The Ritt theorem in several variables

C. A. Berenstein and M. A. Dostal
University of Maryland and Stevens Institute of Technology*)

§ 1. Formulation of the problem

The motivation for the problem treated in this note arises in the theory of convolution equations. Let U be a locally convex space of functions or distributions. It is assumed that by means of a transformation \mathcal{F} of Fourier type ${ }^{1}$), the space U is isomorphic to a subalgebra \hat{U} of the algebra $\mathscr{A}=\mathscr{A}\left(\mathbf{C}^{n}\right)$ of all entire functions in \mathbf{C}^{n}. Using the inverse transformation \mathcal{F}^{-1} one can transfer the operation of multiplication from \hat{U} to U. The resulting ring multiplication in U is called the convolution and is denoted $\phi * \psi(\phi, \psi \in U)$. More generally, let $G \in \mathscr{A}$ be such that the multiplication by the function G is a continuous endomorphism ${ }^{C} M_{G}$ of \hat{U}. If \mathscr{C}_{G} is the continuous endomorphism of U corresponding to \mathscr{M}_{G} under the isomorphism \mathcal{F}, then \mathscr{C}_{G} is called a convolutor of the space U. Sometimes but not always - there exists a distribution S (or another "generalized function") such that the Fourier transform of S is the function G, and for each $\phi \in U, \mathscr{C}_{G}(\phi)$ can be interpreted as the convolution $S * \phi$ in some generalized sense.

Given $f \in U$, consider the equation

$$
\begin{equation*}
S * u=f \tag{1.1}
\end{equation*}
$$

which is equivalent to the equation $\hat{S}(\zeta) \hat{u}(\zeta)=\hat{f}(\zeta)$. It is natural to ask for necessary and sufficient conditions for the solvability of (1.1) in U. An obvious necessary condition is that \hat{f} / \hat{S} be entire. In order to conclude that \hat{f} / \hat{S} is in \hat{U} one usually

[^0]has to use additional properties of S and U, and this is often done by combining a theorem of Paley-Wiener type ${ }^{2}$) with the following intermediary step: There is another subalgebra \mathcal{B} of \mathcal{A} containing \hat{S} and \hat{f}, and such that
(S) whenever $F, G \in \mathcal{B}$ are such that $F / G \in \mathscr{A}$, then $F / G \in \mathcal{B}$.

Obviously, if $\boldsymbol{\theta}=\hat{U}$ has property (\mathcal{S}), then the above necessary condition for the solvability of (1.1) is also sufficient. However, this is rarely the case, and one usually has to consider a different subalgebra . In the sequel, subalgebras TV with the property (\mathcal{S}) will be called stable. Denoting by F co the quotient field

As an illustration of the previous general argument, consider the following two examples:

Example 1. Let $U=\mathscr{A}^{\prime}$ be the dual of the space \mathscr{A} endowed with the compact-open topology. By means of the Fourier-Borel transform (cf. § 2), U is isomorphic to the algebra $U=\operatorname{Exp}=$ the set of all entire functions of exponential type in \mathbf{C}^{n}. The stability of Exp is a classical result of Lindelöf [18] (cf. also below). Hence a necessary and sufficient condition for the solvability of equation (1.1) in the space of analytic functionals in \mathbf{C}^{n} is that $\hat{f} / S \in \mathcal{A}$. Non-trivial examples of the use of the stability of Exp in the study of convolution equations can be found in Hörmander [13] and Malgrange [19, 20].

Example 2. Let $U=\mathscr{E}^{\prime}$ be the space of distributions with compact support in \mathbf{R}^{n}. Consider equation (1.1) with $S, f \in \mathcal{E}^{\prime}$. Then, although the function \hat{f} / \hat{S} is of exponential type (provided it is entire), in general $\hat{f / S} \notin \hat{\mathscr{E}}^{\prime}$, unless \hat{S} is invertible (cf. [12]). Hence $\hat{\hat{G}}^{\prime}$ is not stable, and it is the non-stability of $\hat{\mathscr{G}}^{\prime}$ which causes serious difficulties in the study of such convolution equations. In order to overcome these difficulties, one often has to resort to intricate methods (cf. [13, 20]).

It therefore seems interesting to examine the stability of those subalgebras of \mathscr{A} which arise in the study of convolution equations. Below we list some of them: P: polynomials in \mathbf{C}^{n};
E : finite exponential sums, i.e. entire functions of the form

[^1]\[

$$
\begin{equation*}
H(\zeta)=\sum_{j=1}^{s} h_{j} e^{<_{j}, \zeta>}, \quad\left(\zeta \in \mathbf{C}^{n}\right) \tag{1.2}
\end{equation*}
$$

\]

where h_{j} are complex numbers, and $\theta_{j} \in \mathbf{C}^{n}$, also called frequencies of H, are given points in $\mathbf{C}^{n 3}$);
$E_{\mathcal{F}}$: exponential polynomials in \mathbf{C}^{n}, i.e. functions of the form (1.2) with $h_{j} \in \mathscr{P}$;
$\check{E}_{\mathcal{F}}$: entire functions of the form H / P for some $H \in E_{\mathcal{P}}, P \in \mathscr{P}$;
\hat{R}_{ω} : Fourier transforms of distributions $\Phi \in \mathscr{E}^{\prime}$ such that, for some constants $t \geq 0, r>0, c>0$ and A real (all depending on Φ),

$$
\begin{equation*}
\max _{\zeta^{\prime} \in \Delta(\zeta ; r)}\left|\hat{\phi}\left(\zeta^{\prime}\right)\right| \geq c \exp \left[A \omega(\xi)+h_{[\Phi]}(\eta)\right], \quad\left(V \zeta \in \mathbf{C}^{n}\right) \tag{1.3}
\end{equation*}
$$

where $\Delta(\zeta ; r)$ denotes the polydisk of center ζ and radius $r ; \zeta=\xi+i \eta ; h_{[\Phi]}$ is the supporting function of the support of Φ; and $\omega(\xi)=\ln (2+|\xi|) .{ }^{4}$) (For the properties of such classes, see $[3,4,5]$);
$\hat{\mathscr{C}}^{\prime}$: Fourier transforms of Schwariz distributions with compact support; or, more generally,
$\hat{\mathscr{E}}_{\omega}^{\prime}$: the same for Beurling distributions (cf. ${ }^{4}$));
Exp: entire functions in \mathbf{C}^{n} of exponential type.

The stability of \mathscr{P} is simple (cf. e.g. [9]). That E is stable for $n=1$ constitutes the so-called Ritt theorem [23]. For $n>1$ this was proved by Avanissian and Martineau [1]. E_{p} is clearly non-stable. Indeed, for $n=1$,

$$
\begin{equation*}
\frac{\sin z}{z} \in \tilde{E}_{P} \backslash E_{P} \quad(z \in \mathbf{C}) \tag{1.4}
\end{equation*}
$$

It can be easily established that \hat{R}_{ω} is stable [5]. $\hat{\mathscr{E}}^{\prime}$, and more generally $\hat{\mathscr{E}}_{\omega}^{\prime}$, are not stable (cf. Example 2 above). The stability of Exp was proved by E. Lindelöf [18] for $n=1$. The extension to arbitrary $n \geq 1$ is due to Ehrenpreis [10] and Malgrange [19].

It remains to be found, first how "unstable" E_{ρ} really is ${ }^{5}$), and secondly,

[^2]whether $\tilde{E}_{\mathcal{P}}$ is stable or not. Our main objective in this note is to show that both questions have a common answer:

Main Theorem. The subalgebra $\tilde{E}_{\mathcal{P}}$ is stable. Hence the most general form of an entire function of the form $\left.F / G, F, G \in E_{P},\left(\mathrm{cf} .^{5}\right)\right)$ is

$$
\begin{equation*}
\frac{F}{G}=\frac{H}{P} \quad\left(H \in E_{\mathcal{P}}, P \in \mathscr{F}\right) \tag{1.5}
\end{equation*}
$$

Given an exponential polynomial H, the greatest common divisor of its coefficients,

$$
\begin{equation*}
d_{H}=\left(h_{1}, \ldots, h_{s}\right) \tag{1.6}
\end{equation*}
$$

will be called the content of H. Furthermore, let $f=H / P$ be any element of \tilde{E}_{P}. Then we shall say that H / P is a reduced form of f, provided $\left(P, d_{H}\right)=1$. If this is so and $f=H^{*} / P^{*}$, for some $H^{*} \in E_{\mathcal{P}}$ and $P^{*} \in \mathscr{P}$, then it is easy to see that $P \mid P^{*}$ and $d_{H} \mid d_{H^{*}}$. Hence the following lemma holds:

Lemma. Every function in $\tilde{E}_{\mathcal{P}}$ has a unique reduced form ${ }^{6}$). Furthermore, let $H, F \in E_{\beta}$ be such that $Q=H / F \in \mathscr{F}$. Then $Q \mid d_{H}$.

Then the main theorem can be reformulated as follows:

Theorem 1. Let $F, G \in E_{\mathcal{P}}$ be such that $F / G \in \mathcal{A}$. Then there exist unique ${ }^{6}$) $H \in E_{P}$ and $P \in \mathscr{P}$ such that $F / G=H / P$ and $\left(P, d_{H}\right)=1$.

As an application of Theorem 1 one obtains:
Theorem 2. Let $F, G \in E_{\mathcal{F}}$ and $F / G \in \mathscr{A}$. Let H / P be the reduced form of F / G. Then $P \mid d_{G}$.

Corollary 1. Let F, G be exponential polynomials in \mathbf{C}^{n} such that F / G is entire and $d_{G}=1$. Then F / G is also an exponential polynomial.

Corollary 2. E is stable $(n \geq 1)$.
As was mentioned above, Corollary 2 for $n=1$ is the Ritt theorem [23]. Other proofs of Ritt's theorem were given by H. Selberg [24], P. D. Lax [16] and A. Shields [25]. Shields proves that, for $n=1$, the hypotheses $F \in E_{\mathcal{P}}, G \in E$ and $F / G \in \mathscr{A}$ imply $F / G \in E_{\bar{F}}$. He also mentions that, according to an unpublished result of

[^3]W. D. Bouwsma, Corollary 1 holds when $n=1$. Finally, Corollary 2 is due to V. Avanissian and A. Martineau (unpublished [1]). ${ }^{7}$)

The main theorem is established in Section 2. Theorem 2, as well as another application of Theorem 1 are discussed in the concluding Section 3.

Theorems 1 and 2 were announced in our note [7].
For applications of exponential polynomials in one variable see [15].

§ 2. Proof of the main theorem

For $\zeta \in \mathbf{C}^{n}, \bar{\zeta}$ denotes the complex conjugate of ζ, i.e. $\bar{\zeta}=\left(\zeta_{1}, \ldots, \bar{\zeta}_{n}\right)$. When ζ is considered as a point in $\mathbf{R}^{2 n}$, the coordinates of ζ are $\left(\operatorname{Re} \zeta_{1}, \operatorname{Im} \zeta_{1}, \ldots, \operatorname{Re} \zeta_{n}, \operatorname{Im} \zeta_{n}\right)$. The Euclidean inner product in \mathbf{R}^{m} will be denoted \langle,\rangle_{m}. We recall from $\S 1$ that the bilinear product in \mathbf{C}^{n}, denoted simply by \langle,\rangle , is

$$
\langle z, \zeta\rangle=z_{1} \zeta_{1}+\ldots+z_{n} \zeta_{n}, \quad z, \zeta \in \mathbf{C}^{n}
$$

If F is an exponential polynomial with frequencies a_{1}, \ldots, a_{p}, i.e.

$$
\begin{equation*}
F(\zeta)=\sum_{j=1}^{p} P_{j}(\zeta) e^{<a_{j}, \zeta>} \tag{2.1}
\end{equation*}
$$

where P_{j} are polynomials, we will denote by $[F]$ the convex hull of the points $\bar{a}_{1}, \ldots, \bar{a}_{p}$ in $\mathbf{R}^{2 n}$. Let $h_{[F]}$ be the supporting function of the set [F], i.e. for each $\zeta \in \mathbf{C}^{n}=\mathbf{R}^{2 n}$

$$
\begin{equation*}
h_{[F]}(\zeta)=\max _{x \in[F]}\langle x, \zeta\rangle_{2 n}=\max _{1 \leq j \leq p}\left\langle\bar{a}_{j}, \zeta\right\rangle_{2 n}=\max _{1 \leq j \leq p} \operatorname{Re}\left\langle a_{j}, \zeta\right\rangle \tag{2.2}
\end{equation*}
$$

We shall need a few simple facts about analytic functionals, i.e. elements of \mathscr{A}^{\prime} (cf. [14, 17, 21, 26]). The Fourier-Borel transform $\hat{\mu}(\zeta)=\mu\left(e^{<\cdot, \Sigma>}\right)$ establishes an isomorphism of the spaces \mathscr{A}^{\prime} and Exp. Given $\mu \in \mathscr{A}^{\prime}$, the indicator p_{μ} of μ is defined by

$$
p_{\mu}(\zeta)=\varlimsup_{t \rightarrow \infty} \frac{\log |\hat{\mu}(t \zeta)|}{t}
$$

and its upper-semicontinuous regularization \bar{p}_{μ},

$$
\bar{p}_{\mu}(\zeta)=\varlimsup_{\zeta^{\prime} \rightarrow 5} p_{\mu}\left(\zeta^{\prime}\right),
$$

is plurisubharmonic.

[^4]A carrier of an analytic functional μ is a compact subset K of \mathbf{C}^{n} such that for every neighborhood U of K there is a constant C such that

$$
|\mu(\phi)| \leq C \sup _{z \in U}|\phi(z)|,
$$

for all $\phi \in \mathscr{A}$. A compact convex set K is called a convex support of μ if K is a minimal compact convex carrier of μ, i.e. K is a carrier of μ such that if L is another carrier of μ and $L \subseteq K$, then $c h . L=K$, where ch. L denotes the convex hull of L.

In the sequel the Pólya-Ehrenpreis-Martineau theorem will be used in the following formulation (ef. [14], Th. 5.2, Cor. 5.3):

Theorem I. Let $\mu \in \mathscr{A}^{\prime}$, then

$$
\begin{equation*}
\bar{p}_{\mu}(\zeta) \equiv \inf \left\{h_{K}(\zeta): K \quad \text { carries } \mu\right\} \tag{2.3}
\end{equation*}
$$

Hence μ has a unique convex support if and only if \bar{p}_{μ} is a convex function.
In $[4,6]$ we established the following lower estimate for exponential polynomials:
Theorem II. Let $P \in E_{P}$, i.e. P is an exponential polynomial. Then, for each $\varepsilon>0$, there exists a constant $C=C(\varepsilon, P)$ such that if f is an analytic function in the polydisk $\quad \Delta(\zeta, \varepsilon)=\Delta$,

$$
\begin{equation*}
\Delta=\left\{\zeta^{\prime} \in \mathbf{C}^{n}: \max _{j}\left|\zeta_{j}^{\prime}-\zeta_{j}\right| \leq \varepsilon\right\} \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.|f(\zeta)| e^{h[P]}\right]^{(\zeta)} \leq C \max _{z \in \Delta}|f(z) P(z)| \tag{2.5}
\end{equation*}
$$

To every exponential polynomial there corresponds, via the Fourier-Borel transform, a unique $\mu_{P} \in \mathscr{A}^{\prime}$ such that $\hat{\mu}_{P}(\zeta)=P(\zeta)$. Hence we have

Corollary 1. For every $P \in E_{\mathcal{P}},[P]$ is the unique convex support of μ_{P} and

$$
\begin{equation*}
\bar{p}_{\mu_{P}}(\zeta) \equiv p_{\mu_{P}}(\zeta) \equiv h_{[P]}(\zeta) \tag{2.6}
\end{equation*}
$$

(Indeed, it suffices to set $f \equiv 1$ in Theorem II and apply Theorem I).
Let A be a compact convex subset of \mathbf{R}^{m}. For an arbitrary $\theta \in \mathbf{R}^{m}$, set $A^{\theta}=\left\{x \in A:\langle x, \theta\rangle_{m}=h_{A}(\theta)\right\}$. If A^{θ} consists of one point only, θ is called a regular direction of A. The set of all regular directions will be denoted reg A. The set of all extremal points will be denoted ext A.

Lemma 1 (cf. [8]). Let A and B be compact convex sets in \mathbf{R}^{m}. Then for each θ,

$$
\begin{gather*}
A^{\ominus} \cap \operatorname{ext} A=\operatorname{ext}\left(A^{\ominus}\right) \tag{2.7}\\
(A+B)^{\ominus}=A^{\vartheta}+B^{\vartheta} \tag{2.8}\\
\operatorname{ext}(A+B) \subseteq \operatorname{ext} A+\operatorname{ext} B \tag{2.9}
\end{gather*}
$$

Moreover, every z in $\operatorname{ext}(A+B)$ has a unique decomposition $z=z_{1}+z_{2}$, $z_{1} \in \operatorname{ext} A, z_{2} \in \operatorname{ext} B$. Although the inclusion in (2.9) cannot be replaced by equality, one has for every $\theta \in \operatorname{reg} A \cup \operatorname{reg} B$,

$$
\begin{equation*}
(\operatorname{ext}(A+B))^{\ominus}=(\operatorname{ext} A)^{\theta}+(\operatorname{ext} B)^{\rho} . \tag{2.10}
\end{equation*}
$$

(Relations (2.7)-(2.9) are obvious. The uniqueness of the decomposition $z=z_{1}+z_{2}$ was proved in [11]. Equation (2.10) follows from (2.7) and (2.8)).

Finally, a simple lemma on piecewise linear functions in \mathbf{R}^{m} will be necessary. Given $x_{0} \in \mathbf{R}^{m}$ and $\varrho>0$, set

$$
B_{m}\left(x_{0} ; \varrho\right)=\left\{x \in \mathbf{R}^{m}:\left\|x-x_{0}\right\|=\max _{1 \leq i \leq m}\left|x_{i}-x_{0, i}\right|<\varrho\right\} .
$$

We shall write $B_{m}(\varrho)$ for $B_{m}(0 ; \varrho)$. Let \mathscr{L} be the class of all continuous functions on $B_{m}(1)$ with the following property: for each $\phi \in \mathscr{L}$ there exist N distinct vectors $\theta_{j} \in \mathbf{R}^{m}(j=1, \ldots, N)$ such that for each $x \in B_{m}(1), \phi(x)-\phi(0)=$ $\left\langle x, \theta_{j}\right\rangle_{m}$ for some j. Given a function f on an open convex set $G \subseteq \mathbf{R}^{m}, f$ will be called piecewise linear on G if for each $x_{0} \in G$ there exist a $\varrho>0$ and an affine mapping χ of \mathbf{R}^{m} (i.e. $\quad \chi(z)=A z+x_{0}$ for some non-singular $m \times m$ matrix A) such that $\chi(0)=x_{0}, \chi\left(B_{m}(1)\right)=B_{m}\left(x_{0} ; \varrho\right) \subseteq G$, and if ϕ denotes the restriction of $f \circ \chi$ to $B_{m}(1)$, then ϕ is in \mathscr{L}.

Lemma 2. Let f be a piecewise linear function defined on an open convex set $G \subseteq \mathbf{R}^{m}$. Then f is convex if (and only if) f is subharmonic.

Proof. In view of the local character of convexity the lemma will follow if we show that any subharmonic function $\phi, \phi \in \mathscr{L}$, is convex in $B_{m}(\varrho)$ for some $\varrho \leq 1$. We can assume $\phi(0)=0$. Let $N(\phi)$ be the number N corresponding to ϕ by definition. Our claim is trivial when either $N(\phi)=1$ or $m=1$. Assume that it has been proved for all integers $1,2, \ldots, N-1$ and arbitrary $m(N \geq 2)$. Fix ϕ to be any function in \mathscr{H} for which $N(\phi)=N$. Let $\theta_{1}, \ldots, \theta_{N}$ be the corresponding vectors. Set $V=\left\{x \in \mathbf{R}^{m}:\left\langle x, \theta_{i}-\theta_{j}\right\rangle=0, \forall i, j, i \neq j\right\}$ and $d=\operatorname{dim} V$. Since $N \geq 2$ and θ_{i} are distinct vectors, $d<m$, i.e. $0 \leq d \leq m-1$. Consider first the case $d=0$, i.e. $V=\{0\}$. If $x_{0} \in B_{m}(1)$ is arbitrary, $x_{0} \neq 0$, let N_{0} be the total number of θ_{j} 's for which $\phi\left(x_{0}\right)=\left\langle x_{0}, \theta_{j}\right\rangle_{m}$. Then $N_{0}<N$, because $d=0$. By continuity, in some $B_{m}\left(x_{0} ; \delta\right) \subseteq B_{m}(\mathbf{1})$, one needs only N_{0} linear functions to define ϕ. By the induction hypothesis ϕ is convex in some $B_{m}\left(x_{0} ; \delta_{0}\right), 0<\delta_{0} \leq \delta$. Hence, it remains to be shown that ϕ is convex at the
origin. Let x_{1}, x_{2} be any two distinct points in $B_{m}(1)$ such that $x_{1}=\alpha x_{2}$ for some $\alpha \leq 0$. One has to show

$$
\begin{equation*}
\phi\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda \phi\left(x_{1}\right)+(1-\lambda) \phi\left(x_{2}\right), \quad 0 \leq \lambda \leq 1 . \tag{2.11}
\end{equation*}
$$

For $m=1$, this is trivial because subharmonicity coincides with convexity. If $m>1$, there will be a vector $y \in B_{m}(1)$ linearly independent of x_{1} such that $x_{i}+y \in B_{m}(1) \quad(i=1,2)$. Then for any $k=1,2, \ldots$ the segment with endpoints $X_{i, k}=x_{i}+k^{-1} y$ does not contain the origin and by the local convexity of ϕ in $B_{m}(1) \backslash\{0\}$, the inequality (2.11) is satisfied for $X_{1, k}, X_{2, k}$ instead of x_{1}, x_{2}. Letting $k \rightarrow \infty$, (2.11) follows by continuity. Finally, for the case $d \geq 1$, one can assume that

$$
V=\left\{x \in \mathbf{R}^{m}: x_{i}=0 \text { for } i>d\right\} .
$$

For $x \in \mathbf{R}^{m}$, set $\tilde{x}=\left(x_{d+1}, \ldots, x_{m}\right)$ and $\tilde{\phi}(\tilde{x})=\phi(x)$. It suffices to prove the convexity of $\tilde{\phi}$ in $B_{m-d}(0 ; \varrho)$ for some $\varrho \leq 1$. However, since

$$
\operatorname{dim}\left\{\tilde{x} \in \mathbf{R}^{m-d}:\left\langle\tilde{x}, \tilde{\theta}_{i}-\tilde{\theta}_{j}\right\rangle_{m-d}=0 \quad \mathrm{~V} j, i \quad i \neq j\right\}=0
$$

we are in the preceding case.
Corollary 2. Let f be a plurisubharmonic function in \mathbf{C}^{n} which is piecewise linear in $\mathbf{R}^{2 n}=\mathbf{C}^{n}$. Then f is convex in $\mathbf{R}^{2 n}$.

Proof of Theorem 1. Let

$$
\begin{align*}
& F(\zeta)=\sum_{j=1}^{p} P_{j}(\zeta) e^{<a_{j}, \zeta>}, \quad(P \in \mathscr{P}) \tag{2.12}\\
& G(\zeta)=\sum_{j=1}^{q} Q_{j}(\zeta) e^{<b_{j}, \zeta>}, \quad\left(Q_{j} \in \mathscr{P}\right) \tag{2.13}
\end{align*}
$$

be such that

$$
\begin{equation*}
K=\frac{F}{G} \in \mathscr{A} \tag{2.14}
\end{equation*}
$$

Then $K \in \operatorname{Exp}$. Let $v_{0}, \mu, \mu_{0} \in \mathscr{A}^{\prime}$ be such that $K=\hat{\gamma}_{0}, G=\hat{\mu}, F=\hat{\mu}_{0}$. Obviously, $p_{\mu_{0}} \leq p_{\mu}+p_{r_{0}}$. Since $\quad p_{\mu_{0}}=\bar{p}_{\mu_{0}}=h_{[F]}, \quad p_{\mu}=\bar{p}_{\mu}=h_{[G]} \quad$ (cf. (2.6)), we obtain from Theorems I, II that for every $\varepsilon>0$, there are constants C_{1}, C_{2} depending only on ε, F and G such that for every $\zeta \in \mathbf{C}^{n}$,

$$
\begin{equation*}
e^{p_{\mu}(\xi)}|K(\zeta)| \leq C_{1} \max _{z \in \Delta(\zeta ; \varepsilon)}|F(z)| \leq C_{2} e^{p_{\mu_{0}}(\xi)+\varepsilon|\xi|} \tag{2.15}
\end{equation*}
$$

This shows that $p_{v_{0}} \leq p_{\mu_{0}}-p_{\mu}$, hence by (2.6)

$$
\begin{equation*}
p_{v_{0}}=\tilde{p}_{v_{0}}=h_{[F]}-h_{[G]} . \tag{2.16}
\end{equation*}
$$

By Theorem 2, $p_{\gamma_{0}}$ is a convex function. Since $p_{v_{0}}$ is also positively homogeneous of order 1 , there exists a compact convex set $[K] \subseteq \mathbf{R}^{2 n}$ such that $p_{v_{0}}=h_{[K]}$, hence by (2.16),

$$
\begin{equation*}
[F]=[G]+[K] . \tag{2.17}
\end{equation*}
$$

(By Theorem I of this section, the set [K] is obviously the unique convex support of the functional y_{0}).

Let V be the family of all linear varieties in $\mathbf{R}^{2 n}$ of dimension $2 n-1$, each of which contains at least two different points of the form

$$
\begin{equation*}
z=\sum_{i=1}^{p} l_{i} \bar{x}_{i}+\sum_{j=1}^{q} m_{j} \bar{b}_{j}, \tag{2.18}
\end{equation*}
$$

where all the coefficients l_{i}, m_{j} are integers. Then the set $\eta=\left\{\theta \in S^{2 n-1}: \theta \perp \Lambda\right.$, for some $A \in \mathscr{V}\}$ has measure zero in $S^{2 n-1}$, the unit sphere in $\mathbf{R}^{2 n}$. (Indeed, fix arbitrary $z_{1}, \ldots, z_{T}(T \geq 2)$ of the form (2.18); then the normal vectors to all $\Lambda \in V$ such that $z_{i} \in A(i=1, \ldots, T)$, define an algebraic subvariety of $S^{2 n-1}$ of dimension $\leq 2 n-2$.)

Obviously, one can assume that the compact sets $[F],[G],[K]$ lie in $\mathbf{R}_{+}^{2 n}$, the positive orthant in $\mathbf{R}^{2 n}$. The set ${ }^{c} / \lambda$ being of measure zero in $S^{2 n-1}$, one can find $\nu \in\left(S^{2 n-1} \backslash{ }^{c} \eta\right) \cap \mathbf{R}_{+}^{2 n}$. Since $\nu \notin{ }^{c} \eta, \nu$ is a regular direction for both $[F]$ and [G]. Hence $h_{[F]}(\nu)=\left\langle\bar{a}_{j}, \nu\right\rangle_{2 n}$ for exactly one \bar{a}_{j}. Renumbering the a_{i} 's, if necessary, and using the fact that $\nu \notin \mathcal{M}$, one can assume that

$$
\begin{equation*}
h_{[F]}(v)=\left\langle\bar{a}_{1}, v\right\rangle_{2_{n}}>\left\langle\bar{a}_{2}, v\right\rangle_{2_{n}}>\ldots>\left\langle\bar{a}_{p}, v\right\rangle_{2_{n}}>0 \tag{2.19}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left.h_{[G]}(v)=\left\langle\bar{b}_{1}, v\right\rangle_{2_{2}}>\ldots\right\rangle\left\langle\bar{b}_{q}, v\right\rangle_{2 n}>0 . \tag{2.20}
\end{equation*}
$$

Set $k_{1}=a_{1}-b_{1}$. By Lemma 1, $\bar{k}_{1} \in \operatorname{Ext}[K]$, and \bar{k}_{1} is the only point of [K] for which $h_{[K]}(\nu)=\left\langle\bar{k}_{1}, \nu\right\rangle_{2_{n}}$.

Set

$$
\left.d=\left\langle\bar{b}_{1}-\bar{b}_{2}, v\right\rangle_{2 n}, H^{+}=\left\{x \in \mathbf{R}^{2 n}:\langle x, v\rangle_{2 n}\right\rangle\left\langle\bar{a}_{1}, v\right\rangle_{2 n}-d\right\}, H^{-}=\mathbf{R}^{2 n} \backslash H^{+} .
$$

Let r be such that $\bar{a}_{i} \in H^{+}$for $i=1, \ldots, r$ and $\bar{a}_{i} \in H^{-}$for $i=r+1, \ldots, p$. Using the notation (2.12)-(2.14), set

$$
\left\{\begin{array}{l}
f_{1}(\zeta)=F(\zeta)-P_{1}(\zeta) e^{<a_{1}, \zeta>} \tag{2.21}\\
g_{1}(\zeta)=G(\zeta)-Q_{1}(\zeta) e^{<b_{1}, \zeta>} \\
K_{1}(\zeta)=Q_{1}(\zeta) K(\zeta)-P_{1}(\zeta) e^{<k_{1}, \zeta>} \\
F_{1}(\zeta)=Q_{1}(\zeta) f_{1}(\zeta)-P_{1}(\zeta) g_{1}(\zeta) e^{\left.<k_{1}, \zeta\right\rangle}
\end{array}\right.
$$

Then f_{1}, F_{1} are exponential polynomials, K_{1} is entire, and

$$
\begin{equation*}
F_{1}=K_{1} G \tag{2.22}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
\bar{k}_{1}+\bar{b}_{j} \in H^{-} \quad(j=2, \ldots, q) \tag{2.23}
\end{equation*}
$$

Indeed, by (2.19) and (2.20), $\left\langle\bar{k}_{1}+\bar{b}_{j}, v\right\rangle_{2 n}=\left\langle\bar{a}_{1}, v\right\rangle_{2 n}+\left\langle-\bar{b}_{1}+\bar{b}_{j}, v\right\rangle_{2 n} \leq$ $\left\langle\bar{a}_{1}, \nu\right\rangle_{2 n}+\left\langle-\bar{b}_{1}+\bar{b}_{2}, \nu\right\rangle_{2 n}=\left\langle\bar{a}_{1}, \nu\right\rangle_{2 n}-d$.

Since $\bar{a}_{2}, \ldots, \bar{a}_{r} \in H^{+}$, it follows from (2.23) that none of the terms with frequencies $a_{j}(2 \leq j \leq r)$ can be cancelled in F_{1} by a term coming from $P_{1}(\zeta) g_{1}(\zeta) e^{<k_{1}, \zeta>}$. Moreover, it also shows that a_{1} cannot be a frequency of F_{1}. Hence, if $x \in\left[F_{1}^{\prime}\right], x \neq \bar{a}_{2}$, and

$$
\begin{equation*}
\left.h_{\left[F_{1}\right]}(v)=\left\langle\bar{a}_{2}, v\right\rangle_{2 n}\right\rangle\langle x, v\rangle_{2 n} . \tag{2.24}
\end{equation*}
$$

Thus, the frequencies of F_{1} are $a_{2}, \ldots, a_{r}, a_{r+1}^{\prime}, \ldots, a_{p_{1}}^{\prime}$, where $\left\{\bar{a}_{r+1}^{\prime}, \ldots, \bar{a}_{p_{1}}^{\prime}\right\}$ is a subset of $\left\{\bar{a}_{r+1}, \ldots, \bar{a}_{p}, \bar{a}_{1}-\bar{b}_{1}+\bar{b}_{2}, \ldots, \bar{a}_{1}-\bar{b}_{1}+\bar{b}_{q}\right\} \subseteq H^{-}$and $\left[F_{1}\right] \subseteq[F]$. Indeed, $\left[F_{1}\right] \subseteq$ ch. $\left(\left[f_{1}\right] \cup\left\{\tilde{k}_{1}+\bar{b}_{j}\right\}_{j \geq 2}\right) \subset[F] \cup([K]+[G])=[F]$.

Next we proceed with F_{1}, G, K_{1} in the same fashion as above with F, G, K. Hence there is a $\nu_{1} \in \mathscr{A ^ { \prime }}$ such that $\hat{\nu}_{1}=K_{1}$ and y_{1} has a unique convex support $\left[K_{1}\right]$, and $\left[F_{1}\right]=\left[K_{1}\right]+[G]$. In particular, by (2.24) and (2.20),

$$
\left\langle\bar{a}_{2}, v\right\rangle_{2_{n}}=h_{\left[K_{1}\right]}(v)+h_{[G]}(v)=h_{\left[K_{1}\right]}(v)+\left\langle\bar{b}_{1}, v\right\rangle_{2 n} .
$$

Hence $h_{\left[K_{1}\right]}(v)=\left\langle\vec{k}_{2}, v\right\rangle_{2 n}$ for a unique $\tilde{k}_{2} \in\left[K_{1}\right]$. On the other hand, by Lemma 1 , $k_{2}=a_{2}-b_{1}$. Set

$$
\left\{\begin{array}{l}
f_{2}(\zeta)=F_{1}(\zeta)-Q_{1}(\zeta) P_{2}(\zeta) e^{<a_{2}, \zeta>} \tag{2.25}\\
g_{2}(\zeta)=g_{1}(\zeta) \\
K_{2}(\zeta)=K_{1}(\zeta)-P_{2}(\zeta) e^{<k_{2}, \zeta>} \\
F_{2}(\zeta)=f_{2}(\zeta)-P_{2}(\zeta) g_{1}(\zeta) e^{<k_{2}, \zeta>}
\end{array}\right.
$$

Then $f_{2}, F_{2} \in E_{p}, \quad K_{2} \in \mathscr{A}$ and

$$
\begin{equation*}
F_{2}=K_{2} G, \tag{2.26}
\end{equation*}
$$

a_{2} is not a frequency of F_{2}, but each $a_{i}, i=3, \ldots, r$ is. The remaining frequencies $a_{r+1}^{\prime \prime}, \ldots, a_{p_{3}}^{\prime \prime}$ form a subset of

$$
\left\{a_{r+1}, \ldots, a_{p}, a_{1}-b_{1}+b_{2}, \ldots, a_{1}-b_{1}+b_{q}, a_{2}-b_{1}+b_{2}, \ldots, a_{2}-b_{1}+b_{q}\right\}
$$

Hence $\left\{\bar{a}_{r+1}^{\prime \prime}, \ldots, \bar{a}_{p_{2}}^{\prime \prime}\right\} \subseteq H^{-}$. Moreover, $\left[F_{2}\right] \subseteq\left[F_{1}\right]$, because

$$
\left[F_{2}\right] \subseteq \operatorname{ch}\left(\left[f_{2}\right] \cup\left\{\tilde{k}_{2}+b_{j}\right\}_{j \geq 2}\right) \subseteq\left[F_{1}\right] \cup\left(\left[K_{1}\right]+[G]\right)=\left[F_{1}\right]
$$

Continuing in the same fashion, one finally constructs $F_{r} \in E_{F}$, and $K_{r} \in \mathscr{A}$ such that (i) $F_{r}=K_{r} G$, (ii) $\left[F_{r}\right] \subseteq H^{-} \cap[F]$. Since $v \notin \cap$, the frequencies $a_{j}^{(r)}$ of F_{r} can be numbered so that $\bar{a}_{1}^{(r)}$ is the only point in $\left[F_{r}\right]$ for which $\left\langle\bar{a}_{1}^{(r)}, v\right\rangle_{2 n}=h_{\left[F_{r}\right]}(v) \quad$ and $\left.\left\langle\bar{a}_{1}^{(r)}, v\right\rangle_{2 n}\right\rangle\left\langle\bar{a}_{2}^{(r)}, \nu\right\rangle_{2 n}>\ldots\left\langle\bar{a}_{P_{r}}^{(r)}, v\right\rangle_{2 n}>0$. Set $H_{1}^{+}=$ $\left.\left\{x \in \mathbf{R}^{2 n}:\langle x, \nu\rangle_{2 n}\right\rangle\left\langle\bar{a}_{1}^{(r)}, \nu\right\rangle_{2 n}-d\right\}, H_{1}^{-}=\mathbf{R}^{2 n} \backslash H_{1}^{+}, \quad$ and let $r_{1} \geq 1$ be such
that $\bar{a}_{i}^{(r)} \in H_{1}^{+}$for $i=1, \ldots, r_{1}$ and $\bar{a}_{j}^{(r)} \in H_{1}^{-}$for $j>r_{1}$. It is now clear that we can repeat the same procedure indefinitely. If at some point we obtain $\mathcal{F}=F_{r+r_{1}+\ldots+r_{N}}=0$, the theorem follows. However, this must actually happen when N is sufficiently large. For, let N be so large that $H_{N}^{-} \cap \mathbf{R}_{+}^{2 n}=\varnothing$, hence $[$ 经 $] \subseteq[F] \cap H_{N}^{-}=\varnothing$ and $\mathcal{F} \equiv 0$.

§ 3. Applications

By Theorem 1, if F and G are exponential polynomials such that the quotient $K=F / G$ is entire, we can write K in the reduced form, $K=H / P$, which is uniquely determined (cf. § $\left.1 a^{a n d}{ }^{6}\right)$. Now the question arises when $P \equiv 1$. The next theorem gives a simple sufficient condition.

Theorem 2. Let $F, G \in E_{\mathcal{P}}$ be such that $F / G \in \mathcal{A}$. Let H / P be the reduced form of F / G. Then P divides d_{G}. In particular, $P \equiv 1$ whenever $d_{G}=1$.

Proof. Set

$$
\begin{align*}
& G(z)=\sum_{j=1}^{p} a_{j}(z) e^{<\alpha_{j}, z>} \\
& H(z)=\sum_{j=1}^{q} b_{j}(z) e^{<\beta_{j}, z>} \tag{3.1}
\end{align*}
$$

First we shall prove the following special case by induction on p.
(A) (i) P is irreducible (ii) $d_{G}=1$. Then $P \equiv 1$.

If $p=1$, then by (ii), $a_{1}(z)$ is a constant, $a_{1} \neq 0$. Hence H / P is the reduced form of the exponential polynomial $\left(1 / a_{1}\right) e^{-\left\langle\alpha_{1}, z\right\rangle} F(z)$. In view of the uniqueness of the reduced form, P must be constant.

Suppose now that (A) holds whenever G has at most $p-1$ frequencies, $p \geq 1$. There are two possible cases: either $P \mid b_{j}$ for all $j=1, \ldots, q$ or $P+b_{j}$ for some j. In the first case, $P \equiv 1$ by definition of reduced form. Hence it suffices to consider the second case when, after rearranging the β_{j} 's if necessary, there is a $q_{0} \geq 1$ such that $P+b_{j}, j=1, \ldots, q_{0}$ and $b_{j}=b_{j}^{*} P, b_{j}^{*} \in \mathscr{P}$, for $j=$ $q_{0}+1, \ldots, q$. We claim that it suffices to consider the case $q_{0}=q$. Indeed, if $q_{0}<q$, set

$$
F^{*}(z)=F(z)-G(z) \sum_{j>q_{0}} b_{j}^{*}(z) e^{<\beta_{j}, z>}, \quad H^{*}(z)=\sum_{j=1}^{q_{0}} b_{j}(z) e^{<\beta_{j}, z>} .
$$

Then F^{*} / G is entire and H^{*} / P is its reduced form. Therefore we shall assume

$$
\begin{equation*}
P+b_{j}(\forall j) . \tag{3.2}
\end{equation*}
$$

It will be shown that (3.2) leads to contradiction if $P \neq$ constant, and this will prove (A). It follows from $\S 2$ that $[P F]=[H]+[G]$, and

$$
[P F]=\operatorname{ch}\left\{\bar{\alpha}_{i}+\bar{\beta}_{j}: i=1, \ldots, p, j=1, \ldots, q\right\}
$$

Let γ be a fixed extreme point of the polyhedron [PF]. By Lemma 1, $\gamma=\bar{\alpha}_{i_{0}}+\bar{\beta}_{j_{0}}$ for exactly one i_{0} and j_{0}. Renumbering the frequencies one can assume that $i_{0}=p$, i.e.

$$
\begin{equation*}
\bar{\alpha}_{p}+\bar{\beta}_{j_{0}} \neq \bar{\alpha}_{i}+\bar{\beta}_{j} \quad(i<p, \mathrm{~V} j) . \tag{3.3}
\end{equation*}
$$

Consider all j_{0} 's for which (3.3) holds. Renumbering the b_{j} 's one can assume that there is some $J, 1 \leq J \leq q$, such that (3.3) holds for all $j_{0} \geq J$, but does not hold for $j_{0}<J$. Hence each of the frequencies $\alpha_{p}+\beta_{j}, j \geq J$, appears in the product $H G=P F$ exactly once. By the lemma in $\S 1$, this means that $P \mid a_{P} b_{j}$ for $j \geq J$, thus by (3.2) and (i),

$$
\begin{equation*}
a_{p}=\tilde{a}_{p} P \text { for some } \tilde{a}_{p} \in \mathscr{P} \tag{3.4}
\end{equation*}
$$

Set

$$
\left\{\begin{array}{l}
G^{*}(z)=G(z)-a_{p}(z) e^{<\alpha_{p}, z>} \tag{3.5}\\
\tilde{G}(z)=G^{*}(z) / d_{G^{*}}(z) \\
\tilde{F}(z)=F(z)-\tilde{a}_{P}(z) e^{<\alpha_{p}, z>} H(z) \\
\tilde{H}(z)=H(z) d_{G^{*}}(z)
\end{array}\right.
$$

Then

$$
\begin{equation*}
\tilde{H} / P \text { is the reduced form of } \tilde{F} / \hat{G} \tag{3.6}
\end{equation*}
$$

Indeed, by (3.5), $\tilde{F} / \tilde{G}=\tilde{H} / P$, and since $\left(d_{H}, P\right)=1,\left(d_{\tilde{H}}, P\right)=1$ means by (i) that $P+d_{G^{*}}$, where $d_{G^{*}}=\left(a_{1}, \ldots, a_{p-1}\right)$. However this follows from (ii) and (3.4). Since \tilde{G} has $p-1$ terms, the induction hypothesis shows that P is constant, which contradicts (3.2).
(B) Next assume that P is irreducible and d_{G} arbitrary. Assume that $P+d_{G}$. In particular $P \neq$ constant. Writing $G=d_{G} G_{1}$, one can apply (A) to $F / G_{1}=$ $H d_{G} / P$. Hence P is a constant, a contradiction.
(C) Finally, let P and d_{G} be arbitrary. If $P=P_{1} \cdots P_{r}$ is the factorization of P into irreducible factors, then the theorem follows by applying (B) to each of the equations

$$
\left(F \prod_{i \neq j} P_{i}\right) / G=H / P_{j} \quad(j==1, \ldots, r)
$$

Another application of Theorem 1 is the following statement (Theorem 3), which gives a simple necessary condition for a quotient of two exponential polynomials to be entire.

Given arbitrary finite sets $B=\left\{\beta_{1}, \ldots, \beta_{q}\right\}, C=\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$ of points in \mathbf{R}^{m} we shall say that the β_{j} 's are rational affine combinations of the γ_{k}^{\prime} 's, if for some j_{0}, k_{0} and all j

$$
\begin{equation*}
\beta_{j}-\beta_{j_{0}}=\sum_{k=1}^{r} w_{j k}\left(\gamma_{k}-\gamma_{k_{0}}\right), \quad w_{j k} \in \mathbf{Q} . \tag{3.7}
\end{equation*}
$$

It is clear that if (3.7) holds for some j_{0}, k_{0}, it holds with suitable rationals $w_{j: t}$ for any other pair j_{0}, k_{0}. The next statement is an easy consequence of Theorem 1.

Theorem 3. Let F, G be exponential polynomials such that F / G is entire. Then the frequencies of G are rational affine combinations of the frequencies of F.

The proof follows along similar lines as the proof of the theorem in Section 1 of [22].

References

1. Avanissian, V., Oral communication, 1970.
2. Berenstein, C. A. \& Dostal, M. A., Analytically uniform spaces and their applications to convolution equations, Lecture Notes in Math., Vol. 256, Springer-Verlag (1972).
3. -»- Sur une classe de functions entières, C. R. Acad. Sci. Paris, 274 (1972), 1149-1152.
4. - - - Some remarks on convolution equations, Ann. Inst. Fourier (Grenoble), 23 (1973), 55-74.
5. -》- On convolution equations I, "L'Analyse harmonique dans le domaine complexe", Lecture Notes in Math., Vol. 336, Springer-Verlag (1973), $79-94$.
6. -"- On convolution equations II, to appear in "Proceedings of the Conference on Analysis, Rio de Janeiro 1972", (Hermana et Cie, Publ.).
7. -»- A lower estimate for exponential sums, Bull. Amer. Math. Soc. 80 (1974), 687-691; cf. also Prelim. Rep. 73 T -B237 in Notices A.M.S. (August, 1973) p. A-492.
8. Dostal, M. A., An analogue of a theorem of Vladimir Bernstein and its applications to singular supports, Proc. London Math. Soc. 19 (1969), 553-576.
9. Ehrenpreis, L., Mean-periodic functions I, Amer. J. Math. 77 (1955), 293-328.
10. - -- Fourier analysis in several complex variables, Wiley-Interscience, New York, 1970.
11. Fujiwara, M., Über den Mittelkörper zweier konvexen Körper, Sci. Rep. Res. Inst. Tôhoku Univ. 5 (1916), 275-283.
12. Hörmander, L., On the range of convolution operators, Ann. of Math. 76 (1962), 148-170.
13. -»- Convolution equations in convex domains, Invent. Math. 4 (1968), 306-317.
14. Kiselman, C. O., On entire functions of exponential type and indicators of analytic functionals, Acta Math. 117 (1967), 1-35.
15. Laird, P. G., Some properties of mean periodic functions, J. Austral. Math. Soc. 14 (1972), 424-432.
16. Lax, P. D., The quotient of exponential polynomials, Duke Math. J. 15 (1948), 967-970.
17. Lelong, P., Fonctionnelles analytiques et fonctions entières (n variables), Les Presses de l'Univ. de Montréal, 1968.
18. Lindelöf, E., Sur les fonctions entières d'ordre entier, Ann. Sci. Ecole Norm. Sup. 22 (1905), 369-395.
19. Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble), 6 (1956), 271-335.
20. - - - Sur les équations de convolution, Rend. Sem. Mat. Univ, e Politec. Torino 19 (1959/ 60), 19-27.
21. Martineau, A., Sur les fonctionnelles analytiques, J. Analyse Math. 11 (1963), 1-164.
22. Ritt, J. F_{r}, A factorization theory for functions $\Sigma a_{i} e^{\alpha_{i} x}$, Trans. Amer. Math. Soc. 29 (1927), 584-596.
23. - - On the zeros of exponential polynomials, Trans. Amer. Math. Soc. 31 (1929), 680-686.
24. Selberg, H., Über einige transzendente Gleichungen, Avh. Norske Vid. Akad. Oslo, I/10 (1931), 1-8.
25. Shields, A., On quotients of exponential polynomials, Comm. Pure Appl. Math. 16 (1963), 27-31.
26. Trèves, F., Linear partial differential equations with constant coefficients, Gordon \& Breach, 1966.

Added in proof (cf. footnote 7):
27. Kitagawa, K., Sur les polynômes exponentiels, J. Math. Kyoto Univ. 13 (1973), 489496.
28. Avanissian, V. \& Gay, R., Sur une transformation des fonctionnelles analytiques portables par des convexes compacts de \mathbf{C}^{d}, et la convolution d'Hadamard, C. R. Acad. Sci., Paris, 279 (1974), 133-136.
29. - $>$ - Sur les fonctions entières arithmétiques de type exponentiel et le quotient d'exponentielle-polynômes de plusieures variables (ibidem).

Received February 4, 1974

C. A. Berenstein
University of Maryland.
Department of Mathematics
College Park, Maryland 20742, U.S.A.
M. A. Dostal
Stevens Institute of Technology
Department of Mathematics
Hoboken, New Jersey 07030, U.S.A.

[^0]: *) The authors wish to thank Instituto de Matematica Pura e Aplicada, Rio de Janeiro, for its support and hospitality.

 1) \mathcal{F} can be either the classical Fourier-Laplace transformation or the Fourier-Borel transformation or another similar transformation depending upon the nature of the space U. The inverse transformation will be denoted by \mathcal{F}^{-1}; instead of $\mathcal{F}(\phi)$ we shall write $\hat{\phi}$. Similarly, \hat{U} stands for $\mathcal{F}(U)$, etc.
[^1]: ${ }^{2}$) For example, the Paley-Wiener-Schwartz theorem for the case of distributions, or the Pólya-Ehrenpreis-Martineau theorem (cf. § 2) when analytic functionals are involved, etc.

[^2]: ${ }^{3}$) In what follows it will always be assumed that the frequencies θ_{j} are pairwise distinct and the coefficients h_{j} are all non-zero. Besides, \langle,$\rangle denotes the bilinear product in$ $\mathbf{C}^{n}:\langle\theta, \zeta\rangle=\theta_{1} \zeta_{1}+\ldots+\theta_{n} \zeta_{n}$.
 ${ }^{4}$) Actually, for ω one may take any continuous subadditive function in \mathbf{R}^{n} satisfying certain growth conditions. Then, instead of \mathscr{E}^{\prime}, one has to take the space $\mathscr{G}_{\omega}^{\prime}$ of Beurling distributions (cf. [2]).
 $\left.{ }^{5}\right)$ i.e., to describe the structure of entire functions of the form F / G where $F, G \in E_{P}$ (or, equivalently, $F, G \in \tilde{E}_{\mathcal{j}}$).

[^3]: ${ }^{6}$) Unique up to a constant multiple of H and P.

[^4]: ${ }^{7}$) Professor H. S. Shapiro has kindly informed us that several years ago he proved Corollary 2 by means of an inductive argument. His proof has not been published. Added in proof: In the meantime K. Kitagawa [27] published a proof of Corollary 1. His proof is rather sketchy. A complete proof of Corollary I was recently announced by V. Avanissian and R. Gay in [28, 29].

