
Jordan decomposition for a class of singular 
differential operators 

A. H. M. Levelt 

O. Introduction 

In 1955 H. L. Turrittin published a theorem on canonical forms of certain 
differential operators (cf. [1], Theorem I). 

We shall not describe that theorem in all detail in this introduction. Howe- 
ver, in order to understand the main result of  the present paper it is useful to 
know that Turrittin considers differential operators of  the type 

lilt / d /[! 1 ] tl 
where gEN, xiEC [[z]], the ring of formal power series in one variable z, and A 
is a square matrix of  n rows and columns and elements in C [[~]]. Turrittin's statement 
is roughly as follows: By a convenient "coordinate transformation" 

[i 1] )jill = P(t 

n 

where Yi and the elements of  the matrix P(t) belong to C [[t]], t=~  1/p (p positive 
integer) the differential operator can be expressed as  /yl / 

_ .  r + ~ ( 0  i , 
dt 

Y, 

where B(t) is a matrix with elements in C [[t]] having an explicitly prescribed canon- 
ical form closely resembling the Jordan canonical form for ordinary linear trans- 
formations. 
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As is more or less known Turrittin's p roof  can essentially be simplified by 
using cyclic vectors. Such a proof  can equally lead to an estimate of  p:  for instance 
p = n !  will suffice. This point was missing in Turrittin's theorem (c.f. [2], p. 7). 

However, there is still another gap, namely a statement on uniqueness. Filling 
this gap is the main purpose of the present paper. Here again the well-known de- 
composition of  a linear transformation into the sum of  a semisimple transforma- 
tion and a nilpotent one can be imitated. This leads to the main results the Theorems 
I and I I  of  section 1. 

In section 6 we give some applications. Our main theorems serve well to under- 
stand the various invariants known in the literature ([3], Theorem I, 1,9 et [4], 
Introduction). 

We shall also deduce a better estimate for p, namely 

1. c. m {mll~m<=n}. 

In section 1 we develop the appropriate invariant notions concerning defferential 
operators, and we define and study semisimple differential operators.. 

Section 2 contains a well-known splitting lemma. For  completeness'sake we 
shall give a full prof. 

In section 3 the existence of  a decomposition is shown over an extension of 
the ground field, and uniqueness is proved in a special case in section 4. 

Section 5 contains the proof  of  the main theorems. 

1. Differential operators, semisimplicity 

k :  

K=k(( t ) ) :  
n ;  

V: 
A: 
O: 
D: 

Throughout this paper we shall use the following notations: 

field of  characteristic zero. 
ring of formal power series in one determinate and coefficients in k. 
field of  fractions o f g .  
positive integer. 
vector space of dimension n over K. 
s in V, i.e. (free) s of  V of  rank n. 
the derivation t (d/dO on K. 
differential operator in V, i.e. kqinear  endomorphism of V satisfying 

D(av) = t - -~  a v+aDv  

all aEK, vE V. 
When 2Ek, 2 ~ 0 ,  we shall also call 2D differential operator. 
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When D: V-,-V and D ' :  V ' ~ V "  are differential operators, (V, D) and (V' ,  D')  
are said to be isomorphic, if an K-isomorphism 9:  V ~  V" exists such that D" o q~ = 
= g o D .  

Let K(A) the K-vector space having as a basis the formal powers of  A 

A ~  1, A I = A ,  A 2,A 3 . . . . .  

We define a multiplication in K(A)  by putting first 

A(ao ~-a~A + ... +a,.Am) = Oao +(ao +OaOA + ... +(a,,_~ +Oa,.).4m +a , . . 4"% 

next by induction 

and finally 
At[ao+al A -i-... +areA m) = A'-~(A(ao + ... +amA~)), 

It can be verified that in this way K(A)  becomes an associative, non commutative 
k-algebra, and that K(A)  contains K as a subring. 

Let D: V ~  V be a differential operator. We can make V into a left K(A)-module 
by putting 

(ao+aiA + ... +a, ,Am)x = aox-t-a~Dx+ ... +a, , ,D"x (aiEK, x E V ) .  

Conversely, let V be a left K(A)-module. Then the multiplication by elements 
of  K c K ( A )  defines a structure of  K-vector space on V. Suppose dimx V<~o, and 
define D: 1/-2 V by 

D: x ~ Ax. 

Then D is a differential operator on V. 

In the sequel we often make the transition f rom couples (V, D) to K(A)-modules 
and backward without further explication. 

We notice that (V, D) and (V 'D ' )  are isomornhic if  and only if  V and V' are 
isomorphic as K(A)-modules.  

We recall some basic facts which shall frequently be used: 

a) Bases and coordinates 

Let (el, ..., e,) be a basis of  the K-vector space V. Then elements aijEK 
(1 _-< i, j<= n) are uniquely determined by 

Oei = ~ = 1  ailed. 

The matrix A=(ajl)l<__i, j a ,  shall also be denoted by 
Mat  (D, (e)). 

Mat (D, ( e l , . . . ,  e.)) or 
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Now let ( ~  . . . . .  4,) be the coordinates of  xC V with respect to (el, ..., e,), and 
let (t/~, ..., t/,) be the coordinates of  Dx. 

Then we have 

d 
= t--~i+~jaii~j__ (1 ~ i<= n). q~ 

So using matrix notation we can say that D is the differential operator having the 
coordinate representation 

with respect to the basis (ex, . . . ,  e,). 
Let ( f l  . . . . .  f~) be a second K-basis of  V and suppose 

fi Z" = i=ltj~ej (1 ~ i-<= n) 

where t j ~ K  and the matrix T=(tj~) is invertible, Let B be the matrix of  D with 
respect to (f l  . . . . .  f ,).  Then we have the obvious relation 

B = T-1AT~-T-l t~-~-T.  

b) Field extensions 

We shall often have to make finite extensions K c L .  I t  is well known that 
the t-adic valuation on K can be extended to a valuation on L in a unique way 
(cf. [7], Chap. I[, w Prop. 3). We denote by g?L the integral closure of  t~ in L. !~ r 
is a discrete valuation ring; in fact it is the valuation ring corresponding to the 
valuation just defined on L. 

In general we only need extension fields of  the type L=k'((s)), where k c k "  
is a finite extension and s satisfies sin= t for some positive integer m. (It can be shown 
that  every finite field extension of  K is contained in such a field.) When L ~ M  is 
another  finite extension of the above type, the same holds for K c M .  

We shall denote by V L the vector space L | V (extension of scalars), and 
by Dr the map of Vr into itself defined by 

DLfa~v) = (Oa)|174 

all aEL, vE V. Here we mean by 0: L-~L the unique extension of the derivation 
O=t(dldt) of  k((t)). Notice that DL is k-linear and that DL(bx)=(Ob)x+bDzx, all 
b E L, x E VL. We shall still call D z differential operator;  D z is the extension of D to 
V L (Notice that DLIv-D. We identify V with the K-subspace {1 | V} of VL). 



Jordan decomposition for a class of singular differential operators 

In the special case of  L=k'((s))  as above we have 

o = l s d s _  
m 

which shows that the use of  the term "differential operator"  for D L 
with the earlier definition. In this case D L is even U-linear. 

is consistent 

c) Cyclic vectors 

It  is well-known ([3], Lemma II, 1,3 p. 42) that V admits a cyclic vector e, i.e. 
an element eE Vsuch that e, De, D~e, ..., D"-le are linearly independent over K. 

This fact can also be expressed by saying that the K(A)-module V is cyclic, 
i.e. V=K(D)e .  

d) Simple differential operators 

We shall call D: V ~  V a simple differential operator, if V is a simple K(A)- 
module, i.e. V ~ 0  and V contains no proper K(A)-submodules. This is equivalent 
to saying, that V;a0 and that V contains no proper K-subspace invariant under D. 

Obviously D is simple when dimK V= 1. We shall now classify this type of 
simple differential operators. For  this we define: 

s  {a[aEs 3uEK, u~O, a=u-)~u}.  

One verifies without difficulty that s is the subring of  s consisting of  the elements 

~ o + ~ t + ~ t 2 + . . .  (c~Ek, ~0EZ). 

In the sequel s is considered as a subgroup of  the additive group of  s (resp. K). 
When aEK, we denote by [a] the class of  a modulo s 

Now let e be a generator of  our one dimensional vector space V. Then De=ae 
for some aEK, and we call [a] the type of D, notation: [D]. This is a correct definition. 
For if e' is another generator of  V as a K-vector space, we have e'=ue(uEK, u ~0), 
whence 

De" = O(ue) = (~u)e + u De = (~u)e + uae = (a + u- l  Ou)e ", 
and 

[a+u-lOu] = [a]. 

When D (resp. D ' ) i s  a differential operator on V (resp. V'), dimx V= dimK V" = 1, 
then (V, D) and V', D')  are isomorphic if  and only if [D]=[D'] .  This is an easy 
consequence of the definitions; the proof  is left to the reader as well as that of  the 
following simple fact: Every element of  K/s appears as type of  a differential operator 
on a one dimensional vector space. 
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In this way we have obtained a complete classification of  isomorphism classes 
of  couples (V,D), dimK V = I  and D: V-~V differential operator, by their types. 

Finally a remark on types and field extensions. Let K ~ L  a finite extension. 

We define: 
9 ~  = {alaEgL,  EuEL, ur a = u-lOu}. 

Since 9 " c 9 ~  there is an induced homomorphism 

7,: K/9" ~ L/9"L 
defined by 

7, ([a]) = class of  a modulo 9 2 ,  when aEK (and hence EL). In general 7, is 
not surjective and not injective. For  instance take L=k((s)), sZ=t. Then 9 ~  is the 

subring of  9 L consisting of  the elements 

~o~-~ls+~2s2+. . .  (~iEk, 2/~0EZ). 

Now the class rood 9"  of  �89 is different f rom 0, whereas 7, ([�89 On the 
other hand the class of  1/sEL rood 9 ~  is not in the image of 7,. 

In the special case of  L=U((s)), kck"  finite, sin=t, it is not difficult to see that 

Let again  V be a one dimensional vector space over K and D: V-~ V a differen- 
tial operator. Then it may easily be verified that 

7,([D]) -= [DL], 

where [DL] the type of DL is defined as an element of  L/9  L in an evident way. Using 
the above example it is not difficult to construct non isomorphic differential oper- 
ators on V which become isomorphic over an extension field L of  K. 

e) Semisimple and diagonalizabIe operators 

Let D: V ~  V be a differential operator. We shall call D semisimple if V is a 
semisimple K(A)-module,  i.e. (cf. [5], w D6f. 3) if the following equivalent condi- 
tions hold: 

(i) V is a sum of simple submodules. 
(ii) V is a direct sum of  simple submodules. 
(iii) Every submodule of V is a direct factor. 

Condition (iii) is obviously equivalent to: 
(iv) To every K-subspace W of  V, invariant under D, there exists an invariant 

complement, i.e. a K-subspace W" of V, invariant under D, such that V =  
= W +  W" is a direct sum. 
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Examples of semisimple differential operators are diagonalizable operators. 
(V, D) is called diagonalizable over K, when V is a direct sum of K(A)-submodules 
which are one-dimensional over K (and hence simple). This is equivalent to say- 

ing that V admits a K-basis (el, ..., e,) such that Mat (D, (e)) is a diagonal matrix. 

Proposition. For any differential operator D': V ~  V and finite field extension 
K c L  the following conditions are equivalent: 

(i) D is semisimple. 
(ii) D z is semisimple. 

Proof.-(ii)=~(i). Let W c  V be an invariant subspace, and choose a K-basis 

( e l ,  . . . ,  en) of V such that el, ..., er generate W. Then 

where A and B have r rows, B and C n r columns and all the matrix elements 
are in K. 

By extension of scalars we have WLc VL invariant under DL, and by (ii) there 

exists a L-subspace Z of  V~ invariant under D L and complementary to WL. We 
can find u~j E L such that: 

f, + 2 ?  ( ) : e i j = l u y i e  y r + l  <_-- i = < n 

form a basis of  Z over L. Hence 

Mat(DL,(e l  . . . . .  er, fi+~ .. . .  , fn)) = T-~ [O cI  T+ T - I  OT 
% ]  

where 

T =  I10 U I,  U = (ujO. 

On the other hand we know that the matrix of  DL with respect to that basis looks 
like 

Consequently 
A.= P, C = Q ,  AU+B+, .gU= UC. 

Taking traces with respect to K c L  in the last equality, we find 

AV+ B + OV = VC, 
where 

1 
(Vji) -~- V : .  [L ". K ]  TrLIK U 
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is a matrix with elements in K. (Notice that 3 commutes with Tr; see below) A 
simple computation shows at one 

Mat(D,  (el . . . . .  e ' ) ) =  [A 0},  

when 
' (1 ) ei = e~ ~ i _~ r 

" ~ "  e ( r + l ' < i ~ n ) .  ei  ~ e i ~  j=lIJji j -~ - -  

This proves that V= W + W ' ,  W '=~ .= ,+IKe~ ,  is a direct sum of invariant 
subspaces. 

(i)=~(ii) We first reduce the statement to the special case of L/K finite Galois 
extension. Let M be a finite Galois extension of  K containing L. Since we know 
already that that (ii) implies (i), it suffices to prove that D semisimple implies D M 
semisimple. So there is no restriction in assuming L/K Galois. 

We shall now show that VL as a left L(A)-module has no radical. Since V L 
is an artinian L(A)-module, this will show that V L is semisimple as a L(A)-module 
(cf. [5], w n ~ 4, Th6or6me 4.) 

For  any a E Gal(L/K) we have 

(1) DLO(17@ 1) = (a |  1)oDL, 

where 
a |  VL--*V L 

is the K-linear automorphism, defined by 

( 1 7 | 1 7 4 1 7 4  (a~L, v~V).  

In order to prove (1), we notice that 

( D  L o (t7 | l)) (a | v) = O L (17 (a) @ v) = 017 (a) @ v + 17 (a) | Dr, 
and 

((17| 1)ODL) (a| = (17| 1) (Oa|174 = tr(Oa)|174 

Hence (1) will follow from the relation 

017 = 173 

(both members operating on L), and this relation holds, for 17-i~17 is a derivation 
on L extending 3 to L. 

Let W be any/_~subspace of V L invariant under D L (or - -  what comes down 
to the same - -  a L(fl)-submodule of VL). When 17EGal(L/K), it follows from (1) 
that &N1)  (W) is also an L-subspace of VL invariant under DL; if, moreover, W 
is maximal in the set of  subspaces of V L invariant under DL and different f rom 
VL, then (17| is also maximal. So it follows at once that R=Rad(VL) is an 
Lsubspace  of  V L invariant under all o-| 17EGal(L/K). It  is well known (cf. [7], 
Chap. X) that in these circumstances R "comes" from a subspace of V i.e. there 
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exists a K-subspace U of  V invariant under D such that R = L  | U. Since we have 
assumed D to be semisimple, there is a complementary invariant subspace U" :V= 
= U+ U" direct sum, whence 

VL = UL ~- U;~ 

direct sum, and UL is the radical of  V z (considered as a left L(A)-module). Now 
it follows f rom ([5], w Prop. 3, Cor. 3) that UL=O. This concludes the proof.  

We can now state our principal results: 

Theorem L l f  D: V ~  V is a differential operator, then there exist maps S, N: V ~  V 

satisfying: 

(i) S is a semisimple operator. 
(ii) N is a nilpotent K-linear map. 
(iii) D = S + N. 
(iv) S and N commute. 

Moreover, there is only one pair S, N of maps satisfying these conditions. 

Theorem IL D: V ~  V i s a  semisimple i f  and only i f  Dz : VL ~ VL is diagonalizable 

over a finite extension L o f  K. 

" I f "  is obvious f rom the preceding proposition and our observation that diag- 
onalizable differential operators are semisimple. 

We conclude this section by a remark on eigenvectors. As an immediate result  
of  the theorems we have: 

Corollary. l f  D: V ~  V is a differential operator, then there exists a finite extension 

K ~ L  and an eigenvector o f  Dz i.e. an element vC VL different f rom 0 and an element 

a E L such that DL v = av. 

I t  would be interesting to have a direct proof  of  the corollary. For in that case 
the proofs of  both theorems could be simplified considerably. 

2. A splitting lemma 

In this section we prove a fundamental lemma which is well-known in the  
literature (cf. [6], Chap. IV, Theorem 11, 1). 

In addition to the notations introduced earlier we shall write 

q: positive integer. 
Dq: k-linear map A-+A satisfying Dq(ae)=(tq(d/dt)a)e+aDqe all a ~ 3 ,  eEA. 
~o : A-~7t = A/tA,  canonical map. 
6: A ~ A ,  k-linear map induced by Dq. 
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Lemma. Let 71 be the direct sum of  two k-subspaces At ,  As which are invariant 
under 6, and suppose that the restrictions 61= 6 [~, 63 = 61~ don't have common eigen- 
values (respectively, in the case q = l ,  ~-/~1~1, 2, ..., i f  ~ is an eigenvalue of  6a 
and B an eigenvalue of 63). 

Then A is the direct sum of  two free submodules A 1 and A2, invariant under 
Dq, and such that ./ll--go(A1); A2=~o(A2). 

Moreover, A~ and As are uniquely determined by these properties. 

Proof. Let (el . . . .  , e,) be a basis of  A such that (r (eO, ..., r (resp. (r 
.... r (e,))) is a basis of-dl  (resp. of-']2). When 

Mat (Dq, (el . . . . .  e,)) = {R Q } 

(P, Q having r lines and P, R r columns), we have 

Po Qo} 
Mat (6, (~o (el), ..., ~o (e,))) --- Ro So ' 

where Po etc., is obtained from P by replacing every element by its class mod tf3. 
Since -']1 and -']2 are invariant by 6 we have 

Ro = Qo - 0, 

and Po, So have no common characteristic value (resp., ... if q--1), for these are 
the matrices of 61 resp. 63. 

We try to find another s (f~ . . . . .  f , )  of A, where 

: Z T = l ' j i e j ,  

and the matrix T=  (t~) has the following structure 

(I, indicates the n•  identity matrix), and such that 

I f  we succeed in finding T in such a way that X and Y have their elements in ts 
we see that q~(e~)=~o(f~) and that the submodules of A1 resp. A2 generated by 

,(fx, . . . , f , )  resp. (.1",+1, . . . , f , )  have the desired properties. 
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In order to find such X, Y we develop all matrices in series of  powers of  t, 
the coefficients beLlg matrices with elements in k, 

P = p o + P l t - L . . .  

S = S o + S i t +  ... 

Since 

Q = Q l t +  ... 

R = R ~ t +  ... 

X = X ~ t +  ... 

Y =  Y~t + ... .  

1 d 
Mat  (Da, ('f~, ... fin)) = T-~  Mat (Dq, (e~, ..., e,)) T +  T -  t q ~ T, 

we must have 

d 

which leads to the following set of  equations 

P - Q Y =  U 

S + R X  = V 

d 
tq--dT X + P X - -  X V T  Q = o 

d 
tq--~ - Y +  S Y -  Y U  + R = 0 

for the unknown matrices X, Y, U, V. These equations admit a solution if X and 
Ycan be found satisfying 

d__~_ X + P X -  X S -  X R X -  Q = 0 
~ t  

(13 
d 

tq-~- Y+ S Y -  Y P -  YQ Y +  R = O. 

First suppose that q > l  and insert the power series developments into the equa- 
tion (1). Comparing coefficients o f  t we find 

P o X l -  X~ So + Q~ = o. 

Now, since P0 and So have no eigenvalue in common,  this equation in X1 can be 
solved (uniquely). When m > l  and X1 . . . .  , X,o_~ have already been found, then 
equatin~ coefficients o f  t '~ in (1) we find that P , X _  X_ S,  is eoual to an exoression 
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from which we deduce 

containing known matrices and Xo, )(1, ..., Xm-1.  It is then possible to find Am. 
The equation for Y can be treated in the same way. So the "existence part"  of  the 
lemma has been proved in the case q > 1. 

Finally, when q =  1, we have to solve in the m-th step the equation 
(Po + m- I,) X ,  - X ,  So = expression containing X 0, ..., X ,  and known matrices. 

Now P o + m I ,  and So have no eigenvalue in common in virtue of  the hypothesis 
on 61 and 6s in this case. 

In order to prove the uniqueness of the splitting we suppose that another direct 
sum decomposition 

A ' ' = A I + A ~  

is given, and that it has the properties of the lemma. Let (gl, ..., go) be an 9-basis 
t 

of A such that (gl, ---, gr) is a basis of  A~ and (gr+l, ..., g,) is a basis of  A s. Since 
A~ and A~ are invariant under Dq, we have 

/ Mat ( D q ( g l  . . . . .  g"))  = 0 W ' 

where X (resp. W) is a matrix with elements in 9 .  On the other hand, (f~, ...,f~) 
and (g~ . . . .  , g,) being both bases of A, there exists a relation 

(g~ . . . .  , g,) = (fa, .--,f ,)  G ' 

wher the matrix has its elements in s and is invertible over s Now using the fact 
that ~o (A1) = ~o (A~), ~o (As) = ~p (A~), we find 

Fo = G0 = O. 

Connecting the two matrices of  Dq with respect to both bases, we have 

+ tq~- t  (G H}---- /E  F ) ( 0 W O / ,  

d 
(2) F Z  - UF = tq ~ F 

d 
G W -  VG = t~--d-i- G. 

Uniqueness is proved when we have shown that F = G = O .  Let us show that F=O 
(G=O can be shown in the same way). We insert the power series developments 

F = F l t + F 2 t 2 + . . .  

u =  Vo + Vl t  + ... 

Z = Z~ + Z , t  + ... 
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into (2). First  assume that q > 1. Compar ing  coefficients o f  t m we find 

(3)  F~Zo- UoF1 = 0, 

and,  if m =~ 2, 

(4) FmZo UoFm = L(F1 . . . . .  F,,-1),  

where L is a "linear expression" in F x, ..., F, ,-1 with known matrices as coefficients 
and without  constant  term. N o w  Zo is the matrix o f  5~ with respect to (~o (g,+a),.. .  

..., ~o(g,)). Hence Uo and Zo have no eigenvalues in c o m m o n  and, consequently, 
(3) has Fx--0  as its unique solution. Then applying (4) for  m-=2, 3, ... sucessively, 

we deduce F 2 = 0 ,  F3---0 . . . . .  This terminates the p r o o f  in the case q > l .  The simple 
modifications to be made  in the case q-~ 1 are left to the reader. 

3. Existence of  a decomposition over an extension of  K 

Using the notat ions o f  the preceding sections we are going to prove:  

Proposition. There exis t  a f ini te  f ie ld  extension K c L  and maps S, N:  VL-~ V L 

such that 

(a) S is a diagonalizable differential operator. 

(b) N is a nilpotent L-linear map. 

(c) D L =  S + N .  

(d) [S, N ] = 0 .  

Remark .  It will be evident f rom the p roof  that  K c L  is a composi t ion o f  exten- 
sions o f  the type described in section 1.b. Hence K c L  itself is an extension of  that  
type. 

Proo f  Induct ion  on n :  dim K V. The proposi t ion being trivial for n = 1, we sup- 
pose n > l ,  and assume that the proposi t ion holds for  differential operators on 

vector spaces o f  dimension -<n. 

We use the fact that  a cyclic vector for  D exists [cf. section 1, c], i.e. there exists 
e~ V such that  e, De . . . . .  D n - l e  are linearly independent over K. 

Let ax, . . . ,  a, E K b e  such that  

(1) 

and put  

D n e - t - a l D n - l e +  . . .  - ~ a n  e = O, 

SOP/ }" 
l~_ i~n  - -  l~l 
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where v is the valuation on X - - k ( ( t ) ) ( v ( t ) = l ) ,  m is a positive integer, lEZ and 
l and m are relatively prime. 

This definition is not  correct  only in the case that  all a~ vamsh. However,  in 

that  case D has a singularity o f  the "first k ind" and the argument  o f  (i) below can 

be used to obtain the desired result. 
N o w  consider the extension K ' = k ( ( s ) )  of  K, 'where  s is an m-th roo t  o f  t, 

and put  V~;,-~K'|  V, D K, extension of  D to IRK,. In  V K, we take as a K'-basis  

( f l ,  - . . , f , ) ,  where 
f l  = s t ( i -1 )D( i -1 )e  

With respect to this basis we have 

where 

(i = 1 . . . . .  n). 

[0 0 b. I [0 0 I 

I I+11 ` I D K, = l s - - ~ s + S - t  1 0 m 

bi (s )  = sUai(s  m) (i = 1 . . . .  , n). 

Let v" be the valuation on K ' ( v ' ( s ) - - l ,  w h e n c e v ' ( t ) = m ) .  Then by definition o f  
m and l 

(2) ~v" (bl) - il + m y  (ai) >- 0 

all i, and equality fo r  at least one value, i0 say, o f  i. 
N o w  we distinguish two cases: 

(i) l<=0. This implies v(a3>-O all i, and consequently our  D has a singularity 
o f  the"f i rs t  k ind"  i.e. 

d 
D = t - - ~ - - c A  

(with respect to a certain K-basis (el . . . . .  e,) o f  V) and A has its elements in ~ .  
Since this type o f  operator  has been studied at lenght in the literature (cf. [6], Chapter  
I I  and Chapter  V, sec. 17), we shall restrict ourselves to some brief  indications. 

First o f  all, develop A into a formal  power  series 

A = A o + A a t + A o t 2 + . . . ,  

the A E being matrices with elements in k. N o w  if the eigenvalues o f  A 0 d o n ' t  differ 
by positive integers, it can immediately be verified that  the equation 

T - 1 A T  • T - l O T  = Ao,  
where 

T =  I +  T l t +  T 2 t 2 + . . .  
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is a formal power series (Ti being matrices with elements in k), has a solution. This 
implies the following fact. 

Mat (D, ( f ) )  = A0, 

where ( f )  is the K-basis of  V defined by (f~, . . . ,f~)=(e~ . . . . .  en)T. Defining S and 
N by their matrices with respect to ( f ) :  

Mat (S, ( f ) )  = A~, Mat  (N, ( f ) )  --- Ag, 

where A~ (resp. Ag) denotes the semisimple (resp. the niltpotent) par t  of  A0, one 
verifies that S and N have the properties of  the proposition. Remark  that S is diag- 
onalizable over k'((t)) ,  when k '  is an extension of  k containing a11 eigenvalues o f  
A o, so that A o can be assumed in Jordan canonical form. 

In the general case let al . . . . .  a, be the different eigenvalues of  A o. Then after 
making a finite extension k '  of  k and a "constant"  change of  bases ( e ) ~ ( f )  O.e. 
with matrix elements in k ' )  we can assume Ao in the form 

~ 1 A0 = .4~ ' 

where A o (resp. A0) is a square matrix of/~ (resp. n - / 0  rows, # being the multiplic- 
ity of  al ,  and where Ao has a I as its unique eigenvalue. This implies that as, ..., a, 
are the different eigenvalues of  Ao'. Taking ( f ' ) = ( t f l  . . . . .  tfu,f~+~, ... ,f~) as a new 
basis, it can easily be verified that 

Mal (D, ( f ' ) )  = g o + B i t +  .... 

where the eigenvalues of  B0 are a l +  1, a~, ..., a,. 
By repeating this procedure a finite number of  times we find in the end a finite 

extension field k0 of k and a basis of  Vko~o) , such that the constant term in the 
development of  the matrix of  D has no eigenvalues which differ by an integer#O. 
Then we are back in the situation treated above. 

(ii) l>0 .  We try to apply the Lemma of section 1. With respect to the basis 

(f l ,  --. ,fn) of  Vr, we have 

1 i+1  d stDK, = E -- m S  - - ~ + B o + s C ,  

where 

a o  = 

[0 0 -b~(O) l 

11~ o I 
I0 0 1 -b~(O) 
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and  C is a matrix with coefficients in k [[s]]. Now suppose that B0 has at least two 
distinct eigenvalues. Then as in the case (i) we can find a finite extension k c k "  

and a basis (g~, ..., g,) in V k,(ts)) such that the extension F of E to V k,tts)) has the 
~form 

1 I+1 d F = -~ S --d-~ + G + s H.  

where 

is a matrix with elements in k ' ,  H a matrix with elements in k '  [[s]], G" (resp. G") 
a square matrix having r (resp. n , r )  rows, l ~ r ~ n - 1 ,  and G' and G" have no 
common eigenvalue. Now we apply the lemma of  the preceding section to the 
differential operator F, taking q - - l + 1  and A the k ' [ [s]]-module generated by 
(gl . . . . .  g,). Then we conclude as in (i). 

Finally we treat case of  B 0 having only one eigenvalue fl (automatically: fl E k). 
Since b~o(0)r we have f i e 0 ,  and consequently all coefficients of  

X " + b ~ ( O ) X " - ~ +  . .  +b . (0 )  = (X-/~)"  

are different f rom 0. In view of  (2) this implies 

i l + m v ( a i )  = 0 all i. 

Since by definition l and m are relatively p r ime  we have 

m =  1, s =  t, v(al) = - i l ,  b i =  tilai, all 
and 

d 
D : t - - ~ - T t - Z B o - - t - z + l C  

with respect to the basis (f~,  . . . , f , ) = ( e ,  t i D e  . . . . .  t ( " - l ) l D " - l e )  of V. Now define 
the differential operator D* : V ~  Vby 

D ~ = D - f i t - ~ L  

Obviously it suffices to prove our proposition with D replaced by D*. It can easily 
be proved by induction that 

O m = Z m = o p m t - i l D * ( m - i ) ,  

where p~" is a polynomial in t and 
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Using these formulae, we see that e, D*e  . . . .  , D*C"-l)e are linearly independent 
over K a n d  that  

D*"e+a~  D * " - l e  + ... +a* e = O, 
where 

a* = t - - i l c i ~  

and 
~ i  n -hg  

Ci ~" .l..a n = o P i - h  ~'h . 

So we see that cl is an element of  k [[t]] and that 

consequently 

= 0 ,  

Now we apply the preceding chain of  arguments to D* instead of  D. This leads 
to a splitting in all cases except one, viz. v(a*)= - l * i  and l*>0 .  However, by (4), 
we have l * < l  and the proof  can be completed by induction on I. 

4. Uniqueness in a special ease 

In this section we shall prove 

Propostion. Let  the differential operator D: V ~  V be sum o f  a diagonalizable 

operator S and a nilpotent K-linear map N,  and let S and N commute. Then S and 

N are uniquely determined by D. 

We shall first investigate S. Considering V as a K(d) -module  by putting 

A x  = S x ,  

we see that V is a direct sum of simple submodules which are one-dimensional 
vector spaces over K (cf. section 1, d). These are characterized up to isomorphism 
by their types ~oEK/s Now let V, the isotypical component  of  V, i.e. the (direct) 
sum of the submodules of  type ~o. Then we have 

v = 

and this is a direct sum ([5], w no. 4, Proposition 9). 

As a first step in the proof of the Proposition we show that the subspaces V,, 
are uniquely determined by D. 
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Lemma. (Same hypotheses as in the Proposition.) For a~K define 

E.= {xlx6 V and (D-a)mx=O for some positive integer m}. 
Tha. 

KE. = VIal 

and this subspaee is invariant under D, S and N (for shortness'  sake we write D--a 
for  the map x ~ D x - - a x  of  V into itself). 

Proof. (i) Vt ,]cKE ~. To see this it suffices to show that W c K E , ,  where W 
is a one dimensional subspace o f  V, invariant under  S, and of  ,type [a]. So we 

may  assume, that  W=Ke,  and Se=ae. Hence 

( D - a ) e  = ( S - a ) e  + Ne = Ne, 

and since N and D - a  commute  

(D--a)~e = (D--a)Ne = N(D--a)e  = N~e, 

etc. This shows erKE, ,  and W c K E .  as a consequence. 
(ii) We next show 

KE. c V[.] . 

I t  sullaces to show that  (D--a)mx=O for  some m implies xE Vial. Let r be a positive 
integer such that  N "+z = 0. Then 

[m-I/r} 
(S--a)m+rx : ((D--a)--N)m+'x = (D--a)m+'x-- N(D--a)m+r-zx--k 

In+r) +. . .  q- N r ( D - - a )  mx :-  O. 
r 

Since S is a diagonalizable we can write 

x = xz+ . . .  +x. 

according to a direct sum decomposi t ion o f  V into one-dimensional  subspaces 
V i invariant  under  S. F r o m  this we see that  

( S - a ) t x i = O  (1 -----i<-n) 

for  some positive integer 1. N o w  for  fixed i suppose x~ # 0, choose I as small as possi- 
ble and write y = ( S -  a)*-Zxi. Then 

y~Vt,  y # O, ( S - a ) y  = O. 

Hence, when Sly ' has type q,, we deduce [a]=q~, which implies that  x belongs to 
the sum o f  those V~ having type [a], i.e. to  Vt, ]. 
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(iii) The invariance o f  Vt, 1 under  S is evident. In order  to show the invar iance 
under  N and D = S + N  it suffices to prove:  I f  S x - b x ,  and [b ] - [a ] ,  then y =  
=N(cx)CVE, J for all c~K. N o w  this is obvious for  c - 0 ,  so assume e ~ 0 .  Then 
we have 

Sy = SN(cx) = NS(cx) = N((~c)x + cbx) = (b + c-lOc)N(cx) = (b-}- c - l O c ) y ,  

and 
[ b ~ - c - 1 0 C ]  : [ a ] ,  

whence y 6 Vr. 1. 

Proof of  the Proposition. Let  D - S "  + N" be another  decomposi t ion  of  D, satis- 
fying the hypotheses  o f  the Proposit ion.  w e  can write 

v = v ;  (q, 

a direct sum o f  isotypical componen t s  with respect to S ' .  However ,  by the L e m m a  
we know tha t  

V M = K E . = V t ;  J (all a ~ K )  

and it suffices to show that  S and S" operate  in the same way on these subspaces.  
Restricting D, S, N, S ' ,  N" to Vr, ~, replacing D by  D - a ,  S by S - a ,  S" by S '  a, 
and chaning our  notat ions,  it suffices to prove  the Proposi t ion under the special 
assumption,  tha t  V is the isotypical componen t  (with respect to S and S ' )  corre- 

1 / sponding to the type 0. This means tha t  K-bases (ca, . . . ,  e,) and (el,  ..., e,) o f  V 
exist such that  

M a t  (S, (e)) = 0 and  Mat  (S ' ,  (e')) = 0. 

Abusing nota t ion  we still denote  by  N (resp. N ' )  the matrix o f  N (resp. N ' )  with 
respect to (el,  . . . ,  e,) (resp. (el, . . . ,  e~)). Since S and U commute ,  we see that  U 
is a constant  matr ix,  and the same holds for  N ' .  

When T is the matr ix  connect ing the two bases, i.e. 

(e~, ... ,  en) = (el . . . .  , e,) T 
we have 

(1) N '  = T - 1 N T  = T-lOT. 

We develop T i n  a Lauran t  series 

T =  Tqtq+ Tq§ .... 

where q is an integer and all Ti constant  matrices. F r o m  (1) we deduce 

qT~tq+(q+ l ) T q + x t q + l T  . . . .  (TqN'--NTq)tq+(Ta+IN'-NTq+I)ta+I + .... 

and compar ing  coefficients o f  equal powers  o f  t we find 

T m N ' - ( N  + ml) Tm= O. 
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Since for  m # O ,  N" and N + m I  have no c o m m o n  eigenvalues, it follows that  Tm=O. 

On the other hand  T is invertible, whence T =  To is a constant  non  singular matrix. 

I t  follows that  S and S '  annihilate the same K-basis o f  V, whence S =  S' .  This 
completes the proof.  

5. Proof of the Theorems 

As before K = k ( ( t ) ) ,  V a n-dimensional vector space over K and D:  V ~ V  

a differential operator.  We are going to  prove Theorem 1 of  section 1. For  the time 

being we replace "semisimple" by "diagonalizable over a finite extension o f  K" .  
Applying the Proposi t ion o f  section 3 we know that  there exist a finite exten- 

sion K c L ,  a diagonalizable operator  S:  V L ~ V  L and a nilpotent L-linear map 

N: V L ~ VL such that  

DL = S 4- N IS, N] = S N -  N S  = o. 

When L c M  is another  finite field extension, we can extend D, S, N to V M =(VL)M 
and find 

DM = SM+ NM, [SM, NM] = O. 

S u  being diagonalizable over M and N u a nilpotent M-linear map o f  V M. We 

can take for  instance M such that  K c M  is a finite Galois extension containing L. 
�9 m 

Moreover ,  it is easy to see that, if  L = k ' ( ( t / t ) )  and k c k "  finite, then M can be found 
having the same structure. 

F r o m  now on we shall assume that K c L  is a finite Galois extension. 

N o w  we fix once and for all a K-basis (el . . . . .  e,) of  V, which shall also be used 
as a L-basis in V L. Write 

A = Mat  (D, (e)), 

B = Mat  (S, (e)), 

C = Ma t  (N, (e)), 

so the elements o f  A (resp. B, C) are in K (resp. L), 

A = B ~ - C  
and  

A = a B + a C ,  

when a E Gal (L/K). Denote  by "S the differential operator  on V L having aB as 
its matrix with respect to (ea, ..., e,,). In the same way let "N be the L-linear map  

o f  V L having aC as its matrix with respect to (et, ..., e,). Obviously ~S is diagonaliz- 
able, ~N nilpotent, and [~S, ~N]=0,  whereas D = ~ S + " N .  Applying the Proposi-  
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tion of section 4 we conclude 
" S =  S, " N = N .  

Hence aB=B, tzC=C all o-EGal (L/K). This proves that all elements of  B and C 
are in K, so S and N are defined as maps of  V, and the properties (i), (ii), (iii) and 
(iv) of Theorem I are evident. 

Finally we prove uniqueness. Suppose (S, iV) and (S',  N') are two couples of 
maps of  V having the properties (i), (ii), (iii) and (iv) of  Theorem I. There exists 
a finite extension K c L  such that S and S" extend to diagonalizable differential 
operators SL and S~ of  V z. We then have  

DL = SL + NL, DL = S~ + N'L 

(SL, NL) and (SL, NL) having the properties of  the Proposition of  section 4. We 
conclude SL-~SL and NL=NL, whence S = S ' , N = N ' .  This finishes the proof  of 
the Theorem I, if "semisimple" is replaced by "diagonalizable over a finite extension 
of K".  Next we prove Theorem II. Theorem I as stated i n  section 1 follows at once 
from Theorem II and the "diagonalizable" version just proved. 

All we have to show is  this: if D: V~  V is a semisimple differential operator, 
D is a diagonalizable over a finite extension L of  K. 

Anyway, by the above arguments we know that D =  S §  where S is diagonal- 
izable over a finite extension K c L ,  N is a nilpotent K-linear map and S and N 
commute. We shall show that D =  S, For  this it is sufficient that DL= SL. So we 
may assume that S is already diagonalizable over K. When r is a positive integer 
satisfying N" = 0, we put 

V i = K e r ( N  r-i) ( i = 0 , 1  . . . .  , r ) :  

Then we have a decreasing chain of  K-linear subspaces of  V 

v =  v 0 = v ~  ... ~ V ,  = (0), 

and since S and D commute with N we have 

Assume that 
S(Vi)cVi, D(Vt)cV/, NVicVi+I. 

NVi+I = 0 

which is correct if i=r -1 .  We shall show that NVi=O. Replacing V by V~ we may 
assume that N2=0.  (Notice that Pie, is semisimple and Sin ̀  diagonalizable.) 

We make some further reductions. Replacing V by an isotypical component 
of  type ~p with respect to S, we may assume that V itself is already isotypical of  
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type q~ = [a]. As D-aI  is dearly semisimple, we can as well assume that S is isotypical 
o f  type 0. So there exists a basis ( e l ,  . . . ,  en) of V such that Sei=O (1 <=i<=n). Abus- 
ing notation we still denote by N the matrix of  N with respect to (el . . . . .  e,). Obviously 
it is a constant matrix. Making a "constant"  change of  basis we may finally assume 
that N is composed of blocks along the main diagonal  having one of both shapes 

(0, [~ 
The proof  will be finished when we have shown that the latter block in fact does 
not appear. So we only have to consider the differential operator 

o:o+/~ '0/ 
of  K 2 into itself and to show that it is not semisimple. I f  D were semisimple, the 
subspace Ke~((el, e2) being the canonical basis of  K S) would have an invariant 
complement  W, necessarily of  dimension 1. I t  is easy to see that DIw is simple of 
type 0. So W contains an element f ~ 0  which satisfies Df=O. When f=fle~+f~e2, 
we have 

Ofl+f~=O, Of 2=O. 

But these equations have f ~ = f ~ = 0  as unique solution. This is a contradiction. 

6. Applications 
a. Jordan form 

Let again be D: V ~  V a differential operator and V an n-dimensional vector 
space over K=k((t)). According to Theorem I we can write D=S+N,  where S 
is a semisimple differential operator, N a K-linear nilpotent map and S commutes 
with N. In virtue of  Theorem I I  there exists a finite extension L of K such that SL 

m 

is diagonalizable. We may assume L=U((t/}-)) , kck"  being a finite extension and 

m a positive integer. We shall denote"(} by s. 

We write V L as the direct sum of  its isotypical components V~I, ..., V~ with 
respect to S. Now consider one isotypical component  V~. Let aEL be a polynomial 
in 1/s such that  [a]=~o. Then there is a L-basis (el . . . . .  e,) in V~, such that Mat  
( S l y ;  (e))=aI. Write Ne to denote Mat (NIv~, (e)). Since N(V~)c V~ (cf. section 
4, Lemma) and S and N commute,  we have 

9N~ = O. 
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So N e is a constant nilpotent matrix. By a "constant"  change of basis in V,~ which 
does not affect the matrix of  Sw, we can get 

0 ~ 0 O] 

I J N e =  O ,  

!0 ol 
t he  asterisks denoting 0 or 1. The matrix representation of  Dw. is 

m ~ - +  �9 , 

and proceding in the same way with all isotypical components one gets a matrix 

1 d 
m S - ~  - •  

representation 

ft 1 �9 0 

0 al 

ii 
�9 ~ a 2  

z .all 
al . . . . .  a~ being polynomials in 1/s and ai--ajE~3" L implying i=j. 

This result should be compared with [1], w Theorem I. 

b. Characteristic polynomial 

Using the above notations we write p(cp) to denote the principal part  of  a, 
where aEL represents ~o. We shall show that the characteristic polynomial 

c (x) = 1-/9 ( X - p  (~))~ c~, 

q~ running through the different types of  SL and v(~p) indicating dimL V~,, has its 
coefficients in K. 
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Let ~o 1, .. . ,  qh be the different types, represented by al ,  ..., at, respectively, 
as before. Let K c M  be a finite Galois extension containing L. Then al ,  ..., at rep- 
resent the types of  S u.  Hence, there is no restriction in assuming K = L  Galois. 
When trEGal (L/K), a(V~) is an isotypical component  of  VL. So we have a(V~,,)= 
= V~s for some j and a(a~)-ajEs L, implying a(p(q)~))=p(~os) and 

v(~p~) = dimL V~, = dimr. tr(V~o,) -:- dimL V~s : ~(~oj) .  

This shows that p (~o 0 . . . .  , P ((Pt) are permuted by all Gal (L/K), and that the multi- 
plicities are conserved; consequently e (X) E K[X]. 

It  is easy to see that e(X) depends only on S (and not on the extension L). 
Since S is uniquely determined by D there is no objection to calling e (X) the charae- 
teristie polynomial of  D. 

c. Splitting field 

We try to find the smallest extension K c L  such that S L is diagonalizable. 
In order to simplify the investigations we shall assume here that k is algebraic- 

ally closed. It  is well-known (cf. [7], Chap. IV, w Prop. 8) that [L:K]=m implies 
m 

that K c L  is a cyclic Galois extension, L=K(( I / t ) ) ,  and a: s ~ s  is a generator 
m 

of the Galoisgroup (we have put s =  1/7 and ~ primitive m-th root of  unity). 
Using the notations of  a. and b. we first show the follwing: I f  p(qh), ..., P(qh) 

are in K, then S is diagonalizable over K. 
Since k is algebraically closed, we see that al , . . . ,  at EK. As before for any 

zEGal  (L/K) we have "c(V~i)=V~s for some j(l<=j<-l), implying z(a~) ajEs 
However, aiEK, thus z(ai)=ai, whence ai-ajEs n and i:-j,a~ representing (Pi 
and all types (Ol, -.., qh being different. We have shown that the isotypical compo- 
nents are invariant under Gal (L/K); consequently they "come f rom"  invariant 
subspaces of  V, i.e. for every i there exists a K-subspace Wi of  V, invariant under 

D, such that V~,=L | W~. 
Replacing V by W~ we have reduced our assertion to the special case where 

S z is isotypical of  type (p,p((p)EK. Replacing S by S - a I ,  where [a]-~o, we may 
moreover assume that SL is isotypical of  type 0. This means that an L-basis 
( f l ,  . . . , f , )  of  VL exists such that Mat (SL, ( f ) ) = 0 .  We try to find a K-basis 
(el, . . . ,  e,) of  V such that A = M a t  (S, (e)) is diagonal. Let (gl, .--, g,) be any 
K-basis of  V and let T be the matrix (elements in L) connecting to two bases: 

(A,  . . . , f , )  = (gl . . . . .  g,) T. 
Then 

B T + O T  : 0, where B = Mat(S ,  (g)). 
Appliyng a we find 

Ba(T)+Oa(T) = O. 
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These formulas can be considered as expressing the fact that the columns of 7 
resp. (r (T) are fundamental systems of  solutions of  the same system of differential 

equations. So there exists a non-singular matrix P, elements in k, satisfying 

~(T)  = TO. 

As am=l ,  we have Pro=I, and there exist a constant non singular matrix R and 

integers Vl, ..., v, verifying 

P =  R Z R  -1, Z =  0 "" ~v " 

Define 

U = TRgd. W--- . 

�9 0 s - v .  

Then it can easily be verified, that U is invariant under Gal (L/K)  showing that 

U is a (non-singular) matrix with elements in K. Define 

(el, " ' ,  en) -~ (gl . . . . .  gn) U. 

Then the matrix A of S with respect to (el, ..., e,) satisfies 

A = U - 1 B U  • U-I~U 

= W - I R - 1 T - 1 B T R W T W - 1 R - 1 T - 1 , 9 ( T R W )  

= W - l O W  

jO Y1 0 I 
. �9 

-- ]/n 

(We have used the relation B T + O T = O ) .  This proves our assertion. 

Proposition. I f  k is algebraically dosed  and i f  e (X)E  K[X] is the characteristic 

polynomial o f  the differential operator D: V ~  V, a Jordan decomposition (1) exista 

over the splitting f ield L o f  c ( X )  over K. 
m 

Remark  1. Every finite extension of  K being Galois and of  the type k((t/}-)), 

it is obviously sufficient to adjoin to K the m-th roots of t, 1 <=m<=n. In other words 
P 

a Jordan decomposition exists over k((l/t-)), where 

p = l . e . m . { m [ l < = m ~ n } .  

Remark  2. Besides the characteristic polynomial a minimal polynomial re(X)  

of D can be defined in an obvious way. Again it can be shown that m ( X ) E K [ X ] .  
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and a Jordan decomposition already exists over the splitting field of  m (X). However, 
in general degree m(X)<=n is all we know in advance. 

Proof.  I t  suffices to show that  the semisimple component  S of D is diagonalizable 
over L. S is diagonalizable over some finite extension of M in virtue of  Theorem 
II. On the other hand L contains the principal parts of  the types, and so S is already 
diaTonalizable over L as we have just proved. 

d. Invariants 

In [4] invariants ~1, ~2, ... have been defined for the differential operator 
D: V ~  V in the following way. When A ~ V is a lattice with respect to s q is a 
positive integer and D ~ = t q - l D ,  then 

dimk (A + Dq (A) + . . .  + D~ +1 (A))/(A + Dq (A) + . . .  + D~ (A)) 

is independent of  v when v ~ oo. The limit does not depend on A and is denoted 
by Q~. 

We decribe now the relation to the theory developed here, and we give some 
indications of  proofs. 

First suppose that D has a Jordan decomposition (1) over K. We take the basis 
used in this decomposition as a basis for a lattice A. Then it can easily be shown 
that 

Qa = -- ~ "  viv(tq-Xa~), 

where the summation is over those i, 1 <-i<=l, satisfying v( tq- la~)<O (v is the valu- 
ation on K). This leads to the formula 

Qq = sup (--l)(t(q-1)iCi)), 
O~i<=n 

where 
c ( X )  = X" + c ~ X " - I  + ... - r e ,  

is the characteristic polynomial of  D and c0 = 1. It  can be shown that this formula 
still holds if  D has no Jordan decomposition over K. 

I t  can also be shown that the number r defined by N. Katz ([3], Chap. I, Th6o- 
r6me 1.9) satisfies 

In the Jordan decomposition (1) let 

ai~ ai = ato + an + ... + 
S S l~ 

m 

be the term with the highest order pole (aiu#0), and supopse s = l / t  -. Then r - I~ /m .  
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