A Maximum Principle With Applications To Subharmonic Functions in *n*-space

RONALD GARIEPY and JOHN L. LEWIS

1. Introduction

Denote points in n dimensional Euclidean space \mathbf{R}^n , $n \ge 3$, by $x = (x_1, x_2, \ldots, x_n)$. Let r = |x| and $x_1 = r \cos \theta$, $0 \le \theta \le \pi$. A real valued function f defined on a subset E of \mathbf{R}^n is said to be symmetric (with respect to the x_1 axis) if f(x) = f(y) whenever $x, y \in E$ and x and y have the same r, θ coordinates.

For r > 0 let $B(r) = \{x: |x| < r\}$, $S(r) = \{x: |x| = r\}$ and S = S(1). For $0 \le \alpha \le \pi$ let $C(\alpha) = S \cap \{x: \theta < \alpha\}$. Given a set $E \subset \mathbb{R}^n$, let $\overline{E}, \partial E$, denote the closure and boundary of E in \mathbb{R}^n . If $E \subset S(r)$ let $\partial \overline{E}$ denote the boundary of E relative to S(r). Let H^m denote m dimensional Hausdorff measure in \mathbb{R}^n .

If f is defined on a set $E \subset \mathbf{R}^n$ let $\theta(r)$ be defined by

$$H^{n-1}(C(\theta(r))) = H^{n-1}(p(S(r) \cap E))$$

where p denotes the radial projection of $\mathbf{R}^n - \{0\}$ onto S. For $0 \le \theta \le \theta(r)$ let

$$\hat{f}(r, \theta) = \sup \int_{F} f(ry) dH^{n-1}y$$

where the supremum is taken over all measurable sets $F \subset p(S(r) \cap E)$ with $H^{n-1}(F) = H^{n-1}(C(\theta)).$

Let Ω be a bounded region in \mathbf{R}^n of the form

$$\Omega = \bigcup_{r_1 < r < r_2} C(\theta(r))$$

where $0 \leq r_1 < r_2 < \infty$ and $0 < \theta(r) \leq \pi$ for $r_1 < r < r_2$. Let *h* be a symmetric, bounded, harmonic function in Ω such that, for $r_1 < r < r_2$, $h(r, \theta)$ is a non increasing function of θ for $0 < \theta < \theta(r)$. Then

RONALD GARIEPY AND JOHN L. LEWIS

$$\hat{h}(r, heta)=\int_{c(heta)}h(ry)dH^{n-1}y ext{ in } arOmega.$$

Let u be a subharmonic function $(\equiv -\infty)$ in $B(R) \supset \Omega, R > r_2$. In § 3 we will prove

THEOREM 1. If \hat{h} has a continuous extension to $\bar{\Omega} - \{0\}$ and $\hat{u} \leq \hat{h} + c$ on $\partial \Omega - \{0\}$ where $c \geq 0$, then $\hat{u} \leq \hat{h} + c$ everywhere in Ω .

We note that Baernstein [2, Theorem A'] has obtained a similar theorem in \mathbb{R}^2 .

We will give two applications of Theorem 1. The first is to an extremal problem for potentials. Given a real number γ , $1 \leq \gamma < \infty$, let $H(\gamma)$ denote the class of potentials

$$p(x) = \int_{S} |x - y|^{2-n} d\mu(y), \quad x \in \mathbf{R}^{n}$$

where μ is a probability measure on S and

 $p(x) \leq \gamma$ whenever $x \in \mathbf{R}^n$.

Choose α so that the Newtonian capacity of $S - C(\alpha)$ is γ^{-1} and let $P \in H(\gamma)$ denote the corresponding equilibrium potential. In § 4 we prove

THEOREM 2. If Φ is a nondecreasing convex function on $(-\infty, \infty)$, then

$$\int_{-S} arPsi(p(ry)) dH^{n-1}y \leq \int_{-S} arPsi(P(ry)) dH^{n-1}y$$

whenever r > 0 and $p \in H(\gamma)$.

Thus, if $\lambda \geq 1$, $\Phi(u) = u^{\lambda}$ for $u \geq 0$, and $\Phi(u) = 0$ for u < 0, we have

$${\displaystyle\int}_{S}(p(ry))^{\lambda}dH^{n-1}y\leq {\displaystyle\int}_{S}(P(ry))^{\lambda}dH^{n-1}y$$

whenever r > 0 and $p \in H(\gamma)$. It follows that

$$\max \{p(x): x \in S(r)\} \le \max \{P(x): x \in S(r)\}$$

whenever r > 0 and $p \in H(\gamma)$.

We note that the above inequality has been obtained by Davis and Lewis [6].

If u is a subharmonic function in \mathbb{R}^n , let $M(r, u) = \max \{u(x): x \in S(r)\}$ whenever r > 0 and M(0, u) = u(0). As a second application of Theorem 1 we prove in § 5.

THEOREM 3. Given $0 \le \mu < 1$ and $0 < \beta < 1$, there exists $\varrho = \varrho(\mu, \beta, n) > 0$ such that if u is any subharmonic function in \mathbb{R}^n with

$$H^{n-1}(x; u(x) > \mu M(|x|, u)) \cap S(r)) \le \beta H^{n-1}(S(r))$$

whenever r > 0, then either $u \leq 0$ everywhere in \mathbb{R}^n or $\lim_{r\to\infty} r^{-\varrho}M(r, u)$ exists and is positive (possibly $+\infty$).

For $0 < \beta < 1$ and $\mu = 0$, Dahlberg [4], Hüber [14], and Talpur [15] have all shown the existence of $\varrho^* = \varrho^*(\beta, n) > 0$ for which the conclusion above holds. In § 6 we will show the ϱ we obtain is best possible for $0 \le \mu < 1$ and $0 < \beta < 1$. Baernstein [1] has obtained a similar result in \mathbb{R}^2 .

To prove Theorem 3 for $0 < \mu < 1$ we use Theorem 1 to reduce the problem to one considered by Dahlberg [5] and Essen and Lewis [7]. For $\mu = 0$ we use Theorem 1 and arguments similar to those of Heins [12, p. 114, ex. 11].

2. Spherical symmetrization

Given a closed set $F \subset \mathbb{R}^n$, define the spherical symmetrization F^* of F as follows: If $F \cap S(r) = \phi$, then $F^* \cap S(r) = \phi$. Otherwise $H^{n-1}(F^* \cap S(r)) =$ $H^{n-1}(F \cap S(r))$ and $F^* \cap S(r)$ is either the point $(r, 0, \ldots, 0)$ or the closed cap on S(r) centered at $(r, 0, \ldots, 0)$. Let u be subharmonic in B(R), R > 0. Given $t, -\infty \leq t < \infty$, let $F(t) = \{x: u(x) \geq t\}$ and note that F(t) is closed. Define an associated function u^* by letting

$$u^*(x) = \sup \{t: x \in F^*(t)\}$$
 whenever $x \in B(R)$.

It is easily seen that u^* is symmetric and $\{x: u^*(x) \ge t\} = F^*(t)$. It follows that u^* is upper semicontinuous, u and u^* are equimeasurable, and

$$\hat{u}(r,\theta) = \int_{C(\theta)} u^*(ry) dH^{n-1}y$$
(2.1)

whenever 0 < r < R, $0 \le \theta \le \pi$. We note for later reference that Gehring [10, lemma 4] has shown that u^* is Lipschitz in B(R) whenever u is.

Consider now the restriction of u and u^* (also denoted by u and u^*) to S(r) for fixed r, 0 < r < R. Assume that u and u^* are Lipschitz functions on S(r). Define a Borel measure $u_{\#}H^{n-1}$ on **R** by letting

$$u_{\#}H^{n-1}(E) = H^{n-1}(u^{-1}(E))$$

whenever E is a Borel subset of **R**. Define $u_{\#}^{*}H^{n-1}$ analogously.

Let $\tilde{\bigtriangledown}$ denote the gradient relative to the sphere S(r), and let G be the subset of S(r) where $\tilde{\bigtriangledown} u^*$ exists. Define a function g on **R** by letting

$$g(t) = 0$$
 if $(u^*)^{-1}(t) \cap G = \phi$

and

$$g(t) = |\tilde{\bigtriangledown} u^*(x)|$$
 for any $x \in (u^*)^{-1}(t) \cap G$, otherwise.

Since u^* is symmetric, g is well defined. Note that $g \circ u^*(x) = |\tilde{\bigtriangledown} u^*(x)|$ for H^{n-1} almost every $x \in S(r)$. Thus by [8, 2.4.18 (1)].

$$\int_{\mathcal{A}^{st}(t_{1},\ t_{2})}| ilde{
abla} u^{st}|^{2}dH^{n-1}=\int_{t_{1}}^{t_{2}}g^{2}du_{\#}^{st}H^{n-1},$$

where $A^*(t_1, t_2) = \{x: t_1 < u^*(x) < t_2\}.$ Since $u_{\#}H^{n-1} = u_{\#}^*H^{n-1}$ we see by [8, 2.4.18 (2)] that $g \circ u$ is H^{n-1} measurable and

$$\int_{t_1}^{t_2} g^2 du_{\#} H^{n-1} = \int_{A(t_1, t_2)} (g \circ u)^2 dH^{n-1}$$

where $A(t_1, t_2) = \{x: t_1 < u(x) < t_2\}$. Hence

$$\int_{\mathcal{A}(t_1, \ t_2)} (g \circ u)^2 dH^{n-1} = \int_{\mathcal{A}^*(t_1, \ t_2)} |\tilde{\bigtriangledown} u^*|^2 dH^{n-1}.$$

Using the coarea formula [8, 3.2.22 (3)] and the spherical isoperimetric inequality for sets of finite perimeter (see [8, 3.243 and 4.5.9 (31)] for a similar inequality in the Euclidean case), we obtain

$$\int_{A^{st}(t_1,\ t_2)} | ilde{ \bigtriangledown} u^{st}|^2 dH^{n-1} = \int_{t_1}^{t_2} igg(\int_{(u^{st})^{-1}(t)} g \circ u^{st} dH^{n-2} igg) dt \ \leq \int_{t_1}^{t_2} igg(\int_{u^{-1}(t)} g \circ u dH^{n-2} igg) dt = \int_{A(t_1,\ t_2)} (g \circ u) | ilde{ \bigtriangledown} u| dH^{n-1}.$$

From Holder's inequality, it follows that

$$\int_{A(t_1, t_2)} (g \circ u) | \widetilde{\bigtriangledown} u | dH^{n-1} \leq \ \leq \left[\int_{A(t_1, t_2)} (g \circ u)^2 dH^{n-1}
ight]^{1/2} \left[\int_{A(t_1, t_2)} | \widetilde{\bigtriangledown} u |^2 dH^{n-1}
ight]^{1/2} \ = \left[\int_{A^*(t_1, t_2)} | \widetilde{\bigtriangledown} u |^2 dH^{n-1}
ight]^{1/2} \left[\int_{A(t_1, t_2)} | \widetilde{\bigtriangledown} u |^2 dH^{n-1}
ight]^{1/2}$$

Thus

$$\int_{A^{ullet}(t_1,\ t_2)}| ilde{
abla} u^{ullet}|^2 dH^{n-1} \leq \int_{A(t_1,\ t_2)}| ilde{
abla} u|^2 dH^{n-1}.$$

Applying the coarea formula again we obtain

$$\int_{t_1}^{t_2} \left(\int_{(u^*)^{-1}(t)} |\tilde{\bigtriangledown} u^*| dH^{n-2}\right) dt \leq \int_{t_1}^{t_2} \left(\int_{u^{-1}(t)} |\tilde{\bigtriangledown} u| dH^{n-2}\right) dt$$

whenever $t_1 < t_2$. Hence for almost every t (with respect to one dimensional Lebesque measure)

$$\int_{(u^{*})^{-1}(t)} |\tilde{\bigtriangledown} u^{*}| dH^{u-2} \leq \int_{u^{-1}(t)} |\tilde{\bigtriangledown} u| dH^{n-2}$$
(2.2)

The coarea formula also implies that

$$H^{n-2}[u^{-1}(t) - \tilde{\partial}\{x: u(x) > t\}] = 0$$

for almost every t. Thus, for almost every t, we can replace $u^{-1}(t)$ by $\tilde{\partial}\{x: u(x) > t\}$ in (2.2).

The argument above was suggested by [10, (27)].

3. Proof of Theorem 1

The proof is by contradiction. Suppose there is an $x_0 \in \Omega$ such that $\hat{u}(x_0) > h(x_0) + c$. Let $w(x) = h(x) + \eta |x|^{2-n} + \eta x_1$, where $\eta > 0$ is so small that $\hat{u}(x_0) - \hat{w}(x_0) = c_1 > c$. Clearly w is symmetric, harmonic in Ω , and $\partial w/\partial \theta < 0$ at each point of Ω off the x_1 axis. Also, $\hat{u} \leq \hat{w} + c$, on $\partial \Omega - \{0\}$.

There exists a decreasing sequence $\{u_j\}$ of subharmonic functions in $B(1/2(r_2 + R))$ with continuous second partial derivatives that converges pointwise to u in $B(1/2(r_2 + R))$. Since u_j^* is Lipschitz in $\overline{B}(r_2)$, it follows from (2.1) that \hat{u}_j is continuous in $\overline{B}(r_2) - \{0\}$. Since

$$0 \leq \hat{u}_i(r, \theta) - \hat{u}(r, \theta) \leq \hat{u}_i(r, \pi) - \hat{u}(r, \pi),$$

and $\hat{u}_j(r, \pi)$, $\hat{u}(r, \pi)$ are continuous functions of r on $[\sigma, 1/2(r_2 + R)]$ for $0 < \sigma < 1/2(r_2 + R)$, it follows from Dini's Theorem that $\{\hat{u}_j\}$ converges uniformly to \hat{u} in the closure of $B(r_2) - B(\sigma)$ whenever $0 < \sigma < r_2$. Thus \hat{u} is continuous on $\overline{B}(r_2) - \{0\}$. Choose $\sigma > 0$ so small that $\hat{u} - \hat{w} < c_1$ on the closure of $B(\sigma) \cap \Omega$. Then there exist m and $\varepsilon > 0$ such that

$$\hat{u}_m(x) + \varepsilon H^{n-1}(S) |x|^2 - \hat{w}(x) < c_1$$

whenever $x \in \partial[\Omega - B(\sigma)].$

Let $v(x) = u_m(x) + \varepsilon |x|^2$ for $x \in \Omega - B(\sigma)$ and note that

$$\hat{v}(r,\, heta)-\hat{w}(r,\, heta)=\int_{C(heta)}v^{st}(ry)dH^{n-1}y-\int_{C(heta)}w(ry)dH^{n-1}y$$

has a relative maximum at a point in $\Omega = \overline{B(\sigma)}$ with coordinates $(r_0, \theta_0), 0 < \theta_0 < \pi$. Note also that

Since v^* and w are continuous in Ω , it follows that $v^*(r_0, \theta_0) = w(r_0, \theta_0)$ and for $\theta - \theta_0 > 0$ and sufficiently small,

$$\int_{C(0)-C(o_0)} v^*(r_0 y) dH^{n-1} y \leq \int_{C(0)-C(o_0)} w(r_0 y) dH^{n-1} y.$$

Since v^* is Lipschitz, and $v^*(r_0, \theta)$ and $w(r_0, \theta)$ are nonincreasing and decreasing functions of θ respectively, it follows that

$$|\tilde{\bigtriangledown} v^*(r_0,\theta)| \ge |\tilde{\bigtriangledown} w(r_0,\theta)| > 0 \tag{3.2}$$

for all θ in a set F with the property: Given any $\tau > 0$, the one dimensional Lebesgue measure of $F \cap [\theta_0, \theta_0, +\tau]$ is positive.

- For $\theta \theta_0$ small and positive, let $E(\theta) \subset S$ be such that
 - (i) $S \cap \{y: v(r_0y) > v^*(r_0, \theta)\} \subset E(\theta) \subset S \cap \{y: v(r_0y) \ge v^*(r_0, \theta)\},\$

(ii)
$$H^{n-1}(E(\theta)) = H^{n-1}(C(\theta)),$$

(iii)
$$\hat{v}(r_0, \theta) = \int_{E(\theta)} v(r_0 y) dH^{n-1} y = \int_{C(\theta)} v^*(r_0 y) dH^{n-1} y.$$

Note that all three sets in (i) have the same H^{n-1} measure whenever $\theta \in F$, and that $E(\theta_0) \subset E(\theta)$ whenever $\theta_0 < \theta \in F$.

Let

$$\psi(r) = \int_{E(o_0)} v(ry) dH^{n-1}y - \int_{C(o_0)} w(ry) dH^{n-1}y$$

and observe that

$$\psi(r) \leq \hat{v}(r, \theta_0) - \hat{w}(r, \theta_0) \leq \psi(r_0),$$

for r sufficiently close to r_0 . Thus ψ has a relative maximum at r_0 and

$$\frac{d}{dr}\left(r^{n-1}\frac{d\psi}{dr}\right)_{r=r_0}\leq 0.$$

Consequently given any $\gamma > 0$, we have

$$\int_{E(\Theta)} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial v}{\partial r} \right) (r_0 y) dH^{n-1} y \leq \int_{C(\Theta)} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial w}{\partial r} \right) (r_0 y) dH^{n-1} y + \gamma \qquad (3.3)$$

whenever $\theta - \theta_0 > 0$ and sufficiently small.

For $\lambda>0$ let

$$L(\theta, \lambda) = \{ sy: r_0 \le s \le r_0 + \lambda, y \in E(\theta) \}$$

and $L(\theta) = L(\theta, 0)$. Since $\{v^*(r_0, \theta) : \theta \in F \cap [\theta_0, \theta_0 + \tau]\}$ has positive one dimensional measure, whenever $\tau > 0$ there is an $F' \subset F$ containing θ arbitrarily near θ_0 and such that (2.2) holds with $v = u, t = v^*(r_0, \theta)$, and $\tilde{\partial}L(\theta)$ replacing $u^{-1}(t)$ whenever $\theta \in F'$. By [8, 3.2.22 (2)] we can assume that $\tilde{\partial}L(\theta)$ is

 $(H^{n-2}, n-2)$ rectifiable whenever $\theta \in F'$ and hence that $\partial L(\theta, \lambda)$ is $(H^{n-1}, n-1)$ rectifiable whenever $\theta \in F'$.

Now, from (3.1),

$$2narepsilon\lambda^{-1}H^n(L(heta,\,\lambda))\leq \lambda^{-1}\int_{L(heta,\,\lambda)} riangle v dH^n.$$

Using the Gauss-Green theorem [8, 4.5.6 (5)] and letting $\lambda \to 0$ we obtain for $\theta \in F'$,

$$2n\varepsilon H^{n-1}(L(\theta)) \leq r_0^{1-n} \int_{L(\theta)} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial v}{\partial r} \right)_{r=r_0} dH^{n-1} - \int_{\widetilde{\partial}L(\theta)} |\widetilde{\nabla}v| dH^{n-2}.$$

Since w is harmonic a similar argument gives

$$r_0^{1-n}\int_{C_1(\theta)}\frac{\partial}{\partial r}\left(r^{n-1}\frac{\partial w}{\partial r}\right)_{r=r_0}dH^{n-1}=\int_{\widetilde{\partial}C_1(\theta)}|\tilde{\bigtriangledown}w|dH^{n-2}$$

where $C_1(\theta) = \{r_0 y : y \in C(\theta)\}.$

Using (3.2), (2.2), (3.3), and the above inequalities we obtain for $\theta \in F'$,

$$\begin{split} &\int_{\widetilde{\partial}C_{1}(\theta)}|\tilde{\bigtriangledown}w|dH^{n-2}\leq\int_{\widetilde{\partial}C_{1}(\theta)}|\tilde{\bigtriangledown}v^{*}|dH^{n-2}\leq\int_{\partial L(\theta)}|\tilde{\bigtriangledown}v|dH^{n-2}\\ &\leq r_{0}^{1-n}\int_{L(\theta)}\frac{\partial}{\partial r}\left(r^{n-1}\frac{\partial v}{\partial r}\right)_{r=r_{0}}dH^{n-1}-2n\varepsilon H^{n-1}(L(\theta))\\ &\leq r_{0}^{1-n}\int_{C_{1}(\theta)}\frac{\partial}{\partial r}\left(r^{n-1}\frac{\partial w}{\partial r}\right)_{r=r_{0}}dH^{n-1}-2n\varepsilon H^{n-1}(L(\theta))+\gamma\\ &=\int_{\widetilde{\partial}C_{1}(\theta)}|\tilde{\bigtriangledown}w|dH^{n-2}-2n\varepsilon H^{n-1}(L(\theta))+\gamma. \end{split}$$

Thus $2n\varepsilon H^{n-1}(L(\theta) \leq \gamma)$ whenever $\theta \in F'$ and hence $2n\varepsilon r_0^{n-1}H^{n-1}(C(\theta_0)) \leq \gamma$. Since γ is arbitrary and $\theta_0 > 0$, we have reached a contradiction. Hence Theorem 1 is true.

4. Proof of Theorem 2

Let γ , $H(\gamma)$, and $P \in H(\gamma)$ be as in § 1. If $\gamma = 1$, then the conclusion of Theorem 2 is obvious since P is the only member of H(1). Thus we assume that $1 < \gamma < \infty$. Then $0 < \alpha < \pi$ and h = -P is subharmonic in \mathbb{R}^n , harmonic in $\mathbb{R}^n - [S - C(\alpha)]$, and $h = -\gamma$ on $S - C(\alpha)$. It is readily seen that h is symmetric and that $h(r, \theta)$ is a nonincreasing function of θ for $0 < \theta < \pi$ and fixed r > 0. From the proof of Theorem 1 we see that \hat{h} is continuous in $\mathbb{R}^n - \{0\}$. Now suppose $p \in H(\gamma)$ and u = -p. Clearly u is subharmonic in \mathbb{R}^n . Given $\varepsilon > 0$ choose R large enough that $\hat{u} < \hat{h} + \varepsilon$ on S(R).

Let $\Omega \subset B(R)$ denote the bounded symmetric region in \mathbb{R}^n such that $B(R) - \Omega$ consists of the union of $S - C(\alpha)$ and the line segment from the origin to $(-R, 0, \ldots, 0)$. One verifies that $\hat{u}(r, \pi) = \hat{h}(r, \pi)$ for $0 < r < \infty$. Since $u^* \ge h = -\gamma$ on $S - C(\alpha)$, it follows that $\hat{u} \le \hat{h}$ on $S - C(\alpha)$. Thus $\hat{u} \le \hat{h} + \epsilon$ on $\partial \Omega - \{0\}$. By Theorem 1, $\hat{u} \le \hat{h} + \epsilon$ in Ω . It follows that $\hat{u} \le \hat{h}$ in $\mathbb{R}^n - \{0\}$. Note that

$$\hat{u}(r, \theta) = (-\hat{p})(r, \theta) = \hat{p}(r, \pi - \theta) - \hat{p}(r, \pi)$$

with a similar relation holding between \hat{h} and \hat{P} . Thus since $\hat{p}(r, \pi) = \hat{P}(r, \pi)$ for $0 < r < \infty$, we have $\hat{p} \leq \hat{P}$ in $\mathbb{R}^n - \{0\}$. It is known [11, p. 170, 249-250] that this inequality implies the conclusion of Theorem 2.

5. Proof of Theorem 3

It sufficies to assume that $u \ge 0$ (otherwise consider max $\{u, 0\}$) and that $u \equiv 0$. Let $\alpha, 0 < \alpha < \pi$, be such that $H^{n-1}(C(\alpha)) = \beta H^{n-1}(S)$ and let

$$p(x) = \max \{ \mu M(|x|, u), u^*(x) \}$$

whenever $x \in \mathbf{R}^n - \{0\}$. We observe from the hypotheses of Theorem 3 that $p(r, \theta) = \mu M(r, u)$ if $\theta > \alpha$. For $0 < \sigma < \pi$ let

$$K(\sigma) = \{ ty: 0 < t < \infty \ y \in C(\sigma) \}$$

and let $K(\sigma, R) = B(R) \cap K(\sigma)$. Assume henceforth that M(R, u) > 0. Note that for $\sigma > \alpha, p$ is upper semicontinuous on $\partial K(\sigma, R) - \{0\}$, and continuous except on a polar set. Thus there is a unique bounded harmonic function h_{σ} in $K(\sigma, R)$ such that

$$\limsup_{x \to y} h_{\sigma}(x) \le p(y) \text{ whenever } y \in \partial K(\sigma, R) - \{0\},$$

and $\lim_{x\to y} h_{\sigma}(x) = p(y)$ except on a polar set in $\partial K(\sigma, R)$ [13, Lemma 8.20]. Since $\mu M(|x|, u)$ is subharmonic in $\mathbf{R}^n(M(0, u) = u(0))$, it follows that $\mu M(|x|, u) \leq h_{\sigma}(x)$ in $K(\sigma, R)$. From the boundary values of h_{σ} we see that h_{σ} is symmetric in $K(\sigma, R)$.

 \mathbf{Let}

$$q_o(r, heta) = \sup \left\{ h_o(r, heta_1) \colon heta \leq heta_1 < \sigma
ight\} ext{ in } K(\sigma, R).$$

Then q_{σ} is symmetric and has the same boundary values as h_{σ} . Using the fact that $q_{\sigma}(r, \theta) = h_{\sigma}(r, \theta_1)$ for some $\theta_1, \theta \leq \theta_1 < \sigma$, it is easily checked that q_{σ} is upper semicontinuous and satisfies a local sub mean-value property in $K(\sigma, R)$.

Thus q_{σ} is subharmonic in $K(\sigma, R)$ and since it is obvious that $h_{\sigma} \leq q_{\sigma}$, it follows that $h_{\sigma} = q_{\sigma}$ in $K(\sigma, R)$. Hence $h_{\sigma}(r, \theta)$ is nonincreasing for $0 < \theta < \sigma$ and fixed r, 0 < r < R. The proof of this fact is due to Matts Essén (oral communication).

Fix $\sigma > \alpha$ and let $v(x) = h_{\sigma}(x) + \varepsilon |x|^{2-n}$ for $x \in K(\sigma, R)$ and $\varepsilon > 0$. Observe that v has a continuous extension to $\overline{K(\sigma, R)} - \{0\}$ and that $\hat{u} \leq \hat{v}$ on $S(R) \cap \overline{K}(\sigma)$. Thus, if

$$\sup \left\{ \hat{u}(y) - \hat{v}(y) \colon y \in \partial K(\sigma, R) - \{0\} \right\} = c > 0,$$

then $\hat{u}(r, \sigma) - v(r, \sigma) = c$ for some r with 0 < r < R. However since $u^*(r, \theta) \le \mu M(r, u) < v(r, \theta)$ whenever $\alpha < \theta < \sigma$, it follows that

$$\hat{u}(r, \alpha) - \hat{v}(r, \alpha) > \hat{u}(r, \sigma) - \hat{v}(r, \sigma) = c > 0,$$

which contradicts Theorem 1. Hence $c \leq 0$. Applying Theorem 1 and letting $\varepsilon \to 0$ we have $\hat{u} \leq \hat{h}_{\sigma}$ in $K(\sigma, R)$ whenever $\sigma > \alpha$.

Let $h_{\sigma}(x) = \mu M(|x|, u)$ for $x \in B(R) - K(\sigma, R)$. Then h_{σ} is subharmonic in B(R) and if $\alpha < \sigma_1 < \sigma_2$, then $h_{\sigma_1} \leq h_{\sigma_2}$ in B(R). Thus $h = \lim_{\sigma \to \alpha^+} h_{\sigma}$ is subharmonic in B(R) and harmonic in $K(\alpha, R)$. Clearly $h(x) = \mu M |x|, u$ in $B(R) - \overline{K(\alpha, R)}$. Since $B(R) - \overline{K(\alpha, R)}$ is not thin at any $x \in \partial K(\alpha) \cap B(R)$ [13, Corollary 10.5], it follows that $h(x) = \mu M(|x|, u)$ on $\partial K(\alpha) \cap B(R)$. Since $\hat{u} \leq h_{\sigma}$ in $K(\alpha, R)$ whenever $\sigma > \alpha$, we have $\hat{u} \leq h$ in $K(\alpha, R)$. Let

$$h = P_R + Q_R \tag{5.1}$$

where P_R and Q_G are bounded harmonic functions in K(x, R) with

$$\lim_{x \to y} P_R(x) = \mu M(|y|, u) \text{ whenever } y \in \partial K(x) \cap B(R),$$
$$\lim_{x \to y} P_R(x) = 0 \text{ whenever } y \in K(x) \cap S(R),$$

and $Q_R = h - P_R$. Note that

$$\lim_{x \to y} Q_R(x) = 0 \quad \text{for} \quad y \in \partial K(x) \cap B(R),$$
$$\lim_{x \to y} Q_R(x) = p(y) \quad \text{for} \quad y \in K(x) \cap S(R),$$

off of a polar set.

Let $0 < \gamma_1 < \gamma_2 < \ldots$ be the eigenvalues of the boundary value problem

$$\delta \phi + \gamma \phi = 0 \text{ on } C(\alpha),$$

 $\phi = 0 \text{ on } \tilde{\partial} C(\alpha)$

where δ is the Beltrami operator defined in terms of the Laplacian Δ by

$$\varDelta = r^{1-n} \, rac{\partial}{\partial r} \left(r^{n-1} \, rac{\partial}{\partial r}
ight) + r^{-2} \delta.$$

Let $\{\phi_k\}$ denote corresponding symmetric eigenfunctions with continuous second partial derivatives in $C(\alpha)$ and

$$\int_{C(lpha)} \phi_k^2 dH^{n-1} = 1 \hspace{0.2cm} ext{for} \hspace{0.2cm} k = 1, \, 2, \, \ldots$$

Let ϱ_k be the positive root of the equation $\varrho_k(\varrho_k + n - 2) = \gamma_k$ for k = 1, 2, ...Then as in [9] we have

$$Q_R(r,\theta) = \sum_{k=1}^{\infty} a_k (r/R)^{e_k} \phi_k(1,\theta) \quad \text{in} \quad K(\alpha,R),$$
(5.2)

where

$$a_k = \int_{C(\alpha)} P(Ry)\phi_k(y)dH^{n-1}y.$$

Using the estimates in $[7, \S 8]$ or [4, Lemma 2.5], the series

$$\sum_{k=1}^{\infty} (r/R)^{\varrho_k - \varrho_1} |\phi_k(1, \theta)|$$

can be seen to converge uniformly in $K(\alpha, sR)$ whenever 0 < s < 1. Note also that

 $|a_k| \leq M(R, u) H^{n-1}(C(\alpha))^{1/2}.$

The case $\mu = 0$. In case $\mu = 0$ we have $P_R = 0$, $Q_R = h$, $p = u^*$, and hence

$$a_{k} = \int_{C(\alpha)} u^{*}(Ry)\phi_{k}(y)dH^{n-1}y.$$
(5.3)

It is known [3, VI § 6] that ϕ_1 is either positive or negative in K(x, R). Assume $\phi_1 \geq 0$. Since ϕ_2 is symmetric and $\delta \phi_1 = -\gamma_1 \phi_1$, it is readily seen that $d\phi_1/d\theta \leq 0$ in C(x). Using this and the fact that $\hat{u} \leq h$ in K(x, R), we have

$$egin{aligned} m(r) &= \int_{C(lpha)} u^*(ry) \phi_1(y) dH^{n-1}y = -\int_0^lpha \hat{u}(r, heta) \, rac{d\phi_1}{d heta} \, (1, heta) d heta \ &\leq -\int_0^lpha \hat{h}(r, heta) \, rac{d\phi_1}{d heta} \, (1, heta) d heta &= \int_{C(lpha)} h(ry) \phi_1(y) dH^{n-1}y. \end{aligned}$$

From (5.2) and (5.3)

$$\int_{C(\alpha)} h(ry)\phi_1(y)dH^{n-1}y = a_1(r/R)^{\varrho_1} = (r/R)^{\varrho_1} \int_{C(\alpha)} u^*(Ry)\phi_1(y)dH^{n-1}y,$$

and hence

$$r^{-arrho_1}m(r) \leq R^{-arrho_1}m(R) ext{ for } 0 < r < R.$$

Consequently $b = \lim_{r \to \infty} r^{-\varrho_1} m(r)$ exists. We assume that

$$\liminf_{r\to\infty} \left(r^{-\varrho_1} M(r, u) \right) < \infty.$$

Otherwise the proof is complete in case $\mu = 0$ with $\varrho = \varrho_1$. Since

$$m(r) \leq M(r, u) H^{n-1}(C(\alpha))^{1/2}$$

we have $b < \infty$.

Now from (5.2) we deduce that for 0 < r < R/2,

$$egin{aligned} &r^{-arepsilon_1}\hat{u}(r,\, heta)\leq r^{-arepsilon_1}irho(r,\, heta)\ &=R^{-arepsilon_1}a_1\int_{C(arepsilon)}\phi_1dH^{n-1}+R^{-arepsilon_1}\sum_{k=2}^\infty a_k(r/R)^{arepsilon_k-arepsilon_1}\int_{C(arepsilon)}\phi_kdH^{n-1}\ &\leq R^{-arepsilon_1}m(R)\int_{C(arepsilon)}\phi_1dH^{n-1}+R^{-arepsilon_1}M(R,\,u)g(r/R) \end{aligned}$$

where g is continuous on $[0, \frac{1}{2}]$ and g(0) = 0. Since $\liminf_{R \to \infty} R^{-\varrho_1} M(R, u) < \infty$, it follows that

$$r^{-arrho_1}\hat{u}(r, heta)\leq b\int_{C(heta)}\phi_1dH^{n-1}$$
 in $K(lpha)$

This inequality and the subharmonicity of u imply that

$$r^{-arrho_1}M(r,u) \leq b\phi_1(1,0) \;\; ext{ for }\;\; r>0,$$

and hence that b > 0.

Suppose that

$$\liminf_{r\to\infty} r^{-\varrho_1} M(r, u) < b\phi_1(1, 0).$$

Then there exists a sequence $\{r_j\}$ with $r_j \uparrow \infty$ and $\varepsilon > 0$ such that

$$r_j^{-\varrho_1}M(r_j, u) < b\phi_1(1, \theta)$$

For $j = 1, 2, \ldots$ and $0 < \theta < \epsilon$. Thus,

$$r_j^{-arrho_1}\hat{u}(r_j,\, heta) < b \, \int_{-C(\phi)} \phi_1 dH^{n-1}$$

for $0 < \theta < \varepsilon$ and it follows that

$$egin{aligned} r_j^{-arrho_1}m(r_j) &= - \, \int_{-0}^{lpha} \, r_j^{-arrho_1}\hat{u}(r_j,\, heta) \, rac{d\phi_1}{d heta} \, (1,\, heta)d heta \ &< - \, b \, \int_{-0}^{lpha} \left(\int_{-C(arrho)} \phi_1 dH^{n-1}
ight) rac{d\phi_1}{d heta} \, (1,\, heta)d heta &= b \end{aligned}$$

Letting $j \uparrow \infty$ we obtain a contradiction. Hence

$$\lim_{r\to\infty}r^{-\varrho_1}M(r,u)=b\phi_1(1,0)>0$$

and the proof is complete in case $\mu = 0$ with $\varrho = \varrho_1$.

The case $0 < \mu < 1$. For $0 < \lambda < 1$ the boundary value problem

$$egin{aligned} &\delta \psi + \lambda arrho_1 (\lambda arrho_1 + n - 2) \psi = 0 & ext{on} & C(lpha) \ &\psi = 1 & ext{on} & ilde{\partial} C(lpha) \end{aligned}$$

has a unique symmetric solution. Choose λ so that the corresponding ψ has the value μ^{-1} at $r = 1, \theta = 0$.

Since $\hat{u} \leq \tilde{h}$ in K(x, R) it follows that $M(r, u) \leq h(r, 0)$ for 0 < r < R and hence that

$$h(y) = \mu M(|y|, u) \leq \mu h(|y|, 0)$$

for $y \in \partial K(x) \cap B(R)$. Thus, using the arguments of [7, (3.1)],

$$r^{-\lambda_{\varrho_1}}M(r, u) \le r^{-\lambda_{\varrho_1}}h(r, 0) \le \mu^{-1}R^{-\lambda_{\varrho_1}}M(r, u)$$
(5.4)

for 0 < r < R. It follows that

$$0 < \limsup_{r \to \infty} r^{-\lambda_{\varrho_1}} M(r, u) \le \mu^{-1} \liminf_{r \to \infty} r^{-\lambda_{\varrho_1}} M(r, u).$$

Assume that $\limsup_{r\to\infty} r^{-\lambda \varrho_1} M(r, u) < \infty$. Otherwise the proof is complete in case $0 < \mu < 1$ with $\varrho = \lambda \varrho_1$.

For P_R as in (5.1) we note that $P_{R_1} \leq P_{R_2}$ in $K(\alpha, R_1)$ whenever $R_1 \leq R_2$. Also, from (5.4), we have

$$M(r, P_R) \le h(r, 0) \le \mu^{-1}(r/R)^{-\lambda_{\ell_1}}M(R, u)$$

for 0 < r < R. Since $\liminf_{R \to \infty} R^{-\lambda_{\ell_1}} M(R, u) < \infty$, it follows that $V = \lim_{R \to \infty} P_R$ is harmonic in $K(\alpha)$ and

$$M(r, V) \leq \mu^{-1} r^{\lambda_{\varrho_{1}}} \liminf_{R \to \infty} R^{-\lambda_{\varrho_{1}}} M(R, u).$$
(5.5)

From (5.4) and the definition of Q_R we have

$$P_{R_2} - P_{R_1} \le \mu^{-2} (R_1/R_2)^{\lambda_{\ell_1}} \, rac{M(R_2 u)}{M(R_1,\,u)} \; Q_{R_1}$$

in $K(\alpha, R_1)$ whenever $R_1 < R_2$. Letting $R_2 \to \infty$ it follows that

$$0 \leq V - P_{R_1} \leq (\text{constant}) Q_{R_1} \text{ in } K(\alpha, R_1).$$

Thus

$$V(y) = \lim_{x \to y} V(x) = \mu M(|y|, u) \quad \text{on} \quad \partial K(x).$$
(5.6)

From (5.2) we have

$$Q_R(r, heta) \leq A(r/R)^{arepsilon_1} M(R, u) ~~ ext{for}~~ 0 < r < rac{R}{2}$$

where A is a positive constant independent of R. Since

$$\limsup_{R\to\infty} R^{-\lambda_{\mathcal{Q}_1}} M(R, u) < \infty,$$

it follows that $Q_R \to 0$ uniformly on compact subsets of $K(\alpha)$ as $R \to \infty$. Using (5.4), (5.1) and letting $R \to \infty$ we deduce that $M(r, u) \leq V(r, 0)$ for r > 0.

This last inequality, (5.5), and (5.6) imply that $\lim_{r\to\infty} r^{-\lambda \varrho_1} M(r, u)$ exists [7, (4.6)] and hence the proof is complete in case $0 < \mu < 1$ with $\varrho = \lambda \varrho_1$.

6. Remark

With
$$\varrho_1$$
 and ϕ_1 as in the proof of the case $\mu = 0$, let

$$u(r, \theta) = r^{\varrho_1} \phi_1(1, \theta)$$
 in $K(\alpha)$

and

$$u(r, \theta) = 0$$
 in $\mathbf{R}^n - K(\alpha)$

Then u is subharmonic in \mathbb{R}^n and satisfies the hypothesis of Theorem 3. Hence $\varrho = \varrho_1$ is the best possible exponent in case $\mu = 0$.

In case $0 < \mu < 1$, let λ and ψ correspond to μ as in the proof of Theorem 3. It is known [7, (1.5)] that $\psi \ge 1$ in $C(\alpha)$. Let

$$u(r, \theta) = r^{\lambda \varrho_1} \psi(1, \theta)$$
 in $K(\alpha)$

and

$$u(r, \theta) = r^{\lambda \varrho_1}$$
 in $\mathbf{R}^n - K(\alpha)$

Then u is subharmonic in \mathbb{R}^n and satisfies the hypotheses of Theorem 3. Thus the exponent $\varrho = \lambda \varrho_1$ is best possible when $0 < \mu < 1$.

References

- 1. BAERNSTEIN II, A., A generalization of the $\cos \pi \varrho$ theorem, *Trans. Amer. Math. Soc.* (to appear).
- 2. -»- Integral means of schlicht functions, Acta Math. (to appear).
- 3. COURANT, R. & HILBERT, D., Methods of mathematical physics, 1. Wiley-Interscience, 1966.
- 4. DAHLBERG, B., Mean values of subharmonic functions, Arkiv f. Mat. 10 (1972), 293-309.
- 5. -»- Growth properties of subharmonic functions, thesis, University of Göteborg, 1971.
- 6. DAVIS, B. & LEWIS, J. L., An extremal property of some capacitary measures in E/, *Proc. Amer. Math. Soc.* 39 (1973) 520-524.

- 7. Essén, M. & LEWIS, J. L., The generalized Ahlfors-Heins theorem in certain *d*-dimensional cones, *Math. Scand.* (to appear).
- 8. FEDERER, H., Geometric measure theory, Springer-Verlag, 1969.
- LELONG-FERRAND, J., Extension du théoreme de Phragmen-Lindelöf-Heins aux Fonctions sousharmoniques dans un còne ou dans un cylindre, C. R. Acad. Sci. Paris 229 (1949), 411-413.
- 10. GEHRING, F., Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519.
- 11. HARDY, G., LITTLEWOOD, J., and POLYA, G., Inequalities, Cambridge University Press, 1964.
- 12. HEINS, M., Selected topics in the classical theory of functions of a complex variable, Holt, Rinehart, and Winston, 1962.
- 13. HELMS, L., Introduction to potential theory, Wiley Interscience, 1969.
- 14. HÜBER, A., Ein raumliches analogon des Wiman-Heinsschen Satzes, Studies in mathematical analysis and related topics, *Stanford University Press*, 1962, 152-155.
- 15. TALPUR, M., On the sets where a subharmonic function is large, thesis, *Imperial College*, London, 1967.

Received March 13, 1974

Ronald Gariepy and John Lewis University of Kentucky Lexington, Kentucky 40506