Some lacunary conditions for Fourier—Stieltjes transforms

Robert E. Dressler and Louis Pigno

Let T denote the circle group, Z the ring of integers and M(T) the usual convolution algebra of measures on T. The Fourier-Stieltjes coefficients $\hat{\mu}(n)$ of the measure $\mu \in M(T)$ are defined by

$$\hat{\mu}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-in\theta} d\mu(\theta) \quad (n \in \mathbb{Z}).$$

Denote by $M_a(\mathbf{T})$ those $\mu \in M(\mathbf{T})$ which are absolutely continuous with respect to Lebesgue measure on \mathbf{T} , $M_0(\mathbf{T})$ those $\mu \in M(\mathbf{T})$ such that $\hat{\mu}$ vanishes at infinity, and $M_s(\mathbf{T})$ the set of $\mu \in M(\mathbf{T})$ which are singular, i.e., concentrated on sets of Lebesgue measure zero.

An increasing sequence $\langle n_k \rangle_1^{\infty}$ with $n_k \in \mathbb{Z}^+$ (the positive integers) is said to satisfy the gap condition (\mathbf{F}_p) , if there is a $p \in \mathbb{Z}^+$ such that

$$\lim_{k\to\infty}\left(n_{k+p}-n_k\right)=\infty.$$

Using a theorem of Mahler which is based on a *p*-adic version of the Thue— Siegel theorem, we prove in Section 1 that finite unions of sets of the form

$$\mathbf{S}_{i} = \{ r^{j} : r \in \mathbf{Z}^{+} \} \quad (j = 2, 3, ...)$$

satisfy (**F**₁). It then follows from an extension of a theorem of Wallen that if $\mu_i \in M(\mathbf{T})$ (*i*=1, 2) and supp $\hat{\mu}_i \subset \mathbf{Z}^- \cup E$ where E is any finite union of sets \mathbf{S}_j then $|\mu_1| * |\mu_2| \in M_a(\mathbf{T})$. Here $|\mu_i|$ is (of course) the usual total variation measure.

In section 2 we investigate a weaker lacunary condition than (\mathbf{F}_p) which we now define:

A subset $E \subset \mathbb{Z}^+$ is said to satisfy the condition (\mathscr{P}) if for every increasing sequence $n_1, n_2 \ldots \in E$

 $\mathbf{Z}^+ \cap \underline{\lim} (E - n_i)$ is finite.

Our main result is that if E satisfyes (\mathscr{P}) and if supp $\hat{\mu} \subset \mathbb{Z}^- \cup E$ then $\mu \in M_0(\mathbb{T})$.

§ 1. Convolution products and gap conditions

A subset $\mathscr{R} \subset \mathbb{Z}$ is called a Riesz set if $\mu \in M(\mathbb{T})$ and supp $\hat{\mu} \subset \mathscr{R} \Rightarrow \mu \in M_a(\mathbb{T})$. The F. and M. Riesz theorem states that both \mathbb{Z}^+ and \mathbb{Z}^- are Riesz sets.

A subset $S \subset \mathbb{Z}$ is said to have property (M), if for any Riesz set \mathscr{R} the union of \mathscr{R} with S is again a Riesz set. Any strong Riesz set S has property (M); see [1] and [4] for examples. Furthermore, it is known that any Sidon set has property (M); see [7] and [8]. Whether or not sets $E \subset \mathbb{Z}^+$ which satisfy the gap condition (\mathbf{F}_p) for some p possess property (M) is an open question. What we do know is the following extension of a theorem of Wallen [10]:

Theorem 1. Let $\mu_i \in M(\mathbf{T})$ (i=1, 2, ..., p+1) with $p \in \mathbf{Z}^+$. Let E satisfy (\mathbf{F}_p) and suppose supp $\hat{\mu}_i \subset \mathbf{Z}^- \cup E$ for all i. Then

$$|\mu_1| * |\mu_2| * \ldots * |\mu_p| * |\mu_{p+1}| \in M_a(\mathbf{T}).$$

Proof. The Theorem is a simple variant on that of Theorem 2 of [6]. The proof is obtained by iterating the method of proof of Theorem 2 of [6]. We leave the details to the reader.

Henceforth we shall refer to (\mathbf{F}_1) as the Faber-gap condition. We make the following observation:

If $E=E_1\cup\ldots\cup E_p=\{n_1< n_2<\ldots\}$ where each E_i satisfies the Faber-gap condition, then we have $n_{k+p}-n_k\to\infty$. Suppose not and say $n_{k_i+p}-n_{k_i}< C$ for some constant C and some infinite subsequence of E. Then there is an E_{i_0} such that for infinitely many n_{k_i} we have that at least two members of E_{i_0} are in the set $\{n_{k_i}, n_{k_i+1}, \ldots, n_{k_i+p}\}$. If n'_{k_i} is the first member of E_{i_0} in this set and m'_{k_i} is the second, then $m'_{k_i} = n'_{k_i} < C$, which contradicts E_{i_0} satisfying the Faber-gap condition.

On the other hand, if $E = \{n_1 < n_2 < ...\}$ satisfies $n_{k+p} - n_k \rightarrow \infty$ for some p then $E = E_1 \cup ... \cup E_p$, where $E_i = \{n_{k_i}: k_i \equiv i \pmod{p}\}$ and each E_i clearly satisfies the Faber-gap condition.

In view of the preceding our next result is therefore somewhat surprising.

Theorem 2. Let E by any finite union of the sets S_j , then E satisfies the Fabergap condition.

Proof. Let $k_1, k_2, ..., k_n$ be distinct integers greater than 1. Let $\mathbf{K}_i = \mathbf{S}_{k_i} = \{r^{k_i}: r \in \mathbb{Z}^+\}$ for i = 1, 2, ..., n. Put

$$E = \bigcup_{i=1}^{n} \mathbf{K}_{i} = \{s_{1} < s_{2} < \dots\}$$

We prove that E satisfies the Faber-gap condition.

75

Given $x \in \mathbb{Z}^+$ we claim there is an a_0 such that if $s_p \in E$ and $s_p \ge a_0$ then $s_{p+1} - s_p > x$. By a theorem of Mahler [3] it follows that if $(z, w) \le x$, $ab \ne 0$, $g \ge 2$, and $h \ge 3$ (or $h \ge 2$ and $g \ge 3$) then there is an integer $N^{g,h}$ such that the largest prime divisor of $az^g - bw^h$ is greater than x if max $\{|z|, |w|\} > N^{g,h}$. Also there is an integer c such that if $q^2 \ge c$ then $q^2 + x < (q+1)^2$.

Let (k_i, k_j) run through the collection of all ordered pairs where $k_i > 2$ or $k_j > 2$. We thus generate a collection of forms

$$z^{k_i} - w^{k_j}$$

and corresponding to these forms we obtain the numbers N^{k_i,k_j} .

Let $k_0 = \max \{k_1, \dots, k_n\}$ and let

$$a_1 = \max\left\{ (N^{k_i, k_j})^{k_0} \right\}$$

Finally let $a_0 = \max \{c, a_1\}$.

Now, if $s_p \ge a_0$, say $s_{p+1} = l^{k_i}$ and $s_p = f^{k_j}$. Suppose $k_i > 2$ or $k_j > 2$. If $s_{p+1} - s_p = x' \le x$, we will derive a contradiction. Set d = (l, f). Since $l^{k_i} - f^{k_j} = x'$ we have d|x' and so $d \le x$. Then

$$f = s_p^{1/k_j} \ge a_0^{1/k_j} \ge ((N^{k_i, k_j})^{k_0})^{1/k_j} \ge N^{k_i, k_j}.$$

It then follows that the greatest prime divisor of x' is greater than x, which is a contradiction.

Finally, if $k_i=2=k_j$, then since $s_p \ge c$ we have $s_p+x < s_{p+1}$ which completes the proof.

Remark. A refinement of the proof of Theorem 2 allows us to replace the set $\mathbf{S}_{k_i}(k_i>2)$ by any set $\bigcup_{a=1}^c \{ar^{k_i}:r\in \mathbf{Z}^+\}$ $(c\in \mathbf{Z}^+)$. Also, we may replace the set \mathbf{S}_2 by any of the sets $\{ar^2:r\in \mathbf{Z}^+\}$ $(a\in \mathbf{Z}^+)$. However, the theory of the Pell equation forbids us from replacing \mathbf{S}_2 by any of the sets $\bigcup_{a=1}^c \{ar^2:r\in \mathbf{Z}^+\}$ $(c\geq 2)$.

§2. A lacunary condition

If (as in [10]) one is mainly intersted in deducing that the transform of a measure vanishes at infinity we can require a weaker lacunary property than (\mathbf{F}_p) :

A subset E of \mathbb{Z}^+ is said to satisfy the condition (\mathscr{P}) if for all sequences $n_1 < < n_2 < ... \in E$, the set

$$\mathbf{Z}^+ \cap \left(\bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} (E-n_k) \right)$$
 is finite.

Observe that the above definition makes sense in \mathbb{Z}^2 where \mathbb{Z}^2 is considered as an ordered group dual to \mathbb{T}^2 . Also, it follows easily from the definition that if a set

E satisfies conditions (\mathscr{P}), then E cannot contain any set A+B, where A and B are both infinite sets. Before presenting our main Theorem, we give some examples:

(a) Any set satisfying the gap condition (\mathbf{F}_p) satisfies the lacunary condition (\mathscr{P}) . To see this let E satisfy (\mathbf{F}_p) and let $m_1 < m_2 < ...$ be any subsequence of E. Suppose there are infinitely many x's such that $x + m_k \in E$ for all sufficiently large k. Let x_1, \ldots, x_p be the first p values of x. Then there is a t_0 such that if $k \ge t_0$ then $x_i + m_k \in E$, where $i = 1, 2, \ldots, p$ and $k \in \mathbb{Z}^+$. For $k \ge t_0$, put $m_k = n_{j_k}$. Then $n_{j_k + p} \le n_{j_k} + x_p$ whence $n_{j_k + p} - n_{j_k} \le x_p$. Since there are infinitely many n_{j_k} we see that $n_{j_k + p} - n_{j_k} + \infty$ which is the desired contradiction.

(b) Any Sidon set satisfies (\mathbf{F}_p) for some p([5, p. 194]); hence any Sidon set satisfies condition (\mathcal{P}) .

(c) In this example we outline a construction of a set of positive integers which has property (\mathcal{P}) and yet is not a finite union of sets with the Faber-gap property. Thus property (\mathcal{P}) is strictly weaker than the property $n_{k+p} - n_k \rightarrow \infty$ for some p.

Choose a suitably "thin" subsequence of the sequence of powers of 3 and call it $A_0 = \{a_1 < a_2 < ...\}$. Next construct the sequence $A_1 = A_0 \cup \{a_{2^n} + 3: n \in \mathbb{Z}^+\}$. Next construct $A_2 = A_1 \cup \{a_{3^n} + 3^2\} \cup \{a_{3^n} + 3^3\}$. In general,

$$A_t = A_{t-1} \cup \{a_{p_1^n} + 3^{t'}\} \cup \ldots \cup \{a_{p_2^n} + 3^{t'+t-1}\}$$

where p_i is the t^{th} prime and $t' = 1 + \sum_{i=1}^{t-1} i$. Let

$$A=\bigcup_{t=0}^{\infty}A_t.$$

Clearly, for any p, there is a constant c such that A contains infinitely many members n_k with $n_{k+p} - n_k < c$. Thus, A is not a finite union of sets with the Fabergap condition. On the other hand, if A_0 is chosen "thin" enough, the fact that no integer can have two representations of the form $\sum_{i=1}^{m} \pm 3^{j_i}$ leads to the conclusion that for any subsequence $\{n_1 < n_2 \dots\}$ of A there are only finitely many integers $x \in \mathbb{Z}^+$ with the property that $x + n_k$ is an element of A for all sufficiently large k. In fact, the construction guarantees that the set of such x's is empty unless a tail of the sequence $\{n_k\}$ is chosen from one of the sets $\{a_{p_k^n}: n \in \mathbb{Z}^+\} \cup (A_t \setminus A_{t-1})$, in which case there can be at most t such x's.

Theorem 3. Let E satisfy (\mathcal{P}) and suppose $\mu \in M(\mathbf{T})$ and supp $\hat{\mu} \subset \mathbf{Z}^- \cup E$. Then $\mu \in M_0(\mathbf{T})$.

Proof. Suppose not. Then there is an increasing sequence $n_1 < n_2 < ... \in E$ and an $\varepsilon > 0$ such that

(1)
$$|\hat{\mu}(n_j)| \ge \varepsilon > 0$$

We shall force a contradiction:

Put $dv_i = e^{-in_j\theta} d\mu$. Then without loss of generality we may assume

(2)
$$v_i \rightarrow v \in M_s(\mathbf{T})$$
 weak-*

The fact that $v \in M_s(T)$ is a consequence of the Helson translation lemma [9, p. 66]. From (1) and (2) we conclude that

 $\hat{\mathbf{y}}(0) \neq 0.$

On the other hand condition (\mathscr{P}) in combination with the F. and M. Riesz theorem implies that $\hat{v}(0)=0$. This contradicts (3) and so since $\hat{\mu}$ vanishes at "+ ∞ " it follows from [2] that $\mu \in M_0(\mathbf{T})$.

Finally, we observe that the same proof with simple modifications holds in T^2 regardless of the order chosen for Z^2 .

Our study of condition (\mathcal{P}) was motivated by conversations with S. Saeki to whom we express our thanks.

References

- 1. DRESSLER, R. E. and PIGNO, L. "On Strong Riesz sets", Colloq. Math. 29 (1974), 157-158.
- 2. DE LEEUW, K. and KATZNELSON, Y. "The two sides of a Fourier-Stieltjes transform and almost idempotent measures", *Israel J. Math.*, 8 (1970), 213-229.
- MAHLER, K. "On the greatest prime factor of ax^m+byⁿ", Nieuw Archief voor Wiskunde (3), 1 (1953), 113-122.
- 4. MEYER, Y. "Spectres des mesures et mesures absolument continues", Studia Math. 30 (1968), 87-99.
- 5. MEYER, Y. Algebraic Numbers and Harmonic Analysis, North-Holland Publishing Company, Amsterdam, 1972.
- 6. PIGNO, L. "Convolution Products with Small Fourier—Stieltjes transforms", to appear (Illinois J. Math).
- PIGNO, L. and SAEKI, S. "Measures whose transforms vanish at infinity", Bull. Amer. Math. Soc. 79 (1973), 800–801.
- 8. PIGNO, L. and SAEKI, S. Fourier-Stieltjes transforms which vanish at infinity, to appear (Math. Z.)
- 9. RUDIN, W. Fourier Analysis on Groups, Interscience, New York, 1962.
- 10. WALLEN, L. S. "Fourier-Stieltjes transforms tending to zero", Proc. Amer. Math. Soc. 24 (1970), 651-652.

Received June 24, 1974

Robert E. Dressler and Louis Pigno Kansas State University Manhattan, Kansas 66506