Weak sequential convergence in the dual of a Banach space does not imply norm convergence

Bengt Josefson

We shall prove that for every infinite-limensional Banach space E there is a sequence in E^{\prime}, the dual space, which tends to 0 in the weak topology $\sigma\left(E^{\prime}, E\right)$ but not in the norm topology. This is well known for separable or reflexive Banach spaces. See also [3] for other examples. The theorem has its main applications in the theory of holomorphic functions on infinite-dimensional topological vector spaces (TVS).

Let l^{∞} be the Banach space of all complex-valued, bounded functions on the natural numbers $\mathbf{N} ; z=\left(z_{j}\right)_{j=1}^{\infty}$ denotes a point in l^{∞}. Let c_{0} be the Banach space $c_{0}=\left\{z \in l^{\infty} ; z_{j} \rightarrow 0\right.$ as $\left.j \rightarrow \ldots \infty\right\}, c=\left\{z \in l^{\infty} ; \lim _{j \rightarrow \infty} z_{j}\right.$ exists $\}$ and $l^{1}=\left\{z \in c_{0}, \sum_{j=1}^{\infty}\left|z_{j}\right|<\right.$ $<\infty\}$. Let $L\left(F, F_{1}\right)$ denote the set of all bounded linear mappings from F into F_{1} and let $\mathfrak{G}(F)$ denote the set of Gâteaux-analytic, locally bounded functions on F, where F and F_{1} are locally convex TVS. See [5]. A set $B \subset F$ is called bouding if $\sup _{z \in B}|f(z)|<\infty$ for every $f \in \mathfrak{H}(F)$. Put $\mathfrak{H}_{b}(F)=\{f \in \mathfrak{H}(F) ; f$ is bounded on bounded subsets of $F\}$.

Theorem. To every infinite-dimensional Banach space E there exist $\varphi_{j} \in E^{\prime}$ such that $\left\|\varphi_{j}\right\|=1$ and $\lim _{j \rightarrow \infty} \varphi_{j}(z)=0$ for every $z \in E$.

Corollary 1. No neighbourhood of $0 \in F$, where F is a locally convex TVS, is a bounding set.

Proof. See [2].
Corollary 2. $\mathfrak{H}_{b}(E) \neq \mathfrak{G}(E)$ for very infinite-dimensional Banach space E.
Proof. Se [2].
Proof of the Theorem. Let $F \subset E$ be a separable, infinite-dimensional subspace. From [1] and [2] it follows that there are $z^{(j)} \in F$ and $\psi_{j} \in E^{\prime}$ such that $\left\|\psi_{j}\right\|=1$, $\left\|z^{(j)}\right\|=1, \psi_{j}\left(z^{(j)}\right)=1$ and $\lim _{j \rightarrow \infty} \psi_{j}(z)=0$ for every $z \in F$. Let $\psi \in L\left(E, l^{\infty}\right)$ be the
mapping $\psi(z)=\left(\psi_{1}(z), \psi_{2}(z), \ldots, \psi_{j}(z), \ldots\right)$. Put $D=\psi\left(B_{E}\right)$ where B_{E} is the closed unit ball in E. We shall say that E has property A if there are linear functionals as in the theorem. We recall that l^{∞} has property A which follows from the fact that there is $\varphi \in L\left(l^{\infty}, l^{2}(B)\right)$, where card $B=\operatorname{card} \mathbf{R}$ and $l^{2}(B)$ is the Hilbert space on B, such that φ is onto [6]. In the rest of the proof we shall prove that if there is no $\varphi_{0} \in L\left(l^{\infty}, l^{\infty}\right)$ such that $\varphi_{0}(D)$ is separable and not compact then D is like the unit ball in l^{∞} in the sense that we may use a technique to prove that E has property A which is similar to that used to prove that l^{∞} has property A. More explicitly, if there is no φ_{0} as above Lemma 6 gives that X_{n} in the Proposition may be taken such that $\left(X_{n}\right)$ is not dominated by a geometric series and then the sequence of mappings $\left(\varphi_{n}\right)$ in the Proposition and Lemma 4 replace $\varphi \in L\left(l^{\infty}, l^{2}(B)\right)$. If, on the other hand, there is $\varphi_{0} \in L\left(l^{\infty}, l^{\infty}\right)$ such that $\varphi_{0}(D)$ is separable but not compact then it follows trivially that E has property A.

Definition 1. Put, for $z \in l^{\infty}$ and $M \subset \mathbf{N}$, supp $z=\left\{j \in \mathbf{N} ; z_{j} \neq 0\right\}$ and $\operatorname{Proj}_{[M]} z=$ $=\left(z_{j}^{\prime}\right)_{j \in \mathrm{~N}}$ where $z_{j}^{\prime}=z_{j}$ if $j \in M$ and $z_{j}^{\prime}=0$ if $j \notin M$. Let $l^{\infty}(M)=\left\{z \in l^{\infty} ; z_{j}=0\right.$ if $\left.j \notin M\right\}$.

Definition 2. Put, for $z \in l^{\infty}$ and $M \subset \mathbf{N}, N_{M}(z)=\overline{\lim }_{j, k \rightarrow \infty, j, k \in M}\left|z_{j}-z_{k}\right|\left(N_{M}(z)=\right.$ $=0$ if M is finite).

Definition 3. A set $A \subset l^{\infty}$ is called a 1 -set if for all finite subsets $\left\{a^{(1)}, \ldots, a^{(k)}\right\}$ of A the vector of components $\left(a_{j}^{(1)}, \ldots, a_{j}^{(k)}\right) \in \mathbf{C}^{k}$ assumes exactly the values $(\pm 1$, $\pm 1, \ldots, \pm 1$) for all possible 2^{k} choices of signs.

Definition 4. Let $\left\{a^{(k)}\right\}_{k=1}^{\infty}$ be a 1 -set and r a positive integer. Let $\left\{M_{j}\left(r,\left\{a^{(k)}\right\}\right)\right.$; $\left.j=1,2, \ldots, 2^{r-1}\right\}$ be the partitioning of \mathbf{N} into 2^{r-1} disjoint parts such that $\left(a_{s}^{(1)}, \ldots\right.$ $\left.\ldots, a_{s}^{(r-1)}\right)=\left(a_{l}^{(1)}, \ldots, a_{l}^{(r-1)}\right)$ if and only if $s, l \in M_{j}\left(r,\left\{a^{(k)}\right\}\right)$ for some j. Put $M\left(1,\left\{a^{(k)}\right\}\right)=\mathbf{N}$.

We note that $\left\|\sum_{k=1}^{\infty} \lambda_{k} a_{k}\right\| \geqq \frac{1}{2} \sum_{k=1}^{\infty}\left|\lambda_{k}\right|$ if $\left\{a_{k}\right\}$ is a 1 -set. In fact, C. O. Kiselman has proved that the constant $1 / 2$ can be replaced by $2 / \pi$ and this is best possible.

Lemma 1. If E does not have property A there exist an infinite set $V \subset \mathbf{N}$ and a number $\varepsilon>0$ such that for every infinite $U \subset V, \sup _{z \in D} N_{U}(z)>\varepsilon$.

Proof. Assume that the lemma is false. Then there are infinite sets U_{j} such that $U_{j} \subset U_{j-1} \nsubseteq U_{j}$ and $\sup _{z \in D} N_{U_{j}}(z)<2^{-j}$. There is an infinite set $U \subset \mathbf{N}$ such that $U \cap C U_{j}$ is finite for every $j \in \mathbf{N}$. Hence $\sup _{z \in D} N_{U}(z)=0$ which is a contradiction.

We may assume that $V=\mathbf{N}$. Let $e \in l^{\infty}$ be $\{1,1, \ldots, 1, \ldots\}$.
Lemma 2. There exist an index set $B, H_{k} \subset B, \varphi \in L\left(l^{\infty}, l^{2}(B)\right)$ where $l^{2}(B)$ is the Hilbert space on $B, C_{1}>0, C_{2}>0$ and a 1-set $\left\{a^{(k)}\right\}_{k=1}^{\infty} \subset l^{\infty}$ such that card $B=$
$=\operatorname{card} \mathbf{R}, B \backslash H_{k}$ is finite,

$$
\begin{gathered}
H_{k} \subset H_{k-1} \subset \ldots \subset H_{0}=B, \quad\|\varphi\|<C_{2}, \quad\left\|\operatorname{Proj}_{\left[H_{k-1} \backslash H_{k}\right]} \varphi\left(a^{(k)}\right)\right\|>C_{1}, \\
\sum_{j} \| \operatorname{Proj}_{\left[H_{k}\right]} \varphi\left(\operatorname{Proj}_{\left[M_{j}(k+1,\{a(r)\})\right]} e \|<10^{-4} \cdot k^{-k-1} \cdot \varepsilon \cdot C_{1}\right.
\end{gathered}
$$

and $\varphi(e)=\varphi(z)=0$ if $z \in c_{0}$. Here ε is the constant in Lemma 1.
Proof. From [6] it follows that there is $\varphi_{1} \in L\left(l^{\infty}, l^{2}(B)\right)$ such that φ_{1} is onto. Since card $B>\operatorname{card} \mathbf{N}$ it follows there are $C_{1}>0, b^{(k)} \in l^{\infty}$ and $H_{k} \subset B$ such that $H_{k} \subset H_{k-1}, B \backslash H_{k}$ is finite,

$$
\left\|b^{(k)}\right\|<\frac{1}{2} \quad \text { and } \quad \| \operatorname{Proj}_{\left[H_{k-1} \backslash H_{k}\right]} \varphi_{1}\left(b^{(k)} \|>C_{1}\right.
$$

Let $\left\{a^{(k)}\right\}_{k=1}^{\infty}$, be a 1 -set and $F \subset l^{\infty}$ the subspace generated by $a^{(k)}$ and c. Then $a \in F$ if and only if $a=\sum_{k=1}^{\infty} \lambda_{k} a^{(k)}+x$ where $x \in c$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}, \ldots\right) \in l^{1}$. Let $\psi \in L\left(F, l^{\infty}\right)$ be the mapping defined by $\psi\left(a^{(k)}\right)=b^{(k)}$ and $\psi(x)=0$ if $x \in c$. We have $\|\psi\| \leqq 1$ because

$$
\left\|\sum_{k=1}^{\infty} \lambda_{k} \cdot a^{(k)}+x\right\| \geqslant \frac{1}{2} \sum_{k=1}^{\infty}\left|\lambda_{k}\right| \quad \text { if } \quad x \in c
$$

But l^{∞} has the norm preserving extension property hence ψ can be extended to $\psi_{1} \in L\left(l^{\infty}, l^{\infty}\right)$ such that $\left\|\psi_{1}\right\|=\|\psi\|$. Put $\varphi=\varphi_{1} \circ \psi_{1}$.

Assume now that we have found $\left(j_{k}\right)_{k=1}^{s} \subset \mathbf{N}$, where $s \in \mathbf{N}$, and $\left(H_{k}^{\prime}\right)_{k=1}^{s} \subset B$ such that $H_{k-1}^{\prime} \supset H_{k}^{\prime}, H_{k}^{\prime}=H_{j_{p_{k}}}$ for some $j_{p_{k}} \in \mathbf{N}$,

$$
\left\|\operatorname{Proj}_{\left[H_{k-1}^{\prime} \backslash H_{k}^{\prime}\right]} \varphi\left(a^{\left(j_{k}\right)}\right)\right\|>C_{1} \quad \text { if } \quad k \leqq s
$$

and

$$
\sum_{l}\left\|\operatorname{Proj}_{\left[H_{k}^{\prime}\right]} \varphi\left(\operatorname{Proj}_{\left[M_{l}\left(k+1,\left\{a^{\left(j_{n}\right)}\right)\right]\right]} e\right)\right\|<\frac{C_{\mathrm{a}} \cdot \varepsilon}{10^{4} \cdot k^{k+1}} \quad \text { if } \quad k \leqq s
$$

Choose now $j_{s+1} \in \mathbf{N}$ and then $H_{s+1}^{\prime}=H_{j_{p_{s}+1}}$ for some $j_{p_{s+1}} \in \mathbf{N}$ such that

$$
\| \operatorname{Proj}_{\left[H^{\prime} s \backslash H_{s+1}^{\prime}\right]} \varphi\left(a^{\left(j_{s+1}\right)} \|>C_{1}\right.
$$

and

$$
\sum_{l}\left\|\operatorname{Proj}_{\left[H_{s+1]}^{\prime}\right]} \varphi\left(\operatorname{Proj}_{\left[M_{l}\left(s+2,\left\{a^{\left(j_{n}\right)}\right\}\right)\right]} e\right)\right\|<\frac{C_{1} \cdot \varepsilon}{10^{4} \cdot(s+1)^{s+2}}
$$

which of course is possible according to the construction of φ and the fact that a vector in $l^{2}(B)$ is "small" outside a finite subset of B. Hence $\left\{a^{\left(j_{k}\right)}\right\}_{k=1}^{\infty}$ and ($\left.H_{k}^{\prime}\right)$ have the desired properties. Q.E.D.

Lemma 3. Let $j \in \mathbf{N}$ be a fixed number and $\varphi,\left\{a^{(k)}\right\}_{k=1}^{\infty}$ and $\left(H_{k}\right)$ be as in Lemma 2 and $z \in l^{\infty}$ be such that $\|z\|<2$ and

$$
\left\|\operatorname{Proj}_{\left[H_{j} \backslash H_{k}\right]} \varphi(z)\right\|>C_{3}>\frac{2^{-j} \cdot \varepsilon \cdot C_{1}}{5}
$$

for some $k>j$. Then there exist an infinite set $V \subset \mathbf{N}, \varphi^{\prime} \in L\left(l^{\infty}(V), l^{\infty}\right)$, a 1 -set $\left\{b^{(r)}\right\}_{r=1}^{\infty} \subset l^{\infty}(V)$ and $h_{s, r} \in \mathbf{C}$ such that

$$
\begin{gathered}
\left\|\operatorname{Proj}_{[V]} z-h e-\sum_{r=1}^{j+1} \sum_{s} h_{r, s} \operatorname{Proj}_{\left[M_{s}(r,\{b(l))]\right.} b^{(r)}\right\|<\frac{\varepsilon \cdot j^{-j} \cdot C_{1}}{10^{4} \cdot C_{2}}, \\
\varphi^{\prime}\left(\operatorname{Proj}_{\left[M_{s}\left(r,\left\{b^{(r)}\right\}\right)\right]} b^{(r)}\right)=\operatorname{Proj}_{\left[M_{s}\left(r,\left\{a^{(l)}\right)\right)\right]} a^{(r)} \quad \text { if } \quad r \leqq j \\
\varphi^{\prime}(e)=e, \quad \varphi^{\prime}(z) \in c_{0} \quad \text { if } \quad z \in c_{0}, \quad \varphi^{\prime}\left(b^{(j+r)}\right)=a^{(k+r)} r>1
\end{gathered}
$$

and

$$
\left\|\operatorname{Proj}_{\left[H_{j} \backslash H_{k}\right]} \varphi \circ \varphi^{\prime}(z)\right\|>\frac{C_{3}}{32}
$$

Proof. It is an immediate consequence of the definition of $N_{M_{s}(j+1,\{a(l)\})}(z)$ that there exist an infinite set $V_{s} \subset M_{\mathrm{s}}\left(j+1,\left\{a^{(l)}\right\}\right)$, a 1-point $\delta^{s} \in l^{\infty}\left(V_{s}\right), p_{1, s} \in \mathbf{C}$ and $h_{j+1, s} \in \mathbf{C}$ such that

$$
\begin{aligned}
\left|h_{j+1, s}\right| & =\frac{1}{2} N_{M_{s}\left(j+1,\left\{a^{(l)}\right\}\right)}(z) \\
\left\|\operatorname{Proj}_{\left[V_{s}\right]}\left(z-p_{1, s} \cdot e-h_{j+1, s} \cdot \delta^{s}\right)\right\| & <\frac{\varepsilon \cdot j^{-j} \cdot C_{1}}{10^{4} \cdot C_{2}} \text { and } N_{V_{s}}\left(z-h_{j+1, s} \delta^{s}\right)=0
\end{aligned}
$$

Put $V=\bigcup_{s} V_{s}$ and $a_{0}^{(j+1)}=\sum_{s} \delta^{s}$. It is obvious that we can take $\left\{a_{0}^{(r)}\right\}_{r=j+2}^{\infty} \subset$ $\subset l^{\infty}(V)$ such that $\left\{a_{0}^{(r)}\right\}_{r=1}^{\infty}$ is a 1 -set in $l^{\infty}(V)$ where $a_{0}^{(r)}=\operatorname{Proj}_{[V]} a^{(r)}$ if $r \leqq j$. Since $N_{M_{s}\left(j+1,\left\{a^{(t)}\right)\right)}\left(z-h_{j+1, s} a_{0}^{(j+1)}\right)=0$ it follows from the definition that we can find $h_{j, s} \in \mathbf{C}$ and $p_{2, s} \in \mathbf{C}$ such that

$$
N_{M_{s}\left(j,\left\{a_{0}^{(l)}\right)\right.}(z-\underbrace{\left.\sum_{t} h_{j+1, t} \cdot \operatorname{Proj}_{\left[M_{\mathrm{F}}\left(j+1,\left\{a_{0}^{(l)}\right)\right]\right)} a_{0}^{(j+1)}-h_{j, s} a_{0}^{(j)}\right)}_{b_{s}}=0
$$

and

$$
\| \operatorname{Proj}_{\left[M_{s}\left(j,\left\{a_{0}^{(1)}\right\}\right)\right]}\left(z-b_{s}-p_{2, s} e \|<\frac{\varepsilon \cdot j^{-j} \cdot C_{1}}{10^{4} \cdot C_{2}}\right.
$$

In the same way we may continue and after $j+1$ steps we get that there are $h_{r, s} \in \mathbf{C}$ and $h \in \mathbf{C}$ such that

$$
\begin{equation*}
\| \operatorname{Proj}_{[V]}\left(z-h e-\sum_{r=1}^{j+1} \sum_{s} h_{r, s} \cdot \operatorname{Proj}_{\left[M_{s}\left(r,\left\{a_{0}^{(d)}\right\}\right)\right]} a_{0}^{(r)} \|<\frac{\varepsilon \cdot j^{-j} \cdot C_{1}}{10^{4} \cdot C_{2}}\right. \tag{1}
\end{equation*}
$$

$\left|h_{r, s}\right|<2$ because $\left\{a_{0}^{(l)}\right\}_{l=1}^{\infty}$ is a 1 -set and because $\|z\|<2$.

In the same manner it follows that there are $h^{\prime} \in \mathbf{C}, h_{r, s}^{\prime} \in \mathbf{C}$ and $z^{\prime} \in l^{\infty}$ such that $\left|h^{\prime}\right|<2,\left|h_{r, s}^{\prime}\right|<2$,
and

$$
z=z^{\prime}+h^{\prime} e+\sum_{r=1}^{j} \sum_{s} h_{r, s}^{\prime} \cdot \operatorname{Proj}_{\left[M_{s}(r,\{a(1)\})\right]} a^{(r)}
$$

$$
\prod_{\substack{t \rightarrow \infty \\ t \in M_{s}\left(j+1,\left\{a^{(z)}\right\}\right)}}\left|z_{t}^{\prime}\right|=\frac{1}{2} N_{M_{s}\left(j+1,\left\{a^{(l)}\right\}\right)}(z) .
$$

Lemma 2 gives that

$$
\left\|\operatorname{Proj}_{\left[H_{j} \backslash H_{k}\right]} \varphi\left(z^{\prime}\right)\right\|>C_{3}-\frac{C_{1} \cdot \varepsilon \cdot j^{-j}}{10^{4}}>\frac{C_{3}}{2}
$$

Let $\left\{d^{(d)}\right\}_{l=1}^{\infty} \subset l^{\infty}(V)$ be a 1 -set such that there are disjoint infinite sets $U_{j, l}^{(s)} \subset$ $\subset M_{l}\left(j+1,\left\{d^{(r)}\right\}\right)$ such that $\bigcup_{s=1}^{4} U_{j, l}^{(s)}=M_{i}\left(j+1, d^{(r)}\right)$ and

$$
\left\{\operatorname{Proj}_{[U(S)]} d^{(r)}\right\}_{r=j+1}^{\infty}
$$

is a 1 -set for every l and s. Let $z^{\prime \prime}=\left\{z_{t}^{\prime \prime}\right\}_{t \in V}$ be such that $z_{t}^{\prime \prime}=(i)^{s} \cdot\left|h_{j+1, t}\right|$ if $t \in U_{j, l}^{(s)}$. Let $F \subset l^{\infty}(V)$ be the subspace which is generated by $z^{\prime \prime}, d^{(l)}, \operatorname{Proj}_{\left[M_{s}\left(r,\left\{d^{(1)}\right\}\right)\right]} d^{(r)}$ $1 \leqq r \leqq j$ and $c . b \in F$ if and only if

$$
b=\gamma_{0} \cdot z^{\prime \prime}+x+\sum_{r=1}^{j} \sum_{s} \gamma_{r, s} \cdot \operatorname{Proj}_{\left[M_{s}\left(r,\left\{d^{(0)}\right)\right]\right.} d^{(r)}+\sum_{k=j+1}^{\infty} \lambda_{k} d^{(k)}
$$

where $x \in c \gamma_{0} \in \mathbf{C}, \gamma_{r, s} \in \mathbf{C}$ and $\lambda=\left\{\lambda_{j+1}, \ldots, \lambda_{j+k}, \ldots\right\} \in l_{1}$. Let $\psi \in L\left(F, l^{\infty}\right)$ be the mapping $\psi\left(z^{\prime \prime}\right)=z^{\prime} / 2, \psi(e)=e, \psi\left(d^{(r)}\right)=a^{(r)}, \psi(z)=0$ if $z \in c_{0}$ and

$$
\psi\left(\operatorname{Proj}_{\left[M_{s}\left(r,\left\{a^{(1)}\right\}\right)\right]} d^{(r)}=\operatorname{Proj}_{\left[M_{s}\left(r,\left\{a^{(l)}\right\}\right)\right]} a^{(r)}\right.
$$

$r \leqq j$. It is easy to check that $\|\psi\|=1$. But to has the norm preserving extension property hence ψ can be extended to $\psi_{1} \in L\left(l^{\infty}(V), l^{\infty}\right)$ such that $\left\|\psi_{1}\right\|=1$. We may assume that

$$
\left\|\operatorname{Proj}_{\left[H_{j} \backslash H_{k}\right]} \varphi \circ \psi_{1}\left(\operatorname{Proj}_{\left[U_{i} \cup U_{j, l}^{(2)} \cup U J_{j, l}^{(4)}\right]} z^{\prime \prime}\right)\right\|>\frac{C_{3}}{8} .
$$

(Since otherwise

$$
\left.\left\|\operatorname{Proj}_{\left[H_{j} \backslash H_{k}\right]} \varphi \circ \psi_{1}\left(\operatorname{Proj}_{\left[U_{i} U_{j, 2}^{(1)} \cup U_{j, 2}^{(3)}\right]} z^{\prime \prime}\right)\right\|>\frac{C_{3}}{8} .\right)
$$

Hence there is $t=\left(t_{1}, t_{2}, \ldots\right)$ where $t_{j}=1$ or -1 such that
(2) $\| \operatorname{Proj}_{\left[H_{j} \backslash H_{k}\right]} \varphi \circ \psi_{1}\left(\operatorname{Proj}_{\left[\cup U_{j, t}^{(2)} \cup V_{j, t}^{(4)}\right]}\left(\sum{ }_{s} t_{s} h_{j+1, s} \operatorname{Proj}_{\left[M_{s}\left(j+1,\left\{h_{0}^{(d)}\right\}\right)\right]} b_{u}^{(j+)}\right) \|>\frac{C_{3}}{16}\right.$, where $b_{0}^{(r)}=d^{(r)}$ if $r \neq j+1$ and $b_{0}^{(j+1)}=\left\{x_{t}\right\}_{t \in V}$ is such that $x_{t}=-1$ if $t \in U_{t, j}^{(2)}, x_{t}=1$ if $t \in U_{, j}^{(4)}$, and $x_{t}=0$ elsewhere.

Let $G \subset l^{\infty}(V)$ be the subspace which is generated by $c,\left\{a_{0}^{(r)}\right\}_{r=1}^{\infty}$ and

$$
\operatorname{Proj}_{\left[M_{s}\left(r,\left\{a_{0}^{(r)}\right\}\right)\right]} a_{0}^{(r)} \quad \text { if } \quad r \leqq j+1
$$

As above it follows that there is $J \in L\left(G, l^{\infty}(V)\right)$ which can be extended to $J_{1} \in$ $\epsilon L\left(l^{\infty}(V), l^{\infty}(V)\right)$ such that $\|J\|=\left\|J_{1}\right\|=1, J(e)=e, J(z)=0$ if $z \in c_{0}, J\left(a_{0}^{(r)}\right)=b_{0}^{(r)}$ if $\boldsymbol{r} \neq \boldsymbol{j}+1$,

$$
J\left(\operatorname{Proj}_{\left[M_{s}\left(r,\left\{a_{0}^{(l)}\right\}\right)\right]} a_{0}^{(r)}=\operatorname{Proj}_{\left.\left[M_{s}\left(r,\left\{b_{0}^{l(}\right)\right\}\right)\right]} b_{0}^{(r)} \quad \text { if } \quad r \leqq j\right.
$$

and

$$
J\left(\operatorname{Proj}_{\left[M_{s}\left(j+1,\left\{a_{0}^{(i)}\right\}\right)\right]} a_{0}^{(j+1)}\right)=t_{s} \cdot \operatorname{Proj}_{\left[M_{s}\left(j+1,\left\{b_{0}^{(l)}\right\}\right)\right]} b_{0}^{(j+1)}
$$

But then (1) and (2) give that $\varphi^{\prime}=\psi_{1} \circ J_{1}$ and $b^{(r)}=a_{0}^{(r)}$ have the properties in the lemma. Q.E.D.

Proposition 1. There are $\varphi_{n} \in L\left(l^{\infty}, l^{2}(B)\right), H_{n} \subset B, X_{n}>0$ and $z^{(n)} \in D$ such that $X_{n}>C_{1} \cdot \varepsilon \cdot 2^{-n}$ where C_{1} is the constant in Lemma 2 and ε the constant in Lemma 1, $B \backslash H_{n}$ is finite

$$
H_{n} \subset H_{n-1} \subset \ldots \subset H_{0}=B, \quad \sup _{z \in D}\left\|\operatorname{Proj}_{\left[H_{k-1}\right]} \varphi_{n}(z)\right\| \leqq X_{k}
$$

and

$$
\left\|\operatorname{Proj}_{\left[\boldsymbol{H}_{k-1} \backslash \boldsymbol{H}_{k}\right]} \varphi_{n}\left(z^{(k)}\right)\right\|>X_{k} \cdot 10^{-2} \quad \text { if } \quad k \leqq n
$$

Proof. Let $\varphi,\left\{a^{(k)}\right\}_{k=1}^{\infty}$ and H_{k} be as in Lemma 2. Put $X_{1}=\sup _{\varphi} \sup _{z \in D}\left\|\varphi \circ \varphi^{\prime}(z)\right\|$ where φ^{\prime} satisfies the following conditions.
a) There is an infinite set $V \subset \mathbf{N}$ such that $\varphi^{\prime} \in L\left(l^{\infty}(V), l^{\infty}\right)$ and $\left\|\varphi^{\prime}\right\|=1$.
b) There are a 1-set $\left\{b^{(k)}\right\}_{k=1}^{\infty} \subset l^{\infty}(V)$ and $j \in \mathbf{N}$ such that $\varphi^{\prime}\left(b^{(k)}\right)=a^{(j+k)}$ if $k>1$.
c) $\varphi^{\prime}(e)=e$ and $\varphi^{\prime}(z)=0$ if $z \in c_{0}$.

Take $\varphi_{0}^{\prime} \in L\left(l^{\infty}(V), l^{\infty}\right)$ and $z^{(1)} \in D$ such that $\left\|\varphi \circ \varphi_{0}^{\prime}\left(z^{(1)}\right)\right\|>32 / 50 X_{1}$ and such that φ_{0}^{\prime} satisfies conditions a)-c) for a 1 -set $\left\{b_{0}^{(k)}\right\}_{k=1}^{\infty} \subset l^{\infty}\left(V_{0}\right)$ and $j_{0} \in \mathbf{N}$. We may assume that

$$
\left\|\operatorname{Proj}_{\left[B \backslash H_{j_{0}}\right]} \varphi \circ \varphi^{\prime}\left(z^{(1)}\right)\right\|>\frac{32}{50} X_{1}
$$

since otherwise we just have to take a bigger j_{0}, omit finitely many $b_{0}^{(k)}$ and renumber. Now, if we assume $X_{1}>C_{1} \cdot \varepsilon$, a direct application of Lemma 3, where $\varphi \circ \varphi_{0}^{\prime}$ correspond to φ and $\left(H_{j_{0}+k}\right)_{k=1}^{\infty}$ correspond to $\left(H_{k}\right)_{k=1}^{\infty}$ in Lemma 3, we get that there are an infinite set $V_{1} \subset V_{0}$, a $1-$ set $\left\{b_{(1)}^{(k)\}_{k=1}^{\infty} \subset l^{\infty}\left(V_{1}\right) \text { and } \varphi_{1}^{\prime} \in L\left(l^{\infty}\left(V_{1}\right), l^{\infty}\left(V_{0}\right)\right) h^{(1)}, ~}\right.$ and $h_{1}^{(1)} \in \mathbf{C}$ such that

$$
\begin{equation*}
\left\|\operatorname{Proj}_{\left[V_{1}\right]}\left(z^{(1)}-h^{(1)} e-h_{1}^{1} b_{(1)}^{(1)}\right)\right\|<\frac{\varepsilon \cdot C_{1}}{10^{4} \cdot C_{2}} \tag{1}
\end{equation*}
$$

and $\psi_{1}=\varphi_{0}^{\prime} \circ \varphi_{1}^{\prime}$ satisfies a)-c) with $V,\left\{b^{(k)}\right\}_{k=1}^{\infty}$ and j replaced by $V_{1},\left\{b_{(1)}^{(k)}\right\}_{k=1}^{\infty}$ and $j_{0}+1$. That $X_{1}>C_{1} \cdot \varepsilon$ follows because there is $z^{\circ} \in D$ such that $N_{\mathbf{N}}\left(z^{\circ}\right)>2 \cdot \varepsilon$, according to Lemma 1 , hence there are an infinite set $V^{\prime} \subset \mathbf{N}$ and a 1 -set $\left\{a_{0}^{(k)}\right\}_{k=1}^{\infty} \subset$ $\subset l^{\infty}\left(V^{\prime}\right)$ such that $N_{V^{\prime}}\left(z^{\circ}-h \cdot a_{0}^{(1)}\right)=0$ for some $h \in \mathbf{C}$ such that $|h|>\varepsilon$. Assume
now that there are, for every $t<n$, an infinite set $V_{t} \subset V_{t-1}, \psi_{t} \in L\left(l^{\infty}\left(V_{t}\right), l^{\infty}\left(V_{t-1}\right)\right)$, $\varphi_{t} \in L\left(l^{\infty}\left(V_{t}, l^{2}(B)\right)\right.$, a 1-set $\left\{b_{(t)}^{(k)}\right\}_{k=1}^{\infty} \subset l^{\infty}(V), z^{(t)} \in D, j_{t} \in \mathbf{N}, X_{t}>C_{1} \cdot \varepsilon \cdot 2^{-t}, h^{(t)} \in \mathbf{C}$ and $h_{r, s}^{(t)} \in \mathbf{C}$ such that

$$
\begin{aligned}
& \left\|\operatorname{Proj}_{\left[H_{j(t-1)} \backslash H_{j(t)}\right)} \varphi_{t}\left(z^{(t)}\right)\right\|>\frac{X_{t}}{50}, \text { where } j(t)=\sum_{r=1}^{t} j_{r}, \\
& \left.\left.\sum_{s} \| \operatorname{Proj}_{\left[H_{j}(t)\right]} \varphi_{t}\left(\operatorname{Proj}_{\left[M_{s}(t+1, f(t)\right.}(\underset{\sim}{2})\right)\right]\right) \|<\frac{\varepsilon \cdot t^{-t} \cdot C_{1}}{10^{4} \cdot C_{2}} \\
& \left.\left.\psi_{t}\left(\operatorname{Proj}_{\left[M_{s}(r,\{b(t)\right.}^{(t)}\right)\right]^{b(r)}\right)=\operatorname{Proj}_{\left[M_{s}\left(r,\left\{t b_{(i-1)}^{(T)}\right)\right)^{b} b_{(t-1)}^{(r)}\right.} \quad \text { if } \quad r<t, \\
& \psi_{t}\left(b_{(t)}^{(r)}\right)=b_{(t-1)}^{\left(t_{i}+r\right)} \quad \text { if } \quad r>t, \\
& \left\|\operatorname{Proj}_{\left[V_{t]}\right.}\left(z^{(t)}-h^{(t)} e-\sum_{r=1}^{t} \sum_{s} h_{r, s}^{(t)} \cdot \operatorname{Proj}_{\left[M_{s}(r,\{b(i)\})\right]} b_{(r)}^{(r)}\right)\right\|<\frac{\varepsilon \cdot t^{-t} \cdot C_{1}}{10^{4} \cdot C_{2}} .
\end{aligned}
$$

Then it follows, since $\left|h^{(t)}\right|,\left|h_{r, s}^{(t)}\right|<2$ because $\sup _{z \in D}\|z\|=1$, that

$$
\left\|\operatorname{Proj}_{\left[H_{j(k-1)} \backslash H_{j(k)]}\right.} \varphi_{t}\left(z^{(k)}\right)\right\|>\frac{X_{k}}{100} \quad \text { if } \quad k \leqq t .
$$

Put $X_{n}=\sup _{\varphi} \sup _{z \in D}\left\|\operatorname{Proj}_{\left[H_{j(n-1)}\right]} \varphi_{n-1} \circ \varphi^{\prime}(z)\right\|$ where φ^{\prime} satisfies the following conditions:
a^{\prime}) There is an infinite set $V \subset V_{n-1}$ such that $\varphi^{\prime} \in L\left(l^{\infty}(V), l^{\infty}\left(V_{n-1}\right)\right)$ and $\left\|\varphi^{\prime}\right\|=1$.
$\left.\mathrm{b}^{\prime}\right)$ There are a $1-\mathrm{set}\left\{c^{(k)}\right\}_{k=1}^{\infty} \subset l^{\infty}(V)$ and $j \in \mathbf{N}$ such that $\varphi^{\prime}\left(c^{(k)}\right)=b_{(n-1)}^{(j+k)}$ if $k>n$ and

$$
\varphi^{\prime}\left(\operatorname{Proj}_{\left[M_{s}\left(r,\left(c c^{(l)}\right)\right]\right)} c^{(r)}\right)=\operatorname{Proj}_{\left[M_{s}(r,(b,(n)(n),))\right]} b_{(n-1)}^{(r)} \quad \text { if } \quad r \leqq n-1 .
$$

$\left.c^{\prime}\right) \varphi^{\prime}(e)=e$ and $\varphi^{\prime}(z)=0$ if $z \in c_{0}$.
Take now $\varphi_{0} \in L\left(l^{\infty}\left(V_{0}\right), l^{\infty}\left(V_{n-1}\right)\right), j_{0} \in \mathbf{N}$ and $z^{(n)} \in D$ such that

$$
\| \operatorname{Proj}_{\left[H_{j(n-1)} \backslash H_{(n-1)+j_{0}} \varphi_{n-1} \circ \varphi_{0}\left(z^{(n)}\right) \|\right.}>\frac{32}{50} X_{n}
$$

and such that φ_{0} satisfies the conditions a')-ccon for a 1 set $\left\{c_{0}^{(k)}\right\}_{k=1}^{\infty} \subset l^{\infty}\left(V_{0}\right)$. The existence of j_{0} follows as before. Now, if we assume $X_{n}>C_{1} \cdot \varepsilon \cdot 2^{-n}$, an application of Lemma 3, where $\varphi_{n-1} \circ \varphi_{0}$ correspond to φ and $\left(H_{j(k)}\right)_{k=1}^{n-1} \cup\left(H_{j(n-1)+j_{0}+}\right)_{k=0}^{\infty}$ correspond to $\left(H_{k}\right)_{k=1}^{\infty}$ in the Lemma, give that there are an infinite set $V_{n} \subset V_{0}$, a 1-set $\left\{b_{(n)}^{(k)}\right)_{k=1}^{\infty} \subset l^{\infty}\left(V_{n}\right)$ and $\varphi_{0}^{\prime} \in L\left(l^{\infty}\left(V_{n}\right), l^{\infty}\left(V_{0}\right)\right)$ such that $\psi_{n}=\varphi_{0} \circ \varphi_{0}^{\prime}, \varphi_{n}=$ $=\varphi_{n-1} \circ \psi_{n}, V_{n}, j_{n}=j_{0}+1,\left\{b_{(n)}^{(k)}\right\}_{k=1}^{\infty}$ and $z^{(n)}$ satisfy the conditions 1)-5) for some $h^{(n)} \in \mathbf{C}$ and $h_{r, s}^{(n)} \in \mathbf{C} . X_{n}>C_{1} \cdot \varepsilon \cdot 2^{-n}$ because there is $s \in \mathbf{N}$ such that

$$
\left\|\operatorname{Proj}_{\left[\mathrm{H}_{(n-1)]}\right]} \varphi_{n-1}\left(\operatorname{Proj}_{\left[M_{s}(n,\{b(n-1))]^{3}\right.} b_{(n-1)}^{(n)}\right)\right\|>C_{1} \cdot 2^{-n}
$$

and because $\sup _{z \in D} N_{M_{s}\left(n,\left\{b_{(n-1)}^{(L)}\right)\right.}(z)>2 \cdot \varepsilon$

$$
\left\|\operatorname{Proj}_{\left[H_{j(k-1)} \backslash H_{j(k)]}\right]} \varphi_{n}\left(z^{(k)}\right)\right\|>\frac{X_{k}}{100}, \quad \text { if } \quad k \leqq n
$$

because of b^{\prime}) and 5). Hence $\varphi_{n}, H_{j(n)}, X_{n}$ and $z^{(n)}$ have the desired properties. QED
Lemma 4. E has property A if there exists to every given $t \in \mathbf{N} a$ mapping $\varphi_{t} \in$ $\in L\left(l^{\infty}, \mathbf{C}^{t}\right)$ and to every given $\gamma>0$ a number $C_{\gamma} \in \mathbf{N}$ such that $\sup _{z \in \boldsymbol{D}}\left|\operatorname{Proj}_{[n]} \varphi_{t}(z)\right| \geqq 1$ for every $n \in\{1,2, \ldots, t)$ and such that for every $z \in D$ and $t \in \mathbf{N}\left|\operatorname{Proj}_{[n]} \varphi_{t}(z)\right| \geqq \gamma$ for at most C_{γ} different $n \in\{1, \ldots, t\}$.

Proof. Assume the lemma is false. It is easy to see that we may assume without loss of generality that $\sup _{t} \sup _{n} \sup _{z \in D}\left|\operatorname{Proj}_{[n]} \varphi_{t}(z)\right|<2$. It is well known and easily seen that there are uncountably many $g_{\alpha} \in G=U_{1} \times U_{2} \times \ldots \times U_{t} \times \ldots$, where $U_{t}=\{1,2, \ldots, t\}$, such that if $\alpha_{1} \neq \alpha_{2} \operatorname{Proj}_{[j]} g_{\alpha_{1}}=\operatorname{Proj}_{[j]} g_{\alpha_{2}}$ for at mos finitely many j. Let $\varphi \in L\left(E, l^{\infty}(G)\right)$ be the mapping $\varphi=\left\{\varphi_{1} \circ \psi, \varphi_{2} \circ \psi, \ldots, \varphi_{t} \circ \psi, \ldots\right\}$ where $\psi \in$ $\in L\left(E, l^{\infty}\right)$ is the mapping in the beginning of the proof of the theorem. Since $\left\{g_{\alpha}\right\}_{\alpha}$ is uncountable it follows from the argument in the proof of Lemm al if E does not have property A that there are $\left\{\alpha_{j}\right\}_{j=1}^{\infty} \subset\{\alpha\}, \varepsilon_{0}>0$, infinite sets $V_{j} \subset V_{j-1} \subset \mathbf{N}$ and $z^{(j)} \in D$ such that

$$
\lim _{\substack{t \rightarrow \infty \\ t \in \operatorname{Proj}_{\left[V_{j} 1\right.} g_{x_{j}}}} \varphi\left(z^{(j)}\right)=\varepsilon_{0}
$$

Let $\psi_{1} \in L\left(l^{\infty}, \mathbf{C}\right)$ be such that $\left\|\psi_{1}\right\|<1 / \varepsilon_{0}, \psi_{1}\left(x^{(j)}\right)=\frac{1}{2}$ and $\psi(z)=0$ if supp $z \cap V_{j}$ is finite for some $j \in \mathbf{N}$ where $x^{(j)}=\left(x_{n}^{(j)}\right)_{n=1}^{\infty}, x_{n}^{(j)}=\varepsilon_{0}$ if $n \in V_{j}$ and $x_{n}^{(j)}=0$ if $n \in \complement V_{j}$. Let $\psi_{1, j} \in L\left(l^{\infty}\left(g_{j j}\right), \mathbf{C}\right)$ correspond to ψ_{1}. From the proof of Lemma 1 it follows, since $\left|\psi_{1, j}\left(\varphi\left(z^{(j)}\right)\right)\right|=\frac{1}{2}$, that if E does not have property A there are a subsequence $\left\{j_{k}\right\}_{k=1}^{\infty} \subset \mathbf{N}, \delta>0$ and $z \in D$ such that $\left|\psi_{1, j_{k}}(\varphi(z))\right|>\delta$ for every $k \in \mathbf{N}$. Hence there are, to every $r \in \mathbf{N}, t_{r} \in \mathbf{N}$ and $Y_{r} \subset \mathbf{N}$ such that Y_{r} contains r elements and $\left|\operatorname{Proj}_{[n]} \varphi_{t_{r}}(\psi(z))\right|>\delta \cdot \varepsilon_{0}$ if $n \in Y_{r}$ since otherwise there are $z^{(j)} \in l^{\infty}$ such that supp $z^{\left(j_{1}\right)} \cap \operatorname{supp} z^{\left({ }_{2} j\right)}=\emptyset$ if $j_{1} \neq j_{2}$ and $\left|\psi_{1}\left(z^{(j)}\right)\right|>1$ for all $j \in \mathbf{N}$ which is impossible. Hence we get a contradiction if $r>C_{\gamma \cdot \varepsilon_{0}}$. QED.

Lemma 5. If E does not have property A there exist to every $\gamma>0$ a number $\mathbf{C}_{\gamma} \in \mathbf{N}$ and number $T_{\gamma} \in \mathbf{N}$ such that if $t \geqq C_{\gamma}$ and $\sup _{z \in D} \sum_{k=1}^{j_{n}} N_{M_{k}^{(n)}}(z) \geqq 1$, where $M_{k}^{(n)} \subset \mathbf{N}$, for every $n \in\{1, \ldots, t\}$ then there are $z^{(\gamma)} \in D$ and $V \subset\{1,2, \ldots, t\}$ such that $\sum_{n \in V} \sum_{k=1}^{j_{n}} N_{M_{k}^{(n)}}\left(z^{(\gamma)}\right)=2^{T_{\gamma}-\gamma T_{\gamma}}$ and such that V contains $2^{T_{\gamma}}$ elements.

Proof. It is easily seen that it is enough to prove the lemma if $\sum_{k=1}^{j_{n}} N_{M_{k}^{(n)}}(z)$ is replaced by $\left|\operatorname{Proj}_{[n]} \varphi_{t}(z)\right|$ where $\varphi_{t} \in L\left(l^{\infty}, \mathbf{C}^{t}\right)$. From Lemma 4 it follows easily that there is to every $\gamma>0$ a number $P_{\gamma} \in N$ such that if $t \geqq P_{\gamma}, \varphi_{t} \in L\left(l^{\infty}, \mathbf{C}^{t}\right)$ and $\sup _{z \in D}\left|\operatorname{Proj}_{[n]} \varphi_{t}(z)\right| \geqq 1$ for every $n \in\{1, \ldots, t\}$ then there are $T \in \mathbf{N}$ and $z \in D$ such
that $\left|\operatorname{Proj}_{[n]} \varphi_{t}(z)\right| \geqq 2^{-\gamma \cdot T}$ for at least 2^{T} different $n \in\{1, \ldots, t\}$ wherTe perhaps depends on the choice of φ_{t}. Assume that $t \geqq\left(P_{\gamma}\right)^{3}$ and let T_{0} be the biggest $T \in \mathbf{N}$ such that $2^{T} \leqq P_{\gamma}$. It follows from above that either there is $z^{(1)} \in D$ such that $\left|\operatorname{Proj}_{[n]} \varphi_{t}\left(z^{(1)}\right)\right| \geqq 2^{-\gamma \cdot T_{0}}$ for at least $2^{T_{0}}$ different $n \in\{1, \ldots, t\}$ or there are $z^{r, s} \in D$ and disjoint sets $V_{s}^{r} \subset\{1, \ldots, t\}$, where $1 \leqq r \leqq T_{0}-1$ and $1 \leqq s \leqq j_{r} \in \mathbf{N}$ such that $\bigcup_{r=1}^{T_{0}-1} \bigcup_{s=1}^{j_{r}} V_{s}^{r}$ contains more than $t-P_{\gamma}$ elements, V_{s}^{r} contains 2^{r} elements or is emty and $\left|\operatorname{Proj}_{[n]} \varphi_{t}\left(z^{r, s}\right)\right| \geqq 2^{-r \cdot y}$ if $n \in V_{s}^{r}$. Hence there is

$$
\varphi_{1} \in L\left(\mathbf{C}^{\bigcup_{s=1}^{j_{1}} V_{s}^{1}}, \mathbf{C}^{j_{1}}\right)
$$

such that $\left\|\varphi_{1}\right\|=1$ and $\left|\operatorname{Proj}_{[s]} \varphi_{t, 1}\left(z^{1, s}\right)\right| \geqq 2^{1-\gamma}$ for every $s \in\left\{1, \ldots, j_{1}\right\}$ where $\varphi_{t, 1}=$ $=\varphi_{1} \circ \varphi_{t}$. But then it follows from above that there are $z^{r, s, 1} \in D$ and disjoint sets $V_{s}^{r, 1} \subset\{1, \ldots, t\}$ where $2 \leqq r \leqq T_{0}$ and $s \leqq i_{r} \in \mathbf{N}$ such that $\bigcup_{r=2}^{T_{0}} U_{s} V_{s}^{r, 1}$ contains more than $t-P_{\gamma}-2 \cdot P_{\gamma}$ elements $V_{s}^{r, 1}$ contains 2^{r} elements or is empty and $\sum_{n \in V_{s}^{r, 1}}\left|\operatorname{Proj}_{[n]} \varphi_{t}\left(z^{r, s, 1}\right)\right| \geqq 2^{r-r y}$. Since $t-\sum_{k=1}^{T_{0}} k \cdot P_{y}>0$ we can repeat this argument and we get at most T_{0} steps that there are $z^{(1)} \in D$ and $V \subset\{1, \ldots, t\}$ such that $\sum_{n \in V}\left|\operatorname{Proj}_{[n]} \varphi_{t}\left(z^{(1)}\right)\right| \geqq 2^{T_{0}-\gamma T_{0}}$ where V contains $2^{T_{0}}$ elements. Hence $C_{y}=\left(P_{\gamma}\right)^{3}$, $T_{\gamma}=T_{0}, z^{(\gamma)}=z^{(1)}$ and V have the properties in the lemma. QED.

Lemma 6. If E does not have property A then, for every $\gamma=0, \sup _{z \in D} \sum_{k=1}^{j_{n}}$ $N_{M_{k}^{n}}(z)>2^{-\gamma \cdot n} \cdot j_{n}$ if n is big enough wehre $M_{k}^{(n)} \subset \mathbf{N}$ are infinite sets such that for fixed $n, M_{k}^{(n)}$ are disjoint and $1 \leqq k \leqq j_{n} \leqq 2^{n}$.

Proof. Take $\gamma_{0}<\gamma$ and take $C_{\gamma_{0}}$ and $T_{\gamma_{0}}$ as in Lemma 5. Let $l_{n} \in \mathbf{N}$ be the greatest integer l such that $\sum_{r=1}^{l} C_{\gamma_{0}} \cdot 2^{(r-1) T} \gamma_{\gamma_{0}} \leqq j_{n}$. Repeated applications of Lemma 5 give, since $\sup _{z \in D} N_{M_{k}^{n}}(z)>\varepsilon$, that

$$
\sup _{z \in D} \sum_{k=1}^{j_{n}} N_{M_{k}^{n}}(z)>2^{-\gamma_{0} \cdot T_{\gamma_{0}} \cdot I_{n}} 2^{l_{n} \cdot T_{\gamma_{0}} \varepsilon}>2^{-n \gamma_{0}} \frac{j_{n} \cdot \varepsilon}{C_{\gamma_{0}}} 2^{-T_{\gamma_{0}}}>2^{-\gamma \cdot n} j_{n}
$$

if n is big enough because $2^{l_{n} \cdot T_{\gamma_{0}} \leqq 2^{n}}$, hence $l_{n} \leqq n / T_{\gamma_{0}}$ and because $C_{\gamma_{0}} \cdot 2^{\left(l_{n}+1\right) T_{\gamma_{0}}>j_{n}}$. Q.E.D.

Proof of the theorem, continued. We shall use the notation in the proposition and its proof. It is easy to see that we may assume that X_{n} decreases. There is $\delta>0$ such that $X_{n}<(1-2 \delta)^{n} \cdot C_{1}$ if n is big since if $\left(X_{n}\right)_{n=1}^{\infty}$ is not dominated by a geometric series there is, to every $t \in \mathbf{N}, n_{t} \in \mathbf{N}$ such that $X_{n_{t}} / X_{n_{t}+t}<1+1 / t$ hence

$$
\left(\frac{100}{X_{n_{t}+t}} \varphi_{t}^{\prime} \circ \operatorname{Proj}_{\left[H n_{t}-\backslash H n_{t}+t-1\right]} \varphi_{n_{t}+t}\right)_{t=\mathbf{1}}^{\infty} \quad \text { and } \quad c_{\gamma}=\frac{200}{\gamma^{2}}
$$

have the same properties as $\left(\varphi_{t}\right)_{t=1}^{\infty}$ and C_{γ} in Lemma 4 for a suitable choice of $\varphi_{t}^{\prime} \in L\left(l^{2}\left(H_{n_{t}-1} \backslash H_{n_{t}+t-1}\right), \mathbf{C}^{t}\right)$ which is impossible. Divide now, for each $n,\{1,2$, $\ldots, 2^{n-1}$ \} into $[2 / \delta]+1$ disjoing parts $U_{r, n}$ ([] denotes the integer part) such that

$$
\begin{align*}
& \left(1-r \cdot \frac{\delta}{2}\right)^{n} \cdot\left\|\operatorname{Proj}_{\left[H_{n-1}\right]} \varphi_{n-1}\left(b_{(n-)}^{(n)}\right)\right\| \leqq \tag{1}\\
& \leqq\left\|\operatorname{Proj}_{\left[H_{n-1}\right]} \varphi_{n-1}\left(\operatorname{Proj}_{\left[M_{j}\left(n,\left\{b_{(n-1)}^{(\mathcal{k})}\right\rangle\right)\right]} b_{(n-1}^{(n)}\right)\right\| \leqq \\
& \leqq\left(1-(r-1) \frac{\delta}{2}\right)^{n}\left\|\operatorname{Proj}_{\left[A_{n-1}\right]} \varphi_{n-1}\left(b_{(n-1)}^{(n)}\right)\right\| \quad \text { if } \quad j \in U_{r, n} .
\end{align*}
$$

Since $\left\|\operatorname{Proj}_{\left[H_{n-1}\right]} \varphi_{n-1}\left(b_{(n-1)}^{(n)}\right)\right\|>C_{1}$ it follows that there is $r_{n} \in \mathbf{N}$ such that (1-$\left.-r_{n} \delta / 2\right)^{n} \geqq 1 / 4^{n}$ and
(2)

$$
\left.\left.\| \operatorname{Proj}_{\left[H_{n-1}\right]}\left(\sum_{s \in U_{r_{n}, n}} \varphi_{n-1}\left(\operatorname{Proj}_{\left[M_{s}(n,\{b(n-1)\right.}\right\}\right]\right) b_{(n-1)}^{(n)}\right)\left\|\geqq \frac{\delta}{3}\right\| \operatorname{Proj}_{\left[H_{n-1}\right]} \varphi_{n-1}\left(b_{(n-1)}^{(n)}\right) \| .
$$

Lemma 6 gives that to every $\gamma>0$ there is $z^{(\gamma)} \in D$ such that

$$
\begin{equation*}
\sum_{s \in U_{r_{n}, n}} N_{M_{s}\left(n,\left(b b_{(n-1)}^{(1)}\right)\right.}\left(z^{(\gamma)}\right)>2^{-\gamma \cdot n} \cdot j_{n}, \tag{3}
\end{equation*}
$$

if n is large, where j_{n} is the number of elements in $U_{r_{n}, n}$. But then the proposition and the proof of Lemma 3 give that

$$
x_{n}>\frac{\delta}{3} \cdot\left(\frac{1-\frac{r_{n} \cdot \delta}{2}}{1-\frac{\left(r_{n}-1\right) \cdot \delta}{2}}\right)^{n} \cdot \| \operatorname{Proj}_{\left[H_{n-1}\right]} \varphi_{n-1}\left(b_{(n-1)}^{(n)} \| \cdot 2^{-\gamma \cdot n-1} \cdot j_{n}\right.
$$

according to (1), (2) and (3). But since $1-r_{n} \cdot \delta / 2 \geqq 1 / 4$ it follows that $r_{n} \cdot \delta \leqq 3 / 2$ hence that

$$
\frac{1-\frac{r_{n} \cdot \delta}{2}}{1-\frac{\left(r_{n}-1\right) \cdot \delta}{2}} \geqq 1-\frac{2 \delta}{1+2 \delta}
$$

hence if γ is samll and n is big enough it follows that $X_{n}>(1-2 \delta)^{n} \cdot C_{1}$, because $\left\|\operatorname{Proj}_{\left[{ }_{n-1}\right]} \varphi_{n-1}\left(b_{(n-1)}^{(n)}\right)\right\|>C_{1}$, which is a contradiction. Q.E.D.

Added in proof

The results in this paper were announced in May 1973 at an international conference on infinite-dimensional holomorphy in Lexington, Kentucky, USA.

The Theorem has been proved independently by A. Nissenzweig.

References

1. Coeuré, G. Thesis. Ann. Inst. Fourier 20 (1970).
2. Dineen, S. Unbounded holomorphic functions on a Banach space. J. London Math. Soc. 4 (1972).
3. Lacey, E. Separable quotients of Banach spaces. An. da Acad. Brasil. Ci. 44 (1972).
4. Lindenstrauss, J. Some aspects of the theory of Banach spaces. Advances in Math. 5 (1970).
5. Nachbin, L. Topology on spaces of holomorphic mappings. Springer-Verlag, Ergebnisse der Math. 47 (1969).
6. Rosenthal, H. On quasi-complemented subspaces with an appendix on compactness on operators. from $L^{p}(\mu)$ to $L^{r}(U)$. J. Functional Analysis 4 (1969).
7. Thorp, E. and Whitley, R. Operator representations theorems. Ill. J. Math. 9 (1965).
