Weak sequential convergence in the dual of a Banach space does not imply norm convergence

Bengt Josefson

We shall prove that for every infinite-limensional Banach space E there is a sequence in E', the dual space, which tends to 0 in the weak topology $\sigma(E', E)$ but not in the norm topology. This is well known for separable or reflexive Banach spaces. See also [3] for other examples. The theorem has its main applications in the theory of holomorphic functions on infinite-dimensional topological vector spaces (TVS).

Let l^{∞} be the Banach space of all complex-valued, bounded functions on the natural numbers N; $z=(z_j)_{j=1}^{\infty}$ denotes a point in l^{∞} . Let c_0 be the Banach space $c_0 = \{z \in l^{\infty}; z_j \to 0 \text{ as } j \to \dots \infty\}, c = \{z \in l^{\infty}; \lim_{j \to \infty} z_j \text{ exists}\}$ and $l^1 = \{z \in c_0, \sum_{j=1}^{\infty} |z_j| < \infty\}$. Let $L(F, F_1)$ denote the set of all bounded linear mappings from F into F_1 and let $\mathfrak{H}(F)$ denote the set of Gâteaux-analytic, locally bounded functions on F, where F and F_1 are locally convex TVS. See [5]. A set $B \subset F$ is called *bouding* if $\sup_{z \in B} |f(z)| < \infty$ for every $f \in \mathfrak{H}(F)$. Put $\mathfrak{H}(F) = \{f \in \mathfrak{H}(F); f \text{ is bounded on bounded subsets of } F\}$.

Theorem. To every infinite-dimensional Banach space E there exist $\varphi_j \in E'$ such that $\|\varphi_j\| = 1$ and $\lim_{j \to \infty} \varphi_j(z) = 0$ for every $z \in E$.

Corollary 1. No neighbourhood of $0 \in F$, where F is a locally convex TVS, is a bounding set.

Proof. See [2].

Corollary 2. $\mathfrak{H}_b(E) \neq \mathfrak{H}(E)$ for very infinite-dimensional Banach space E.

Proof. Se [2].

Proof of the Theorem. Let $F \subseteq E$ be a separable, infinite-dimensional subspace. From [1] and [2] it follows that there are $z^{(j)} \in F$ and $\psi_j \in E'$ such that $\|\psi_j\| = 1$, $\|z^{(j)}\| = 1, \psi_j(z^{(j)}) = 1$ and $\lim_{j \to \infty} \psi_j(z) = 0$ for every $z \in F$. Let $\psi \in L(E, l^{\infty})$ be the

Bengt Josefson

mapping $\psi(z) = (\psi_1(z), \psi_2(z), \dots, \psi_j(z), \dots)$. Put $D = \psi(B_E)$ where B_E is the closed unit ball in E. We shall say that E has property A if there are linear functionals as in the theorem. We recall that l^{∞} has property A which follows from the fact that there is $\varphi \in L(l^{\infty}, l^2(B))$, where card $B = \text{card } \mathbf{R}$ and $l^2(B)$ is the Hilbert space on B, such that φ is onto [6]. In the rest of the proof we shall prove that if there is no $\varphi_0 \in L(l^{\infty}, l^{\infty})$ such that $\varphi_0(D)$ is separable and not compact then D is like the unit ball in l^{∞} in the sense that we may use a technique to prove that E has property A which is similar to that used to prove that l^{∞} has property A. More explicitly, if there is no φ_0 as above Lemma 6 gives that X_n in the Proposition may be taken such that (X_n) is not dominated by a geometric series and then the sequence of mappings (φ_n) in the Proposition and Lemma 4 replace $\varphi \in L(l^{\infty}, l^2(B))$. If, on the other hand, there is $\varphi_0 \in L(l^{\infty}, l^{\infty})$ such that $\varphi_0(D)$ is separable but not compact then it follows trivially that E has property A.

Definition 1. Put, for $z \in l^{\infty}$ and $M \subset \mathbb{N}$, supp $z = \{j \in \mathbb{N}; z_j \neq 0\}$ and $\operatorname{Proj}_{[M]} z = (z'_j)_{j \in \mathbb{N}}$ where $z'_j = z_j$ if $j \in M$ and $z'_j = 0$ if $j \notin M$. Let $l^{\infty}(M) = \{z \in l^{\infty}; z_j = 0 \text{ if } j \notin M\}$.

Definition 2. Put, for $z \in l^{\infty}$ and $M \subset \mathbb{N}$, $N_M(z) = \overline{\lim}_{j,k+\infty, j,k\in M} |z_j - z_k| (N_M(z) = 0 \text{ if } M \text{ is finite}).$

Definition 3. A set $A \subset l^{\infty}$ is called a 1-set if for all finite subsets $\{a^{(1)}, \ldots, a^{(k)}\}$ of A the vector of components $(a_j^{(1)}, \ldots, a_j^{(k)}) \in \mathbb{C}^k$ assumes exactly the values $(\pm 1, \pm 1, \ldots, \pm 1)$ for all possible 2^k choices of signs.

Definition 4. Let $\{a^{(k)}\}_{k=1}^{\infty}$ be a 1-set and r a positive integer. Let $\{M_j(r, \{a^{(k)}\}); j=1, 2, ..., 2^{r-1}\}$ be the partitioning of N into 2^{r-1} disjoint parts such that $(a_s^{(1)}, ..., a_s^{(r-1)}) = (a_l^{(1)}, ..., a_l^{(r-1)})$ if and only if $s, l \in M_j(r, \{a^{(k)}\})$ for some j. Put $M(1, \{a^{(k)}\}) = N$.

We note that $\|\sum_{k=1}^{\infty} \lambda_k a_k\| \ge \frac{1}{2} \sum_{k=1}^{\infty} |\lambda_k|$ if $\{a_k\}$ is a 1-set. In fact, C. O. Kiselman has proved that the constant 1/2 can be replaced by $2/\pi$ and this is best possible.

Lemma 1. If E does not have property A there exist an infinite set $V \subset \mathbb{N}$ and a number $\varepsilon > 0$ such that for every infinite $U \subset V$, $\sup_{z \in D} N_U(z) > \varepsilon$.

Proof. Assume that the lemma is false. Then there are infinite sets U_j such that $U_j \subset U_{j-1} \subset U_j$ and $\sup_{z \in D} N_{U_j}(z) < 2^{-j}$. There is an infinite set $U \subset \mathbb{N}$ such that $U \cap \bigcup U_j$ is finite for every $j \in \mathbb{N}$. Hence $\sup_{z \in D} N_U(z) = 0$ which is a contradiction.

We may assume that V = N. Let $e \in l^{\infty}$ be $\{1, 1, ..., 1, ...\}$.

Lemma 2. There exist an index set B, $H_k \subset B$, $\varphi \in L(l^{\infty}, l^2(B))$ where $l^2(B)$ is the Hilbert space on B, $C_1 > 0$, $C_2 > 0$ and a 1-set $\{a^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}$ such that card B =

Weak sequential convergence in the dual of a Banach space does not imply convergence 81

= card **R**, $B \setminus H_k$ is finite,

$$H_{k} \subset H_{k-1} \subset ... \subset H_{0} = B, \quad \|\varphi\| < C_{2}, \quad \|\operatorname{Proj}_{[H_{k-1} \setminus H_{k}]}\varphi(a^{(k)})\| > C_{1},$$
$$\sum_{j} \|\operatorname{Proj}_{[H_{k}]}\varphi(\operatorname{Proj}_{[M_{j}(k+1, \{a^{(r)}\})]}e\| < 10^{-4} \cdot k^{-k-1} \cdot \varepsilon \cdot C_{1}$$

and $\varphi(e) = \varphi(z) = 0$ if $z \in c_0$. Here ε is the constant in Lemma 1.

Proof. From [6] it follows that there is $\varphi_1 \in L(l^{\infty}, l^2(B))$ such that φ_1 is onto. Since card B > card N it follows there are $C_1 > 0$, $b^{(k)} \in l^{\infty}$ and $H_k \subset B$ such that $H_k \subset H_{k-1}$, $B \setminus H_k$ is finite,

$$||b^{(k)}|| < \frac{1}{2}$$
 and $||\operatorname{Proj}_{[H_{k-1} \setminus H_k]} \varphi_1(b^{(k)})|| > C_1.$

Let $\{a^{(k)}\}_{k=1}^{\infty}$, be a 1-set and $F \subset l^{\infty}$ the subspace generated by $a^{(k)}$ and c. Then $a \in F$ if and only if $a = \sum_{k=1}^{\infty} \lambda_k a^{(k)} + x$ where $x \in c$ and $\lambda = (\lambda_1, ..., \lambda_k, ...) \in l^1$. Let $\psi \in L(F, l^{\infty})$ be the mapping defined by $\psi(a^{(k)}) = b^{(k)}$ and $\psi(x) = 0$ if $x \in c$. We have $\|\psi\| \leq 1$ because

$$\left\|\sum_{k=1}^{\infty}\lambda_k\cdot a^{(k)}+x\right\|\geq \frac{1}{2}\sum_{k=1}^{\infty}|\lambda_k|\quad\text{if}\quad x\in c.$$

But l^{∞} has the norm preserving extension property hence ψ can be extended to $\psi_1 \in L(l^{\infty}, l^{\infty})$ such that $\|\psi_1\| = \|\psi\|$. Put $\varphi = \varphi_1 \circ \psi_1$.

Assume now that we have found $(j_k)_{k=1}^s \subset \mathbb{N}$, where $s \in \mathbb{N}$, and $(H'_k)_{k=1}^s \subset B$ such that $H'_{k-1} \supset H'_k$, $H'_k = H_{j_{p_k}}$ for some $j_{p_k} \in \mathbb{N}$,

$$\|\operatorname{Proj}_{[H_{k-1} \setminus H_{k}]} \varphi(a^{(j_{k})})\| > C_{1} \quad \text{if} \quad k \leq s$$

and

$$\sum_{l} \|\operatorname{Proj}_{[H_{k}]} \varphi(\operatorname{Proj}_{[M_{l}(k+1, \{a^{(j_{n})}\})]} e)\| < \frac{C_{1} \cdot \varepsilon}{10^{4} \cdot k^{k+1}} \quad \text{if} \quad k \leq s$$

Choose now $j_{s+1} \in \mathbb{N}$ and then $H'_{s+1} = H_{j_{p_{s+1}}}$ for some $j_{p_{s+1}} \in \mathbb{N}$ such that

$$\|\operatorname{Proj}_{[H'_{s} \setminus H'_{s+1}]} \varphi(a^{(j_{s+1})}\| > C_{j_{s+1}})\|$$

and

$$\sum_{l} \|\operatorname{Proj}_{[H'_{s+1}]} \varphi(\operatorname{Proj}_{[M_{l}(s+2, \{a^{(j_{n})}\})]} e)\| < \frac{C_{1} \cdot \varepsilon}{10^{4} \cdot (s+1)^{s+2}}$$

which of course is possible according to the construction of φ and the fact that a vector in $l^2(B)$ is "small" outside a finite subset of B. Hence $\{a^{(j_k)}\}_{k=1}^{\infty}$ and (H'_k) have the desired properties. Q.E.D.

Lemma 3. Let $j \in \mathbb{N}$ be a fixed number and φ , $\{a^{(k)}\}_{k=1}^{\infty}$ and (H_k) be as in Lemma 2 and $z \in l^{\infty}$ be such that ||z|| < 2 and

$$\|\operatorname{Proj}_{[H_j \setminus H_k]} \varphi(z)\| > C_3 > \frac{2^{-j} \cdot \varepsilon \cdot C_1}{5}$$

for some k>j. Then there exist an infinite set $V \subset \mathbb{N}$, $\varphi' \in L(l^{\infty}(V), l^{\infty})$, a 1-set $\{b^{(r)}\}_{r=1}^{\infty} \subset l^{\infty}(V)$ and $h_{s,r} \in \mathbb{C}$ such that

$$\begin{aligned} \left\| \operatorname{Proj}_{[V]} z - he - \sum_{r=1}^{j+1} \sum_{s} h_{r,s} \operatorname{Proj}_{[M_{s}(r, \{b^{(1)}\})]} b^{(r)} \right\| &< \frac{\varepsilon \cdot j^{-j} \cdot C_{1}}{10^{4} \cdot C_{2}}, \\ \varphi'(\operatorname{Proj}_{[M_{s}(r, \{b^{(1)}\})]} b^{(r)}) &= \operatorname{Proj}_{[M_{s}(r, \{a^{(1)}\})]} a^{(r)} \quad if \quad r \leq j \\ \varphi'(e) &= e, \quad \varphi'(z) \in c_{0} \quad if \quad z \in c_{0}, \quad \varphi'(b^{(j+r)}) = a^{(k+r)}r > 1 \end{aligned}$$

and

$$\|\operatorname{Proj}_{[H_j \setminus H_k]} \varphi \circ \varphi'(z)\| > \frac{C_3}{32}.$$

Proof. It is an immediate consequence of the definition of $N_{M_s(j+1, \{a^{(l)}\})}(z)$ that there exist an infinite set $V_s \subset M_s(j+1, \{a^{(l)}\})$, a 1-point $\delta^s \in l^\infty(V_s)$, $p_{1,s} \in \mathbb{C}$ and $h_{j+1,s} \in \mathbb{C}$ such that

$$|h_{j+1,s}| = \frac{1}{2} N_{M_s(j+1,\{a^{(1)}\})}(z),$$

$$\|\operatorname{Proj}_{[V_s]}(z-p_{1,s}\cdot e-h_{j+1,s}\cdot \delta^s)\| < \frac{\varepsilon \cdot j^{-j} \cdot C_1}{10^4 \cdot C_2} \text{ and } N_{V_s}(z-h_{j+1,s}\delta^s) = 0.$$

Put $V = \bigcup_s V_s$ and $a_0^{(j+1)} = \sum_s \delta^s$. It is obvious that we can take $\{a_0^{(r)}\}_{r=j+2}^{\infty} \subset C l^{\infty}(V)$ such that $\{a_0^{(r)}\}_{r=1}^{\infty}$ is a 1-set in $l^{\infty}(V)$ where $a_0^{(r)} = \operatorname{Proj}_{[V]} a^{(r)}$ if $r \leq j$. Since $N_{M_s(j+1, \{a^{(i)}\})}(z-h_{j+1,s}a_0^{(j+1)})=0$ it follows from the definition that we can find $h_{j,s} \in \mathbb{C}$ and $p_{2,s} \in \mathbb{C}$ such that

$$N_{M_{s}(j,\{a_{0}^{(1)}\})}(z-\underbrace{\sum_{t}h_{j+1,t}\cdot\operatorname{Proj}_{[M_{t}(j+1,\{a_{0}^{(1)}\})]}a_{0}^{(j+1)}-h_{j,s}a_{0}^{(j)})}_{b_{s}}=0$$

and

$$\|\operatorname{Proj}_{[M_{s}(j, \{a_{0}^{(l)}\})]}(z - b_{s} - p_{2,s}e)\| < \frac{\varepsilon \cdot j^{-j} \cdot C_{1}}{10^{4} \cdot C_{2}}$$

In the same way we may continue and after j+1 steps we get that there are $h_{r,s} \in \mathbb{C}$ and $h \in \mathbb{C}$ such that

(1)
$$\left\|\operatorname{Proj}_{[V]}(z-he-\sum_{r=1}^{j+1}\sum_{s}h_{r,s}\cdot\operatorname{Proj}_{[M_s(r,\{a_0^{(1)}\})]}a_0^{(r)}\right\| < \frac{\varepsilon \cdot j^{-j} \cdot C_1}{10^4 \cdot C_2}.$$

 $|h_{r,s}| < 2$ because $\{a_0^{(l)}\}_{l=1}^{\infty}$ is a 1-set and because ||z|| < 2.

Weak sequential convergence in the dual of a Banach space does not imply convergence 83

In the same manner it follows that there are $h' \in \mathbb{C}$, $h'_{r,s} \in \mathbb{C}$ and $z' \in l^{\infty}$ such that |h'| < 2, $|h'_{r,s}| < 2$,

$$z = z' + h'e + \sum_{r=1}^{j} \sum_{s} h'_{r,s} \cdot \operatorname{Proj}_{[M_{s}(r, \{a^{(l)}\})]} a^{(r)}$$

and

$$\lim_{\substack{t \to \infty \\ t \in M_s(j+1, \{a^{(l)}\})}} |z'_t| = \frac{1}{2} N_{M_s(j+1, \{a^{(l)}\})}(z).$$

Lemma 2 gives that

$$\|\operatorname{Proj}_{[H_j \setminus H_k]} \varphi(z')\| > C_3 - \frac{C_1 \cdot \varepsilon \cdot j^{-j}}{10^4} > \frac{C_3}{2}.$$

Let $\{d^{(l)}\}_{l=1}^{\infty} \subset l^{\infty}(V)$ be a 1-set such that there are disjoint infinite sets $U_{j,l}^{(s)} \subset CM_l(j+1, \{d^{(r)}\})$ such that $\bigcup_{s=1}^4 U_{j,l}^{(s)} = M_l(j+1, d^{(r)})$ and

 $\{\operatorname{Proj}_{[U_{i}^{(s)}]}d^{(r)}\}_{r=j+1}^{\infty}$

is a 1-set for every l and s. Let $z'' = \{z''_t\}_{t \in V}$ be such that $z''_t = (i)^s \cdot |h_{j+1,l}|$ if $t \in U_{j,l}^{(s)}$. Let $F \subset l^{\infty}(V)$ be the subspace which is generated by z'', $d^{(1)}$, $\operatorname{Proj}_{[M_s(r, \{d^{(1)}\})]}d^{(r)}$ $1 \leq r \leq j$ and c. $b \in F$ if and only if

$$b = \gamma_0 \cdot z'' + x + \sum_{r=1}^{j} \sum_{s} \gamma_{r,s} \cdot \operatorname{Proj}_{[M_s(r, \{d^{(1)}\})]} d^{(r)} + \sum_{k=j+1}^{\infty} \lambda_k d^{(k)}$$

where $x \in c$ $\gamma_0 \in \mathbb{C}$, $\gamma_{r,s} \in \mathbb{C}$ and $\lambda = \{\lambda_{j+1}, \dots, \lambda_{j+k}, \dots\} \in l_1$. Let $\psi \in L(F, l^{\infty})$ be the mapping $\psi(z'') = z'/2$, $\psi(e) = e$, $\psi(d^{(r)}) = a^{(r)}$, $\psi(z) = 0$ if $z \in c_0$ and

$$\psi(\operatorname{Proj}_{[M_s(r, \{d^{(1)}\})]}d^{(r)} = \operatorname{Proj}_{[M_s(r, \{a^{(1)}\})]}a^{(r)},$$

 $r \leq j$. It is easy to check that $\|\psi\| = 1$. But to has the norm preserving extension property hence ψ can be extended to $\psi_1 \in L(l^{\infty}(V), l^{\infty})$ such that $\|\psi_1\| = 1$. We may assume that

$$\|\operatorname{Proj}_{[H_j \setminus H_k]} \varphi \circ \psi_1(\operatorname{Proj}_{[\bigcup_{i} U_{j,i}^{(3)} \cup U_{j,i}^{(4)}]} z'')\| > \frac{C_3}{8}.$$

(Since otherwise

$$\|\operatorname{Proj}_{[H_j \setminus H_k]} \varphi \circ \psi_1(\operatorname{Proj}_{[\bigcup_{i} U_{j,i}^{(1)} \cup U_{j,i}^{(3)}]} z'')\| > \frac{C_3}{8}.$$

Hence there is $t = (t_1, t_2, ...)$ where $t_j = 1$ or -1 such that

(2)
$$\left\|\operatorname{Proj}_{[H_j \setminus H_k]} \varphi \circ \psi_1 \left(\operatorname{Proj}_{[\bigcup_{i} U_{j,i}^{(2)}] \cup U_{j,i}^{(4)}]} \left(\sum_{s} t_s h_{j+1,s} \operatorname{Proj}_{[M_s(j+1, \{b_0^{(1)}\})]} b_0^{(j+1)}\right)\right\| > \frac{C_3}{16},$$

where $b_0^{(r)} = d^{(r)}$ if $r \neq j+1$ and $b_0^{(j+1)} = \{x_t\}_{t \in V}$ is such that $x_t = -1$ if $t \in U_{l,j}^{(2)}, x_t = 1$ if $t \in U_{l,j}^{(4)}$, and $x_t = 0$ elsewhere.

Let $G \subset l^{\infty}(V)$ be the subspace which is generated by c, $\{a_0^{(r)}\}_{r=1}^{\infty}$ and

$$\operatorname{Proj}_{[M_s(r, \{a_0^{(l)}\})]}a_0^{(r)}$$
 if $r \leq j+1$.

Bengt Josefson

As above it follows that there is $J \in L(G, l^{\infty}(V))$ which can be extended to $J_1 \in L(l^{\infty}(V), l^{\infty}(V))$ such that $||J|| = ||J_1|| = 1$, J(e) = e, J(z) = 0 if $z \in c_0$, $J(a_0^{(r)}) = b_0^{(r)}$ if $r \neq j+1$,

$$J(\operatorname{Proj}_{[M_s(r, \{a_0^{(1)}\})]}a_0^{(r)} = \operatorname{Proj}_{[M_s(r, \{b_0^{(1)}\})]}b_0^{(r)} \quad \text{if} \quad r \leq j$$

and

$$J(\operatorname{Proj}_{[M_s(j+1, \{a_0^{(j)}\})]}a_0^{(j+1)}) = t_s \cdot \operatorname{Proj}_{[M_s(j+1, \{b_0^{(j)}\})]}b_0^{(j+1)}.$$

But then (1) and (2) give that $\varphi' = \psi_1 \circ J_1$ and $b^{(r)} = a_0^{(r)}$ have the properties in the lemma. Q.E.D.

Proposition 1. There are $\varphi_n \in L(l^{\infty}, l^2(B))$, $H_n \subset B$, $X_n > 0$ and $z^{(n)} \in D$ such that $X_n > C_1 \cdot \varepsilon \cdot 2^{-n}$ where C_1 is the constant in Lemma 2 and ε the constant in Lemma 1, $B \setminus H_n$ is finite

$$H_n \subset H_{n-1} \subset \ldots \subset H_0 = B, \quad \sup_{z \in D} \|\operatorname{Proj}_{[H_{k-1}]}\varphi_n(z)\| \leq X_k$$

and

$$\|\operatorname{Proj}_{[H_{k-1}\setminus H_k]}\varphi_n(z^{(k)})\| > X_k \cdot 10^{-2} \text{ if } k \leq n.$$

Proof. Let φ , $\{a^{(k)}\}_{k=1}^{\infty}$ and H_k be as in Lemma 2. Put $X_1 = \sup_{\varphi} \sup_{z \in D} \|\varphi \circ \varphi'(z)\|$ where φ' satisfies the following conditions.

a) There is an infinite set $V \subset \mathbf{N}$ such that $\varphi' \in L(l^{\infty}(V), l^{\infty})$ and $\|\varphi'\| = 1$.

b) There are a 1-set $\{b^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V)$ and $j \in \mathbb{N}$ such that $\varphi'(b^{(k)}) = a^{(j+k)}$ if k > 1.

c) $\varphi'(e) = e$ and $\varphi'(z) = 0$ if $z \in c_0$.

Take $\varphi'_0 \in L(l^{\infty}(V), l^{\infty})$ and $z^{(1)} \in D$ such that $\|\varphi \circ \varphi'_0(z^{(1)})\| > 32/50 X_1$ and such that φ'_0 satisfies conditions a)—c) for a 1-set $\{b_0^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V_0)$ and $j_0 \in \mathbb{N}$. We may assume that

$$\|\operatorname{Proj}_{[B \setminus H_{j_0}]} \varphi \circ \varphi'(z^{(1)})\| > \frac{32}{50} X_1,$$

since otherwise we just have to take a bigger j_0 , omit finitely many $b_0^{(k)}$ and renumber. Now, if we assume $X_1 > C_1 \cdot \varepsilon$, a direct application of Lemma 3, where $\varphi \circ \varphi'_0$ correspond to φ and $(H_{j_0+k})_{k=1}^{\infty}$ correspond to $(H_k)_{k=1}^{\infty}$ in Lemma 3, we get that there are an infinite set $V_1 \subset V_0$, a 1-set $\{b_{(1)}^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V_1)$ and $\varphi'_1 \in L(l^{\infty}(V_1), l^{\infty}(V_0))$ $h^{(1)}$ and $h_1^{(1)} \in \mathbb{C}$ such that

(1)
$$\|\operatorname{Proj}_{[V_1]}(z^{(1)} - h^{(1)}e - h_1^1 b^{(1)}_{(1)})\| < \frac{\varepsilon \cdot C_1}{10^4 \cdot C_2}$$

and $\psi_1 = \varphi'_0 \circ \varphi'_1$ satisfies a)—c) with V, $\{b^{(k)}\}_{k=1}^{\infty}$ and j replaced by V_1 , $\{b^{(k)}_{(1)}\}_{k=1}^{\infty}$ and j_0+1 . That $X_1 > C_1 \cdot \varepsilon$ follows because there is $z^{\circ} \in D$ such that $N_N(z^{\circ}) > 2 \cdot \varepsilon$, according to Lemma 1, hence there are an infinite set $V' \subset N$ and a 1-set $\{a^{(k)}_0\}_{k=1}^{\infty} \subset \mathbb{C}l^{\infty}(V')$ such that $N_{V'}(z^{\circ} - h \cdot a^{(1)}_0) = 0$ for some $h \in \mathbb{C}$ such that $|h| > \varepsilon$. Assume now that there are, for every t < n, an infinite set $V_t \subset V_{t-1}$, $\psi_t \in L(l^{\infty}(V_t), l^{\infty}(V_{t-1}))$, $\varphi_t \in L(l^{\infty}(V_t, l^2(B)))$, a 1-set $\{b_{(t)}^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V), z^{(t)} \in D, j_t \in \mathbb{N}, X_t > C_1 \cdot \varepsilon \cdot 2^{-t}, h^{(t)} \in \mathbb{C}$ and $h_{r,s}^{(t)} \in \mathbb{C}$ such that

$$\begin{aligned} \|\operatorname{Proj}_{[H_{j(t-1)} \setminus H_{j(t)}]} \varphi_{t}(z^{(t)})\| &> \frac{X_{t}}{50}, \quad \text{where} \quad j(t) = \sum_{r=1}^{t} j_{r}, \\ \sum_{s} \|\operatorname{Proj}_{[H_{j(t)}]} \varphi_{t}(\operatorname{Proj}_{[M_{s}(t+1, \{b_{(t)}^{(l)}\})]} e)\| &< \frac{\varepsilon \cdot t^{-t} \cdot C_{1}}{10^{4} \cdot C_{2}} \\ \psi_{t}(\operatorname{Proj}_{[M_{s}(r, \{b_{(t)}^{(l)}\})]} b_{(t)}^{(r)}) &= \operatorname{Proj}_{[M_{s}(r, \{b_{(t-1)}^{(l)}\})]} b_{(t-1)}^{(r)} \quad \text{if} \quad r < t, \\ \psi_{t}(b_{(t)}^{(r)}) &= b_{(t-1)}^{(j_{t}+r)} \quad \text{if} \quad r > t, \end{aligned}$$

$$\left\|\operatorname{Proj}_{[V_t]}(z^{(t)} - h^{(t)}e - \sum_{r=1}^t \sum_s h^{(t)}_{r,s} \cdot \operatorname{Proj}_{[M_s(r, \{b^{(t)}_{t}\})]}b^{(r)}_{(t)})\right\| < \frac{\varepsilon \cdot t^{-t} \cdot C_1}{10^4 \cdot C_2}$$

Then it follows, since $|h^{(t)}|$, $|h^{(t)}_{r,s}| < 2$ because $\sup_{z \in D} ||z|| = 1$, that

$$\|\operatorname{Proj}_{[H_j(k-1)\backslash H_j(k)]}\varphi_t(z^{(k)})\| > \frac{X_k}{100} \quad \text{if} \quad k \leq t.$$

Put $X_n = \sup_{\varphi} \sup_{z \in D} \|\operatorname{Proj}_{[H_j(n-1)]} \varphi_{n-1} \circ \varphi'(z)\|$ where φ' satisfies the following conditions:

a') There is an infinite set $V \subset V_{n-1}$ such that $\varphi' \in L(l^{\infty}(V), l^{\infty}(V_{n-1}))$ and $\|\varphi'\| = 1$.

b') There are a 1-set $\{c^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V)$ and $j \in \mathbb{N}$ such that $\varphi'(c^{(k)}) = b_{(n-1)}^{(j+k)}$ if k > n and

 $\varphi'(\operatorname{Proj}_{[M_s(r, \{c^{(l)}\})]}c^{(r)}) = \operatorname{Proj}_{[M_s(r, \{b^{(l)}_{\{n-1\}}\})]}b^{(r)}_{(n-1)} \quad \text{if} \quad r \leq n-1.$

c') $\varphi'(e) = e$ and $\varphi'(z) = 0$ if $z \in c_0$.

Take now $\varphi_0 \in L(l^{\infty}(V_0), l^{\infty}(V_{n-1})), j_0 \in \mathbb{N}$ and $z^{(n)} \in D$ such that

$$\|\operatorname{Proj}_{[H_{j(n-1)} \setminus H_{j(n-1)+j_0}]} \varphi_{n-1} \circ \varphi_0(z^{(n)})\| > \frac{32}{50} X_n$$

and such that φ_0 satisfies the conditions a')—c') for a 1-set $\{c_0^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V_0)$. The existence of j_0 follows as before. Now, if we assume $X_n > C_1 \cdot \varepsilon \cdot 2^{-n}$, an application of Lemma 3, where $\varphi_{n-1} \circ \varphi_0$ correspond to φ and $(H_{j(k)})_{k=1}^{n-1} \cup (H_{j(n-1)+j_0+k})_{k=0}^{\infty}$ correspond to $(H_k)_{k=1}^{\infty}$ in the Lemma, give that there are an infinite set $V_n \subset V_0$, a 1-set $\{b_{(n)}^{(k)}\}_{k=1}^{\infty} \subset l^{\infty}(V_n)$ and $\varphi'_0 \in L(l^{\infty}(V_n), l^{\infty}(V_0))$ such that $\psi_n = \varphi_0 \circ \varphi'_0, \varphi_n = = \varphi_{n-1} \circ \psi_n, V_n, j_n = j_0 + 1, \{b_{(n)}^{(k)}\}_{k=1}^{\infty}$ and $z^{(n)}$ satisfy the conditions 1)—5) for some $h^{(n)} \in \mathbb{C}$ and $h_{r,s}^{(n)} \in \mathbb{C}$. $X_n > C_1 \cdot \varepsilon \cdot 2^{-n}$ because there is $s \in \mathbb{N}$ such that

$$\|\operatorname{Proj}_{[H_{j(n-1)}]}\varphi_{n-1}(\operatorname{Proj}_{[M_{s}(n, \{b_{n-1}^{(i)}\})]}b_{(n-1)}^{(n)})\| > C_{1} \cdot 2^{-n}$$

and because $\sup_{z \in D} N_{M_s(n, \{b\}_{n=1}^{(l)}\}}(z) > 2 \cdot \varepsilon$

$$\|\operatorname{Proj}_{[H_{j(k-1)} \setminus H_{j(k)}]} \varphi_n(z^{(k)})\| > \frac{X_k}{100}, \quad \text{if} \quad k \leq n,$$

because of b') and 5). Hence φ_n , $H_{j(n)}$, X_n and $z^{(n)}$ have the desired properties. QED

Lemma 4. E has property A if there exists to every given $t \in \mathbb{N}$ a mapping $\varphi_t \in \mathcal{L}(l^{\infty}, \mathbb{C}^t)$ and to every given $\gamma > 0$ a number $C_{\gamma} \in \mathbb{N}$ such that $\sup_{z \in D} |\operatorname{Proj}_{[n]} \varphi_t(z)| \ge 1$ for every $n \in \{1, 2, ..., t\}$ and such that for every $z \in D$ and $t \in \mathbb{N}$ $|\operatorname{Proj}_{[n]} \varphi_t(z)| \ge \gamma$ for at most C_{γ} different $n \in \{1, ..., t\}$.

Proof. Assume the lemma is false. It is easy to see that we may assume without loss of generality that $\sup_t \sup_n \sup_{z \in D} |\operatorname{Proj}_{[n]} \varphi_t(z)| < 2$. It is well known and easily seen that there are uncountably many $g_{\alpha} \in G = U_1 \times U_2 \times \ldots \times U_t \times \ldots$, where $U_t = \{1, 2, \ldots, t\}$, such that if $\alpha_1 \neq \alpha_2 \operatorname{Proj}_{[j]} g_{\alpha_1} = \operatorname{Proj}_{[j]} g_{\alpha_2}$ for at mos finitely many *j*. Let $\varphi \in L(E, l^{\infty}(G))$ be the mapping $\varphi = \{\varphi_1 \circ \psi, \varphi_2 \circ \psi, \ldots, \varphi_t \circ \psi, \ldots\}$ where $\psi \in L(E, l^{\infty})$ is the mapping in the beginning of the proof of the theorem. Since $\{g_{\alpha}\}_{\alpha}$ is uncountable it follows from the argument in the proof of Lemm a1 if *E* does not have property *A* that there are $\{\alpha_j\}_{j=1}^{\infty} \subset \{\alpha\}, \varepsilon_0 > 0$, infinite sets $V_j \subset V_{j-1} \subset \mathbb{N}$ and $z^{(j)} \in D$ such that

$$\lim_{\substack{t \to \infty \\ \in \operatorname{Proj}_{[V_j]} g_{\alpha_j}}} \varphi(z^{(j)}) = \varepsilon_0.$$

Let $\psi_1 \in L(l^{\infty}, \mathbb{C})$ be such that $\|\psi_1\| < 1/\varepsilon_0$, $\psi_1(x^{(j)}) = \frac{1}{2}$ and $\psi(z) = 0$ if supp $z \cap V_j$ is finite for some $j \in \mathbb{N}$ where $x^{(j)} = (x_n^{(j)})_{n=1}^{\infty}$, $x_n^{(j)} = \varepsilon_0$ if $n \in V_j$ and $x_n^{(j)} = 0$ if $n \in {}^{c}V_j$. Let $\psi_{1,j} \in L(l^{\infty}(g_{\alpha j}), \mathbb{C})$ correspond to ψ_1 . From the proof of Lemma 1 it follows, since $|\psi_{1,j}(\varphi(z^{(j)}))| = \frac{1}{2}$, that if E does not have property A there are a subsequence $\{j_k\}_{k=1}^{\infty} \subset \mathbb{N}$, $\delta > 0$ and $z \in D$ such that $|\psi_{1,j_k}(\varphi(z))| > \delta$ for every $k \in \mathbb{N}$. Hence there are, to every $r \in \mathbb{N}$, $t_r \in \mathbb{N}$ and $Y_r \subset \mathbb{N}$ such that Y_r contains r elements and $|\operatorname{Proj}_{[n]}\varphi_{t_r}(\psi(z))| > \delta \cdot \varepsilon_0$ if $n \in Y_r$ since otherwise there are $z^{(j)} \in l^{\infty}$ such that supp $z^{(j_1)} \cap$ supp $z^{(j_2)} = \emptyset$ if $j_1 \neq j_2$ and $|\psi_1(z^{(j)})| > 1$ for all $j \in \mathbb{N}$ which is impossible. Hence we get a contradiction if $r > C_{\gamma \cdot \varepsilon_0}$, QED.

Lemma 5. If E does not have property A there exist to every $\gamma > 0$ a number $C_{\gamma} \in \mathbb{N}$ and number $T_{\gamma} \in \mathbb{N}$ such that if $t \ge C_{\gamma}$ and $\sup_{z \in D} \sum_{k=1}^{j_n} N_{M_k^{(n)}}(z) \ge 1$, where $M_k^{(n)} \subset \mathbb{N}$, for every $n \in \{1, ..., t\}$ then there are $z^{(\gamma)} \in D$ and $V \subset \{1, 2, ..., t\}$ such that $\sum_{n \in V} \sum_{k=1}^{j_n} N_{M_k^{(n)}}(z^{(\gamma)}) > 2^{T_{\gamma} - \gamma T_{\gamma}}$ and such that V contains $2^{T_{\gamma}}$ elements.

Proof. It is easily seen that it is enough to prove the lemma if $\sum_{k=1}^{j_n} N_{M_k^{(n)}}(z)$ is replaced by $|\operatorname{Proj}_{[n]}\varphi_t(z)|$ where $\varphi_t \in L(l^{\infty}, \mathbb{C}^t)$. From Lemma 4 it follows easily that there is to every $\gamma > 0$ a number $P_{\gamma} \in N$ such that if $t \ge P_{\gamma}$, $\varphi_t \in L(l^{\infty}, \mathbb{C}^t)$ and $\sup_{z \in D} |\operatorname{Proj}_{[n]}\varphi_t(z)| \ge 1$ for every $n \in \{1, \ldots, t\}$ then there are $T \in \mathbb{N}$ and $z \in D$ such

that $|\operatorname{Proj}_{[n]}\varphi_t(z)| \ge 2^{-\gamma \cdot T}$ for at least 2^T different $n \in \{1, \ldots, t\}$ wher Te perhaps depends on the choice of φ_t . Assume that $t \ge (P_\gamma)^3$ and let T_0 be the biggest $T \in \mathbb{N}$ such that $2^T \le P_\gamma$. It follows from above that either there is $z^{(1)} \in D$ such that $|\operatorname{Proj}_{[n]}\varphi_t(z^{(1)})| \ge 2^{-\gamma \cdot T_0}$ for at least 2^{T_0} different $n \in \{1, \ldots, t\}$ of there are $z^{r,s} \in D$ and disjoint sets $V_s^r \subset \{1, \ldots, t\}$, where $1 \le r \le T_0 - 1$ and $1 \le s \le j_r \in \mathbb{N}$ such that $\bigcup_{r=1}^{T_0-1} \bigcup_{s=1}^{j_r} V_s^r$ contains more than $t - P_\gamma$ elements, V_s^r contains 2^r elements or is emty and $|\operatorname{Proj}_{[n]}\varphi_t(z^{r,s})| \ge 2^{-r \cdot \gamma}$ if $n \in V_s^r$. Hence there is

$$\varphi_1 \in L(\mathbf{C}^{s=1}, \mathbf{C}^{j_1}, \mathbf{C}^{j_1})$$

such that $\|\varphi_1\| = 1$ and $|\operatorname{Proj}_{[s]}\varphi_{t,1}(z^{1,s})| \ge 2^{1-\gamma}$ for every $s \in \{1, \dots, j_1\}$ where $\varphi_{t,1} = \varphi_1 \circ \varphi_t$. But then it follows from above that there are $z^{r,s,1} \in D$ and disjoint sets $V_s^{r,1} \subset \{1, \dots, t\}$ where $2 \le r \le T_0$ and $s \le i_r \in \mathbb{N}$ such that $\bigcup_{r=2}^{T_0} \bigcup_s V_s^{r,1}$ contains more than $t - P_\gamma - 2 \cdot P_\gamma$ elements $V_s^{r,1}$ contains 2^r elements or is empty and $\sum_{n \in V_s^{r,1}} |\operatorname{Proj}_{[n]}\varphi_t(z^{r,s,1})| \ge 2^{r-r\gamma}$. Since $t - \sum_{k=1}^{T_0} k \cdot P_\gamma > 0$ we can repeat this argument and we get at most T_0 steps that there are $z^{(1)} \in D$ and $V \subset \{1, \dots, t\}$ such that $\sum_{n \in V} |\operatorname{Proj}_{[n]}\varphi_t(z^{(1)})| \ge 2^{T_0 - \gamma T_0}$ where V contains 2^{T_0} elements. Hence $C_\gamma = (P_\gamma)^3$, $T_\gamma = T_0, z^{(\gamma)} = z^{(1)}$ and V have the properties in the lemma. QED.

Lemma 6. If E does not have property A then, for every $\gamma > 0$, $\sup_{z \in D} \sum_{k=1}^{j_n} N_{M_k^n}(z) > 2^{-\gamma \cdot n} \cdot j_n$ if n is big enough where $M_k^{(n)} \subset \mathbb{N}$ are infinite sets such that for fixed n, $M_k^{(n)}$ are disjoint and $1 \le k \le j_n \le 2^n$.

Proof. Take $\gamma_0 < \gamma$ and take C_{γ_0} and T_{γ_0} as in Lemma 5. Let $I_n \in \mathbb{N}$ be the greatest integer l such that $\sum_{r=1}^{l} C_{\gamma_0} \cdot 2^{(r-1)T_{\gamma_0}} \leq j_n$. Repeated applications of Lemma 5 give, since $\sup_{z \in D} N_{M_n^n}(z) > \varepsilon$, that

$$\sup_{z \in D} \sum_{k=1}^{j_n} N_{M_k^n}(z) > 2^{-\gamma_0 \cdot T_{\gamma_0} \cdot l_n} 2^{l_n \cdot T_{\gamma_0}} \varepsilon > 2^{-n\gamma_0} \cdot \frac{j_n \cdot \varepsilon}{C_{\gamma_0}} 2^{-T_{\gamma_0}} > 2^{-\gamma \cdot n} j_n$$

if *n* is big enough because $2^{l_n \cdot T_{\gamma_0}} \leq 2^n$, hence $l_n \leq n/T_{\gamma_0}$ and because $C_{\gamma_0} \cdot 2^{(l_n+1)T_{\gamma_0}} > j_n$. Q.E.D.

Proof of the theorem, continued. We shall use the notation in the proposition and its proof. It is easy to see that we may assume that X_n decreases. There is $\delta > 0$ such that $X_n < (1-2\delta)^n \cdot C_1$ if n is big since if $(X_n)_{n=1}^{\infty}$ is not dominated by a geometric series there is, to every $t \in \mathbb{N}$, $n_t \in \mathbb{N}$ such that $X_n/X_{n_s+t} < 1+1/t$ hence

$$\left(\frac{100}{X_{n_t+t}}\,\varphi_t'\circ\operatorname{Proj}_{[Hn_t-\searrow Hn_t+t-1]}\varphi_{n_t+t}\right)_{t=1}^{\infty}\quad\text{and}\quad c_{\gamma}=\frac{200}{\gamma^2}$$

have the same properties as $(\varphi_t)_{t=1}^{\infty}$ and C_{γ} in Lemma 4 for a suitable choice of $\varphi'_t \in L(l^2(H_{n_t-1} \setminus H_{n_t+t-1}), \mathbb{C}^t)$ which is impossible. Divide now, for each $n, \{1, 2, \dots, 2^{n-1}\}$ into $[2/\delta]+1$ disjoing parts $U_{r,n}$ ([] denotes the integer part) such that

(1)

$$\left(1 - r \cdot \frac{\delta}{2}\right)^{n} \cdot \|\operatorname{Proj}_{[H_{n-1}]}\varphi_{n-1}(b_{(n-1)}^{(n)})\| \leq \\ \leq \|\operatorname{Proj}_{[H_{n-1}]}\varphi_{n-1}(\operatorname{Proj}_{[M_{j}(n, \{b_{(n-1)}^{(k)}\})]}b_{(n-1)}^{(n)})\| \leq \\ \leq \left(1 - (r-1)\frac{\delta}{2}\right)^{n} \|\operatorname{Proj}_{[H_{n-1}]}\varphi_{n-1}(b_{(n-1)}^{(n)})\| \quad \text{if} \quad j \in U_{r,n}.$$

Since $\|\operatorname{Proj}_{[H_{n-1}]}\varphi_{n-1}(b_{(n-1)}^{(n)})\| > C_1$ it follows that there is $r_n \in \mathbb{N}$ such that $(1 - r_n \delta/2)^n \ge 1/4^n$ and

(2)

$$\left\|\operatorname{Proj}_{[H_{n-1}]}\left(\sum_{s \in U_{r_n,n}} \varphi_{n-1}\left(\operatorname{Proj}_{[M_s(n, \{b_{(n-1)}\})]} b_{(n-1)}^{(n)}\right)\right\| \ge \frac{\delta}{3} \left\|\operatorname{Proj}_{[H_{n-1}]} \varphi_{n-1}\left(b_{(n-1)}^{(n)}\right)\right\|.$$

Lemma 6 gives that to every $\gamma > 0$ there is $z^{(\gamma)} \in D$ such that

(3)
$$\sum_{s \in U_{r_{n_s}n}} N_{M_s(n, \{b_{n-1}\})}(z^{(\gamma)}) > 2^{-\gamma \cdot n} \cdot j_n$$

if *n* is large, where j_n is the number of elements in $U_{r_n,n}$. But then the proposition and the proof of Lemma 3 give that

$$x_{n} > \frac{\delta}{3} \cdot \left(\frac{1 - \frac{r_{n} \cdot \delta}{2}}{1 - \frac{(r_{n} - 1) \cdot \delta}{2}}\right)^{n} \cdot \|\operatorname{Proj}_{[H_{n-1}]}\varphi_{n-1}(b_{(n-1)}^{(n)}\| \cdot 2^{-\gamma \cdot n-1} \cdot j_{n})\|$$

according to (1), (2) and (3). But since $1 - r_n \cdot \delta/2 \ge 1/4$ it follows that $r_n \cdot \delta \le 3/2$ hence that

$$\frac{1 - \frac{r_n \cdot \delta}{2}}{1 - \frac{(r_n - 1) \cdot \delta}{2}} \ge 1 - \frac{2\delta}{1 + 2\delta}$$

hence if γ is samll and *n* is big enough it follows that $X_n > (1-2\delta)^n \cdot C_1$, because $\|\operatorname{Proj}_{[H_{n-1}]} \varphi_{n-1}(b_{(n-1)}^{(n)})\| > C_1$, which is a contradiction. Q.E.D.

Weak sequential convergence in the dual of a Banach space does not imply convergence 89

Added in proof

The results in this paper were announced in May 1973 at an international conference on infinite-dimensional holomorphy in Lexington, Kentucky, USA.

The Theorem has been proved independently by A. Nissenzweig.

References

1. COEURÉ, G. Thesis. Ann. Inst. Fourier 20 (1970).

2. DINEEN, S. Unbounded holomorphic functions on a Banach space. J. London Math. Soc. 4 (1972).

3. LACEY, E. Separable quotients of Banach spaces. An. da Acad. Brasil. Ci. 44 (1972).

4. LINDENSTRAUSS, J. Some aspects of the theory of Banach spaces. Advances in Math. 5 (1970).

5. NACHBIN, L. Topology on spaces of holomorphic mappings. Springer-Verlag, Ergebnisse der Math. 47 (1969).

6. ROSENTHAL, H. On quasi-complemented subspaces with an appendix on compactness on operators from $L^{p}(\mu)$ to $L^{r}(U)$. J. Functional Analysis 4 (1969).

7. THORP, E. and WHITLEY, R. Operator representations theorems. Ill. J. Math. 9 (1965).

Received May 9, 1974

Bengt Josefson Department of Mathematics Sysslomansgatan 8 UPPSALA, Sweden