Some lacunary conditions for Fourier-Stieltjes transforms

Robert E. Dressler and Louis Pigno

Let \mathbf{T} denote the circle group, \mathbf{Z} the ring of integers and $M(\mathbf{T})$ the usual convolution algebra of measures on T. The Fourier-Stieltjes coefficients $\hat{\mu}(n)$ of the measure $\mu \in \mathbf{M}(\mathbf{T})$ are defined by

$$
\hat{\mu}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n \theta} d \mu(\theta) \quad(n \in \mathbf{Z})
$$

Denote by $M_{a}(\mathbf{T})$ those $\mu \in M(\mathbf{T})$ which are absolutely continuous with respect to Lebesgue measure on $\mathbf{T}, M_{0}(\mathbf{T})$ those $\mu \in M(\mathbf{T})$ such that $\hat{\mu}$ vanishes at infinity, and $M_{s}(T)$ the set of $\mu \in M(T)$ which are singular, i.e., concentrated on sets of Lebesgue measure zero.

An increasing sequence $\left\langle n_{k}\right\rangle_{1}^{\infty}$ with $n_{k} \in \mathbf{Z}^{+}$(the positive integers) is said to satisfy the gap condition $\left(\mathbf{F}_{p}\right)$, if there is a $p \in \mathbf{Z}^{+}$such that

$$
\lim _{k \rightarrow \infty}\left(n_{k+p}-n_{k}\right)=\infty .
$$

Using a theorem of Mahler which is based on a p-adic version of the ThueSiegel theorem, we prove in Section 1 that finite unions of sets of the form

$$
\mathbf{S}_{j}=\left\{r^{j}: r \in \mathbf{Z}^{+}\right\} \quad(j=2,3, \ldots)
$$

satisfy $\left(\mathbf{F}_{\mathbf{1}}\right)$. It then follows from an extension of a theorem of Wallen that if $\mu_{i} \in M(\mathbf{T})$ $(i=1,2)$ and supp $\hat{\mu}_{i} \subset \mathbf{Z}^{-} \cup E$ where E is any finite union of sets \mathbf{S}_{j} then $\left|\mu_{1}\right| *\left|\mu_{2}\right| \epsilon$ $\in M_{a}(\mathbf{T})$. Here $\left|\mu_{i}\right|$ is (of course) the usual total variation measure.

In section 2 we investigate a weaker lacunary condition than $\left(\mathbf{F}_{p}\right)$ which we now define:

A subset $E \subset \mathbf{Z}^{+}$is said to satisfy the condition (\mathscr{P}) if for every increasing sequence $n_{1}, n_{2} \ldots \in E$

$$
\mathbf{Z}^{+} \cap \underline{\varliminf}\left(E-n_{j}\right) \text { is finite. }
$$

Our main result is that if E satisfyes (\mathscr{P}) and if $\operatorname{supp} \hat{\mu} \subset \mathbf{Z}^{-} \cup E$ then $\mu \in M_{0}(\mathbf{T})$.

§ 1. Convolution products and gap conditions

A subset $\mathscr{R} \subset \mathbf{Z}$ is called a Riesz set if $\mu \in M(\mathbf{T})$ and supp $\hat{\mu} \subset \mathscr{R} \Rightarrow \mu \in M_{a}(\mathbf{T})$. The F. and M. Riesz theorem states that both \mathbf{Z}^{+}and \mathbf{Z}^{-}are Riesz sets.

A subset $S \subset \mathbf{Z}$ is said to have property (\mathbf{M}), if for any Riesz set \mathscr{R} the union of \mathscr{R} with S is again a Riesz set. Any strong Riesz set S has property (M); see [1] and [4] for examples. Furthermore, it is known that any Sidon set has property (M); see [7] and [8]. Whether or not sets $E \subset \mathbf{Z}^{+}$which satisfy the gap condition $\left(\mathrm{F}_{p}\right)$ for some p possess property (\mathbf{M}) is an open question. What we do know is the following extension of a theorem of Wallen [10]:

Theorem 1. Let $\mu_{i} \in M(\mathbf{T})(i=1,2, \ldots, p+1)$ with $p \in \mathbf{Z}^{+}$. Let E satisfy $\left(\mathbf{F}_{p}\right)$ and suppose supp $\hat{\mu}_{i} \subset \mathbf{Z}^{-} \cup E$ for all i. Then

$$
\left|\mu_{\mathbf{1}}\right| *\left|\mu_{2}\right| * \ldots *\left|\mu_{p}\right| *\left|\mu_{p+\mathbf{1}}\right| \in M_{a}(\mathbf{T})
$$

Proof. The Theorem is a simple variant on that of Theorem 2 of [6]. The proof is obtained by iterating the method of proof of Theorem 2 of [6]. We leave the details to the reader.

Henceforth we shall refer to $\left(\mathbf{F}_{1}\right)$ as the Faber-gap condition. We make the following observation:

If $E=E_{1} \cup \ldots \cup E_{p}=\left\{n_{1}<n_{2}<\ldots\right\}$ where each E_{i} satisfies the Faber-gap condition, then we have $n_{k+p}-n_{k} \rightarrow \infty$. Suppose not and say $n_{k_{i}+p}-n_{k_{i}}<C$ for some constant C and some infinite subsequence of E. Then there is an $E_{i_{0}}$ such that for infinitely many $n_{k_{i}}$ we have that at least two members of $E_{i_{0}}$ are in the set $\left\{n_{k_{i}}\right.$, $\left.n_{k_{i}+1}, \ldots, n_{k_{i}+p}\right\}$. If $n_{k_{i}}^{\prime}$ is the first member of $E_{i_{0}}$ in this set and $m_{k_{i}}^{\prime}$ is the second, then $m_{k_{i}}^{\prime}=n_{k_{i}}^{\prime}<C$, which contradicts $E_{i_{0}}$ satisfying the Faber-gap condition.

On the other hand, if $E=\left\{n_{1}<n_{2}<\ldots\right\}$ satisfies $n_{k+p}-n_{k} \rightarrow \infty$ for some p then $E=E_{1} \cup \ldots \cup E_{p}$, where $E_{i}=\left\{n_{k_{i}}: k_{i} \equiv i(\bmod p)\right\}$ and each E_{i} clearly satisfies the Faber-gap condition.

In view of the preceding our next result is therefore somewhat surprising.
Theorem 2. Let E by any finite union of the sets \mathbf{S}_{j}, then E satisfies the Fabergap condition.

Proof. Let $k_{1}, k_{2}, \ldots, k_{n}$ be distinct integers greater than 1. Let $\mathbf{K}_{i}=\mathbf{S}_{k_{i}}=$ $=\left\{r^{k_{i}}: r \in \mathbf{Z}^{+}\right\}$for $i=1,2, \ldots, n$. Put

$$
E=\bigcup_{i=1}^{n} \mathbf{K}_{i}=\left\{s_{1}<s_{2}<\ldots\right\}
$$

We prove that E satisfies the Faber-gap condition.

Given $x \in \mathbf{Z}^{+}$we claim there is an a_{0} such that if $s_{p} \in E$ and $s_{p} \equiv a_{0}$ then $s_{p+1}-$ $-s_{p}>x$. By a theorem of Mahler [3] it follows that if $(z, w) \leqq x, a b \neq 0, g \geqq 2$, and $h \geqq 3$ (or $h \geqq 2$ and $g \geqq 3$) then there is an integer $N^{g, h}$ such that the largest prime divisor of $a z^{g}-b w^{h}$ is greater than x if max $\{|z|,|w|\}>N^{g, h}$. Also there is an integer c such that if $q^{2} \geqq c$ then $q^{2}+x<(q+1)^{2}$.

Let $\left(k_{i}, k_{j}\right)$ run through the collection of all ordered pairs where $k_{i}>2$ or $k_{j}>2$. We thus generate a collection of forms

$$
z^{k_{i}}-w^{k_{j}}
$$

and corresponding to these forms we obtain the numbers $N^{k_{i}, k_{j}}$.
Let $k_{0}=\max \left\{k_{1}, \ldots, k_{n}\right\}$ and let

$$
a_{1}=\max \left\{\left(N^{k_{i}, k_{j}}\right)^{k_{0}}\right\}
$$

Finally let $a_{0}=\max \left\{c, a_{1}\right\}$.
Now, if $s_{p} \geqq a_{0}$, say $s_{p+1}=l^{k_{i}}$ and $s_{p}=f^{k_{j}}$. Suppose $k_{i}>2$ or $k_{j}>2$. If $s_{p+1}-$ $-s_{p}=x^{\prime} \leqq x$, we will derive a contradiction. Set $d=(l, f)$. Since $l^{k_{i}}-f^{k_{s}}=x^{\prime}$ we have $d \mid x^{\prime}$ and so $d \leqq x$. Then

$$
f=s_{p}^{1 / k_{j}} \geqq a_{0}^{1 / k_{j}} \geqq\left(\left(N^{k_{i}, k_{j}}\right)^{k_{0}}\right)^{1 / k_{j}} \geqq N^{k_{i}, k_{j}}
$$

It then follows that the greatest prime divisor of x^{\prime} is greater than x, which is a contradiction.

Finally, if $k_{i}=2=k_{j}$, then since $s_{p} \geqq c$ we have $s_{p}+x<s_{p+1}$ which completes the proof.

Remark. A refinement of the proof of Theorem 2 allows us to replace the set $\mathbf{S}_{k_{i}}\left(k_{i}>2\right)$ by any set $\bigcup_{a=1}^{c}\left\{a r^{k_{i}}: r \in \mathbf{Z}^{+}\right\}\left(c \in \mathbf{Z}^{+}\right)$. Also, we may replace the set \mathbf{S}_{2} by any of the sets $\left\{a r^{2}: r \in \mathbf{Z}^{+}\right\}\left(a \in \mathbf{Z}^{+}\right)$. However, the theory of the Pell equation forbids us from replacing \mathbf{S}_{2} by any of the sets $\bigcup_{a=1}^{c}\left\{a r^{2}: r \in \mathbf{Z}^{+}\right\}(c \geqq 2)$.

§ 2. A lacunary condition

If (as in [10]) one is mainly intersted in deducing that the transform of a measure vanishes at infinity we can require a weaker lacunary property than $\left(\mathbf{F}_{p}\right)$:

A subset E of \mathbf{Z}^{+}is said to satisfy the condition (\mathscr{P}) if for all sequences $n_{1}<$ $<n_{2}<\ldots \in E$, the set

$$
\mathbf{Z}^{+} \cap\left(\bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty}\left(E-n_{k}\right)\right) \text { is finite. }
$$

Observe that the above definition makes sense in \mathbf{Z}^{2} where \mathbf{Z}^{2} is considered as an ordered group dual to \mathbf{T}^{2}. Also, it follows easily from the definition that if a set
E satisfies conditions (\mathscr{P}), then E cannot contain any set $A+B$, where A and B are both infinite sets. Before presenting our main Theorem, we give some examples:
(a) Any set satisfying the gap condition $\left(\mathbf{F}_{p}\right)$ satisfies the lacunary condition (\mathscr{P}). To see this let E satisfy $\left(\mathbf{F}_{p}\right)$ and let $m_{1}<m_{2}<\ldots$ be any subsequence of E. Suppose there are infinitely many x 's such that $x+m_{k} \in E$ for all sufficiently large k. Let x_{1}, \ldots, x_{p} be the first p values of x. Then there is a t_{0} such that if $k \geqq t_{0}$ then $x_{i}+m_{k} \in E$, where $i=1,2, \ldots, p$ and $k \in \mathbf{Z}^{+}$. For $k \geqq t_{0}$, put $m_{k}=n_{j_{k}}$. Then $n_{j_{k}+p} \leqq$ $\leqq n_{j_{k}}+x_{p}$ whence $n_{j_{k}+p}-n_{j_{k}} \leqq x_{p}$. Since there are infinitely many $n_{j_{k}}$ we see that $n_{j_{k}+p_{p}}-n_{j_{k}}+\infty$ which is the desired contradiction.
(b) Any Sidon set satisfies $\left(\mathbf{F}_{p}\right)$ for some $p([5, p .194])$; hence any Sidon set satisfies condition (\mathscr{P}).
(c) In this example we outline a construction of a set of positive integers which has property (\mathscr{P}) and yet is not a finite union of sets with the Faber-gap property. Thus property (\mathscr{P}) is strictly weaker than the property $n_{k+p}-n_{k} \rightarrow \infty$ for some p.

Choose a suitably "thin" subsequence of the sequence of powers of 3 and call it $A_{0}=\left\{a_{1}<a_{2}<\ldots\right\}$. Next construct the sequence $A_{1}=A_{0} \cup\left\{a_{2^{n}}+3: n \in \mathbf{Z}^{+}\right\}$. Next construct $A_{2}=A_{1} \cup\left\{a_{3^{n}}+3^{2}\right\} \cup\left\{a_{3^{n}}+3^{3}\right\}$. In general,

$$
A_{t}=A_{t-1} \cup\left\{a_{p_{t}^{n}}+3^{t}\right\} \cup \ldots \cup\left\{a_{p_{t}^{n}}+3^{t^{t}+t-1}\right\}
$$

where p_{t} is the $t^{\text {th }}$ prime and $t^{\prime}=1+\sum_{i=1}^{t-1} i$.
Let

$$
A=\bigcup_{t=0}^{\infty} A_{t}
$$

Clearly, for any p, there is a constant c such that A contains infinitely many members n_{k} with $n_{k+p}-n_{k}<c$. Thus, A is not a finite union of sets with the Fabergap condition. On the other hand, if A_{0} is chosen "thin" enough, the fact that no integer can have two representations of the form $\sum_{i=1}^{m} \pm 3^{j_{i}}$ leads to the conclusion that for any subsequence $\left\{n_{1}<n_{2} \ldots\right\}$ of A there are only finitely many integers $x \in \mathbf{Z}^{+}$ with the property that $x+n_{k}$ is an element of A for all sufficiently large k. In fact, the construction guarantees that the set of such $x^{\prime} s$ is empty unless a tail of the sequence $\left\{n_{k}\right\}$ is chosen from one of the sets $\left\{a_{p_{t}}: n \in \mathbf{Z}^{+}\right\} \cup\left(A_{t} \backslash A_{t-1}\right)$, in which case there can be at most t such x^{\prime} s.

Theorem 3. Let E satisfy (\mathscr{P}) and suppose $\mu \in M(\mathbf{T})$ and supp $\hat{\mu} \subset \mathbf{Z}^{-} \cup E$. Then $\mu \in M_{0}(\mathbf{T})$.

Proof. Suppose not. Then there is an increasing sequence $n_{1}<n_{2}<\ldots \in E$ and an $\varepsilon>0$ such that

$$
\begin{equation*}
\left|\hat{\mu}\left(n_{j}\right)\right| \geqq \varepsilon>0 . \tag{1}
\end{equation*}
$$

We shall force a contradiction:

Put $d v_{j}=e^{-i n_{j} \theta} d \mu$. Then without loss of generality we may assume

$$
\begin{equation*}
v_{j} \rightarrow v \in M_{s}(\mathbf{T}) \quad \text { weak-* } \tag{2}
\end{equation*}
$$

The fact that $v \in M_{s}(T)$ is a consequence of the Helson translation lemma [9, p. 66]. From (1) and (2) we conclude that

$$
\begin{equation*}
\hat{\nu}(0) \neq 0 . \tag{3}
\end{equation*}
$$

On the other hand condition (\mathscr{P}) in combination with the F. and M. Riesz theorem implies that $\hat{\nu}(0)=0$. This contradicts (3) and so since $\hat{\mu}$ vanishes at " $+\infty$ " it follows from [2] that $\mu \in M_{0}(\mathbf{T})$.

Finally, we observe that the same proof with simple modifications holds in \mathbf{T}^{2} regardless of the order chosen for \mathbf{Z}^{2}.

Our study of condition (\mathscr{P}) was motivated by conversations with S. Saeki to whom we express our thanks.

References

1. Dressler, R. E. and Pigno, L. "On Strong Riesz sets", Colloq. Math. 29 (1974), 157-158.
2. de Leedw, K. and Katznelson, Y. "The two sides of a Fourier-Stieltjes transform and almost idempotent measures", Israel J. Math., 8 (1970), 213-229.
3. Mahler, K. "On the greatest prime factor of $a x^{m}+b y^{n "}$, Nieuw Archief voor Wiskunde (3), 1 (1953), 113-122.
4. Meyer, Y. "Spectres des mesures et mesures absolument continues", Studia Math. 30 (1968), 87-99.
5. Meyer, Y. Algebraic Numbers and Harmonic Analysis, North-Holland Publishing Company, Amsterdam, 1972.
6. Pigno, L. "Convolution Products with Small Fourier-Stieltjes transforms", to appear (Illinois J. Math).
7. Pigno, L. and Saeki, S. "Measures whose transforms vanish at infinity", Bull. Amer. Math. Soc. 79 (1973), 800-801.
8. Pigno, L. and Saeki, S. Fourier--Stieltjes transforms which vanish at infinity, to appear (Math. Z.)
9. Rudin, W. Fourier Analysis on Groups, Interscience, New York, 1962.
10. Wallen, L. S. "Fourier-Stieltjes transforms tending to zero", Proc. Amer. Math. Soc. 24 (1970), 651-652.
