symmetr ic ,  harmonic  in Y2, and Ow/aO ~ 0 at 
each point  of t9 off  the x 1 axis. Also, 4 < ~ - c ,  on ~Y2--{0}. 

There  exists a decreasing sequence {u/} of  subharmonic  funct ions in 
B(1/2(r  2 ~- R))  with  cont inuous second par t ia l  der ivat ives  t h a t  converges pointwise 
to  u in B(1/2(r  2 Jr R)).  Since u* is Lipschi tz  in B(r2), it follows f rom (2.1) t h a t  
4j is cont inuous in / ~ ( r 2 ) -  {0}. Since 

0 ~ ~j(r, O) --  ~(r, O) < ~j(r, Jr) - -  ~(r, Jr), 

and ~j(r, ~), ~(r, ~) are cont inuous funct ions of r on [a, 1/2(r 2 ~- R)] for 
0 < a < 1/2(r 2 -+- R), it follows f rom Dini 's Theorem t h a t  {~j} converges uni formly  
to ~ in the  closure of  B(r2) - -  B(a) whenever  0 < a < r 2. Thus ~ is cont inuous 
on / ~ ( r 2 ) -  {0}. Choose o >  0 so small t h a t  ~ -  6 < c  1 on the closure of 
B(a) [3 Y2. Then  there  exist  m and s > 0 such t h a t  

~ ( x )  + sH~-I(S)Ix]2 --  ~(x) < c, 

whenever  x E 0[Y2 --  B(a)]. 
Le t  v(x) ~-- Um(X ) ~- S]X[ 2 for x E D - -  B(a) and note  t h a t  

J c(o) de(o) 

has a relat ive m a x i m u m  at  a point  in f2 - -  B(a) with coordinates (ro, 0o) , 0 ~ 0 0 ~ z. 
Note  also t ha t  

/~v ~ 2ns. (3.1) 
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Since v* and w are continuous in zg, i t  follows t h a t  v*(ro, 0o)= w(r o, 0o) and 
for 0 --  0 o > 0 and  sufficiently small, 

f c(o)_c(o~ <- f c(o)_c(o~ 
Since v* is Lipsehitz, and v*(ro, O) and W(ro, 0) are nonincreasing and decreasing 
functions of 0 respectively, it  follows t h a t  

l~v*(ro, 0)1 > I~W(ro, 0)l > 0 (3.2) 

for all 0 in a set F wi th  the property:  Given any  v > 0, the  one dimensional 
Lebesgue measure of F [3 [00, 0o, -4- 3] is positive. 

For  0 -  0o small and  positive, let E(O)C S be such t h a t  
(i) S fl {y: V(roy ) > v*(ro, 0)} c E(O) c S 13 {y: V(roy ) > v*(ro, 0)}, 

(ii) H"-I(E(O)) = ~n-~(C(O)), 

(iii) ~(ro, O) = f V(roy)dH"-ly = f v*(roy)dH"-ly. 
J E (o) dc(o) 

Note t h a t  all three sets in (i) have the same H "-~ measure whenever 0 E F,  and 
t h a t  E(Oo) C E(O) whenever 0 o < 0 6 F .  

Le t  

and observe t ha t  

v(r) < ~(r, 0o) -- ~(r, 0o) < V(ro), 

for r sufficiently close to r o. Thus V has a relative ma x i mu m at  r o and 

d~o 

Consequently given any  7 > 0, we have 

f E(o) ar -- 7 

whenever 0 --  0 o > 0 and  sufficiently small. 
For  2 > 0 let 

L(O, 2) = {sy: r o _ < s _ < r  o + 2 , y E E ( 0 ) }  

and L(O) = L(O, 0). Since {v*(ro, 0): 0 6 F Cl [00, 00 -~- 3]} has positive one di- 
mensional measure, whenever ~ > 0 there is an F '  C F containing 0 arbi trar i ly 

near  00 and  such t h a t  (2.2) holds wi th  v = u, t = v*(r o, 0), and aL(O) replacing 

u-l(t) whenever 0 E F t  By  [8, 3.2.22 (2)] we can assume tha t  ~L(O) is 
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(H ~-~, n --  2) rectifiable whenever 0 E F '  and hence t h a t  OL(O, ~) is (H ~-~, n -- 1) 
rectifiable whenever 0 E F ' .  

Now, from (3.1), 
/ *  

2ne)-~Hn(L(O, ~)) ~ ~-1 ] /~vdH ~. 
J L (+. 4) 

Using the Gauss-Green theorem [8, 4.5.6 (5)] and  let t ing ~ - +  0 we obtain for 
0 E F ' ,  

f av 
2neHn-l(L(O)) <_ r~-" J L(+) ~ 

Since w is harmonic a similar a rgument  gives 

f Ow 
r~-" dc~(o) ~-r~(r'~-l~r)~=~odH~-i ~ Lc~(+) ]~JwldH'-2 

where C1(0 ) ---- {roy: y E C(O)}. 
Using (3.2), (2.2), (3.3), and  the above inequalities we obtain for 0 E F', 

<- ~o ) ~ ~=~ ~ .. . .  

0( 2ns//'-i(L(0))-~-y 

~-- f _  I~wldH"-:  _ 2nsH"-~(L(O)) + 
dO c~(o) 

Thus 2nsH~-I(L(O) < y  whenever O EF '  and hence 2ner]-lH~-l(C(Oo)) <_ y. 
Since y is a rb i t ra ry  and  0 o > O, we have reached a contradiction.  Hence Theorem 
1 is true.  

4. Proof of Theorem 2 

Let  7, H(y), and P E H ( y )  be as in w 1. I f  y--~ l ,  then  the conclusion of 
Theorem 2 is obvious since P is the only member  of H(1). Thus we assume t h a t  
1 < y ~  ~ .  Then 0 ~ z  and h - - ~ - - P  is subharmonic in R ~, harmonic 
in R n - [ S - C ( a ) ] ,  and h ~ - - - y  on S - - C ( ~ ) .  I t  is readily seen t h a t  h is 
symmetr ic  and t h a t  h(r, O) is a nonincreasing funct ion of 0 for 0 ~ 0 ~ ~ and 

f ixed r ~ 0. F rom the proof of Theorem 1 we see t ha t  ]t is continuous in R n --  {0}. 
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Now suppose p E H(7 ) and u = -  p. Clearly u is subharmonic in 1t ". Given 

s > 0  choose R large enough tha t  4 < s  on S(R).  
Let  12 ~ B(R)  denote the bounded symmetr ic  region in R " such t h a t  

B(R)  - -  ~(2 consists of the union of  S --  C(~) and  the line segment  from the origin 

to ( - - R ,  0 , . . . , 0 ) ,  One verifies t ha t  ~ ( r , ~ ) = ] ~ ( r l u )  for 0 < r  < oo. Since 

u* >_ h ---- --  7 on S -- C(~), it  follows tha t  4 < s on S -- C(c~). Thus 4 _< s + 

on ~12 -- {0}. By  Theorem 1, ~ _< ft q- s in 12. I t  follows tha t  ~ < s in II '~ -- {0}. 
Note t h a t  

~(r, 0) = (-- ~;)(r, 0) = ~(r, ~ -- 0) -- ~;(r, ~) 

wi th  a similar relation holding between h and /5. Thus since /~(r, ~) = / 3 ( r ,  ~) 

for 0 < r  < ~ ,  we have 2~ < t  5 in t l  ~ - { 0 } .  I t  i s k n o w n . [ l l ,  p. 170, 249--250] 
t ha t  this inequal i ty  implies the conclusion of Theorem 2. 

5. Proof of Theorem 3 

I t  sufficies to assume t h a t  u > 0 (otherwise consider max  {u, 0}) and t h a t  
u ~ = 0 .  Le t  ~ , 0 < ~ < ~ ,  be such tha t  H'~-I(C(~x))=DH n 1(S) and let 

p(x) = m a x  {~M(JxJ, u), u*(x)} 

whenever x C R ~ -  {0}. We observe from the hypotheses of Theorem 3 tha t  
p(r, O) ---- ttM(r, u) if  0>c~ .  For  0 < a < z  let 

K((~) = (ty: 0 < t ~ co y C C(a)} 

and let K(a, R) = B(_R) Cl K(a). Assume henceforth tha t  M(E,  u) > 0. Note 
t h a t  for ~ > c% p is upper semicontinuous on aK(a, R ) -  {0}, and continuous 
except on a polar set. Thus there is a unique bounded harmonic function h, in 
K(~,/~) such t h a t  

lim sup ha(x ) < p(y) whenever y C aK(a, R) -- {0}, 
x--~y 

and limx_~y h ( x )  = p(y) except on a polar set in 0K(a, R) [13, L e m m a  8.20]. 
Since #M(Ixl ,  u ) is subharmonic in R " ( M ( O , u ) = u ( O ) ) ,  it follows t h a t  
r u) < I t (x)  in K(r R). F rom the boundary  values of h we see t h a t  h 
is symmetr ic  in K(a,  R). 

Le t  

qo(r,O) = s u p { h ( r ,  01):0 < 0 1  < a} in K(~,R) .  

Then q~ is symmetr ic  and has the same boundary  values as h~. Using the fact  
t h a t  qo(r, 0) = h,(r, 01) for some 0~, 0 < 0~ < a, i~ is easily checked t h a t  q~ is 
upper semicontinuous and satisfies a local sub mean-value proper ty  in K(a,  R). 
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Thus  q~ is subharmonic  in K(a , / ? )  and since it is obvious t h a t  h~ < q~, it  follows 
t h a t  h~ = q~ in K ( a , R ) .  Hence  h(r,  0) is nonincreasing for 0 < 0 < a and  
f ixed r, 0 < r < R. The proof  of  this fact  is due to  Matts  Ess6n (oral communi-  
cation). 

F ix  a > a  a n d l e t  v ( x ) = h ( x ) + s l x ]  2-~ for x E K ( a , R )  and e >  0. Observe 

t h a t  v has a cont inuous extension to  K(a,  /?) - -  {0} and  t h a t  ~ ~ v  on 
S(R) f l /~(a) .  Thus,  if  

sup {~,(y) - -  ~(y): y e 0K(a, R) - -  {0}} = c > 0, 

t hen  4(r, a) -- v(r, a) = c  for some r with 0 < r  < R .  However  since 
u*(r, 0) _< tiM(r, u) < v(r, O) whenever  a < 0 < a, i t  follows t h a t  

~(r, a) - -  ~(r, cr > ~(r, a) - -  v(r, a) = c > 0, 

which contradicts  Theorem 1. Hence  c < 0. Applying Theorem 1 and let t ing e - +  0 

we have ~ < s  in K ( a , R )  whenever  a > c ~ .  
Le t  h~(x) = #M(Ixl, u) for x E B(R) -- K(a, R). Then  ho is subharmonic  in 

B(R) and  if  ~ < a  a < %  then  h <ho~ in B(2~). Thus  h = l i m ~ + h ~  is 
subharmonie  in B(R) and harmonic  in K(a,  R). Clearly h(x)= #Mlxl, u) in 

B(_R) --  K(~, R). Since B(R) -- K(~, /~)  is not  th in  at  an y  x ~_ OK(a) 91B(R) 
[13, Corollary 10.5], it  follows t ha t  h(x) = #M(lx[, u) on OK(a) Cl B(R). Since 

t ~ < h  in K ( a , R )  whenever  a > a ,  we have  ~ < h  in K(~,/~).  
Le t  

/~ = PR + QR 

where PR and QG are bounded  harmonic  funct ions in K(~, /~)  with 

lira PR(x) = #M([yl ,  u) whenever  y E OK(a) Cl B(JR), 
x ' . y  

lira PR(x) = 0 whenever  y ~. K(a) Cl S(R), 
x~+y 

and Q R = h - - P R .  Note  t ha t  

lira QR(x) = 0 for y C 0K(a) Cl B(_R), 
x-+y 

lim QR(x) = I)(Y) for y s, K(a) ~ S(R), 
x-+y 

off  of a polar set. 
Le t  0 < 71 < 72 < �9 �9 �9 be the  eigenvalues of  the  b o u n d a ry  value problem 

~r + 7 r  = 0 on C(a), 

r  on ~c(a) 

where ~ is the  Bel t rami  opera tor  def ined in te rms of  the  Laplacian  A by  

(5.1) 
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~=r~-~g r~-Xg +r-~.  

Let  {~k} denote corresponding symmetr ic  eigenfunetions wi th  continuous second 
.partial derivatives in C(~) and 

f r 1 for k 1, 2 , . . .  
c(~) 

Le t  ~k be the positive root of the equat ion ~ k ( ~ k + n - -  2) = y k  for k =  1 , 2 , . . .  
Then as in [9] we have 

QR(r, O) = ~ ak(r/R)~ O) in K(~, R), (5.2) 
k = l  

where 

ak = f P(Ry)r 
J c(~) 

Using the estimates in [7, w 8] or [4, L e m m a  2.5], the series 

(r/R)~ 0) I 
k ~ l  

can be seen to converge uniformly in K(x, sR) whenever 0 < s < 1. Note also t h a t  

Iak[ ~_ M(R, u)Hn-~(C(~)) ~/2. 

The case # = 0. In  case # = 0 we have PR = 0, QR = h , p  = u*, and hence 

---- f u*(Ry)r (5.3) ak 
J c(~) 

I t  is known [3, VI w 6] t ha t  r is either positive or negative in K(~, R). Assume 
r ~-- 0. Since r is symmetr ic  and  ~r = --  Y~r it is readily seen tha t  dr ~_ 0 

^ 

in C(~). Using this and the fact  t ha t  z~ _~ h in K(~, it), we have 

re(r) = c(~) u*(rY)r ~- o 

0 ~M (1, 0)d0 = 

From (5.2) and  (5.3) 

fc(~) 

f c(~) h(ry)r 

h(ry)r = ax(r/R)o1= (r/R) ~ f u*(RY)r 
c(~) 
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and hence 
r-Q'm(r) <_ R-olin(R) for 0 < r < R. 

Consequently b = l imr_~ r-e'm(r) exists. We assume th a t  

lim inf  (r-elM(r, u)) < oo. 
r --> oo 

Otherwise the  proof  is complete  in case # = 0 wi th  @ = @1. Since 

m(r) < M(r, u)H"-I(C(~)) 1/2 
we have  b <  oo. 

Now from (5.2) we deduce t ha t  for 0 < r < R/2, 

r-e~4(r, O) < r-e~h(r, O) 

= R-~ f r § R-~ ~ ak(r/R)-~176 f CkdH "-1 
C(O) k = 2  C(O) 

R-~Im(R) f r dH"-~ -5 R=~ u)g(r/R) < 
J c(o) 

where g is cont inuous on [0, 1] and g(0) = 0. Since lim infR_,~ R-~'~'M(R, u) < oo, 
i t  follows t h a t  

r-~l~(r, O) ~_ b f r "-1 in K(a). 
J c(~) 

This inequal i ty  and  the  subharmonic i ty  of  u imply  t h a t  

r-O~M(r, u) ~_ br , 0) for r > 0, 

and hence t h a t  b > 0. 
Suppose t ha t  

lim infr-e'M(r, u) < br 0). 
r --> co 

Then  there  exists a sequence {rj} wi th  r i ~ ~ and s > 0 such t h a t  

rTQ1M(r j, u) < br 0) 

Fo r  j---- 1 , 2 , . . .  and 0 < 0 < s .  Thus,  

-.o1~ O) b f r "-1 rj u(rj, < c(o) 

for 0 < 0 < e  and i t  follows t ha t  

/: r;-~lm(rj) = - rJ~(rj, O) ~ (1, O)dO 

< --b f [ ( f  c(o) r ~O (1,0)dO=b. 
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Letting j I' oQ we obtain a contradiction. Hence 

lim r-~ u) = b~i (1 ,  0) ~ 0 
r - ~ c o  

and the proof is complete in ease # :  0 with ~ : ~1. 
The case 0 < # <  1. For 0 < ~ <  1 the boundary value problem 

~ W + A ~ , ( a ~ l q - n - - 2 ) W = 0  on C(~) 

VJ= 1 on ~C(~) 

has a unique symmetric solution. Choose k so that  the corresponding W has the 
value #-1 at r = 1 , 0 =  0. 

Since 4 _ < h  in K(~,R) it follows that  M(r,u) ~h(r,O) for 0 < r  < R  
and hence that  

h(y) = #M([y l, u) < #h(]y[, O) 

for y C OK(~x) Cl B(R). Thus, using the arguments of [7, (3.1)], 

r-~'~ u) <_ r-;'~ O) ~ ~ 1R-~'~ u) (5.4) 

for 0 <r <R. It follows that 

0 < lim sup r-~'~~ u) _~ #-1 lim infr-~'~ u). 
r ~ - o o  r -e- oo 

Assume that  lira s u p ~  r-~~ u) < m. Otherwise the proof is complete in 
case 0 < # <  1 with ~ = 2 ~ , .  

For PR as in (5.1) we note that  PR, --~ PR~ in K(~, R~) whenever -~1 ~ R2. 
Also, from (5.4), we have 

M(r, PR) <~ h(r, O) ~_ #-~(r/R)-~~ u) 

for 0 ~ r <_R. Since liminfR+~ ]~-~'~M(R, u) < 0% it follows that  V = 
limR-~ PR is harmonic in K(a) and 

M(r, V) <_ #-~/'~ lim inf R-~+*M(R, u). (5.5) 
R - ~ o o  

From (5.4) and the definition of QR we have 

M(R2u) 
-DR, -- Pn, g ~-2(R1/R2)~'e* M(R1 ' u) QR~ 

in K(~, R,) whenever R, </~2. Letting R2-+ m it follows tha t  

0 < V -- Pn, < (constant) Qn~ in K(~, R1). 

Thus 

V(y) =- lim V(x) = #M(]y[, u) on aK(~). (5.6) 
x - + y  
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F r o m  (5.2) we have  

e~(s, o) < A(r/R)~~ ~) 
R 

for 0 < r <  
2 

where A is a posit ive constant  independent  of R. Since 

lira sup R-~o~M(R, u) < ~ ,  
R--> o9 

i t  follows t ha t  QR -~  0 uni formly  on compact  subsets of  K(~) as R -~  ~ .  Using 
(5.4), (5.1) and  le t t ing R--~ m we deduce t h a t  M(r, u) ~_ V(r, 0) for r > 0. 

This last inequal i ty ,  (5.5), and (5.6) imply  t h a t  lim~_~ r-;~~ u) exists 
[7, (4.6)] and hence the  p roof  is complete  in case 0 < # < 1 wi th  ~ = ~@l. 

6. Remark 

With  

and 

@l and r aS in the  proof  of the  case # = O, let  

u(r, O) = rQ~r O) in K(~) 

u ( r , O ) = O  in R ~ - K ( ~ )  

Then  u is snbharmonic  in R n and  satisfies the  hypothes is  of  Theorem 3. I~ence 
@ = @i is the  best  possible exponen t  in case # --~ 0. 

In  case 0 < # ~ 1, let  A and ~ correspond to # as in the proof  of Theorem 3. 
I t  is known [7, (1.5)] t h a t  ~ ~ 1 in C(a). Le t  

U ( r  I O) ~ ~*)'~~ O) in K(~) 

and  

u(r, O) = r x~ in R ~ - K ( ~ ) .  

Then  u is subharmonic  in R" and satisfies the hypotheses  of  Theorem 3. Thus  the  
exponen t  @ = ~ 1  iS best  possible when 0 < ~t < 1. 
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