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w l .  Formulation of the problem 

The m o t i v a t i o n  for the  p rob lem t r ea t ed  in this note  arises in the  theory  of con- 
vo lu t ion  equat ions .  L e t  U be a locally convex  space of  funct ions  or dis t r ibut ions.  
I t  is a s sumed  t h a t  b y  means  of a t r an s fo rma t ion  ~ of  Four ie r  typeS), the  space 

U is i somorphic  to a suba lgebra  s of  the  a lgebra  ,vg = ~-~(C n) of  all ent i re  funct ions 
in {3% Using the  inverse t r a n s f o r m a t i o n  ~ 1 one can t rans fe r  the  opera t ion  of  

mul t ip l ica t ion  f rom ~7 to U. The resul t ing ring mul t ip l ica t ion  in U is called the  
convo lu t i on  and  is deno ted  r * ~0 (r ~v C U). More general ly,  let  G E ~A be such 
t h a t  the  mul t ip l ica t ion  b y  the  funct ion G is a cont inuous  endomorph i sm c}l'la of  

U. I f  %~ is the  cont inuous  endomorph i sm of  U corresponding to c ~ a  under  the  
i somorph ism ~, t h e n  ~(fG is called a convolu tor  of the  space U. Somet imes  - -  
bu t  not  a lways  - -  there  exists  a d is t r ibut ion  S (or ano the r  "genera l ized  func t ion")  
such t h a t  the  Four ier  t r a n s f o r m  of S is the  funct ion G, and  for each r C U, ~r162 
can be in t e rp re t ed  as the  convolut ion  S * r in some general ized sense. 

Given f C U, consider the  equa t ion  

S * u = f (1.1) 

which is equivalent to the equation S(~)~;(~) = f(~). It is natural to ask for necessary 
and sufficient conditions for the solvability of (1.1) in U. An obvious necessary 

condition is that f/S be entire. In order to conclude that ~S is in U one usually 

*) The authors wish to thank Instituto de Matematica Pura e Aplicada, l~io de Janeiro, 
for its support and hospitality. 

1) cj can be either the classical Fourier-Laplace transformation or the Fourier-Borel trans- 
formation or another similar transformation depending upon the nature of the space U. The 
inverse transformation will be denoted by cj-1; instead of cj(r we shall write r Similarly, 

stands for cj(U), etc. 
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has to use additional properties of S and U, and this is often done by  combining 
a theorem of Paley-Wiener type 2) with the following intermediary step: There is 

another subMgebra ~ of cA containing S and f and such that  

(S) whenever F, G C ~ are such that F/G E ~ ,  then F/G E ~?~. 

Obviously, if ~3 = (/ has property (S), then the above necessary condition 
for the solvability of (1.1) is also sufficient. However, this is rarely the case, and 
one usually has to consider a different subMgebra '%)6. In the sequel, subalgebras 
~/~ with the property (r will be called stable. Denoting by  F~N the quotient field 
of ~?d, stability of ~N means F ~  N ~4 = 9:0. 

As an illustration of the previous general argument, consider the following two 
examples: 

Example 1. Let U = c~A ' be the dual of the space ~>4 endowed with the 
compact-open topology. By means of the Fourier-Borel transform (eft w 2), U is 

isomorphic to the algebra U = Exp = the set of all entire functions of exponential 
type in {Y. The stability of Exp is a classical result of LindelSf [18] (eft also below). 
Hence a necessary and sufficient condition for the solvability of equation (1.1) in 

the space of analytic functionals in 13" is that  0~S C :~q. Non-triviM examples of 
the use of the stability of Exp in the s tudy of convolution equations can be found 
in H6rmander [13] and MMgrange [19, 20]. 

Example 2. Let U =- cE' be the space of distributions with compact support 

in R ~. Consider equation (1.1) with S , f  C ~' .  Then, although the function f /S 

is of exponential type (provided it is entire), in generM j~S ~ c~,, unless S is in- 

vertible (cf. [12]). Hence c~, is not stable, and it is the non-stability of c?~, which 
causes serious difficulties in the s tudy of such convolution equations. In order to 
overcome these difficulties, one often has to resort to intricate methods (cf. [13, 
20]). 

I t  therefore seems interesting to examine the stability of those subalgebras of 
d which arise in the study of convolution equations. Below we list some of them: 

~P: polynomials in (In; 

E: finite exponential sums, i.e. entire functions of the form 

2) For example, the Paley-Wiener-Schwartz theorem for the case of distributions, or the 
PSlya-Ehrenpreis-Martineau theorem (cf. w 2) when analytic functionMs are involved, etc. 
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H(~) = ~ hje<o~ "~>, (~ e C") (1.2) 
j = l  

where hj are complex numbers ,  and 0~ C (Y, also called frequencies of H, are 
given points in lY 3); 

E2: exponential polynomials in C ~, i.e. functions of  the  form (1.2) with hj E 7 ;  

F,7: entire functions of  the form HIP for some H C E2, P C ~?; 

~ o :  Fourier  t ransforms of  distr ibutions q )q  ~g' such that ,  for some constants  
t > _ 0 ,  r > 0 ,  ~ > 0  and A real (all depending on q)), 

^ 

max ]~b(~')l >_ c e x p  [Aco(~) @ hi~l(~)], (V ~ C C"), (1.3) 

where A(~; r) denotes the  polydisk of  center ~ and radius r; ~ = ~ § i~; h[~ 1 is 
the  support ing funct ion of  the  suppor t  of  q~; a n d  ~o(~) = In (2 -t- 1~]). ~) (For the  
propert ies  of  such classes, see [3, 4, 5]); 

~ : Fourier  t ransforms of  Schwartz distr ibutions with compact  support;  or, more 
generally, 

(r the same for Beurling distr ibutions (cf3)); 

Exp:  entire functions in C ~ of  exponential  type.  

The s tabi l i ty  of  ~ is simple (ef. e.g. [9]). That  E is stable for n = 1 const i tutes  
the so-called R i t t  theorem [23]. For  n > i this was proved by  Avanissian and 
Mart ineau [1]. E 2 is clearly non-stable.  Indeed,  for n = 1, 

sin z 
- -  e E~ \ E~ (z e C). (1.4) 

Z 

I t  can be easily established tha t  c~ is stable [5]. ~ '  and more generally c~, 0) ' 6 0 ) ,  

are not  stable (ef. Example  2 above).  The stabi l i ty  of  Exp  was proved b y  E. Lindel6f  
[18] for n = 1. The extension to a rb i t ra ry  n >_ 1 is due to Ehrenpreis  [10] and 
Malgrange [19]. 

I t  remains to be found, f irst  how "uns tab le"  E 2 really is a), and secondly, 

3) In  wha t  follows it  will a lways be assumed t h a t  the  frequencies Oj are pairwise dis t inct  
and the  coeff icients  hj are all non-zero.  Besides, < ,  > denotes the  bi l inear  p roduc t  in 
On: <0, ~> = 01~1 + �9 . .  + On~.  

4) Actual ly ,  for c0 one m a y  take  any  cont inuous subaddi t ive  funct ion in R" satisfying 
cer ta in  g rowth  conditions.  Then,  instead of  ~ ' ,  one has to t ake  the  space cd,~o of  Beurl ing 
dis t r ibut ions (of. [2]). 

~) i.e., to describe the  s t ruc ture  of  ent ire  funct ions of  the  form Y/G where F ,  G E E 2 

(or, equiva lent ly ,  F ,  G C E 9 .  
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whether  E2  is s table  or not.  Our ma in  object ive  in this note  is to show t h a t  bo th  
questions have  a c o m m o n  answer: 

MAIN T~EOREM. The subalgebra E2 is stable. Hence the most general form of an 
entire function of the form FIG, F, G E E 2, (cf.5)) is 

F H 

G P 
(H ~ E2, P c ~).  (1.5) 

Given an  exponent ia l  po lynomia l  H,  the  g rea tes t  common  divisor  of  its coeffi- 

cients, 

dH = (hi, . . . ,  hs), (1.6) 

will be called the content of H. Fur the rmore ,  let  f = HIP be any  e lement  of  E2" 
Then  we shall say  t h a t  HIP is a reduced form of  f ,  p rov ided  (P: dH) = 1. I f  this  
is so and  f = H*/P*, for some H* C E 2 and  P* C ~ ,  t hen  it  is easy  to see t h a t  
PIP* and  dHIdH.. Hence  the  following l e m m a  holds: 

LnMMA. Every function in E2 has a unique reduced form 6). Furthermore, let 
H, F E E~ be such that Q =  H/F E ~.  Then Q[dH. 

Then  the  ma in  theo rem can be r e fo rmula ted  as follows: 

T~EOI~EM 1. Let F, G E E 2 be such that FIG C ~i. Then there exist unique 6) 
H EE2 and P E ~  such that F / G = H / P  and (P, dH)= 1. 

As an  appl ica t ion  of  Theo rem  1 one obtains:  

T~EO~E~ 2. Let F, G E E 2 and F/G E d .  Let HIP 
FIG. Then PIdG. 

COROLLARY 1. Let F, G be exponential polynomials in C" such that FIG is 
entire and dc = 1. Then FIG is also an exponential polynomial. 

COROLLARY 2. E is stable (n >_ 1). 

As was men t ioned  above,  Corollary 2 for n - -  1 is the  R i t t  t h eo rem [23]. Other  
proofs of  R i t t ' s  t heo rem  were g iven b y  H.  Selberg [24], 1 ). D. L a x  [16] and  A. Shields 
[25]. Shields proves  tha t ,  for n ~- 1, the  hypotheses  F E E 2, G E E and  FIG E d 
imp ly  FIG E E,~. H e  also ment ions  tha t ,  according to an  unpubl i shed  resul t  of  

6) Unique up to a constant multiple of H and P. 

be the reduced form of 
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W. D. Bouwsma,  Corollary 1 holds when n = 1. Final ly,  Corollary 2 is due to  
V. Avanissian and A. Mar t ineau (unpublished [1]). 7) 

The main  theorem is establ ished in Section 2. Theorem 2, as well as ano the r  
appl icat ion of  Theorem 1 are discussed in the  concluding Section 3. 

Theorems 1 and  2 were announced  in our no te  [7]. 
For  applications of  exponent ia l  polynomials  in one variable see [15]. 

w 2. Proof of the main theorem 

For  ~ E C ", ~ denotes  the  complex conjugate  of  ~, i.e. ~ = (~1 , - . . ,  ~n). 
When  ~ is considered as a point  in R 2'~, the  coordinates of  ~ are 
(Re gl, I m  ~1 . . . .  , Re ~n, Im  ~) .  The Eucl idean inner  p roduc t  in R m will be 
denoted  <,  >~. We recall f rom w 1 t ha t  the bil inear p roduc t  in C n, denoted  
simply by  <,  >, is 

< z , ~ > = Z l ~ l + . . . + z n ~ ,  z , ~ C  ~. 

I f  F is an exponent ia l  polynomial  wi th  frequencies a ~ , . . ,  %, i.e. 

P 
F(~) ~- Z Pj(~) e<"j'r (2.1) 

j = l  

where Pj are polynomials,  we will denote  by  [F] the  convex hull of  the  points  
51 . . . .  ,@ in R 2". Le t  h[f ] be the  suppor t ing funct ion of the  set [F], i.e. for 
each ~ E C " =  It 2" 

h[F] (~ )  = m a x  < x ,  C>2n = m a x  <(~j, ~>2n ~ -  m a x  ] ~ e  < a j ,  ~>.  ( 2 . 2 )  
xE [F] 1 < j  < p  l < j  <_p 

We shall need a few simple facts about  analyt ic  functionals,  i.e. e lements  of  
d '  (cf. [14, 17, 21, 26]). The  Four ier -Borel  t r ans form /~(~) = #(e <'' :>) establishes 
an isomorphism of the spaces ~4' and  Exp.  Given # E ~ ' ,  the  indicator p ,  of 
# is def ined  by  

- -  log I~(t~)l 
p~(~) = lim 

t-+co t 

and its upper-semicont inuous regular izat ion 15, 

15,(~) = lim p,(~'), 

is plur isubharmonic.  

7) Professor H. S. Shapiro has kindly informed us that several years ago he proved Corollary 
2 by means of an inductive argument. His proof has not been published. Added in proof: In 
the meantime K. Kitagawa [27] published a proof of Corollary 1. His proof is rather sketchy. 
A complete proof of Corollary 1 was recently announced by V. Avanissian and 1~. Gay in [28, 
29]. 
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A carrier of an analyt ic  funct ional  # is a compact  subset K of 6 ~ such t h a t  
for eve ry  ne ighborhood U of  K there  is a constant  C such t h a t  

1~(r _< c sup Ir l, 
z E U  

for all r E Q/. A compact  convex set K is called a convex support of  # if  K is a 
minimal  compact  convex carrier  of  #, i.e. K is a carrier  of  # such t h a t  i f  L is 
ano ther  carrier of  # and  L c_K,  t hen  ch. L = K,  where ch. L denotes  the  
convex hull of L. 

In  the  sequel the  Pdlya-Ehrenpre is -Mar t ineau  theorem will be used in the  
following formula t ion  (cf. [14], Th.  5.2, Cor. 5.3): 

T~nORE~ I. Let # E ~ ' ,  then 

~,(~) ~- inf{hK(~): K carries #}. 

Hence # has a unique convex support i f  and only i f  ~5, is a convex function. 

(2.3) 

In  [4, 6] we established the  following lower es t imate  for exponent ia l  polynomials:  

T~nORE~ II .  Let P E E2, i.e. P is an exponential polynomial. Then, for each 
> O, there exists a constant C ~-- C(s, P) such that i f  f is an analytic function in 

the polydisk zl(~, s) = A, 

A = {~' E C": max  I~j - -  $/] ~ e}, (2.4) 
J 

then 

If(~)[ chip](0 ~ C max  [f(z)P(z)]. (2.5) 
z E A  

To every  exponent ia l  polynomial  there  corresponds, via the  Fourier-Borel  t rans-  
form, a unique #p E c9/' such t h a t  /~p(~) = P(~). Hence  we have  

COROLLARY 1. l~or every P E E2, [P] is the unique convex support of #p and 

~.~(~) - -p .~(~)  ~ h~(~).  (2.6) 

(Indeed, it  suffices to set f ~ 1 in Theorem I I  and apply  Theorem I). 

Le t  A be a compact  convex subset  of  R m. For  an a rb i t r a ry  0 E R m, set 
A ~  I f  A ~ consists of  one point  only, 0 is called a 
regular direction of  A: The set of  all regular  directions will be denoted  reg A. 
The set of  all ex t remal  points will be denoted  ext  A. 

LnM~A 1 (cf. [8]). Let A and B be compact convex sets in R m. Then for each O, 
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Moreover, every z in 

A ~ gl ex t  A = ext  (A~ (2.7) 

(A -~ B)  ~ = A ~ ~- B ~, (2.8) 

ex t  (A § B) c__ ext  A -~ ex t  B. (2.9) 

ex t  (A + B) has a unique decomposition z = z 1 ~- z 2, 
z 1 E ext  A, z 2 E ext  B. Although the inclusion in (2.9) cannot be replaced by equality, 
one has for every 0 C reg A [J reg B, 

(ext (A @ B)) ~ = (ext A)  ~ @ (ext B) ~ (2.10) 

(Relat ions (2.7)--(2.9) are  obvious.  The  uniqueness  of  the  decomposi t ion  
z = z 1 -}- z 2 was p roved  in [11]. E q u a t i o n  (2.10) follows f rom (2.7) and  (2.8)). 

Final ly,  a s imple  l e m m a  on pieeewise l inear  funct ions  in R = will be necessary.  

Given x 0C R '~ and  9 >  0, set  

Bin(x0; ~) = {x e R~: Hx - -  x011 = m a x  Ix i - Xo, i[ < ~}. 
l < i < m  

We shall wri te  B~(~) for B~(0; 9). Le t  ~s be the  class of  all cont inuous funct ions 
on B,,(1) wi th  the  following p roper ty :  for each r E ~  there  exis t  -N dist inct  
vectors  O j e R  m ( j =  1 , . . . , - N )  such t h a t  for each x e B m ( 1 ) , r 1 6 2  
(x,  0i} ~ for some j .  Given  a funct ion  f on an  open convex  set  G _c R ", f will 
be  called piecewise linear on G i f  for  each x 0 E G  there  exis t  a 0 >  0 and  an 
aff ine  m a p p i n g  Z of 1t m (i.e. Z(z) = Az  @ x o for some non-singular  m •  
m a t r i x  A) such t h a t  Z(0) = x0, z(B~(1)) --~ Bm(xo; O) c__G, and  if r denotes  
the  res t r ic t ion of  f ~  to  B~(1), t hen  r is in c~. 

LEMMA 2. Let f be a piecewise linear function defined on an open convex set 
G c t l  m. Then f is convex i f  (and only i f)  f is subharmonic. 

Proof. I n  v iew of  the  local charac te r  of  convex i ty  the  l e m m a  will follow if  we 
show t h a t  a n y  subharmonic  funct ion r r E ~ ,  is convex in B,,(~) for some 
~o _< t. We  can assume r = 0. Leg N(r  be the  n u m b e r  N corresponding to 

by  defini t ion.  Our claim is t r iv ia l  when ei ther  N(r  = 1 or m = 1. Assume 
t h a t  it has been  p roved  for all integers  1, 2 . . . .  , N - -  1 and  a r b i t r a r y  m (-N > 2). 
F ix  r to be a n y  funct ion  in c22 for which N ( r  Le t  01 . . . .  ,0N be the  

corresponding vectors .  Set V = { x E R m : ( x ,  0 i - - 0 y ) = 0 ,  V i ,  j ,  i % j }  and  
d = d im V. Since N > 2 and  0~ are dis t inct  vectors ,  d < m, i.e. 0 < d < m - -  1. 
Consider f i rs t  the  case d = 0, i.e. V = {0}. I f  x 0 EBm(1) is a rb i t r a ry ,  x0 ~ 0, 
let -N0 be the  to t a l  n u m b e r  of  0y'S for which r = (x0, 0y},,. Then  _N o < 57, 
because  d = 0. B y  cont inui ty ,  in some Bin(z0; d)c__Bm(1), one needs only N 0 
l inear  funct ions  to def ine r B y  the  induct ion  hypothes is  r is convex  in some 
B,,(x0; do), 0 < do _< 8. Hence ,  i t  r ema ins  to be shown t h a t  r is convex  a t  the  
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origin. Le t  x~, x~ be any  two distinct points in B~(1) such tha t  x 1 = 5X 2 for some 
cr ~ 0 .  One has to show 

r 1~- ( 1 - -  ~)x2) < 2 r  Jr ( 1 - -  2)r 0 < ~  < 1. (2.11) 

For  m--~ 1, this is tr ivial  because subharmonici ty  coincides wi th  convexity.  
I f  m > 1, there will be a vector y E Bin(1 ) l inearly independent  of x 1 such tha t  
x s - ~ y E B ~ ( 1 )  (i---- 1,21. Then for any  k =  1 , 2 , . . .  the segment  wi th  end- 
points X~, k = x~ d- k-~y does not  contain the origin and  by the local convexi ty  
of r in B i n ( l ) ~  {0}, the  inequal i ty  (2.11) is satisfied for Xl, k, X2, k instead of 
x 1, x 2. Let t ing  k---> ~ ,  (2.11) follows by  continuity.  Finally,  for the case d > 1, 
one can assume tha t  

V = {x E Rm: xs = O for i > d}. 

For  x E R ~, set x = (Xs+ l , . . . , xz )  and r  r I t  suffices to prove 

the convexi ty  of r in B m s(0; ~) for some ~ < 1. However,  since 

dim {~ C Rm-S: <~, O~ -- Oj> m d = 0  V j,  i i :/: j }  = O, 

we are in the preceding case. 

COROLLARY 2. Let f be a plurisubharmonic function in (~ which is piecewise 
linear in R 2'~- G ~. Then f is convex in R 2". 

Proof of Theorem 1. Le t  

be such t h a t  

P 

F(~) = ~ Pj(~)e<"J ' ~>, (P :e ~ )  (2.12) 
j 1 

q 

G(~) ---- ~ Oj($le<bJ '~>, (Qj e ~1 (2.13 / 
/ = 1  

F 
K = ~ c ~;d. (2.14) 

Then K C Exp. Le t  ~o, #, #0 C d '  be such tha t  K = ~0, G = ~, F = ~o. Obviously, 
p~o _<p,  ~ p~o. Since P~0 =/5,0 = h[F], P ,  = /5, = big ] (cf. (2.6)), we obtain 
from Theorems I, I I  t ha t  for every s > 0, there are constants C1, C 2 depending 
only on s , F  and G such tha t  for every ~ C ( F ,  

eP."(~)]K(~)l _< C 1 max  [F(z)l < C2ep.-0 (r162 (2.15) 
z e ~ (~; ~) 

This shows t h a t  p~o < p."o --p.",  hence by (2.6) 

P~0 --~ /5~0 = hM -- h[c]" (2.16) 
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By  Theorem 2, p:0 is a convex function.  Since p~0 is also posi t ively  homogeneous  
of  order  t ,  there  exists a compac t  convex set [K] _c R 2" such t h a t  p:0 :-- h[g], 
hence by  (2.16), 

IF] = [G] + [K]. (2.17) 

(By Theorem I of this section, the  set [K] is obviously  the unique convex suppor t  
of the funct ional  ~0). 

Le t  ~/ be the  family of all l inear variet ies in R :~ of dimension 2n --  1, each 
of  which contains a t  least two different  points  of the  form 

P q 

i= l  j = l  

where all the  coefficients l~, mj are integers. Then  the  set 9~ = {0 C S 2~ ~: 0 /- A, 
for some A E CY} has measure zero in S 2n-~, the uni t  sphere in R 2=. (Indeed, f ix  
a rb i t r a ry  Zx, �9 �9 zT (T _> 2) of the form (2.18); t hen  the  normal  vectors  to all 
A E ~ such t ha t  z~ C A (i = 1 , . . . ,  T),  define an  algebraic subvar ie ty  of S 2~ 1 
o f  dimension < 2n --  2.) 

Obviously, one can assume tha t  the  compact  sets IF], [G], [K] lie in R~,  
the positive o r than t  in R 2~. The set ~ l  being of  measure zero in S 2 n - l ,  o n e  can 
f ind v E (S 2~-~ ~ ~}?) [3 R+ ~. Since ~ ~ ~ / ,  v is a regular  direct ion for bo th  [F] 
and [G]. Hence  h~F~(v)----<c7j,~>2~ for exac t ly  one ~j.. l~enumbering the a~'s, 
if  necessary, and using the  fact  t ha t  ~ q <]7, one can assume th a t  

h[F](V) = <a,, ~>2, > <a2, u>:, > . . . > <dr, r>z= > 0 (2.19) 

Similarly,  

h[q(v) --~ <b~, v>:~ > . . .  > <b~, v>2~ > 0. (2.20) 

Set k ~ - - - - a x - - b r  B y L e m m a  1, k ~ E x t [ K ] ,  and k~ is the  only  point  of  [K] 
for which h[Kl@) = <$~, v>2=. 

Set 

d ~-  <b 1 - -  b2, ~)>2n, gA:  ~__. {X e R2n: <X, ~'>2n > <~1, ~)>2n - -  d}, H -  : R 2n ~ H :b. 

L e t  r be such t h a t  5 ~ H +  for i =  1 , . . . , r  and 5 ~ r  for  i - - - - r - b l  . . . .  , p .  
Using the  no ta t ion  (2.12)--(2.14), set 

[ f l (~)  = F ( ; )  - p1(~)~<ol, ~>, 

g1($) G($) - -  Ql(~)e <b'' ~>, 

KI(g)  QI(g)K(r  - -  p i ($ ) e  <k,, ~>, 

F I ($ )  Qx($)fl(g) - Pl(~)g~(g) e<k1" ~> 

Then  fl, El are exponent ia l  polynomials,  K 1 is entire, and 

(2.21) 

F 1 = K1G. (2.22) 
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Next  we claim t h a t  

~ @ 5 2 C H -  ( j =  2 . . . .  ,q). (2.23) 

Indeed,  by  (2.19) and (2.20), <kl -5 bj, v}2~ = <51, u}2, -5 ( - -  51 -5 bj, v}2n <_ 
(5~, ~'>2~ + ( -  b~ .5  b2, ~'>~ = (~1, ~>2,~ - -  d. 

Since 52 . . . .  ,5~ E H +, it  follows from (2.23) t ha t  none of the terms with  fre- 
quencies aj (2 ~ j  ~ r) can be cancelled in F 1 by a te rm coming from 
Pl(~)gl(~)e <k''~>. Moreover, it  also shows tha t  a 1 cannot  be a frequency of F 1. 
Hence, if  xC[F1] ,  x @52 , and 

h[F~](r) = (52, v}2, > (x, @2,. (2.24) 
r _f _/ 

Thus,  the frequencies of F1 are a2, . . . ,  a ,  a;+ 1 . . . .  , %~, where { a t + l ,  . . . ,  a p l  } i 8  

a subset of (a~+l . . . .  , @ , 5 1 - - b l  @ t ) 2 , . . . , 5 1 - - E ) l " s b ~ } ~ H -  and [F1]c__[F]. 
Indeed,  [F~] E eh. ([f~] O {~ "5 bj}j>_2) c [F] O ([K] "5 [G]) = [F]. 

Next  we proceed with ~1, G, K 1 in the same fashion as above with  F ,  G, K.  
Hence there is a ~1 E ~v4' such tha t  ;1 = / ( 1  and ~1 has a unique convex support  
[K1], and  [F~] = [K~] "5 [G]. In  particular,  by  (2.24) and  (2.20), 

(a~, ~)~o = hi~,](~ ) .5  hiG](~) = hi~,~(~) + (b,, ~}~. 

}tenee h[K~](r) = (/c2, f}2,~ for a unique /c 2 C [K~]. On the other hand,  by  Lemma 1, 
/c 2 = a  2 - b  1. Set 

I f~(~) = F~($) --  Q~(~)P~($)e <"~' :> 

g~(~) = g~(~) (2.2~)  
K~(~) = K~(~) - -  P~(~)e <~-'' :> 

[ F~($) = f~(~) --  P~($)g~(~)e <~o' ~> 

Then f~ , F~ ~ E2,  K~ ~ :~i and 

Fe = K~G, (2.26) 

a: is not  a frequency of F~, but  each a~, i = 3 , . . . ,  r is. The remaining frequencies 
a ~ + l , . . . ,  %~ form a subset of 

{at+l, . . . ,  %, a 1 -- 51 @ 5 2 . . . .  , Ct 1 -- b~ ~- bq, a~ --  b I -~ b 2 . . . . .  a 2 -- b~ "5 b~}. 

Hence {5"+1, . . . ,  ~ }  ~ H- .  Moreover, [Fe] ~ [F~], because 

IF:] _~ ch ([fi] U {~: + b~}j~:)~ [F1] U ([K1] -5 [G]) = [F~]. 

Continuing in the same fashion, one f inal ly  constructs F~ ~ E},  and K~ ~ 
such t h a t  (i) F~ = K~G, (ii) [F~] ~_H-[7  [F]. Since ~ e oH, the frequencies 
a} ~) of F~ can be numbered  so t ha t  5~ ~) is the only point  in [F~] for which 
(5~ ~), ~ ) ~  = h~,.~(~) a n d  (~) ,  ~)~ > (~) ,  ~)~o > . . . . ~ 5  (~)~, ~)~o > 0. Se t  H I  + = 

{x~  R : ~ : ( x , r } : ~ >  (c7~ ~ ) , v } ~ - d } ,  H i =  R 2 ~ H  +, and let r ~ >  1 be such 
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t ha t  5! ~) C H + for i = 1 , . . . ,  r~ and 5~ ~) C H~- for j > r~. I t  is now clear t h a t  
we can repeat  the  same procedure  indefini tely.  I f  a t  some point  we obta in  
~Y = F~+~,~ . . . .  +~N = 0, the  theorem follows. However ,  this mus t  ac tual ly  happen  

when N is suff icient ly large. For,  let N be so large tha t  H ~  [3 R+ ~ = O, hence 
[ ~ ] c _ [ F J 1 3 H ~  = 0 and ~ 0 .  

w 3. Applications 

B y Theorem 1, if  F and  G are exponent ia l  polynomials  such t h a t  the quot ien t  
K = FIG is entire,  we can wri te  K in the reduced form, K = H/P,  which is 
uniquely  de termined  (cf. w 1 and6)). Now the quest ion arises when P ~ 1. The 
nex t  theorem gives a simple sufficient  condition. 

THEOREM 2. Let F, G e E  2 be such that FIG E ~ .  Let H I P  be the reduced 
form of .FIG. Then P divides d~. I n  particular, P ~ 1 whenever de = 1. 

Proof. Set 
P 

~(~) = ~ aj(=)e<~ '~ 
j - - 1  

q 

H(~) = ~ bj(~)e<~J ,~>. 
j - -1  

Firs t  we shall prove the  following special case by  induct ion on p. 

(3.1) 

(A) (i) P is irreducible (ii) de = 1. Then P ~ 1. 

I f  p = 1, then  by  (ii), al(z ) is a constant ,  a 1 ~ 0. Hence  H / P  is the  reduced 
form of  the exponent ia l  polynomial  (1/al)e -< .. . .  >F(z). In  view of  the  uniqueness 
of  the  reduced form, P must  be constant .  

Suppose now t h a t  (A) holds whenever  G has a t  most  p -  1 frequencies,  
p ~ 1 .  There  are two possible cases: ei ther  P]bj for all j =  1 , . . . , q  or P ~ b /  
for some j .  In  the f irs t  case, P ~ 1 by  def ini t ion of  reduced  form. Hence  it  suffices 
to  consider the  second case when, a f te r  rearranging the  flj's if  necessary, there  is 
a q0 ~ 1 such t ha t  P § bj, j = l . . . .  , qo and bj = b 'P ,  bj* e ~ ,  for j = 
q0 + 1 , . . . ,  q. We claim tha t  i t  suffices to consider the  case q0 = q. Indeed,  if  
qo < q, set 

q0 

F*(~) = F(~) - G(z) ~ b*(~)e<~i , % H*(z) = ~ bj(~)e<~J ' z> 
J ~> qo j - -  I 

Then  F*/G is ent ire  and H * / P  is its reduced  form. Therefore  we shall assume 

p + bj (V j). (3.2) 
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I t  will be shown tha t  (3.2) leads to contradiction if  P r constant,  and this will 
prove (A). I t  follows from w 2 tha t  [PF] = [H] + [G], and 

[PF]  = ch {s, + ~:  i = 1 , . . . ,  p, j = 1 , . . . ,  q}. 

Let  y be a f ixed extreme point of the polyhedron [PF]. By L e m m a  1, y = c~0 @ flL 
for exact ly  one i o and J0. Renumber ing the frequencies one can assume tha t  
i o = p ,  i.e. 

@ 4- fiJo J= ~ + f i j  ( i < p ,  V j ) .  (3.3) 

Consider all jo's for which (3.3) holds. Renumber ing the b/s one can assume tha t  
there is some J, 1 < J < _ q ,  such tha t  (3.3) holds for all J0>--J,  bu t  does not  
hold for j0 < J .  Hence each of the frequencies ~p + fij, j >_ J, appears in the 
product  HG = P F  exact ly  o~ce. By  the lemma in w l, this means ~hat Plaebj 
for j > J ,  thus  by (3.2) and (i), 

Set 

Then 

a e ~-- ~tpP for some gp E ~ .  (3.4) 

G*(z) = a(z )  _ aAz)e<~p , z>  

0(~) = r 

F ( z )  = F( z )  - -  ~,(z)e<~ '~>H(z), 

[I(z) = H(z)dc.(z). 

(3.5) 

t t / P  is the reduced form of F / d .  (3.6) 

Indeed, by  (3.5), _F/G = [I/P, and since (C/H, P) = 1, (da, P) = 1 means by  (i) 
t ha t  P §  da., where d~. = (al . . . .  , % 1). However this follows from (ii) and 

(3.4). Since G has p -- 1 terms, the induct ion hypothesis shows tha t  P is constant,  
which contradicts (3.2). 

(B) Next  assume tha t  P is irreducible and d G arbitrary.  Assume tha t  P ~ d G. 
In  particular P ~ constant.  Writ ing G = dGG1, one can apply (A) to FIG 1 = 
HdG/P. Hence P is a constant,  a contradiction. 

(C) Finally,  let P and  dG be arbi trary.  I f  P = P1 " " " Pr is the factorization 
of P into irreducible factors, then  the theorem follows by  applying (B) to each 
of the equations 

(F  - ~  P , ) l a  = H I P j  ( j  - -  1 . . . .  . ~). 
i c j  

Another  application of Theorem 1 is the following s ta tement  (Theorem 3), 
which gives a simple necessary condition for a quotient  of two exponential  poly- 
nomials to be entire. 
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Given a rb i t r a ry  f ini te  sets B = {/~1 . . . .  , fiq}, C = { y ~ , . . . ,  y,} of points in R ~ 
we shall say t ha t  the fii's are rational affine combinations of the  yCs, if  for some 
j0, ko and all j 

fiJ -- fiJ. = i Wjk(yk -- yko), Wjk e Q. (3.7) 
k--1 

I t  is clear t ha t  if  (3.7) holds for some j0, k0, it  holds wi th  suitable rat ionals  
wj,~ for any  other  pair  j0, ko. The nex t  s t a t emen t  is an easy consequence of  Theorem 
1. 

THEOREM 3. Let F, G be exponential polynomials such that FIG is entire. Then 
the frequencies of G are rational affine combinations of the frequencies of F. 

The proof  follows along similar lines as the proof  of  the theorem in Section 
1 of [22]. 
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