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§ 1. Formulation of the problem

The motivation for the problem treated in this note arises in the theory of con-
volution equations. Let U be a locally convex space of functions or distributions.
It is assumed that by means of a transformation 7 of Fourier type'), the space

U isisomorphic to a subalgebra U of the algebra A = A(C") of all entire functions
in C". Using the inverse transformation 7! one can transfer the operation of

multiplication from U to U. The resulting ring multiplication in U is called the
convolution and is denoted ¢ * v (b, p € U). More generally, let G € A be such
that the multiplication by the function @ is a continuous endomorphism M, of

U. If ¢ ¢ is the continuous endomorphism of U corresponding to “/; under the
isomorphism Z, then €. is called a conwvolutor of the space U. Sometimes —
but not always — there exists a distribution S (or another “generalized function”)
such that the Fourier transform of § is the function @, and for each ¢ € U, “€y(¢)
can be interpreted as the convolution S = ¢ in some generalized sense.

Given f € U, consider the equation
Sxu=f (1.1

which is equivalent to the equation S\(C Ya(l) = f( £). It is natural to ask for necessary
and sufficient conditions for the solvability of (1.1) in U. An obvious necessary

condition is that f/;§ be entire. In order to conclude that f/;§ isin U one usually

*) The authors wish to thank Instituto de Matematica Pura e Aplicada, Rio de Janeiro,
for its support and hospitality.

1) F can be either the classical Fourier-Laplace transformation or the Fourier-Borel trans-
formation or another similar transformation depending upon the nature of the space U. The
inverse transformation will be denoted by F~%; instead of F(¢) we shall write <Z7\ Similarly,

U stands for FU), ete.
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has to use additional properties of S and U, and this is often done by combining
a theorem of Paley-Wiener type?) with the following intermediary step: There is

another subalgebra % of <A containing S and fj and such that
(S) whenever F, G € B are such that F|G € A, then F|G € 3.

Obviously, if 7% = U has property (S), then the above necessary condition
for the solvability of (1.1) is also sufficient. However, this is rarely the case, and
one usually has to consider a different subalgebra “%. In the sequel, subalgebras
P with the property (S) will be called stable. Denoting by Feyz the quotient field
of 7B, stability of % means Fog N A = 93,

As an illustration of the previous general argument, consider the following two
examples:

Example 1. Let U = <A’ be the dual of the space <4 endowed with the
compact-open topology. By means of the Fourier-Borel transform (cf. § 2), U is
isomorphic to the algebra U = Exp = the set of all entire functions of exponential
type in C". The stability of Exp is a classical result of Lindelsf [18] (cf. also below).
Hence a necessary and sufficient condition for the solvability of equation (1.1) in
the space of analytic functionals in C" is that f7S € A. Non-trivial examples of
the use of the stability of Exp in the study of convolution equations can be found
in Hérmander [13] and Malgrange [19, 20].

Example 2. Let U = &’ be the space of distributions with compact support
in R". Consider equation (1.1) with S, f€ €’. Then, although the function f/S

A
<r

is of exponential type (provided it is entire), in general f/SA ¢ G’, unless S is in-
vertible (cf. [12]). Hence <€’ is not stable, and it is the non-stability of ¢’ which
causes serious difficulties in the study of such convolution equations. In order to
overcome these difficulties, one often has to resort to intricate methods (cf. [13,

20]).

It therefore seems interesting to examine the stability of those subalgebras of
A which arise in the study of convolution equations. Below we list some of them:

. polynomials in €%

B: finite exponential sums, i.e. entire functions of the form

2} For example, the Paley-Wiener-Schwartz theorem for the case of distributions, or the
Pélya-Ehrenpreis-Martineau theorem (cf. § 2) when analytic functionals are involved, ete.
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z hie=i*>, (¢ € C") (1.2)
where h; are complex numbers, and 0, € C", also called frequencies of ‘H, are
given points in C"?%); ‘

5 exponential polynomials in C", ie. functions of the form (1.2) with &; € P;

entire functions of the form H/P for some H € E,, P € P,

/7:
('13\7(0: Fourier transforms of distributions @ € ¢’ such that, for some constants
£>0, r>0, ¢>0 and 4 real (all depending on @),
,ax )!</>(C')! = cexp [Ao(é) + kg (m)], (VEEC), (1.3)
s T

where A({;r) denotes the polydisk of center ¢ and radius r; { = & 4 i; km is
the supporting function of the support of @; and w(&) = In (2 -+ |£]).4) (For the
properties of such classes, see [3, 4, 5]);

A
el

&' Fourier transforms of Schwariz distributions with compact support; or, more
generally,

N
<t

&, the same for Beurling distributions (cf.%));

Exp: entire functions in C* of exponential type.

The stability of & issimple (cf. e.g. [9]). That £ isstable for » = 1 constitutes
the so-called Ritt theorem [23]. For % > 1 this was proved by Avanissian and
Martineau [1]. £ is clearly non-stable. Indeed, for n = I,

sin z
—— €E,\ E, (2€0). (1.4)

It can be easily established that X, is stable [5]. &', and more generally &,
are not stable (cf. Example 2 above). The stability of Exp was proved by E. Lindelof
[18] for » = 1. The extension to arbitrary = > 1 is due to Ehrenpreis [10] and
Malgrange {19].

It remains to be found, first how ‘“‘unstable” K, really is °), and secondly,

%) In what follows it will always be assumed that the frequencies 6; are pairwise distinct
and the coefficients #; are all non-zero. Besides, {,) denotes the bilinear product in
€ <0, 0> = 08y + ... + Oala

4y Actually, for @ one may take any continuous subadditive function in R™ satisfying
certain growth conditions. Then, instead of &’, one has to take the space &, of Beurling
distributions (cf. [2]).

%) i.e., to describe the structure of entire functions of the form F/G where F,G € Hjp
(or, equivalently, F,G € E"}().
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whether » is stable or not. Our main objective in this note is to show that both
questions have a common answer:

Maix TaeoreEM. The subalgebra E » 18 stable. Hence the most general form of an
entire function of the form F|QG, F,G € K, (cf?) is

F H .
g~ p HEE,Pe) (1.5)

Given an exponential polynomial H, the greatest common divisor of its coeffi-
cients,

dH - (hb RS hs)’ (16)

will be called the content of H. Furthermore, let f = H/P be any element of E P
Then we shall say that H/P is a reduced form of f, provided (P.dy) = 1. If this
is so and f = H*/P*, for some H* € £, and P*€ P, then it is easy to see that
P|P* and dyldy.. Hence the following lemma holds:

LemmA. Every funciion in E » has a unique reduced form ©). Furthermore, let
H,F €E; be such that @ = H|F €. Then Q|dg.

Then the main theorem can be reformulated as follows:

Turorem 1. Let F,G € K, be such that F|G € A, Then there exist unique ®)
He€E, and P € such that F|G = H[P and (P,dy) = 1.

As an application of Theorem 1 one obtains:

TuEOREM 2. Let F,G €E, and F|G € SA. Let H[P be the reduced form of
F|G. Then P|dg.

CororLARY 1. Let F, G be exponential polynomials in C" such that F|G is
entire and dg = 1. Then F[G is also an exponential polynomial.

CoROLLARY 2. H 14s stable (n > 1).

As was mentioned above, Corollary 2 for » = 1 is the Ritt theorem [23]. Other
proofs of Ritt’s theorem were given by H. Selberg [24], P. D. Lax [16] and A. Shields
[25]. Shields proves that, for n = 1, the hypotheses F € £, G € B and F|G € A
imply F/G € E;. He also mentions that, according to an unpublished result of

6) Unique up to a constant multiple of H and P.
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W. D. Bouwsma, Corollary 1 holds when # = 1. Finally, Corollary 2 is due to
V. Avanissian and A. Martineau (unpublished [1]).7)

The main theorem is established in Section 2. Theorem 2, as well as another
application of Theorem 1 are discussed in the concluding Section 3.

Theorems 1 and 2 were announced in our note [7].

For applications of exponential polynomials in one variable see [15].

§ 2. Proof of the main theorem
For (€, E denotes the complex conjugate of £, i.e. _C: (Cis v v oy En).
When ¢ is considered as a point in R®, the coordinates of ¢ are
(Re ¢, ImZ,,...,Re,,Im {,). The Euclidean inner product in R™ will be
denoted <, >,. We recall from § 1 that the bilinear product in C*, denoted
simply by <, >, is
2,0 =284 ... +2,0, 2, €C.

If F is an exponential polynomial with frequencies a, ..., a,, i.e.
P
F(Z) :glpj(f)e<"f’c>, (2.1)

where P; are polynomials, we will denote by [#] the convex hull of the points

@, ..., a4, in R™ Let Iur; be the supporting function of the set [F], i.e. for

o Uy

each [ € ¢" = R™
bipy () = max (&, £y, = max (g, {),, = max Re {a;, ). (2.2)

x€[F] I<j=<p 1<j<p
We shall need a few simple facts about analytic functionals, i.e. elements of
A" (cf. [14, 17, 21, 26]). The Fourier-Borel transform u(l) = u(e=>*>) establishes
an isomorphism of the spaces <A’ and Exp. Given u € &A’, the indicator p, of
u is defined by

_log |a(t
pu(0) — im og I/:( 9)

>0

and its upper-semicontinuous regularization 3,

Bu(8) =1im p,(2),
[
is plurisubharmonic.

) Professor H. 8. Shapiro has kindly informed us that several years ago he proved Corollary
2 by means of an inductive argument. His proof has not been published. Added in proof: In
the meantime K. Kitagawa [27] published a proof of Corollary 1. His proof is rather sketchy.
A complete proof of Corollary 1 was recently announced by V. Avanissian and R. Gay in [28,
29].



272 C. A. BERENSTEIN AND M. A. DOSTAL

A carrier of an analytic functional u is a compact subset K of €" such that

for every neighborhood U of K there is a constant C such that
lu($)| < U sup [$(z)],
z€ U

for all ¢ € A. A compact convex set K is called a convex support of p if K isa
minimal compact convex carrier of u, i.e. K is a carrier of u such that if L is
another carrier of y and L C K, then ch. L = K, where ch. L denotes the
convex hull of L.

In the sequel the Pélya-Ehrenpreis-Martineau theorem will be used in the
following formulation (cf. [14], Th. 5.2, Cor. 5.3):

TarorREM 1. Let u € A’, then
$,(8) = inf {hg(L): K carries u}. (2.3)
Hence u has a unique convex support if and only if P, is a convex function.
In [4, 6] we established the following lower estimate for exponential polynomials:
Tueorem 1I. Let P € E;, i.e. P is an exponential polynomial. Then, for each

&> 0, there exists a constant C = C(e, P) such that ¢f f is an analytic function in
the polydisk A(L, &) = A,

A = {{’ € " max 15— &) < e, (2.4)
then
LF(O)[e"PI®) < C max |f(z)P(z)]. (2.5)

To every exponential polynomial there corresponds, via the Fourier-Borel trans-
form, a unique up € A’ such that pp(l) = P(). Hence we have

CoROLLARY 1. For every P € E;, [P] is the unique convex support of up and

B (&) =1, (8) = hyy(0)- (2.6)

P
(Indeed, it suffices to set f= 1 in Theorem II and apply Theorem I).
Let A4 be a compact convex subset of R™. For an arbitrary 6 € R™, set
A° = {x € A: <z, 0>,, = h(0)}. If A° consists of one point only, 6 is called a

regular direction of A. The set of all regular directions will be denoted reg 4.
The set of all extremal points will be denoted ext 4.

Lremma 1 (cf. [8]). Let A and B be compact convex sets in. R™. Then for each 0,
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A° Y ext 4 = ext (A4°), (2.7)
(A + By = A° + B, (2.8)
ext (4 + B) Cext A 4 ext B. (2.9)

Moreover, every z in ext (4 -+ B) has a unique decomposition z = z; + z,,
2, €ext A, z, € ext B. Although the inclusion in (2.9) cannot be replaced by equality,
one has for every 0 €reg A Ureg B,

(ext (4 + B))° = (ext A)* -+ (ext B)". (2.10)

{Relations (2.7)—(2.9) are obvious. The uniqueness of the decomposition
z =12, + z, was proved in [11]. Equation (2.10) follows from (2.7) and (2.8)).

Finally, a simple lemma on piecewise linear functions in R™ will be necessary.
Given x, € R™ and ¢ > 0, set
B, (x5; 0) = {x € R™ [lx — | = max |&; — &, < o}
1<i<m
We shall write B, (g) for B,(0; o). Let <£ be the class of all continuous functions
on B, (1) with the following property: for each ¢ € £ there exist N distinet
vectors 6; € R™ (j=1,...,N) such that for each =z € B (1), ¢(x)— ¢(0) =
(%, 0;>,, for some j. Given a function f on an open convex set G C R", [ will
be called piecewise linear on G if for each x, € G there exist & ¢ > 0 and an
affine mapping y of R™ (ie. x(z) = 4z + x, for some non-singular m Xm
matrix A) such that x(0) = x,, 7(B,(1)) = B,(%; 0) €&, and if ¢ denotes
the restriction of fo y to B,(1), then ¢ isin <£.

Lemma 2. Let f be a piecewise linear function defined on an open convex set
G C R". Then f is convex if (and only if) f 1is subharmonic.

Proof. In view of the local character of convexity the lemma will follow if we
show that any subharmonic function ¢, ¢ € <£, is convex in B, (o) for some
¢ < 1. We can assume ¢(0) = 0. Let N(¢) be the number N corresponding to
¢ by definition. Our claim is trivial when either N(¢) =1 or m = 1. Assume
that it has been proved for all integers 1, 2, ..., N — 1 and arbitrary m (¥ > 2).
Fix ¢ to be any function in < for which N(¢) = N. Let 0, ..., 05 be the
corresponding vectors. Set V ={r€ R™{x,0,— 6, =0,V j, 1+#j; and
d =dim V. Since N > 2 and 6, are distinct vectors, d <<m, ie. 0 <d <m — 1.
Congider first the case d = 0, ie. V = {0}. If x, € B,(1) is arbitrary, x, 0,
let N, be the total number of 6’s for which ¢(x) = <%, 6,>,,. Then N, << N,
because d = 0. By continuity, in some B, (xy; 6) € B,(1), one needs only N,
linear functions to define ¢. By the induction hypothesis ¢ is convex in some
B, (xy; 6y), 0<C 6, < 4. Hence, it remains to be shown that ¢ is convex at the
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origin. Let «;, #, be any two distinet points in B, (1) such that x; = o, for some
a < 0. One has to show

$(Ary + (1 — Aay) < 2d(ay) + (1 — (), 0 <A <1 (2.11)

For m =1, this is trivial because subharmonicity coincides with convexity.
If m > 1, there will be a vector y € B,,(1) linearly independent of x, such that
%+ y€B,(1) (¢=1,2). Then for any k= 1,2,... the segment with end-
points X, , = #; + k~'y does not contain the origin and by the local convexity
of ¢ in B,(1) \ {0}, the inequality (2.11) is satisfied for X, ,, X, , instead of
%y, %y, Letting k— co, (2.11) follows by continuity. Finally, for the case d > 1,
one can assume that

V={x€R™"ua, =0 for i>d}

For z € R", set = (x4, ..., %,) and qZ(a-c') = ¢(x). It suffices to prove
the convexity of ¢ in B, ,0; ¢) for some ¢ < 1. However, since

dim {F € R™% (&, 6, — 0, 4= 0 Vj,i i #j}=0,
we are in the preceding case.

CorOLLARY 2. Let f be a plurisubharmonic function in C" which is piecewise
linear in R™ = C". Then f is convex in R

Proof of Theorem 1. Let

F(l) = > Py~ >, (P €9) (2.12)
j=1
GO = 3 Qe (@ €P) (2.13)
j=1
be such that
F
K=~ €A (2.14)

G

Then K € Exp. Let v,, p, o € A’ besuch that K = 3, G = u, F = p,. Obviously,
P <p,+p, Since p, =7p, =hgm p,=0D0, =g (cf. (2.6)), we obtain
from Theorems I, II that for every ¢ > 0, there are constants (), C, depending
only on ¢, F and G such that for every (€ ¢C",

Pl K(E)] < 0 max [F(z)| < CyePuldteldl, (2.15)
z €A(E; &)

This shows that p, < p, — p,, hence by (2.6)

Py, = By, = by — hpgy (2.16)
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By Theorem 2, p, is a convex function. Since p, is also positively homogeneous
of order 1, there exists a compact convex set [K]C R*™ such that p, = Togys
hence by (2.16),

[F] = [6] + [K]. (2.17)

(By Theorem I of this section, the set [K] is obviously the unique convex support
of the functional ).

Let 9V be the family of all linear varieties in R* of dimension 2n — 1, each
of which contains at least two different points of the form

' q _
z = Zl la; -+ zlmjbj, (2.18)
1= ]:

where all the coefficients I, m; are integers. Then the set 1 = {6 € §* " 6 L A,
for some /A € V} has measure zero in 8!, the unit sphere in R™. (Inde=d, fix
arbitrary z;,...,z; (T > 2) of the form (2.18); then the normal vectors to all
A €V such that z,€A4 (1 =1,...,7T), define an algebraic subvariety of S**!
of dimension < 2n — 2.)

Obviously, one can assume that the compact sets [F], [G¢], [K] lie in R,
the positive orthant in R*. The set “} being of measure zero in S$**~', one can
find » € ("N N) N RY. Since » € N, » is a regular direction for both [F]
and [G]. Hence hyy(v) = <{d;,v);, for exactly one ;. Renumbering the as,
if necessary, and using the fact that » € /1, one can assume that

;L[F](V) = <dl’ v>2n > <a-2> 1}>2n > 0> <a_p7 /V>2n > 0 (219)
Similarly,
Iygy(v) = by Vg > . > <5q9 VDan > 0. (2.20)

Set k& = a; — b,. By Lemma 1, k € Ext [K], and k, is the only point of [K]
for which g (v) = <ky, ¥sn.
Set

d = by — by, vy, HY = {x € R™ (&, v)y, > {dy, VD, —d}, H-= R™\_H+.

1((3 Ql(C)K(C) Py(f)estt=,
WOAL) — Pi(Og(De= .
Then f;, F, are exponentlal polynomials, K, is entire, and

F, = K,G. (2.22)

Let r be such that & € HY for i =1,...,r and ¢, € H~ for i =7» -+ 1,..., p.
Using the notation (2.12)—(2.14), set
(1) = Q) — Py,
. e<b\3 §>’
ng &(0) (2.21)
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Next we claim that
1+b €EH- (j=2,...,9). (2.23)

Indeed, by (2.19) and (2.20), (& -+ by, vy, = {1, ¥psn + {— by -+ b, 7Dy, <
(s ¥an A (= by + by, 93y, = Ly, 9Dy, — d.

Since d,, ..., d, € H*, it follows from (2.23) that none of the terms with fre-
quencies a; (2 <j <7) can be cancelled in F; by a term coming from
Py(8)g1()e<**>. Moreover, it also shows that a; cannot be a frequency of F,.

Hence, if x € [F], x 7 d,, and

Typg(v) = @y, vD3, > <, V)3, (2.24)
Thus, the frequencies of F, are a,, ..., a, ar+1, . af',l, where {d@.,, . . ., d;,l} 18
o subset of {d, 1 ..., 0,0 —b 4 by ..., 4 —b +b}C H- and [F|]C[F]

Indeed, [F,] € ch. ((i]1V {k + b};=2) © [F] U (K] + [¢]) = [F].

Next we proceed with F,, ¢, K; in the same fashion as above with F, ¢, K.
Hence there is a », € A’ such that » = K; and » has a unique convex support
[K,], and [F,] = [K;] + [(]. In particular, by (2.24) and (2.20),

(gs VDo = h[K,](V) + h[G](”) = h[K]](V) + <517 VDan

Hence lyx (v) = (ky, >y, for a unique k, € [K,]. On the other hand, by Lemma 1,
ky =a, — ;. Set

58 = Fy(l) — QuO)Py(L)e= 5>

9208 = ¢(2) (2.25)
Kz(C) = Ky() — P2(5)6<k2’ i
= fo0) — Py(Oga(L)e= 5.
Then f,, F, € B, K2 € A and
F, = K,G, (2.26)
@, isnot a frequency of F,, buteach «;,, ¢+ = 3, ..., r is. The remaining frequencies
@15 - - @, form a subset of
(O a0 —b by, — by by, @y — by A by, ay — by A by

Hence {d,.,,..., d;z} C H~. Moreover, [F,] C [F,], because

[F] c ch ([fz] u {1.02 + bj}jz 2) [F,]U (K] + [G]) = [Fi].

Continuing in the same fashion, one finally constructs F, € E;, and K, € A
such that (i) F,= K, (i) [F,]€ H-N[F]. Since » ¢, the frequencies
a](.') of F, can be numbered so that @ is the only point in [F,] for which
), vy, = byp () and @D, vDy, > (A9, ¥5y, > . .. <d1(3'r), ¥y, > 0. Set H{ =
{x € R™ (&, v)y, > (@0, )y, — d}, H;y = R™ N\ H{, and let r, >1 be such
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that a” € Hf for i=1,...r and d](-’) € O for j > r. It is now clear that
we can repeat the same procedure indefinitely. If at some point we obtain

F=F . . 4ry = 0, the theorem follows. However, this must actually happen

when N is sufficiently large. For, let N be so large that Hy N R = @, hence
[FIC[FINHy =@ and 7 =0.

§ 3. Applications

By Theorem 1, if F and G are exponential polynomials such that the quotient
K = F|G is entire, we can write K in the reduced form, K = H/P, which is
uniquely determined (ef. § 1 and®”). Now the question arises when P = 1. The
next theorem gives a simple sufficient condition.

TurOREM 2. Let F,G € E; be such that F|G € SA. Let H|P be the reduced
form of F|G. Then P divides dg. In particular, P = 1 whenever d, = 1.

Proof. Set

b.(2)e<F =,

2
il (3.1)
2

First we shall prove the following special case by induction on p.
(A) (i) P is trreducible (ii) dg = 1. Then P =1.

If p =1, then by (ii), a,(z) is a constant, a, = 0. Hence H/P is the reduced
form of the exponential polynomial (I1/a;)e”<* *>F(z). In view of the uniqueness
of the reduced form, P must be constant.

Suppose now that (A) holds whenever G has at most p — 1 frequencies,
p > 1. There are two possible cases: either Plb; for all j=1,...,q or P+
for some j. In the first case, P = 1 by definition of reduced form. Hence it suffices
to consider the second case when, after rearranging the s if necessary, there is
a ¢o=1 such that P+b, j=1,...,9, and b, =0b/P,bf €P, for j=
g + 1,...,q. We claim that it suffices to consider the case ¢, = ¢q. Indeed, if
0 < q set

F*z) = F(2) — G(z) 2, bf()e~ >, H*(z) = qzu bi(2)e~Fi .
i>e j=1

Then F*|G' is entire and H*/P is its reduced form. Therefore we shall assume

P+b, (Vj). (3.2)
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It will be shown that (3.2) leads to contradiction if P =% constant, and this will
prove (A). It follows from § 2 that [PF]= [H] + [¢], and

[PFl=ch{a, + f:i=1,...,p, j=1,...,q}

Let y be a fixed extreme point of the polyhedron [PF]. By Lemma 1, y = &, - §;
for exactly one 4, and j,. Renumbering the frequencies one can assume that
iy = P, 1.e.

& + B, # &+ B (1 <p, V) (3.3)
Consider all jy’s for which (3.3) holds. Renumbering the b;’s one can assume that
there is some J, 1 <J <gq, such that (3.3) holds for all j, > J, but does not
hold for jo, << J. Hence each of the frequencies «, -+ f;, 5 > J, appears in the
product HG = PF exactly once. By the lemma in § 1, this means that Pla,b;
for 7 > J, thus by (3.2) and (i),

a, = a,P for some a, €. (3.4)
Set
[ G*(z) = G(z) — a(z)e=r =,
G = G*(z)/dg«(2),
] e @) 5
] F(z) = F(z) — ap(z)e=*r " H(2),
| Hz) = H(z)des(2).
Then
H/P is the reduced form of ff’/é (3.6)
Indeed, by (3.5), F/G = H/P, and since (dg, P) =1, (dg, P) = 1 means by (i)
that P+ dg., where dg. = (ay,...,, ;). However this follows from (i) and

(3.4). Since G has p — 1 terms, the induction hypothesis shows that P is constant,
which contradicts (3.2).

(B) Next assume that P is irreducible and d, arbitrary. Assume that P 7 d.
In particular P s~ constant. Writing G = d,(,, one can apply (A) to F/(, =
Hdy/P. Hence P is a constant, a contradiction.

(C) Finally, let P and d; be arbitrary. If P = P, -+ P, is the factorization
of P into irreducible factors, then the theorem follows by applying (B) to each
of the equations

(F | | P)/G=HIP; (j=1,...7).
i

Another application of Theorem 1 is the following statement (Theorem 3),
which gives a simple necessary condition for a quotient of two exponential poly-
nomials to be entire.
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Given arbitrary finite sets B = {f1,..., 8}, C = {y1, ..., 7} of points in R™
we shall say that the py’s are rational affine combinations of the yi’s, if for some
Jo, ko and all j

B; — Bi, ZkZijk(Vk — k) Wik €Q. (3.7)

It is clear that if (3.7) holds for some jo, ko, it holds with suitable rationals
wj: for any other pair j,, ko. The next statement is an easy consequence of Theorem
1.

THEOREM 3. Let F, G be exponential polynomials such that F|G is entire. Then
the frequencies of G are rational affine combinations of the frequencies of F.

The proof follows along similar lines as the proof of the theorem in Section
1 of [22].
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