A Maximum Principle With Applications To Subharmonic Functions in n-space

Ronald Gariepy and John L. Lewis

1. Introduction

Denote points in n dimensional Euclidean space $\mathbf{R}^{n}, n \geq 3$, by $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $r=|x|$ and $x_{1}=r \cos \theta, 0 \leq \theta \leq \pi$. A real valued function f defined on a subset E of \mathbf{R}^{n} is said to be symmetric (with respect to the x_{1} axis) if $f(x)=f(y)$ whenever $x, y \in E$ and x and y have the same r, θ coordinates.

For $r>0$ let $B(r)=\{x:|x|<r\}, S(r)=\{x:|x|=r\}$ and $S=S(1)$. For $0 \leq \alpha \leq \pi$ let $C(\alpha)=S \cap\{x: \theta<\alpha\}$. Given a set $E \subset \mathbf{R}^{n}$, let $\bar{E}, \partial E$, denote the closure and boundary of E in \mathbf{R}^{n}. If $E \subset S(r)$ let $\tilde{\partial} E$ denote the boundary of E relative to $S(r)$. Let H^{m} denote m dimensional Hausdorff measure in \mathbf{R}^{n}.

If f is defined on a set $E \subset \mathbf{R}^{n}$ let $\theta(r)$ be defined by

$$
H^{n-1}(C(\theta(r)))=H^{n-1}(p(S(r) \cap E))
$$

where p denotes the radial projection of $\mathbf{R}^{n}-\{0\}$ onto S. For $0 \leq 0 \leq \theta(r)$ let

$$
\hat{f}(r, \theta)=\sup \int_{F} f(r y) d H^{n-1} y
$$

where the supremum is taken over all measurable sets $F \subset p(S(r) \cap E)$ with $H^{n-1}(F)=H^{n-1}(C(\theta))$.

Let Ω be a bounded region in \mathbf{R}^{n} of the form

$$
\Omega=\mathrm{U}_{r_{1}<r<r_{2}} C(\theta(r))
$$

where $0 \leq r_{1}<r_{2}<\infty$ and $0<\theta(r) \leq \pi$ for $r_{1}<r<r_{2}$. Let h be a symmetric, bounded, harmonic function in Ω such that, for $r_{1}<r<r_{2}, h(r, \theta)$ is a non increasing function of θ for $0<\theta<\theta(r)$. Then

$$
\hat{h}(r, \theta)=\int_{C(\theta)} h(r y) d H^{n-1} y \text { in } \Omega
$$

Let u be a subharmonic function (三- \ddagger) in $B(R) \supset \Omega, R>r_{2}$. In $\S 3$ we will prove

Theorem 1. If \hat{h} has a continuous extension to $\bar{\Omega}-\{0\}$ and $\hat{u} \leq \hat{h}+c$ on $\partial \Omega-\{0\}$ where $c \geq 0$, then $\hat{u} \leq \hat{h}+c$ everywhere in Ω.

We note that Baernstein [2, Theorem A'] has obtained a similar theorem in $\mathbf{R}^{\mathbf{2}}$.
We will give two applications of Theorem 1 . The first is to an extremal problem for potentials. Given a real number $\gamma, 1 \leq \gamma<\infty$, let $H(\gamma)$ denote the class of potentials

$$
p(x)=\int_{S}|x-y|^{2-n} d \mu(y), \quad x \in \mathbf{R}^{n}
$$

where μ is a probability measure on S and

$$
p(x) \leq \gamma \text { whenever } x \in \mathbf{R}^{n} .
$$

Choose α so that the Newtonian capacity of $S-C(\alpha)$ is γ^{-1} and let $P \in H(\gamma)$ denote the corresponding equilibrium potential. In § 4 we prove

Theorem 2. If Φ is a nondecreasing convex function on $(-\infty, \infty)$, then

$$
\int_{S} \Phi(p(r y)) d H^{n-1} y \leq \int_{S} \Phi(P(r y)) d H^{n-1} y
$$

whenever $r>0$ and $p \in H(\gamma)$.
Thus, if $\lambda \geq 1, \Phi(u)=u^{\lambda}$. for $u \geq 0$, and $\Phi(u)=0$ for $u<0$, we have

$$
\int_{S}(p(r y))^{\lambda} d H^{n-1} y \leq \int_{S}(P(r y))^{\lambda} d H^{n-1} y
$$

whenever $r>0$ and $p \in H(\gamma)$. It follows that

$$
\max \{p(x): x \in S(r)\} \leq \max \{P(x): x \in S(r)\}
$$

whenever $r>0$ and $p \in H(\gamma)$.
We note that the above inequality has been obtained by Davis and Lewis [6].
If u is a subharmonic function in \mathbf{R}^{n}, let $M(r, u)=\max \{u(x): x \in S(r)\}$ whenever $r>0$ and $M(0, u)=u(0)$. As a second application of Theorem I we prove in § 5 .

Theorem 3. Given $0 \leq \mu<1$ and $0<\beta<1$, there exists $\varrho=\varrho(\mu, \beta, n)>0$ such that if u is any subharmonic function in R^{n} with

$$
\left.\left.H^{n-1}(\} x: u(x)>\mu M(|x|, u)\right\} \cap S(r)\right) \leq \beta H^{n-1}(S(r))
$$

whenever $r>0$, then either $u \leq 0$ everywhere in \mathbf{R}^{n} or $\lim _{r \rightarrow \infty} r^{-Q} M(r, u)$ exists and is positive (possibly $+\infty$).

For $0<\beta<1$ and $\mu=0$, Dahlberg [4], Hüber [14], and Talpur [15] have all shown the existence of $\varrho^{*}=\varrho^{*}(\beta, n)>0$ for which the conclusion above holds. In $\S 6$ we will show the ϱ we obtain is best possible for $0 \leq \mu<1$ and $0<\beta<1$.

Baernstein [l] has obtained a similar result in \mathbf{R}^{2}.
To prove Theorem 3 for $0<\mu<1$ we use Theorem 1 to reduce the problem to one considered by Dahlberg [5] and Essen and Lewis [7]. For $\mu=0$ we use Theorem 1 and arguments similar to those of Heins [12, p. 114, ex. 11].

2. Spherical symmetrization

Given a closed set $F \subset \mathbf{R}^{n}$, define the spherical symmetrization F^{*} of F as follows: If $F^{F} \cap S(r)=\phi$, then $F^{*} \cap^{\prime} S(r)=\phi$. Otherwise $\quad H^{n-1}\left(F^{*} \cap S(r)\right)=$ $H^{n-1}(F \cap S(r))$ and $F^{*} \cap S(r)$ is either the point $(r, 0, \ldots, 0)$ or the closed cap on $S(r)$ centered at ($r, 0, \ldots, 0$). Let u be subharmonic in $B(R), R>0$. Given $t,-\infty \leq t<\infty$, let $F(t)=\{x: u(x) \geq t\}$ and note that $F(t)$ is closed. Define an associated function u^{*} by letting

$$
u^{*}(x)=\sup \left\{t: x \in F^{*}(t)\right\} \quad \text { whenever } \quad x \in B(R) .
$$

It is easily seen that u^{*} is symmetric and $\left\{x: u^{*}(x) \geq t\right\}=F^{*}(t)$. It follows that u^{*} is upper semicontinuous, u and u^{*} are equimeasurable, and

$$
\begin{equation*}
\hat{u}(r, \theta)=\int_{C(\theta)} u^{*}(r y) d H^{n-1} y \tag{2.1}
\end{equation*}
$$

whenever $0<r<R, 0 \leq \theta \leq \pi$. We note for later reference that Gehring [10, lemma 4] has shown that u^{*} is Lipschitz in $B(R)$ whenever u is.

Consider now the restriction of u and u^{*} (also denoted by u and u^{*}) to $S(r)$ for fixed $r, 0<r<R$. Assume that u and u^{*} are Lipschitz functions on $S(r)$. Define a Borel measure $u_{\#} H^{n-1}$ on \mathbf{R} by letting

$$
u_{\#} H^{n-1}(E)=H^{n-1}\left(u^{-1}(E)\right)
$$

whenever E is a Borel subset of \mathbf{R}. Define $u_{\neq}^{*} H^{n-1}$ analogously.
Let $\tilde{\nabla}$ denote the gradient relative to the sphere $S(r)$, and let G be the subset of $S(r)$ where $\tilde{\nabla} u^{*}$ exists. Define a function g on \mathbf{R} by letting

$$
g(t)=0 \text { if }\left(u^{*}\right)^{-1}(t) \cap G=\phi
$$

and

$$
g(t)=\left|\tilde{\nabla} u^{*}(x)\right| \text { for any } x \in\left(u^{*}\right)^{-1}(t) \cap G, \text { otherwise. }
$$

Since u^{*} is symmetric, g is well defined. Note that $g \circ u^{*}(x)=\left|\tilde{\nabla} u^{*}(x)\right|$ for H^{n-1} almost every $x \in S(r)$. Thus by [8, 2.4 .18 (1)].

$$
\int_{A^{*}\left(t_{t}, t_{2}\right)}\left|\tilde{\nabla} u^{*}\right|^{2} d H^{n-1}=\int_{t_{1}}^{t_{2}} g^{2} d u_{\neq}^{*} H^{n-1},
$$

where $A^{*}\left(t_{1}, t_{2}\right)=\left\{x: t_{1}<u^{*}(x)<t_{2}\right\}$.
Since $u_{\# t} H^{n-1}=u_{\# \#}^{*} H^{n-1}$ we see by [8, 2.4.18 (2)] that $g \circ u$ is H^{n-1} measurable and

$$
\int_{t_{1}}^{t_{2}} g^{2} d u_{\#} H^{n-1}=\int_{\left(l_{2}, t_{3}\right)}(g \circ u)^{2} d H^{n-1}
$$

where $A\left(t_{1}, t_{2}\right)=\left\{x: t_{1}<u(x)<t_{2}\right\}$. Hence

$$
\int_{A\left(t_{1}, t_{2}\right)}(g \circ u)^{2} d H^{n-1}=\int_{A^{*}\left(t_{1}, t_{2}\right)}\left|\tilde{\nabla} u^{*}\right|^{2} d H^{n-1}
$$

Using the coarea formula $[8,3.2 .22(3)]$ and the spherical isoperimetric inequality for sets of finite perimeter (see [8, 3.243 and 4.5 .9 (31)] for a similar inequality in the Euclidean case), we obtain

$$
\begin{aligned}
& \int_{A^{*}\left(t_{1}, t_{2}\right)}\left|\tilde{\nabla} u^{*}\right|^{2} d H^{n-1}=\int_{t_{1}}^{t_{3}}\left(\int_{\left(u^{*}\right)-1(t)} g \circ u^{*} d H^{n-2}\right) d t \\
\leq & \int_{t_{1}}^{t_{2}}\left(\int_{u^{-1}(t)} g \circ u d H^{n-2}\right) d t=\int_{A\left(t_{1}, t_{2}\right)}(g \circ u)|\tilde{\nabla} u| d H^{n-1} .
\end{aligned}
$$

From Holder's inequality, it follows that

$$
\begin{gathered}
\int_{A\left(t_{1}, t_{2}\right)}(g \circ u)|\tilde{\nabla} u| d H^{n-1} \leq \\
\leq\left[\int_{A\left(t_{t}, t_{2}\right)}(g \circ u)^{2} d H^{n-1}\right]^{1 / 2}\left[\int_{A\left(t_{1}, t_{2}\right)}|\tilde{\nabla} u|^{2} d H^{n-1}\right]^{1 / 2} \\
=\left[\int_{A^{*}\left(t_{1}, t_{2}\right)}\left|\tilde{\nabla} u^{*}\right|^{2} d H^{n-1}\right]^{1 / 2}\left[\int_{A\left(t_{1}, t_{2}\right)}|\tilde{\nabla} u|^{2} d H^{n-1}\right]^{1 / 2} .
\end{gathered}
$$

Thus

$$
\int_{A^{*}\left(t_{1}, t_{2}\right)}\left|\tilde{\nabla} u^{*}\right|^{2} d H^{n-1} \leq \int_{A\left(t_{1}, t_{2}\right)}|\tilde{\nabla} u|^{2} d H^{n-1}
$$

Applying the coarea formula again we obtain

$$
\int_{t_{1}}^{t_{2}}\left(\int_{\left(u^{*}\right)^{-1}(t)}\left|\tilde{\nabla} u^{*}\right| d H^{n-2}\right) d t \leq \int_{t_{1}}^{t_{2}}\left(\int_{u^{-1}(t)}|\tilde{\nabla} u| d H^{n-2}\right) d t
$$

whenever $t_{1}<t_{2}$. Hence for almost every t (with respect to one dimensional Lebesque measure)

$$
\begin{equation*}
\int_{\left(u^{*}\right)^{-1}(t)}\left|\tilde{\nabla} u^{*}\right| d H^{u-2} \leq \int_{u^{-1}(t)}|\tilde{\nabla} u| d H^{n-2} \tag{2.2}
\end{equation*}
$$

The coarea formula also implies that

$$
H^{n-2}\left[u^{-1}(t)-\tilde{\partial}\{x: u(x)>t\}\right]=0
$$

for almost every t. Thus, for almost every t, we can replace $u^{-1}(t)$ by $\tilde{\partial}\{x: u(x)>t\} \quad$ in (2.2).

The argument above was suggested by [10, (27)].

3. Proof of Theorem 1

The proof is by contradiction. Suppose there is an $x_{0} \in \Omega$ such that $\hat{u}\left(x_{0}\right)>h\left(x_{0}\right)+c$. Let $w(x)=h(x)+\eta|x|^{2-n}+\eta x_{1}$, where $\eta>0$ is so small that $\hat{u}\left(x_{0}\right)-\hat{w}\left(x_{0}\right)=c_{1}>c$. Clearly w is symmetric, harmonic in Ω, and $\partial w / \partial \theta<0$ at each point of Ω off the x_{1} axis. Also, $\hat{u} \leq \hat{w}+c$, on $\partial \Omega-\{0\}$.

There exists a decreasing sequence $\left\{u_{j}\right\}$ of subharmonic functions in $B\left(1 / 2\left(r_{2}+R\right)\right)$ with continuous second partial derivatives that converges pointwise to u in $B\left(1 / 2\left(r_{2}+R\right)\right.$. Since u_{j}^{*} is Lipschitz in $\bar{B}\left(r_{2}\right)$, it follows from (2.1) that \hat{u}_{j} is continuous in $\bar{B}\left(r_{2}\right)-\{0\}$. Since

$$
0 \leq \hat{u}_{j}(r, \theta)-\hat{u}(r, \theta) \leq \hat{u}_{j}(r, \pi)-\hat{u}(r, \pi)
$$

and $\hat{u}_{j}(r, \pi), \hat{u}(r, \pi)$ are continuous functions of r on $\left[\sigma, 1 / 2\left(r_{2}+R\right)\right]$ for $0<\sigma<1 / 2\left(r_{2}+R\right)$, it follows from Dini's Theorem that $\left\{\hat{u}_{j}\right\}$ converges uniformly to \hat{u} in the closure of $B\left(r_{2}\right)-B(\sigma)$ whenever $0<\sigma<r_{2}$. Thus \hat{u} is continuous on $\bar{B}\left(r_{2}\right)-\{0\}$. Choose $\sigma>0$ so small that $\hat{u}-\hat{w}<c_{1}$ on the closure of $B(\sigma) \cap \Omega$. Then there exist m and $\varepsilon>0$ such that

$$
\hat{u}_{m}(x)+\varepsilon H^{n-1}(S)|x|^{2}-\hat{w}(x)<c_{1}
$$

whenever $\quad x \in \partial[\Omega-B(\sigma)]$.
Let $v(x)=u_{m}(x)+\varepsilon|x|^{2}$ for $x \in \Omega-B(\sigma)$ and note that

$$
\hat{v}(r, \theta)-\hat{w}(r, \theta)=\int_{C(\theta)} v^{*}(r y) d H^{n-1} y-\int_{C(\theta)} w(r y) d H^{n-1} y
$$

has a relative maximum at a point in $\Omega-\overline{B(\sigma)}$ with coordinates $\left(r_{0}, \theta_{0}\right), 0<\theta_{0}<\pi$. Note also that

$$
\begin{equation*}
\triangle v \geq 2 n \varepsilon \tag{3.1}
\end{equation*}
$$

Since v^{*} and w are continuous in Ω, it follows that $v^{*}\left(r_{0}, \theta_{0}\right)=w\left(r_{0}, \theta_{0}\right)$ and for $\theta-\theta_{0}>0$ and sufficiently small,

$$
\int_{C(\theta)-C\left(\theta_{0}\right)} v^{*}\left(r_{0} y\right) d H^{n-1} y \leq \int_{C(\theta)-C\left(\theta_{0}\right)} w\left(r_{0} y\right) d H^{n-1} y
$$

Since v^{*} is Lipschitz, and $v^{*}\left(r_{0}, \theta\right)$ and $w\left(r_{0}, \theta\right)$ are nonincreasing and decreasing functions of θ respectively, it follows that

$$
\begin{equation*}
\left|\tilde{\nabla} v^{*}\left(r_{0}, \theta\right)\right| \geq\left|\tilde{\nabla} w\left(r_{0}, \theta\right)\right|>0 \tag{3.2}
\end{equation*}
$$

for all θ in a set F with the property: Given any $\tau>0$, the one dimensional Lebesgue measure of $F \cap\left[\theta_{0}, \theta_{0},+\tau\right]$ is positive.

For $\theta-\theta_{0}$ small and positive, let $E(\theta) \subset S$ be such that
(i) $S \cap\left\{y: v\left(r_{0} y\right)>v^{*}\left(r_{0}, \theta\right)\right\} \subset E(\theta) \subset S \cap\left\{y: v\left(r_{0} y\right) \geq v^{*}\left(r_{0}, \theta\right)\right\}$,
(ii) $H^{n-1}(E(\theta))=H^{n-1}(C(\theta))$,
(iii) $\hat{v}\left(r_{0}, \theta\right)=\int_{E(\theta)} v\left(r_{0} y\right) d H^{n-1} y=\int_{C(\theta)} v^{*}\left(r_{0} y\right) d H^{n-1} y$.

Note that all three sets in (i) have the same H^{n-1} measure whenever $\theta \in F$, and that $E\left(\theta_{0}\right) \subset E(\theta)$ whenever $\theta_{0}<\theta \in F$.

Let

$$
\psi(r)=\int_{E\left(\theta_{0}\right)} v(r y) d H^{n-1} y-\int_{C\left(\vartheta_{0}\right)} w(r y) d H^{n-1} y
$$

and observe that

$$
\psi(r) \leq \hat{v}\left(r, \theta_{0}\right)-\hat{w}\left(r, \theta_{0}\right) \leq \psi\left(r_{0}\right)
$$

for r sufficiently close to r_{0}. Thus ψ has a relative maximum at r_{0} and

$$
\frac{d}{d r}\left(r^{n-1} \frac{d \psi}{d r}\right)_{r=r_{0}} \leq 0
$$

Consequently given any $\gamma>0$, we have

$$
\begin{equation*}
\int_{E(\theta)} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial v}{\partial r}\right)\left(r_{0} y\right) d H^{n-1} y \leq \int_{C(\theta)} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial w}{\partial r}\right)\left(r_{0} y\right) d H^{n-1} y+\gamma \tag{3.3}
\end{equation*}
$$

whenever $\theta-\theta_{0}>0$ and sufficiently small.
For $\lambda>0$ let

$$
L(\theta, \lambda)=\left\{s y: r_{0} \leq s \leq r_{0}+\lambda, y \in E(\theta)\right\}
$$

and $L(\theta)=L(\theta, 0)$. Since $\left\{v^{*}\left(r_{0}, \theta\right): \theta \in F \cap\left[\theta_{0}, \theta_{0}+\tau\right]\right\}$ has positive one dimensional measure, whenever $\tau>0$ there is an $F^{\prime} \subset F$ containing θ arbitrarily near θ_{0} and such that (2.2) holds with $v=u, t=v^{*}\left(r_{0}, \theta\right)$, and $\tilde{\partial} L(\theta)$ replacing $u^{-1}(t)$ whenever $\theta \in F^{\prime}$. By $[8,3.2 .22(2)]$ we can assume that $\tilde{\partial L}(\theta)$ is
$\left(H^{n-2}, n-2\right)$ rectifiable whenever $\theta \in F^{\prime}$ and hence that $\partial L(\theta, \lambda)$ is $\left(H^{n-1}, n-1\right)$ rectifiable whenever $\theta \in F^{\prime}$.

Now, from (3.1),

$$
2 n \varepsilon \lambda^{-1} H^{n}(L(\theta, \lambda)) \leq \lambda^{-1} \int_{L(\theta, \lambda)} \triangle v d H^{n}
$$

Using the Gauss-Green theorem [8, 4.5.6 (5)] and letting $\lambda \rightarrow 0$ we obtain for $\theta \in F^{\prime}$,

$$
2 n \varepsilon H^{n-1}(L(\theta)) \leq r_{0}^{1-n} \int_{L(\theta)} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial v}{\partial r}\right)_{r=r_{0}} d H^{n-1}-\int_{\tilde{\partial} L(\theta)}|\tilde{\nabla} v| d H^{n-2}
$$

Since w is harmonic a similar argument gives

$$
r_{0}^{1-n} \int_{c_{2}(\theta)} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial w}{\partial r}\right)_{r=r_{0}} d H^{n-1}=\int_{\tilde{\partial} c_{1}(\theta)}|\tilde{\nabla} w| d H^{n-2}
$$

where $C_{1}(\theta)=\left\{r_{0} y: y \in C(\theta)\right\}$.
Using (3.2), (2.2), (3.3), and the above inequalities we obtain for $\theta \in F^{\prime}$,

$$
\begin{aligned}
& \int_{\tilde{\partial} C_{1}(\theta)}|\tilde{\nabla} w| d H^{n-2} \leq \int_{\tilde{\partial} c_{1}(\theta)}\left|\tilde{\nabla} v^{*}\right| d H^{n-2} \leq \int_{\partial L(\theta)}|\tilde{\nabla} v| d H^{n-2} \\
& \leq r_{0}^{1-n} \int_{L(\theta)} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial v}{\partial r}\right)_{r=r_{0}} d H^{n-1}-2 n \varepsilon H^{n-1}(L(\theta)) \\
& \leq r_{0}^{1-n} \int_{C_{1}(\theta)} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial w}{\partial r}\right)_{r=r_{0}} d H^{n-1}-2 n \varepsilon H^{n-1}(L(\theta))+\gamma \\
& =\int_{\tilde{\partial} C_{1}(\theta)}|\tilde{\nabla} w| d H^{n-2}-2 n \varepsilon H^{n-1}(L(\theta))+\gamma
\end{aligned}
$$

Thus $2 n \varepsilon H^{n-1}\left(L(\theta) \leq \gamma \quad\right.$ whenever $\quad \theta \in F^{\prime}$ and hence $2 n \varepsilon r_{0}^{n-1} H^{n-1}\left(C\left(\theta_{0}\right)\right) \leq \gamma$. Since γ is arbitrary and $\theta_{0}>0$, we have reached a contradiction. Hence Theorem 1 is true.

4. Proof of Theorem 2

Let $\gamma, H(\gamma)$, and $P \in H(\gamma)$ be as in \S. If $\gamma=1$, then the conclusion of Theorem 2 is obvious smce P is the only member of $H(1)$. Thus we assume that $1<\gamma<\infty$. Then $0<\alpha<\pi$ and $h=-P$ is subharmonic in \mathbf{R}^{n}, harmonic in $\mathbf{R}^{n}-[S-C(\alpha)]$, and $h=-\gamma$ on $S-C(\alpha)$. It is readily seen that h is symmetric and that $h(r, \theta)$ is a nonincreasing function of θ for $0<\theta<\pi$ and fixed $r>0$. From the proof of Theorem 1 we see that \hat{h} is continuous in $\mathbf{R}^{n}-\{0\}$.

Now suppose $p \in H(\gamma)$ and $u=-p$. Clearly u is subharmonic in \mathbf{R}^{n}. Given $\varepsilon>0$ choose R large enough that $\hat{u}<\hat{h}+\varepsilon$ on $S(R)$.

Let $\Omega \subset B(R)$ denote the bounded symmetric region in \mathbf{R}^{n} such that $B(R)-\Omega$ consists of the union of $S-C(x)$ and the line segment from the origin to $(-R, 0, \ldots, 0)$. One verifies that $\hat{u}(r, \pi)=\hat{h}(r, \pi)$ for $0<r<\infty$. Since $u^{*} \geq h=-\gamma$ on $S-C(\alpha)$, it follows that $\hat{u} \leq \hat{h}$ on $S-C(\alpha)$. Thus $\hat{u} \leq \hat{h}+\varepsilon$ on $\partial \Omega-\{0\}$. By Theorem 1, $\hat{u} \leq \hat{h}+\varepsilon$ in Ω. It follows that $\hat{u} \leq \hat{h}$ in $\mathbf{R}^{n}-\{0\}$. Note that

$$
\hat{u}(r, \theta)=(-\hat{p})(r, \theta)=\hat{p}(r, \pi-\theta)-\hat{p}(r, \pi)
$$

with a similar relation holding between \hat{h} and \hat{P}. Thus since $\hat{p}(r, \pi)=\hat{P}(r, \pi)$ for $0<r<\infty$, we have $\hat{p} \leq \hat{P}$ in $\mathbf{R}^{n}-\{0\}$. It is known [11, p. 170, 249-250] that this inequality implies the conclusion of Theorem 2.

5. Proof of Theorem 3

It sufficies to assume that $u \geq 0$ (otherwise consider max $\{u, 0\}$) and that $u \not \equiv 0$. Let $\alpha, 0<\alpha<\pi$, be such that $H^{n-1}(C(\alpha))=\beta H^{n-1}(S)$ and let

$$
p(x)=\max \left\{\mu M(|x|, u), u^{*}(x)\right\}
$$

whenever $x \in \mathbf{R}^{n}-\{0\}$. We observe from the hypotheses of Theorem 3 that $p(r, \theta)=\mu M(r, u)$ if $\theta>\alpha$. For $0<\sigma<\pi$ let

$$
K(\sigma)=\{t y: 0<t<\infty y \in C(\sigma)\}
$$

and let $K(\sigma, R)=B(R) \cap K(\sigma)$. Assume henceforth that $M(R, u)>0$. Note that for $\sigma>\alpha, p$ is upper semicontinuous on $\partial K(\sigma, R)-\{0\}$, and continuous except on a polar set. Thus there is a unique bounded harmonic function h_{σ} in $K(\sigma, R)$ such that

$$
\limsup _{x \rightarrow y} h_{o}(x) \leq p(y) \text { whenever } y \in \partial K(\sigma, R)-\{0\},
$$

and $\lim _{x \rightarrow y} h_{\sigma}(x)=p(y)$ except on a polar set in $\partial K(\sigma, R)$ [13, Lemma 8.20]. Since $\mu M(|x|, u)$ is subharmonic in $\mathbf{R}^{n}(M(0, u)=u(0))$, it follows that $\mu M(|x|, u) \leq h_{\sigma}(x)$ in $K(\sigma, R)$. From the boundary values of h_{σ} we see that h_{σ} is symmetric in $K(\sigma, R)$.

Let

$$
q_{\rho}(r, \theta)=\sup \left\{h_{\sigma}\left(r, \theta_{1}\right): \theta \leq \theta_{1}<\sigma\right\} \text { in } K(\sigma, R) .
$$

Then q_{σ} is symmetric and has the same boundary values as h_{σ}. Using the fact that $q_{\sigma}(r, \theta)=h_{\sigma}\left(r, \theta_{1}\right)$ for some $\theta_{1}, \theta \leq \theta_{1}<\sigma$, it is easily checked that q_{σ} is upper semicontinuous and satisfies a local sub mean-value property in $K(\sigma, R)$.

Thus q_{σ} is subharmonic in $K(\sigma, R)$ and since it is obvious that $h_{\sigma} \leq q_{\sigma}$, it follows that $h_{\sigma}=q_{\sigma}$ in $K(\sigma, R)$. Hence $h_{\sigma}(r, \theta)$ is nonincreasing for $0<\theta<\sigma$ and fixed $r, 0<r<R$. The proof of this fact is due to Matts Essén (oral communication).

Fix $\sigma>\alpha$ and let $v(x)=h_{\sigma}(x)+\varepsilon|x|^{2-n}$ for $x \in K(\sigma, R)$ and $\varepsilon>0$. Observe that v has a continuous extension to $\overline{K(\sigma, R)}-\{0\}$ and that $\hat{u} \leq \hat{v}$ on $S(R) \cap \bar{K}(\sigma)$. Thus, if

$$
\sup \{\hat{u}(y)-\hat{v}(y): y \in \partial K(\sigma, R)-\{0\}\}=c>0
$$

then $\hat{u}(r, \sigma)-v(r, \sigma)=c \quad$ for some $\quad r$ with $0<r<R$. However since $u^{*}(r, \theta) \leq \mu M(r, u)<v(r, \theta)$ whenever $\alpha<\theta<\sigma$, it follows that

$$
\hat{u}(r, \alpha)-\hat{v}(r, \alpha)>\hat{u}(r, \sigma)-\hat{v}(r, \sigma)=c>0
$$

which contradicts Theorem 1. Hence $c \leq 0$. Applying Theorem 1 and letting $\varepsilon \rightarrow 0$ we have $\hat{u} \leq \hat{h}_{\sigma}$ in $K(\sigma, R)$ whenever $\sigma>\alpha$.

Let $h_{\sigma}(x)=\mu M(|x|, u)$ for $x \in B(R)-K(\sigma, R)$. Then h_{o} is subharmonic in $B(R)$ and if $\alpha<\sigma_{1}<\sigma_{2}$, then $h_{\sigma_{1}} \leq h_{\sigma_{2}}$ in $B(R)$. Thus $h=\lim _{\sigma \rightarrow \alpha^{+}} h_{\sigma}$ is subharmonic in $B(R)$ and harmonic in $K(\alpha, R)$. Clearly $h(x)=\mu M|x|, u)$ in $B(R)-\overline{K(\alpha, R})$. Since $B(R)-\overline{K(\alpha, R)}$ is not thin at any $x \in \partial K(\alpha) \cap B(R)$ [13, Corollary 10.5], it follows that $h(x)=\mu M(|x|, u)$ on $\partial K(\alpha) \cap B(R)$. Since $\hat{\hat{u}} \leq h_{\sigma}$ in $K(\alpha, R)$ whenever $\sigma>\alpha$, we have $\hat{\hat{u}} \leq h$ in $K(\alpha, R)$.

Let

$$
\begin{equation*}
h=P_{R}+Q_{R} \tag{5.1}
\end{equation*}
$$

where P_{R} and Q_{G} are bounded harmonic functions in $K(\alpha, R)$ with

$$
\begin{gathered}
\lim _{x \rightarrow y} P_{R}(x)=\mu M(|y|, u) \text { whenever } y \in \partial K(\alpha) \cap B(R), \\
\lim _{x \rightarrow y} P_{R}(x)=0 \text { whenever } y \in K(\alpha) \cap S(R)
\end{gathered}
$$

and $Q_{R}=h-P_{R}$. Note that

$$
\begin{aligned}
& \lim _{x \rightarrow y} Q_{R}(x)=0 \text { for } y \in \partial K(\alpha) \cap B(R) \\
& \lim _{x \rightarrow y} Q_{R}(x)=p(y) \text { for } y \in K(\alpha) \cap S(R)
\end{aligned}
$$

off of a polar set.
Let $0<\gamma_{1}<\gamma_{2}<\ldots$ be the eigenvalues of the boundary value problem

$$
\begin{gathered}
\delta \phi+\gamma \phi=0 \quad \text { on } C(\alpha), \\
\phi=0 \text { on } \tilde{\partial} C(\alpha)
\end{gathered}
$$

where δ is the Beltrami operator defined in terms of the Laplacian Δ by

$$
\Delta=r^{1-n} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial}{\partial r}\right)+r^{-2} \delta
$$

Let $\left\{\phi_{k}\right\}$ denote corresponding symmetric eigenfunctions with continuous second partial derivatives in $C(\alpha)$ and

$$
\int_{C(x)} \phi_{k}^{2} d H^{n-1}=1 \text { for } k=1,2, \ldots
$$

Let ϱ_{k} be the positive root of the equation $\varrho_{k}\left(\varrho_{k}+n-2\right)=\gamma_{k}$ for $k=1,2, \ldots$ Then as in [9] we have

$$
\begin{equation*}
Q_{R}(r, \theta)=\sum_{k=1}^{\infty} a_{k}(r / R)^{\rho_{k}} \phi_{k}(1, \theta) \quad \text { in } K(\alpha, R) \tag{5.2}
\end{equation*}
$$

where

$$
a_{k}=\int_{C(x)} P(R y) \phi_{k}(y) d H^{n-1} y
$$

Using the estimates in $[7, \S 8]$ or [4, Lemma 2.5], the series

$$
\sum_{k=1}^{\infty}(r / R)^{o_{k}-\varrho_{1}}\left|\phi_{k}(1, \theta)\right|
$$

can be seen to converge uniformly in $K(\alpha, s R)$ whenever $0<s<1$. Note also that

$$
\left|a_{k}\right| \leq M(R, u) H^{n-1}(C(\alpha))^{1 / 2}
$$

The case $\mu=0$. In case $\mu=0$ we have $P_{R}=0, Q_{R}=h, p=u^{*}$, and hence

$$
\begin{equation*}
a_{k}=\int_{C(\alpha)} u^{*}(R y) \phi_{k}(y) d H^{n-1} y \tag{5.3}
\end{equation*}
$$

It is known [3, VI § 6] that ϕ_{1} is either positive or negative in $K(\alpha, R)$. Assume $\phi_{1} \geq 0$. Since ϕ_{1} is symmetric and $\delta \phi_{1}=-\gamma_{1} \phi_{1}$, it is readily seen that $d \phi_{1} / d \theta \leq 0$ in $C(\alpha)$. Using this and the fact that $\hat{\hat{u}} \leq h$ in $K(\alpha, R)$, we have

$$
\begin{aligned}
m(r) & =\int_{C(\alpha)} u^{*}(r y) \phi_{1}(y) d H^{n-1} y=-\int_{0}^{\alpha} \hat{u}(r, \theta) \frac{d \phi_{1}}{d \theta}(1, \theta) d \theta \\
& \leq-\int_{0}^{\alpha} \hat{h}(r, \theta) \frac{d \phi_{1}}{d \theta}(1, \theta) d \theta=\int_{C(\alpha)} h(r y) \phi_{1}(y) d H^{n-1} y
\end{aligned}
$$

From (5.2) and (5.3)

$$
\int_{c(\alpha)} h(r y) \phi_{1}(y) d H^{n-1} y=a_{1}(r / R)^{\rho_{1}}=(r / R)^{o_{1}} \int_{C(\alpha)} u^{*}(R y) \phi_{1}(y) d H^{n-1} y
$$

and hence

$$
r^{-\varrho_{1}} m(r) \leq R^{-\varrho_{2}} m(R) \text { for } 0<r<R
$$

Consequently $b=\lim _{r \rightarrow \infty} r^{-\varrho_{1}} m(r)$ exists. We assume that

$$
\liminf _{r \rightarrow \infty}\left(r^{-\varrho_{1}} M(r, u)\right)<\infty
$$

Otherwise the proof is complete in case $\mu=0$ with $\varrho=\varrho_{1}$. Since

$$
m(r) \leq M(r, u) H^{n-1}(C(\alpha))^{1 / 2}
$$

we have $b<\infty$.
Now from (5.2) we deduce that for $0<r<R / 2$,

$$
\begin{gathered}
r^{-\varrho_{1}} \hat{u}(r, \theta) \leq r^{-\varrho_{1}} \hat{h}(r, \theta) \\
=R^{-\varrho_{1}} a_{1} \int_{C(\theta)} \phi_{1} d H^{n-1}+R^{-\varrho_{1}} \sum_{k=2}^{\infty} a_{k}(r / R)^{\varrho_{k}-\varrho_{1}} \\
\leq R_{C(\theta)} \phi_{k} d H^{n-1} \\
\leq \int_{C(\theta)}^{-\varrho_{1}} m(R) \phi_{1} d H^{n-1}+R^{-\varrho_{1}} M(R, u) g(r / R)
\end{gathered}
$$

where g is continuous on $\left[0, \frac{1}{2}\right]$ and $g(0)=0$. Since $\lim \inf _{R \rightarrow \infty} R^{-\rho_{1}} M(R, u)<\infty$, it follows that

$$
r^{-e_{1}} \hat{u}(r, \theta) \leq b \int_{C(\theta)} \phi_{1} d H^{n-1} \text { in } K(\alpha) .
$$

This inequality and the subharmonicity of u imply that

$$
r^{-e_{1}} M(r, u) \leq b \phi_{1}(1,0) \text { for } r>0
$$

and hence that $b>0$.
Suppose that

$$
\liminf _{r \rightarrow \infty} r^{-\varrho_{1}} \boldsymbol{M}(r, u)<b \phi_{1}(1,0) .
$$

Then there exists a sequence $\left\{r_{j}\right\}$ with $r_{j} \uparrow \infty$ and $\varepsilon>0$ such that

$$
r_{j}^{-\varrho_{1}} M\left(r_{j}, u\right)<b \phi_{1}(1, \theta)
$$

For $j=1,2, \ldots$ and $0<\theta<\varepsilon$. Thus,

$$
r_{j}^{-\theta_{1}} \hat{u}\left(r_{j}, \theta\right)<b \int_{C(\theta)} \phi_{1} d H^{n-1}
$$

for $0<\theta<\varepsilon$ and it follows that

$$
\begin{aligned}
r_{j}^{-\rho_{1}} m\left(r_{j}\right) & =-\int_{0}^{\alpha} r_{j}^{-\rho_{1}} \hat{u}\left(r_{j}, \theta\right) \frac{d \phi_{1}}{d \theta}(1, \theta) d \theta \\
& <-b \int_{0}^{\alpha}\left(\int_{C(\theta)} \phi_{1} d H^{n-1}\right) \frac{d \phi_{1}}{d \theta}(1, \theta) d \theta=b .
\end{aligned}
$$

Letting $j \uparrow \infty$ we obtain a contradiction. Hence

$$
\lim _{r \rightarrow \infty} r^{-\varepsilon_{1}} M(r, u)=b \phi_{1}(1,0)>0
$$

and the proof is complete in case $\mu=0$ with $\varrho=\varrho_{1}$.
The case $0<\mu<1$. For $0<\lambda<1$ the boundary value problem

$$
\begin{aligned}
\delta \psi+\lambda \varrho_{1}\left(\lambda \varrho_{1}+n-2\right) \psi & =0 \text { on } C(\alpha) \\
\psi & =1 \text { on } \tilde{\partial} C(\alpha)
\end{aligned}
$$

has a unique symmetric solution. Choose λ so that the corresponding ψ has the value μ^{-1} at $r=1, \theta=0$.

Since $\hat{u} \leq \tilde{h}$ in $K(x, R)$ it follows that $M(r, u) \leq h(r, 0)$ for $0<r<R$ and hence that

$$
h(y)=\mu M(|y|, u) \leq \mu h(|y|, 0)
$$

for $y \in \partial K(\alpha) \cap B(R)$. Thus, using the arguments of [7, (3.1)],

$$
\begin{equation*}
r^{-\lambda_{Q_{1}}} M(r, u) \leq r^{-\lambda_{Q_{1}}} h(r, 0) \leq \mu^{-1} R^{-\lambda_{e_{1}}} M(r, u) \tag{5.4}
\end{equation*}
$$

for $0<r<R$. It follows that

$$
0<\underset{r \rightarrow \infty}{\lim \sup } r^{-\lambda e_{1}} M(r, u) \leq \mu^{-1} \lim _{r \rightarrow \infty} \inf r^{-2 e_{1}} M(r, u)
$$

Assume that $\lim \sup _{r \rightarrow \infty} r^{-\lambda e_{2}} M(r, u)<\infty$. Otherwise the proof is complete in case $0<\mu<1$ with $\varrho=\lambda \varrho_{1}$.

For P_{R} as in (5.1) we note that $P_{R_{1}} \leq P_{R_{2}}$ in $K\left(\alpha, R_{1}\right)$ whenever $R_{1} \leq R_{2}$. Also, from (5.4), we have

$$
M\left(r, P_{R}\right) \leq h(r, 0) \leq \mu^{-1}(r / R)^{-\lambda e_{1}} M(R, u)
$$

for $0<r<R$. Since $\quad \lim \inf _{R \rightarrow \infty} R^{-\lambda Q_{2}} M(R, u)<\infty$, it follows that $V=$ $\lim _{R \rightarrow \infty} P_{R}$ is harmonic in $K(\alpha)$ and

$$
\begin{equation*}
M(r, V) \leq \mu^{-1} r^{2 .} \liminf _{R \rightarrow \infty} R^{-k g_{1}} M(R, u) \tag{5.5}
\end{equation*}
$$

From (5.4) and the definition of Q_{R} we have

$$
P_{R_{2}}-P_{R_{1}} \leq \mu^{-2}\left(R_{1} / R_{2}\right)^{2 e_{1}} \frac{M\left(R_{2} u\right)}{M\left(R_{1}, u\right)} Q_{R_{1}}
$$

in $K\left(\alpha, R_{1}\right)$ whenever $R_{1}<R_{2}$. Letting $R_{2} \rightarrow \infty$ it follows that

$$
0 \leq V-P_{R_{1}} \leq(\text { constant }) Q_{R_{1}} \text { in } K\left(\alpha, R_{1}\right)
$$

Thus

$$
\begin{equation*}
V(y)=\lim _{x \rightarrow y} V(x)=\mu M(|y|, u) \quad \text { on } \quad \partial K(x) . \tag{5.6}
\end{equation*}
$$

From (5.2) we have

$$
Q_{R}(r, \theta) \leq A(r / R)^{o_{1}} M(R, u) \text { for } 0<r<\frac{R}{2}
$$

where A is a positive constant independent of R. Since

$$
\lim _{R \rightarrow \infty} \sup ^{-\lambda \varrho_{1}} M(R, u)<\infty
$$

it follows that $Q_{R} \rightarrow 0$ uniformly on compact subsets of $K(\alpha)$ as $R \rightarrow \infty$. Using (5.4), (5.1) and letting $R \rightarrow \infty$ we deduce that $M(r, u) \leq V(r, 0)$ for $r>0$.

This last inequality, (5.5), and (5.6) imply that $\lim _{r \rightarrow \infty} r^{-\lambda e_{1}} M(r, u)$ exists [7, (4.6)] and hence the proof is complete in case $0<\mu<1$ with $\varrho=\lambda \varrho_{1}$.

6. Remark

With ϱ_{1} and ϕ_{1} as in the proof of the case $\mu=0$, let

$$
u(r, \theta)=r^{e_{1}} \phi_{1}(\mathrm{l}, \theta) \text { in } K(\alpha)
$$

and

$$
u(r, \theta)=0 \quad \text { in } \quad \mathbf{R}^{n}-K(\alpha)
$$

Then u is subharmonic in \mathbf{R}^{n} and satisfies the hypothesis of Theorem 3. Hence $\varrho=\varrho_{1}$ is the best possible exponent in case $\mu=0$.

In case $0<\mu<1$, let λ and ψ correspond to μ as in the proof of Theorem 3. It is known [7,(1.5)] that $\psi \geq 1$ in $C(\alpha)$. Let

$$
u(r, \theta)=r^{\lambda_{Q_{1}}} \psi(1, \theta) \text { in } K(\alpha)
$$

and

$$
u(r, \theta)=r^{\lambda_{e_{1}}} \text { in } \mathbf{R}^{n}-K(\alpha)
$$

Then u is subharmonic in \mathbf{R}^{n} and satisfies the hypotheses of Theorem 3. Thus the exponent $\varrho=\lambda \varrho_{1}$ is best possible when $0<\mu<1$.

References

1. Baernstein II, A., A generalization of the cos $\pi \varrho$ theorem, Trans. Amer. Math. Soc. (to appear).
2. -"- Integral means of schlicht functions, Acta Math. (to appear).
3. Courant, R. \& Hlbbert, D., Methods of mathematical physics, 1. Wiley-Interscience, 1966.
4. Dahlberg, B., Mean values of subharmonic functions, Arkiv f. Mat. 10 (1972), 293-309.
5. -»- Growth properties of subharmonic functions, thesis, University of Göteborg, 1971. 6. Davis, B. \& Lewis, J. L., An extremal property of some capacitary measures in $E /$, Proc. Amer. Math. Soc. 39 (1973) 520-524.
6. Essén, M. \& Lewis, J. L., The generalized Ahlfors-Heins theorem in certain d-dimensional cones, Math. Scand. (to appear).
7. Federer, H., Geometric measure theory, Springer-Verlag, 1969.
8. Lelong-Ferrand, J., Extension du théoreme de Phragmen-Lindelöf-Heins aux Fonctions sousharmoniques dans un còne ou dans un cylindre, C. R. Acad. Sci. Paris 229 (1949), 411-413.
9. Gehring, F., Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499519.
10. Hardy, G., Littlewood, J., and Polya, G., Inequalities, Cambridge University Press, 1964.
11. Heins, M., Selected topics in the classical theory of functions of a complex variable, Holt, Rinehart, and Winston, 1962.
12. Helms, L., Introduction to potential theory, Wiley-Interscience, 1969.
13. HÜber, A., Ein raumliches analogon des Wiman-Heinsschen Satzes, Studies in mathematical analysis and related topics, Stanford University Press, 1962, 152-155.
14. Talpur, M., On the sets where a subharmonic function is large, thesis, Imperial College, London, 1967.

Received March 13, 1974
Ronald Gariepy and John Lewis University of Kentucky Lexington, Kentucky 40506

