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1. Statement of results 

Let  f ( z )  be an ent ire  funct ion  of f ini te  order  O. I t  is classical (of. [2, Ch. 4]; 
[6, Ch. 1] t ha t  a prox imate  order o(r) m a y  be associated wi th  f ( z )  so t h a t  the  
corresponding indicator funct ion  

log [f(re~~ 
h(O) = lim sup rO(r ) (0 < 0 < 2~) 

r-~oo 

is continuous,  2n-periodic, and  t r igonometr ica l ly  convex.  Le t  I = (a, fi) be an 
open in terval  with 

h(O) <_0 ~ < 0  < l ,  (1.1) 

and  choose 00,~ < 00 < I .  We say t h a t  the  complex n u m b e r  a is m a x i m a l l y  
assumed near  { a r g z = 0 o }  if  there  is some e >  0 such t h a t  for all d >  0 

n(r, a, 0o, d) 
l im sup re(r ) _> e; (1.2) 

r-+co 

here n(r, a, 0 o, d) denotes the  number  of  roots  of  f ( z )  - -  a, including mult ipl ici ty ,  
in the region {]z] < r} f l  { [ a r g z -  00l < ~}. The set of all maximal ly  assumed 
values near  {arg z = 0o} for a given e > 0 will be denoted  b y  ~(00, s). 

More generally,  for a closed subinterval  11 = [~l, i l l  of  I ,  let  n(r, a, 11) denote  
the  num be r  of roots  of  f ( z )  - -  a, including mult ipl ici ty ,  in the  region 

{1~1 < r}  n {~X 1 < a r g z  < ill}, 
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and set 

~(I1 ,  e) = {a; lim sup 
r --> oo 

Note  tha t  ~(I1,  s) D U~,<o<~, ~(0 ,  e). 

n(r, a, I1) ] 
r~(e ) ~ s/"  (1.3) 

T~EOR}~M 1A. Let 11 = [gl, ill] be a closed subinterval of I = (~, fi) where (1.1) 
is satisfied. Then there exists a positive sequence {a=}, 

r;~+ 1/r ---> oo, (1.4) 

and a sequence {a~} of complex numbers with the property that i f  w E ~(11, e), then 

lw - -  a.I < e - ~  (1.5) 

for infinitely many n. 

THEO~EN lB.  Let a sequence {a,} of complex numbers be given along with a 
positive sequence {a,} satisfying (1.4), and let 

= ['1 ~ {w; lw --  a~ I < e-~ (1.6) 
rn~.O n>_ m 

Then there exists an entire function of f ini te  order whose indicator vanishes on an 
interval I = (~, ~), and such that for some 0 o C (~, fl) and some s ~ 0 

~(0o ,  ~) ~ ~ .  (1.7) 

2. Remarks 

The indicator  h(O) is non-negat ive  on a set which includes an interval  of  
length ~/~, so the  hypothes is  (1.1) requires ~ > �89 Since ~(r) -+ ~, it is no loss 
of  general i ty  to suppose 

1 <  ~(r) < 2 ~  (r ~ 0 ) .  (2.1) 

The examples  of  Theorem 1B have order ~ for any  ~ C (�89 1), with  e in (1.7) 
equal to z-1 sin ~. B y  Considering f (z  '~) (n = 2, 3 , . . . )  we obta in  examples for 
all orders ~ > 1, Q # 1, and a more intr icate construct ion,  which we do not  give 
here, yields functions of  order I which sat isfy (1.7) for some ~ > 0. There is p robab ly  
a relat ion be tween  the largest s allowed in (1.7) and the variables ~ and (fl - -  ~). 

In  [7, p. 55], G. Valiron asser ted tha t  ~(00, e), for a f ixed  e > 0, can never  
be as large as the  complement  of  a single point  with respect  to the  finite plane 
(i.e., {arg z = 00} cannot  be a Borel  direction of f(z)); as far as I am aware, he never  
publ ished a proof. Since ~ e -~ < o% it follows from Theorem 1A tha t  U~>0~(00, e) 
has (planar) measure zero. 
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The character izat ions  of ~ (0  0, e) and  ~ ( I  1, s) given here invi te  comparison 
wi th  the  recent  s t udy  of  A. Hyl lengren  [4] on Valiron deficiencies of  meromorphic  
functions of f ini te  order.  Hyl lengren  showed t h a t  if  f is meromorphic  and  of  f ini te 
order,  and if  A[s] = {a; A(a) >_ e}, where A(a) is the  Valiron def ic iency of  the 
complex n u m b e r  a, t hen  hie] is conta ined in a set of the form (1.6) where the  
a~ sat isfy an+l/a~ = 0(1), r a the r  t h a n  (1.4). Thus,  the  considerably smaller sets 
~ ( I  1, e) are also of  capac i ty  zero and  have H au sd o r f f  measure zero for all measure 
funct ions h(t) such t h a t  

f h(t)(-- log t)-~t-~dt < oo. 

0 

(I t h a n k  Prof.  Hyl lengren  for several  discussions on these matters) .  
i n  �89 t h a t  Theorem 1A is false when 11 The funct ion e ~ ,~-~  2 , f i =  shows 

is replaced by  I .  

Notations. A cons tant  which depends only  on e (of (1.2)), fi - -  ~, fil - -  c% or 
~(r) (where ~(r) is subject  to (2.1)) will be given wi thou t  reference to these quan- 
tities. Most inequali t ies are val id only  for suff icient ly large r = EzE, and such an 
inequal i ty  will be qualif ied by  r > r o or r > r0(K); in the  l a t t e r  case, r o depends 
on K as well as ~(r), fil - -  ~1, fi - -  ~ or s. A n y  of  these expressions will be freely 
used to  denote  different  constants  in di f ferent  contexts .  

3. Proof of Theorem 1A 

We first  need a Proposi t ion  which allows (1.3) to  be replaced b y  a more con- 
venient  condition.  

PROPOSITliOlg 1. For c~ C ~ ~'~(Ii, e), let 

{ n ( r 'a ' I1 )  } 
_R(a) = r; rQ(r ) < 3e/4 . (3.1) 

Then there exists M ~ > 1 and r 1 = rl(a ) such that 

n(r, a, 11) --  n(r', a,/1) > ler~(T) (r E ~(a), r l(a ) < r' <_ r/M~~ (3.2) 

LEM~A 1. With e as in  (1.2), there exist ro, M o with 

(r/Mo)~~176 < 4-1~r e(r) (r > r0). (3.3) 

Proof. Choose M 0 so t h a t  for some $ > 0, 

Mol/2e ~ < 4-1e; (3.4) 
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there is no harm in supposing ~: so small tha t  

log M 0 < 1. 

Now ~ ' ( t ) t log t -+O as t - ~ o %  so there is rl(~ ) with 

[~'(t)tlog t] < �89 (t > r~(~)); 

further there is r o ( >  rl(~)) so tha t  

1 lo  0/ 
log Mo]" 

Then if 3/o lr  > %, (3.5)--(3.7) yield tha t  

{ l~176  } 
]~(r)-- ~(r/Mo) [ ~ a2~Zlog 1 ~- l o g r ~ l o g 3 / ~  

~2 log Mo(log r) -1 ~ ~(log r) -1, 

so (2.1), (3.4) and (3.8) lead to 

(r/3/o)e(r/M~ r q(O : Moe(~/iO)re(r/Mo)--~(r) < Mol/2e~ < 4-1e 

which is (3.3). 

(r > ro), 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

LEMMA 2. There exists ro(a ) with 

n(r, a, I1) ~ 2(2r) e(2r) (r > to(a)). (3.9) 

Proof. This is an immediate  consequence of Jensen's  theorem [2, p. 9], the 
defining inequality log M(r) < {1 + o(1)}r e(r) and 

2r 

log 2 _< n(r, a) log2  < f n ( t , a ) t - l d t  < N ( 2 r ,  a) (r > 1). n ( r ~  a ,  I1) 
r 

I t  is now easy to obtain Proposit ion 1. Lemma 1 (with �89 0 in place of 3/0) and 
Lemma 2 imply tha t  there are M0, ro(a ) with 

n(r/3/o, a, 11) <_ 4(log 2)-1(2r/3/o) Q(2r/M~) ~ er e(r) (r > to(a)) , 

and the Proposition, with 3 /~  = Mo, follows from this and the obvious inequality 

n(r, a, I 1 )  - -  n(r', a, I1) ~ n(r, a, I1) - -  n(r /M o, a, 11). 

I t  is also useful to have a slight sharpening of (1.1). According to (1.]), there 
exists r -+ 0 (r -+ oe) with 

max log ]f(re~~ < r ~(') (r > 0). (3.10) 
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(cf. [6], p. 71). For  K > 1 consider the  closed regions D ( K , r )  and D I ( K , r  ) 
given by  

D(K,  r) : {te~~ r /2K < t < 2Kr, or < 0 < fl}, (3.11) 

D~(K, r) = {te~~ r /K < t < Kr, ~ ~_ 0 ~_ fi~}. (3.12) 

Since the funct ion (r'/r)z maps D(K,  r) onto D(K,  r') and DI(K, r) onto DI(K , r') 
it  follows t h a t  there is a positive constant  ~(M) with the proper ty  t ha t  

inf  GD(K,~)(Z, b) = ~(K) (z, b e DI(K, r), r > 0) (3.13) 

where GD(K, ~)(Z, b) is the Green's funct ion for D(K,  r) with pole a t  b. 

LEMMA 3. There exists an increasing unbounded function K(r) (r > O) such that, 
i f  s is the constant of (1.2) and T is given by (3.13) 

max  log [f(~)[ < ls~(K(r))r~(r) r > ro(r (3.14) 
E D(K(r), r) 

and, further, 

Proof. Let  K 1 

of 

~(K(r))r ~(0 = o{7:(K(s))s e(s)} (r, s -+ ~ ,  s / r -+ ~) .  (3.15) 

= 4 and  for j = 2, 3 , . . .  determine K i as the largest solution 

~(Ki) ~ 2-1/4T(Ki_l), (3.16) 

gj_l < gj <_ 2gj_l. (3.17) 

Since T(K) is a continuous funct ion of K,  it  follows t h a t  K i exists and K i --> 
as j--> ~ .  I f  rl(j) is chosen so large t h a t  

[e(t) -- e(r)] ~ log 2(log r) -1 (rl(j) ~ r /K s < t < Ksr) (3.18) 

(this is possible, as can be seen from the proof of (3.8) in L e m m a  1), then  (2.1) and 
simple manipulat ions give 

r . e(r) ~_ r ~ 2r (r~(j) ~_ r/Kj < t < Kjr) 

Since r --> 0, we now have an ro(j, r ( >  rl(j) ) with the proper ty  t ha t  

r ~(') _~ 2-13/as~(Kj)r ~(') (ro(j, p) ~_ r /K i < t < Kjr). (3.19) 

Let  us fur ther  require t h a t  ro( j + 1, r ~ K~.ro(j, r and let K(r) = K i when 
Kjro(j, r < r < Kj+~ro( j + 1, r I t  is easy to see from (3.10), (3.16) and (3.19) 
t hu t  (3.14) holds as well ~s 

K(r)-Xr --> oo (r --> co). (3.20) 

To complete the proof of L e m m a  3, we show (3.15). Suppose 16r < t < 32r, 
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with r so large that  (3.18) is satisfied with Kj > 32. Then (3.16) and (3.17) imply 
that  "r > 2-~/~(K(r) )  and this, (2.1) and (3.18) lead to 

~(K (t) )t ~(0 
~(K(r))re(r) > 2-1/q61/2re(0-e(r) ~ 2 ~/4 (r~(K3) ~ t/32 < r < t/16), (3.21) 

and iteration of (3.21) easily gives (3.15). 
Finally, we can prove Theorem 1A. Let a C ~(I1, e) and let R(a) be as in (3.1). 

Let r*(a) be so large that,  with M + as in (3.2), K(r)  > M ~ if r > r*(a) and 

log + la[ _~ -~sT(K(r))r ~(r) (r*(a) ~ K(r) - l r )  ; (3.22) 

(3.15) and (3.20) show that  r*(a) exists. We write R*(a) for R(a) FI (r*(a), ~ ) .  
Then if r C R * ( a ) , z E D l ( r  ) and {b,} are the roots of f - - a  in Dl(K(r ) , r ) ,  we 
have from Poisson's formula ([2], p. 7) 

log [f(z) -- a I < f log [f(~) -- alK(~, z)d~ --  ~, G(z, b~) 

~eOD (3.23) 
(Z 6. DI(K(r) ,  r), r 6. R*(a)).  

Here K > O, f z)d  = 1. Then (3.14) and (3.22) show 

log If(C) - a[ ~ -~ez(K(r))r ~(~) (~ 6. aDl(K(r) ,  r), r 6. R*(a)), 

and since {b~} are in DI(K(r) ,  r), (3.2) and (3.13) imply that  

>_ 

Thus 

log If(z) -- a I ~ ~e~(K(r))r  "(~) --  a(r, a) (z 6. D(K(r) ,  r), r 6. R*(a)).  (3.24) 

Hence if a' 6. ~(I1, e), and [a' - -  a I > ~ ' r (K(r ) ) r  ~(~), it follows that  

R(a')  fi (K(r)- lr ,  K(r)r)  = 0 if r 6. R(a).  

Thus let {t~}--> ~ so slowly that  

t,~+l/t,~ < infK(t)  (K(t,~_~)-~t,,_~ < t < K(tm+~)tm+ f i m  : 1, 2, . . . )  

and let J~ = [t~, t~+~]. First let ms be the least positive integer with 

J~, FI {U R*(a); a 6. -~(11, e)} :~ ~, 

and choose r~  6. J~,, a~, 6. ~(I~, e) with rm, 6.R*(a,~). Then let m2 be the 
least positive integer > ml with 

J,,~ fl {(K(r~)rm,,  oo)} lq {U R*(a); a 6. ~(I~, e)} ee O, 

and choose r~  6. J ~ ,  a~  6. ~(I~, e) with rm~ 6. R * ( a , ~ ) . . .  This gives sequences 
{r~}, {a%} which we label simply as {r.}, {a.}, and let 
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r = l s~(K(r~))r ~ (3.25) 

Since the {r,} increase, and r~+l/r,_l ~ K(r,_l) ,  we have tha t  r,+l/r~--)-oo and 
so, f rom (3.15), ~ .+1/~,-~ oo whichis  (1.7). Final ly,  let a C ~(I1,  s), and  s E R*(a). 
Then s belongs to some interval  J~  and  the construction given guarantees t h a t  
there is an rp (p ---- m -- 1 or m) which belongs to the  sequence {r,} wi th  either 
1 ~ s / r  e ~ K ( r e )  or 1 ~ s / r p ~ K ( r ~ )  -~. Then (3.24) and  (3.25) wi th  a =  a~, 
r = r~ ensure t h a t  [a -- ae[ ~ e-"~, and  Theorem IA is established. 

let 

Then 

Let  {a,} 

4. Proof of Theorem 1B 

be a sequence for which ~+1 /~ - ->  ~ ,  and, for a f ixed ~ E (�89 1), 

~, z - -  9(cos ~ ) r ~  - -  log 2 (n ~ 1, 2, . .). (4.1) 

r,+l/r, --> ~ ,  (4.2) 

and  (4.1) yields a relat ion between r ,  and  ~ which we keep for the remainder  
of this p~per. Given ~ or r~, which satisfy (1.4) or (4.2), there is no loss ofgenerMity  
in decreasing the ratios ~,+~/~, or r,+l/r . so t ha t  also 

(log ~,_1) 6 
(log s,+l) 2 -~ ~" (4.3) 

We m a y  then  state  Theorem 1B more precisely as 

TI~EOgEN 1B'. For ~ < ~ < 1, let {(~,} be a sequence which satisfies (1.4) and 
(4.3), and define {r,} by (4.1); f inal ly  let {a.} be a sequence with 

. [(log r._l) 6 } 
[a,l < m m  ~(~gog r,+l) ~' �89 r ,_l)  6_ . (4.4) 

Then there exists an entire function f(z) with 

h(O! ~ 0 

Further, we have for all ~ ~ O, 

log M ( r , f )  ~ r  ~ ( r -~  ~ )  

and, i f  h(O) is the indicator of f(z) with respect to o(r) -~ ~, 

(larg z - -  ~l < �89 - -  ~/2p)). 

in the notation of (1.2), that 

n(r,, w, ~, ~) 
Jim inf  r~(r,) ~ ~-1 sin ~ 
n --> o9 

(4.5) 

(4.6) 

(4.7) 
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for all w C N,~ [.Jm>, Cn, where 

C .  = {w;  Iw - a . I  < e -~"} .  (4 .8)  

The function f (z)  is obtained by Riemann surface methods, and depends on the 
existence of an auxiliary entire function g(z) which satisfies Theorem 1B' with 
all a, identically zero. We list the requisite properties of g(z) below in Proposition 
2, and then show how to modify g to obtain f. In w 5 is a proof of Proposition 2. 

PROPOSITION 2. There exists an entire funct ion g(z) which satisfies (4.5) and 
(4.6). Further, i f  {r,} is the sequence which appears in Theorem 1B',  there exist 
sequences {R,} with I~,/r,---~ ~ and r,+l/R,---> ~ ,  and {~,}--~0 such that 

n(r, w, ~, (~) 
inf ~ (l -- ~.)~-~ sin z~ (4.9) 

rn/2 ~_ r ~ 2r n r ~  

for all w satisfying 

]wl ~ 2e -~'. 

Finally,  we can choose en---> 0 so slowly that 

e,R~ > (log Rn) 7 

with that property that i f  

D.  = {R._I < I~l < R.} n {~ ~ larg ~I > ~/4}, 

and E .  = OD., then 

log [g(z) l ~ e._l(R._a) ~ (n > no; z C E.). 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

We accept this Proposition for now, and produce f (z)  using an indirect approach. 
Using g(z), we shall construct a continuous function F(z) which is regular in the 
complement of certain simply-connected resgions 

{A,. ,n} (n  = 1, 2 . . . .  ; m  = 1 . . . .  , ~ (n ) )  

with Am,,G D,  for all m and n, where D,  is defined in (4.12). Inside the 
{A~.n}, F will not be holomorphic, but  will be nearly so in the following sense: 
each A~, n can be divided into three subregions in each of which F(z)  = F(x,  y) = 
u(x, y) + iv(x, y) has continuous partial derivatives, and 

IF~/F,] ~ A(log [z]) -2 (a.e. z E/I,,,,~) (4.14) 

for some positive constant A, where, as usual 
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1 i 
F, = ~ (u~ + vy) + ~ (v~ --  u~), 

1 i 
F~ = -~ (u~ - vz) + ~- (v~ + u~). 

(4.15) 

and so 

f f  
N > t  

Finally,  we will show tha t  

(0 < ) p(z) -- 1 _< A(log [z[) -2, (a.c.) (4.16) 

dxdy 
{ p ( ~ ) _  ~} ~ < ~ .  (4.17) 

F maps the plane topologically onto a R iemann  surface 7. (4.18) 

The u t i l i ty  of (4.17) and (4.18) arises from results of O. Teichmuller and 1 ). 
Belinskii ([5, Ch. 5, w 6]). For  these conditions imply  tha t  ~ is parabolic and,  if 
fl(~) maps the C-plane conformally onto 7, then  for a suitable choice of A, the 
induced t ransformat ion  $(z) = A l f{l(F(z))  satisfies 

~(z) ~ z  ( z ~  ~) .  (4.19) 

Although F is no t  regular, we have maxl~l= r IF(z)[ ~ r  ~, and this and (4.18) 
allow the expressions h(O) and n(r, a, 0o, (~) to be defined for F(z) as if  F were 
entire. Our explicit construction of F will guarantee  t ha t  (4.9) is satisfied for those 
w which belong to inf ini tely m a n y  of the  discs (4.8) so t h a t  (4.19) yields t ha t  
f(z) = f l ( A z )  meets all conditions of  Theorem 1B'. 

Thus we 'start wi th  g(z), as in Proposi t ion 2, and for z E D,  describe how to 
achieve the F(z) which will satisfy (4.17) and (4.18). Le t  

3. = (log Rn_l) 6 

and  consider the closed subsets A.~.. of  D.  in which 

ig(z) E ~ 3n (Z C ~m,n) 

Note t ha t  (4.11), (4.12), (4.13) and (4.21) imply t h a t  Am,,, 
we m a y  consider n f ixed in this construction. I f  an 
Mobius t ransformat ion 

W - -  a n 
L w  = e i p n 3 2  n 2 

3 n - -  d n W  

which maps the disc {[w[ < 3.} to itself, with pn 
Then L induces a map s so t ha t  

(4.20) 

(4.21) 

D n for all m. Thus 
satisfies (4.4), consider the 

(4.22) 

chosen so t h a t  L(v,,) = 3n. 

This will imply t h a t  the di la ta t ion p(z) of F (cf. [3, p. 439], [5, p. 18]) satisfies 
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for ~11 

L(r,e  ~(~ = The ~~ s(0) = 0. (4.23) 

0, and we can now define the mapping H from {]w I _< ~ ]  to i tself  as 

l o g v ~ - - 1 0 g 2 _ <  U < l o g v n ,  0 <  V < 2 z .  

Since exp {} is conformal, we have tha t  

H(w)~/H(w)w = k ( W ) u  w, 

and we can compute the left  side of (4.29) using (4.25), (4.23), 
(4.28). Thus (4.22), (4.23) and  (4.26) show tha t  I s ' ( V ) -  11 <_Ala,/'c~l, 
Is(V) -- VI <_ 2~A[a , /~ l .  I t  is then  easy to show t h a t  

for 

o < ~  < _ 1 ~  

}1 (4.24) log u -- log z./2 �89 < u < T. 

log 2 -- -- 

F(z) = H o L o g(z) (z 6 Am,~) (4.25) 

where L is specified in (4.21). For  z ~ U~ ,dm, n we set F(z) = g(z); it  then  follows 
from (4.22)--(4.25) t h a t  F is continuous in the fuII plane. 

The next  task  is to show t h a t  F satisfies (4.7) and (4.8). Consider the disc 
{jw -- a,J < e-"n}. Since R ,  > rn, (4.4) and  (4.20) imply  t h a t  this disc is inside 
{]w[ _< 1Tn}. I t  thus  follows from (4.22), (4.3), (4.4), and  (4.20) and  the interlacing 
of the  {R~}, {r,} t h a t  there is a constant  A (independent of n) wi th  

an (log r~_l) 6 1 
I1 - -  IL'(w)]]  _~ A -- < A ~n (log Rn_~) 6 (log rn+~) ~ ~< A(log %+1) -2 (4.26) 

which tends to zero as n - ~  ~ .  Now L(0) = a,, so (4.26) implies t h a t  i f  n is 
suff iciently large, the inverse of {[w--a~]  < e  -~n} under  L is contained in 
{lzl < 2e-"~}, and (4.7) follows from (4.9), (4.10) and (4.19). 

I t  remMns bu t  to ve r i fy  (4.17) (or (4.16)) and  (4.18). Ev iden t ly  F~ = 0 i f  
z ~ Um.n A ...... and the  representat ion (4.25) shows t h a t  it  suffices to show 

(H(w))~/H(w)),  ~ A(log [z[) -2 (w ----- g(z), z 6 A~,~); (4.27) 

fur ther  since g is a regular, the  explicit formula  (4.24) shows we need only consider 
1 < [wl <T~} along these z for which ~ 1  < ]g(z)l _ < ~ .  We cut A = { w ; ~ n _  _ 

the axis {arg w = 0} and  write ue iv = exp (U Jr iV).  Then (4.4) m a y  be wri t ten  
H(ue~ ~) = exp {k(U @ iV)}  = exp {K(U ~ iV)  ~- i K * ( U  -~ iV)} with  

K(U + i v )  = u 
(u - log To/2) (4.2S) 

K * ( U  @ iV) : V ~- (s(V) --  V) log 2 

(4.29) 
(4.26) and  

and  

H(~@iv) ~- ( u exi) [~ {v _~ (8(v) _ v) 

and define F(z) for z 6 A ... .  by 
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K u  ~- 1,  

K v  = O, 

so tha t ,  for perhaps a different constant  A 

]F~/F~I < Ala./~.l 
and thus  (cf. (4.26)) 

] K * - -  1] < ls'(V) -- Ii < Ala~/v,[ 

IK*[ ~ I s ( V ) -  Vt ~_ 2xA]a~/v~I, 

(z r Am,,3 

IF~/F~I ~ A(log r~+l) -2 < A(log ]z]) -~ (z E Am,~); 

since D~ c {]z I < r~+l} and  this  proves (4.16). To obtain (4.18), we observe t h a t  
the image of Am, ~ by  g is a bordered R iemann  surface, und hence so is the  image 
of  A~,, under  F .  F is also regular in the complement  of the  d ..... ~nd since F 
is uniquely defined on aA ..... (4.18) follows from s tandard  gluing arguments  (cf. 
[1, pp. 117--119]). 

5. Proof of Proposition 2 

The methods  used here rely heavily on Chapters 1 and  2 o f  [6]. 
Suppose go(z) is a canonical product  of order 0, �89 < Q < 1 wi th  go(0) | 0, 

and  let {b=} be the roots of go. Many functions can play the role of go below, bu t  
all will have, for some absolute constant  K,  

n(r, O) < Kr  Q (5.1) 

(K m a y  be t aken  as 6, for example). Le t  r 0 > O, A > 0 be given, and  define 
products  =l(Z) and n2(z) by  

~x(Z) : ] - [  (1 -- z/b,~); ~2(z) = " ~  (1 --  z/b,). (5.2) 
ibm] < A-% Ibm/> A~, o 

The discussion of [6, pp. 62--3] and (5.1) imply tha t ,  given s I > 0, there exists 
Ao(sx) (which also depends on the absolute constant  K of (5.1)) such t h a t  if  

A ~__ Ao(Sl) 
[log[zl(Z)I[ + ]log[z~(z)[ I < si re (5.3) 

if  

re A-1 < ]z I < roA. (5.4) 

One fur ther  element of f lexibil i ty will be needed. Le t  M be a (large) positive 
integer and  let {am(0)} (m = 0, ~: 1 . . . .  :~ M) be a family  of 2a-periodic trigono- 
metrical ly convex functions of order Q, 1 < 0 < 1. Thus each h~ is continuous, 
has r ight  and lef t -hand derivatives which agree off an at  most  countable set of 0, 
and  
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o 

8=(0) = < ( 0 )  - (0 < 0 < 2=) (5.5) 

0 

increases (in (5.5), h'm denotes  e i ther  the  r ight  or le f t -hand der iva t ive  of  ha). 
In  our  s i tuat ion,  sin(O) will increase only  by  simple jumps at  one or three values 
of 0, and  there  exists a set E ( M )  = {0 o, 01, 0_ 1, 02, 0_8} outside of which all func- 
t ions h,~(O) are cont inuous ly  differentiable.  To measure the denseness of the  fami ly  

{ k i n }  l e t  

q(M)  = max max  [h'm+a(O) - -  h'm(0)]. (5.6) 
--M<_m<_M--1 o~E(M) 

Then  for each m, Chapter  2 of  [6] yields an ent i re  funct ion fm whose indicator  is 
hm(O). This  f~ has several proper t ies  which are useful here and so we indicate  
the sal ient  features  of  the  construct ion.  For  0 < 0 < 2~, let  

Am(O) = (2~0) -1 lim {h'(O -~ 6) - -  h '(O - -  6)} (5.7) 
a + 0  

measure  the  jump  of the der iva t ive  of h~ at  0, and  observe f rom our convent ion  
t h a t  A,,(O)----0 for all 0 ~ E ( M ) .  Then  for j - - - - -  2 , . . . ,  2 we place ni, m(r) 

zeros of f ( z )  on {arg z = 07} to sat isfy 

Ini,,,(r) - -  A,,(Oj)rQI < 1; (5.8) 

f , , (z)  is the  canonical  p roduc t  whose zeros are so dis t r ibuted.  Then,  to each 61 ~ 0 
t t 

is a PM with the  p rope r ty  t h a t  if  Iz] = r > p M  

r~hm(O) - -  e~r Q < log ]fm(z) l < r~h=(O) q- sir ~ ( - -  M < m <_ M )  (5.9) 

save for points  z conta ined  in circles C~,k whose radii  rm, k (k = 1, 2, . . .) satisfy" 

r - l  ~ rm, k < Sl ( - -  M < m < M ,  r > p'M) (5.10) 

(the symbol  ~ means summat ion  over  those k such t h a t  C~,k intersects  
{[z[ < r}). Also, we obta in  from (5.6), (5.7) and (5.8) t h a t  given e~ > 0, there  

tt 
exists a q l >  0 and  PM such t ha t  if  q(M)  < q l ,  then  

Inj,=(r) - -  ni.m+l(r)] < e2r Q r > PM. (5.11) 
t t! 

Final ly ,  we let PM ~-- max (PM, PM)" 

For  N =  1 , 2 , . . . ,  let  q ( N )  = N  -2 and  then  consider a fami ly  of 2 M q -  1 
t r igonometr ica l ly  convex funct ions hm(O) where the specific choice of M will be 
made  later.  Easiest  to  define is 

ho(O) = cos  50 (101 _< ~);  

the  remaining funct ions  are divided into two classes, each of M functions.  Those 
in Class I will be labelled h i , . . . ,  hM and we f irs t  describe these. Choose 
01, 0 < 01 < ~g - -  ~r/:/2~ with 
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and,  in the in terva l  
define 

COS ~01 = .N  -1  ( 5 . 1 2 )  

0 < 0 < 01, let  h,~(O) = ho(O) for 1 _< m < M. Next ,  we 

hM(z~ ) --~ (2N) -1 (5.13) 

and  then,  for 1 _<m < M ,  

m 
hm(~) = h0(~) + ~- (hM(~)  - -  h0(~)). (5.14) 

For  01 < 0 < 3, h~ is tile unique par t ion  of a sinusoid of  period 2~/~ which 
at  ;~ and 01 interpolates  the  values hm(n) and ho(O 0 (to see how this sinusoid 
is constructed,  of. [6], p. 52; uniqueness follows since ~ --  01 < ;~Q-1). Next ,  for 

< 0 < 2~ let  hm(O) = h,n(2= --  0). Thus,  in the enumera t ion  of  E(M) ,  01 the  
solution of (5.12), 0_ 1 --  01 and 00 = =. The funct ions in Class I I  are wr i t ten  
h 1 . . . .  , h_M, and  are cons t ruc ted  as in (5.12), (5.13) and (5.14) save t h a t  m is 
replaced by  - - m ,  N by  N 4. 1 and 01 by  02, where 02 is def ined b y  the  equat ion  
cos ~0e = (N 4. 1) -1. Note  t h a t  the  funct ions h,n(O) are 2z-periodic and tr igono- 
metr ica l ly  convex. The easiest way  to establish this convex i ty  is to ver i fy  t h a t  each 
s,,(O) (defined in (5.5)) increases. To see t h a t  S,n increases, we observe t h a t  h,~(O) 
is a cont inuous funct ion and is sinusoidal at  all points of cont inu i ty  of h'm; a t  the 
remaining points  of the domain  h'm has a posi t ive jump discontinui ty.  

We can now relate  the choice of M to N and  the  sequence {r~} which is 
specified in the  s t a t emen t  of Propos i t ion  2. Choose {t.} wi th  

rn/t,_l = t,/r,  (5.15) 

so t h a t  bo th  sides of  (5.15) t end  to in f in i ty  as n--~ oo. Wi th  ex(N ) = N -2 as 
ment ioned  above,  in (5.3), (5.9) and (5.10), choose A ----AN so large t h a t  (5.3) 
holds with e I ---- sI(N ) and then  choose PM, M (M = M ( N ) )  and  e 2 ( =  s2(N)) 
so t h a t  i f  the  {fro} are chosen as in (5.8), t hen  (5.11) m ay  be sharpened to 

[nj, m(A~r) - -  % m_~(A~vr)] < r'~ log AN) -2 (r > PM). (5.16) 

According to  (5.7) and (5.8), (5.16) can be achieved b y  making  [A~(0) - -  Am_a(O)] 
small for all 0, and  these differences will be diminished if  q(M) is small, i.e. i f  M 
is large. 

We ne x t  choose n(N)  so large t h a t  n(N)  > n ( N  --  1), 

log (t,+~/t~) > 4(2M(N) @ 1) log AM(N) (n > n(N))  (5.17) 

and  in addi t ion,  wi th  PM(N) selected so t h a t  (5.9) and  (5.10) hold wi th  our  choice 
of  el, we also have  

r~ > PM(N) (n > n(N)) .  (5.18) 

For  each n , n ( N )  <_ n < n ( N  4- 1), the  in terval  (t., t,+l) is d ivided into 
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(2M(N)-}-1)  intervals (aj(n),/~j(n)) wi th  cr ) =ocj(n)/fij(n) for all i and  
j (-- M(N) <_ i, j < M(N)). When the value of n is clear from the context,  we 
abbreviate  ~2(n) and fij(n) by  ~j and  fij. We set, for each n, T / ( =  Tj(n))= 
{z;aj_< Izl <f i j} ,  and  for the moment  suppose n # n ( N +  1 ) - -  1. Then in 
Tj, g is assigned the same zeros as t h e  corresponding fi i f  j > 0, and as f_j i f  
j <  0; if  n = n ( N 4 -  1 ) - -  1, then  in T j g  has the same zeros as f_j for all j .  
(This special definition, when n = n(N + 1 ) -  1, allows a smooth connection 
near {[z L = t,,(N+l)}). F inal ly  in {[z[ < t l } , g  is assigned the same zeros as fMO)" 
With  {b,,} these zeros, we set g(z) = ]-[(1 z/bn). 

The point  of this  construction is t ha t  if z E Tj and  fj(z) is the proper choice 
of 2~ or f_j, as explained above, then  

log Ig(z)l = log [fj(z)(z)l +/~j(z) (z e Tj) (5.19) 

where, for large n, 

I/~/(z)l < 2N-3zelzl ~ (5.20) 

outside circles Ck of radius rk such tha t  

r-1 ~r  rk < el(N) = o(N -1) (n(_/Y) < n < n(N + 1)) (5.21) 

(cf. (5.10)). Grant ing this  for the moment ,  i t  is easy to complete the proof of Proposi- 
t ion 2. Indeed,  (5.21) implies there exist {R~} --> oo wi th  R~/t, --~ 1 (n --> co) such 
t h a t  (5.19) and (5.20) hold on all of {[z[ = R~}. In  particular,  this, (5.9) and the  
fact  t h a t  ]h~M(O)l ~ (2N -~ 2) -1 (0 < 0 < 27C) imply for large n t h a t  

log [g(R~e~~ >_ R~{(2N + 2) -~ -- N -2 -- 25" 3/2} >_ (3N)-~R~ 
(5.22) 

(0 < 0  < 2 ~ , n > n 0 )  

On the rays { a r g z =  s  we have 

log [g(re~='~/4)[ > �89 ~:~)r e (r > r0) (5.23) 

Since h,,(O) >_ cos (1:~) for all 0 wi th  0 < 0 < ~z, (5.23) is clear from (5.9) and  
(5.19) if  z does not  belong to the circles es t imated in (5.10); if  z is interior to 
one of these circles, then  it follows from (5.8), (5.19) and (5.20) t h a t  f(z) does not  
vanish in the circle, and  so (5.23) follows from (5.9), (5.19), (5.20) and  the  min imum 
principle. Thus (5.22) and  (5.23) imply  t h a t  (4.13) holds wi th  any  e, >_ (4N)71 
(n > n o, n(N) < n <_ n(N -[- 1)), so (4.11) can be achieved as well, by  increasing 
the numbers  n(N) i f  necessary. 

Similar reasoning gives (4.5) and  (4.6). Indeed,  when (5.20) is valid, these con- 
clusions follow from the construct ion of the h~(O) since max o h~(O) = 1, and  the 
inequal i ty  h~(O) <_ 2N -1 when ]0 -- zl < ~/2~ and -- M(N) <_ m < M(N). 

Final ly,  we consider (4.9) and  (4.10), and let {s,} be a sequence with  
�89 _< s~ < 2r.. Then s~ is well-contained in To(n) in the sense t ha t  s~/c~o(n) -~ oo 
as n--> oo. Le t  {~} ~ 0 and  {A~}-> o% {S~}-~ oo be sequences (with 
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cr < Am < S,~ < s,~, A,, ~ a 0 ( n )  and  S .  ~ s ~  as n--> c~) so t h a t  (5.19), wi th  
m = O, holds on all of {Iz] = A.},{[z[ = S.} and  the segments 

{arg z = ~ ~ On, A~ ~ lzl _< S.}. 

Then  if  D* denotes t ha t  region bounded  by  these curves which contains a segment  
of the  negat ive axis, our const ruct ion implies t h a t  g has at  least 

k(S,,) --~ ~-1 sin ~ (S~ --  A~) - -  2 ~ ~-1 sin ~ SnQ(1 d- o(1)) 

zeros in D* where the  ra te  a t  which o(1) tends  to  zero depends on n bu t  not  
the choice of  s,  E [~r,, 2r~]; fur ther ,  (5.9), wi th  m ~-- 0, and  (5.19) yield t h a t  

log [g(~)] ~ log I f 0 ( ~ ) [ -  [/~0(~)] >~ 2 c o s ~  0 I~l ~ ~  o(1)[~i ~~ 

> 3 c o s s p  [~l ~ > 3 c o s ~ ( 3 r , )  ~ ~ 9 c o s ~ r ~  (~C O D * , n ~ n o ) .  

Hence,  by  Rouchd 's  theorem g(z) assumes every  value w wi th  

]w] ~ exp (9 cos ~p r~) (5.24) 

a t  least  k(S~) t imes for z E D~*. 
F o r  a f ixed (3 ~ 0 and  all large n, if  w satisfies (5.24) 

n(s~, w, ~, 6) - -  n (R , ,  w, ~, 6) > n(S~, w, 7~, ~ )  - -  n (A , ,  w, z~, ~,) 
(5.23) 

> ~-1 sin 7~ e s~:(1 ~- o(1)), 

and  so (4.9) and  (4.10) are consequences of (5.22), (5.23) and the  def ini t ion (4.1). 
We conclude by  sketching a p roof  of  (5.19) and  (5.20) provided  z avoids the 

circles es t imated  by  (5.21). Le t  z0 E Tj, [z I --~ r0 and,  for convenience of nota t ion ,  
suppose --  M ( N )  d- 1 <_ j ~ j(Zo) <_ M ( N )  - -  1. Then  the  in terva l  (A~:ro, A~ro) 
meets  a t  most  one T~ (k ~ j )  (cf. (5.17)). Le t  {b,} and  {b,,j} denote  respect ively  
the  zeros of g(z) and  f~(z), and given a sequence {a~}, define ~ * ( 1 -  z/a,~) to  
be the  p roduc t  over  those n wi th  r A ~  ~ < Ia~l < roA ~. 

Since e~(iv) = iv'~, (5.2) gives 

]log lg(z)l - -  log ]fj.(z)]] _< [log]z*(l - -  z/b~,j) 1 - -  log Iz*(1 --  z/b,)ll d- 2 iv-s t  ~. (5.26) 

However ,  the  (b~} and  (b,.]} agree in Tj, and  thus  (5.I6) implies t h a t  

[log I7~*(1 - -  z/b.,j)[ - -  log [~*(1 --  z/bn)[[ = ]log ] ~  I(1 - z / a . ) ~ . [ I  , (5.27) 

where s~ = :[: 1, and  p(zo) <_ (iv log AN)-2r ~. Le t  

p(zo) 

Q~o(Z) = I I ( 1 -  z/a~ 
n = l  

I t  is clear t h a t  if  Q1 is any  par t ia l  p roduc t  of  Q=o, t h en  

_ A 2 v~(Nlog A~)-~} ~ 3N_2(log Alv)_lrO - ]og IQi(z)l < ]og {(1 -~- ~T/ (iv > No) (5.2s) 
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and Cartan 's  es t imate  ([6], p. 21 with 2eR = 12r) and the manipulat ions leading 
to (5.27) ensure tha t  outside circles Ck whose radii sat isfy 

tha t  

~ rk <_ 6r(NA~) -1 (5.29) 

log [Ql(Z)[ > - -  [2 ~- log  (12eNA~)] max log [QI(~)I 
]r = 1 2 r  (5.30) 

--  3[2 @ log (12eNA~)]N-2(log A~v)-~r ~. 

From (5.28) and (5.30), it is clear tha t  (5.27) is es t imated  by  

llog l~*(1 --  z/bn, j)l - -  log [~*(1 --  z/b,)l[ <_ N-a/2r~ (r > ro), (5.31) 

and (5.26) and (5.31) give (5.20). Finally,  the  bound (5.21) is a direct consequence 
of (5.29). 
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