Space analogues of some theorems for subharmonic and meromorphic functions

Ronald Gariepy and John L. Lewis

1. Introduction

Denote points in n dimensional Euclidean space $\mathbf{R}^{n}, n \geqq 3$, by $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $r=|x|$ and $x_{1}=r \cos \theta, 0 \leqq \theta \leqq \pi$. For $r>0$ let $B(r)=\{x:|x|<r\}, S(r)=\{x:|x|=r\}$, and $S=S(1)$. For $0 \leqq \alpha \leqq \pi$, let $C(\alpha)=S \cap\{x: \theta<\alpha\}$. If E is a set contained in $S(r)$, let ∂E denote the boundary of E relative to $S(r)$. Let H^{m} denote m dimensional Hausdorff measure on \mathbf{R}^{n}.

- If f is defined on a set $E \subset \mathbf{R}^{n}$, let $\theta(r)$ for $0<r<\infty$ be defined by

$$
H^{n-1}(C(\theta(r)))=H^{n-1}(p(S(r) \cap E))
$$

where p denotes the radial projection of $\mathbf{R}^{n}-\{0\}$ onto S. For $0 \leqq \theta \leqq \theta(r)$, let

$$
\hat{f}(r, \theta)=\sup \int_{F} f(r y) d H^{n-1} y,
$$

where the supremum is taken over all measurable sets $F \subset p(S(r) \cap E)$ with

$$
H^{n-1}(F)=H^{n-1}(C(\theta))
$$

Given a set $E \subset[0, \infty)$, let

$$
\begin{aligned}
& \overline{\log \operatorname{dens} E}=\limsup _{r \rightarrow \infty}\left(\int_{E \cap(1, r)} \frac{d t}{t} / \log r\right) \\
& \underline{\log \operatorname{dens} E}=\liminf _{r \rightarrow \infty}\left(\int_{E \cap(1, r)} \frac{d t}{t} \int_{\log r}\right) .
\end{aligned}
$$

Let u be equal H^{n} almost every where on \mathbf{R}^{n} to the difference of two subharmonic functions. By the Riesz representation theorem there is associated with this difference a unique signed Borel measure v whose total variation on compact sets is finite. Let $v=v^{+}-v^{-}$denote the Jordan decomposition of v. To simplify matters, we will assume that $v^{+}(B(1))=0$ or equivalently that u is equal H^{n} almost everywhere in $B(1)$ to a subharmonic function.

From [1, Thm. 2] we see there exist functions u_{1} and u_{2} subharmonic in \mathbf{R}^{n} with associated measures $-v^{-}$and $-v^{+}$respectively, such that $u_{2}(0)=0$ and $u=$ $=u_{1}-u_{2}, H^{n}$ almost everywhere in \mathbf{R}^{n}. For convenience in making the following definitions, we assume that $u=u_{1}-u_{2}$ except on the polar set where u_{1} and u_{2} are both $-\infty$. Otherwise, one may replace u by $u_{1}-u_{2}$ in the definitions.

If f and g are real valued functions on \mathbf{R}^{n}, let

$$
(f \vee g)(x)=\max \{f(x), g(x)\}, \quad x \in \mathbf{R}^{n}
$$

For $0<r<\infty$ let

$$
m(r)=\sup \{\hat{u}(r, \theta): 0 \leqq \theta \leqq \pi\}=\int_{S}(u \vee 0)(r y) d H^{n-1} y
$$

and

$$
T(r)=m(r)+\hat{u}_{2}(r, \pi)=\int_{S}\left(u_{1} \vee u_{2}\right)(r y) d H^{n-1} y
$$

We note that $\hat{u}_{2}(r, \pi) \geqq u_{2}(0)=0$ for $r>0$ since u_{2} is subharmonic. Hence,

$$
0 \leqq m(r) \leqq T(r) \quad \text { for } \quad 0<r<\infty,
$$

and consequently since $u_{1} \vee u_{2}$ is subharmonic, either $m(r) \equiv 0$ or $T(r)$ is positive for $r \geqq r_{0}$ (r_{0} large). In this paper we consider only u for which the second possibility occurs.

In analogy with the case for meromorphic functions we define the deficiency δ, order ϱ, and lower order μ of u by

$$
\begin{gathered}
\delta=\liminf _{r \rightarrow \infty} \frac{m(r)}{T(r)} \\
\varrho=\limsup _{r \rightarrow \infty} \frac{\log T(r)}{\log r}, \\
\mu=\liminf _{r \rightarrow \infty} \frac{\log T(r)}{\log r}
\end{gathered}
$$

Observe that $0 \leqq \mu \leqq \varrho \leqq \infty$, and $0 \leqq \delta \leqq 1$. We remark that if h_{1} and h_{2} are subharmonic in \mathbf{R}^{n}, h_{2} is harmonic in $B(1), h_{2}(0)=0$, and $u=h_{1}-h_{2}$, except on a polar set in \mathbf{R}^{n}, then

$$
\liminf _{r \rightarrow \infty} \frac{m(r)}{m(r)+\hat{h}_{2}(r, \pi)} \leqq \delta
$$

Consider for $0<\gamma<\infty$ the ultra-spherical differential equation

$$
\begin{equation*}
\frac{d}{d \theta}\left[(\sin \theta)^{n-2} \frac{d f}{d \theta}\right]=-\gamma(\gamma+n-2)(\sin \theta)^{n-2} f(\theta), \quad 0<\theta<\pi \tag{1.1}
\end{equation*}
$$

It is well known and easy to show that (1.1) has two linearly independent solutions $\psi_{\gamma}, \varphi_{\gamma}$, satisfying

$$
\begin{align*}
& \lim _{\theta \rightarrow 0} \psi_{\gamma}(\theta)=\psi_{\gamma}(0)=1 \tag{1.2a}\\
& \lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} \frac{d \varphi_{\gamma}}{d \theta}=-1 \tag{1.2b}
\end{align*}
$$

It follows from (1.1), (1.2a), and (1.2b) that

$$
\begin{equation*}
\psi_{\gamma}(\theta) \frac{d \varphi_{\gamma}}{d \theta}(\theta)-\varphi_{\gamma}(\theta) \frac{d \psi_{\gamma}}{d \theta}(\theta)=-(\sin \theta)^{2-n}, \quad 0<\theta<\pi \tag{1.2c}
\end{equation*}
$$

It is also easily shown that
(1.3a) Each ψ_{γ} has at least one zero in $(0, \pi)$ and if $\alpha=\alpha(\gamma)$ denotes the first zerc of ψ_{γ}, then ψ_{γ} is decreasing on $[0, \alpha]$.
(1.3b) If $0<\tau<\gamma$, then $\psi_{\gamma}<\psi_{\tau}$ on $(0, \alpha(\gamma)]$,
(1.3c) $\lim _{\tau \rightarrow \gamma} \psi_{\tau}=\psi_{\gamma}$ uniformly on conpact subsets of $[0, \pi$).

It follows from (1.3a) that given γ and $\delta, 0 \leqq \delta \leqq 1$, there is a unique $\theta_{0}=\theta_{0}(\delta, \gamma)$ with $0 \leqq \theta_{0} \leqq \alpha(\gamma)$ and $\psi_{\gamma}\left(\theta_{0}\right)=1-\delta$. In $\S 4$ we will prove

Theorem 1. Let u be as above with deficiency δ, order ϱ, and lower order μ. Given $\gamma, 0<\gamma<\infty$, let $E(\gamma)$ denote the set of all $r>0$ such that

Then,

$$
H^{n-1}(\{y: u(r y)>0\} \cap S) \geqq H^{n-1}\left[C\left(\theta_{0}(\delta, \gamma)\right)\right] .
$$

-

$$
\overline{\log \operatorname{dens}} E(\gamma) \geqq 1-\frac{\mu}{\gamma}
$$

and

$$
\underline{\log \operatorname{dens}} E(\gamma) \geqq 1-\frac{\varrho}{\gamma} .
$$

Theorem 1 implies that

$$
\limsup _{r \rightarrow \infty} H^{n-1}(\{y: u(r y)>0\} \cap S) \geqq H^{n-1}\left[C\left(\theta_{0}(\delta, \gamma)\right)\right]
$$

whenever $\gamma>\mu$. From (1.3c) it follows that

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } H^{n-1}(\{y: u(r y)>0\} \cap S) \geqq H^{n-1}\left[C\left(\theta_{0}(\delta, \mu)\right)\right] \tag{1.4}
\end{equation*}
$$

for $0<\mu<\infty$. In $\S 5$ we show that (1.4) is sharp. The inequality (1.4) is analogous to a spread conjecture made by Edrei and proved by Baernstein [2] in \mathbf{R}^{2}.

Considering ψ_{γ} as a function defined on S, we let

$$
A(\gamma)=\int_{C(\alpha(\gamma))} \psi_{\gamma} d H^{n-1}
$$

Suppose now that u is subharmonic in \mathbf{R}^{n}, i.e. $u_{2} \equiv 0$, and let

$$
M(r)=\max \{u(x): x \in S(r)\}, \quad r>0
$$

In §6 we prove
Theorem 2. If u is subharmonic in \mathbf{R}^{n} with order ϱ, lower order μ, and γ is given, $0<\gamma<\infty$, let

$$
E_{1}(\gamma)=\{r: T(r) \geqq A(\gamma) M(r)\}
$$

Then

$$
\overline{\log \operatorname{dens}} E_{1}(\gamma) \geqq 1-\frac{\mu}{\gamma}
$$

and

$$
\underline{\log \operatorname{dens}} E_{\mathbf{1}}(\gamma) \geqq 1-\frac{\varrho}{\gamma}
$$

We note that Theorem 2 has been obtained by Essén and Shea [7], using a different method. Theorem 2 implies that if $\gamma>\mu$, then

$$
\limsup _{r \rightarrow \infty} \frac{T(r)}{M(r)} \geqq A(\gamma)
$$

Letting $\gamma \rightarrow \mu$, we have by (1.3c) that

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{T(r)}{M(r)} \geqq A(\mu)
$$

when $0<\mu<\infty$. This result has been obtained and shown to be sharp by Dahlberg [5].
In $\S 7$ we prove
Theorem 3. If u is subharmonic in \mathbf{R}^{n} with lower order μ, order ϱ, and $0<\gamma<\infty$, let $E_{2}(\theta, \gamma)$ denote the set of $r>0$ for which

$$
H^{n-1}\left(\left\{y: u(r y) \geqq \psi_{y}(\theta) M(r)\right\} \cap S\right) \geqq H^{n-1}(C(\theta))
$$

when $0<\theta \leqq \alpha(\gamma)$. Then

$$
\begin{aligned}
& \overline{\log \operatorname{dens}} E_{2}(\theta, \gamma) \geqq 1-\frac{\mu}{\gamma}, \\
& \underline{\log \operatorname{dens} E_{2}(\theta, \gamma) \geqq 1-\frac{\varrho}{\gamma}}
\end{aligned}
$$

for $0<\theta \leqq \alpha(\gamma)$.
We note that Theorem 3 can be obtained in \mathbf{R}^{2} by using a method of Baernstein (see [6, Ch. 8]).

In the proof of Theorems $1-3$, we first use a method of the authors [8] to obtain a differential inequality (see (2.6)). Using this inequality, and methods of Essén [6], and Essén and Shea [7], we obtain an integral inequality (see §3). Finally, using this integral inequality and a method of Barry [3, 4] we obtain Theorems 1-3.

2. Spherical Symmetrization

Given a closed set $F \subset \mathbf{R}^{n}$ define the spherical symmetrization F^{*} of F as follows: If $F \cap S(r)=\varphi$, then $F^{*} \cap S(r)=\varphi$. Otherwise,

$$
H^{n-1}\left(F^{*} \cap S(r)\right)=H^{n-1}(F \cap S(r))
$$

and $F^{*} \cap S(r)$ is either the point $(r, 0, \ldots, 0)$ or the closed cap on $S(r)$ centered at $(r, 0, \ldots, 0)$. Let $u=u_{1}-u_{2}$ where u_{1}, u_{2}, are subharmonic in $B(R), R>0$, with continous second partials. Given $t,-\infty<t<\infty$, let $F(t)=\{x: u(x) \geqq t\}$ and note that $F(t)$ is closed. Define an associated function u^{*} by letting

$$
u^{*}(x)=\sup \left\{t: x \in F^{*}(t)\right\} \quad \text { whenever } \quad x \in B(R)
$$

It is easily seen that u^{*} is symmetric with respect to the x_{1} axis, and $\left\{x: u^{*}(x) \geqq t\right\}=$ $=F^{*}(t)$. It follows that u and u^{*} are equimeasurable and

$$
\begin{equation*}
\hat{u}(r, \theta)=\int_{C(\theta)} u^{*}(r y) d H^{n-1} y \tag{2.1}
\end{equation*}
$$

whenever $r \in(0, R), \theta \in[0, \pi]$. Also for fixed $r, r \in(0, R), u^{*}(r, \theta)$ is a nonincreasing function of θ on $[0, \pi]$. We note that Gehring [9] has shown that u^{*} is Lipschitz in $B\left(R_{1}\right)$ whenever $R_{1}<R$.

Let f be a function defined on $(0, R)$. Define $f_{\#}$ on $\left(R^{2-n}, \infty\right)$ by $f_{\#}(s)=f(r)$ when $s=r^{2-n}$ and $r \in(0, R)$. Let

$$
L f(r)=(n-2)^{2} r^{4-2 n} \liminf _{h \rightarrow 0}\left[\frac{f_{\#}\left(r^{2-n}+h\right)+f_{\#}\left(r^{2-n}-h\right)-2 f_{\#}\left(r^{2-n}\right)}{h^{2}}\right]
$$

for $r \in(0, R)$. Note that if f has a second derivative on $(0, R)$, then

$$
L f(r)=r^{3-n} \frac{d}{d r}\left[r^{n-1} \frac{d f}{d r}\right], \quad r \in(0, R)
$$

Let

$$
P(r, \theta)=\hat{u}(r, \theta)+\hat{u}_{2}(r, \pi)
$$

for $r \in(0, R)$ and $\theta \in[0, \pi]$. Given $r_{0} \in(0, R)$ we shall show that

$$
\begin{equation*}
L P\left(r_{0}, \theta\right) \geqq 0 \quad \text { for } \quad 0 \leqq \theta \leqq \pi, \tag{2.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
L P\left(r_{0}, \theta\right) \geqq-c(\sin \theta)^{n-2} \frac{\partial u^{*}}{\partial \theta}\left(r_{0}, \theta\right) \tag{2.2b}
\end{equation*}
$$

for almost every θ with respect to one dimensional Lebesgue measure on $[0, \pi]$. Here c is the surface area of the $n-2$ dimensional unit sphere, and for each fixed $\theta, L P(r, \theta)=L f(r)$, where $f(r)=P(r, \theta)$.

To prove (2.2a) let $G(\theta) \subset S$ be such that
(i)

$$
S \cap\left\{y: u\left(r_{0} y\right)>u^{*}\left(r_{0}, \theta\right)\right\} \subset G(\theta) \subset S \cap\left\{y: u\left(r_{0} y\right) \geqq u^{*}\left(r_{0}, \theta\right)\right\}
$$

(ii)

$$
H^{n-1}(G(\theta))=H^{n-1}(C(\theta))
$$

(iii)

$$
\hat{u}\left(r_{0}, \theta\right)=\int_{G(\theta)} u\left(r_{0} y\right) d H^{n-1} y=\int_{\mathcal{C (\theta)}} u^{*}\left(r_{0} y\right) d H^{n-1} y
$$

for $\theta \in[0, \pi]$. Let

$$
q(r, \theta)=\int_{G(\theta)} u(r y) d H^{n-1} y+\hat{u}_{2}(r, \pi)
$$

for $r \in(0, R)$ and $\theta \in[0, \pi]$. Clearly, $q(r, \theta) \leqq P(r, \theta)$, with equality holding at $\left(r_{0}, \theta\right)$. Hence for fixed θ,

$$
\begin{align*}
L P\left(r_{0}, \theta\right) \geqq & L q\left(r_{0}, \theta\right)=L\left[\int_{G(\theta)} u_{1}\left(r_{0} y\right) d H^{n-1} y+\int_{S-G(\theta)} u_{2}\left(r_{0} y\right) d H^{n-1} y\right]= \tag{2.3}\\
& =\int_{G(\theta)}\left(r^{3-n} \frac{\partial}{\partial r} r^{n-1} \frac{\partial}{\partial r} u_{1}\right)\left(r_{0} y\right) d H^{n-1} y+ \\
& +\int_{S-G(\theta)}\left(r^{3-n} \frac{\partial}{\partial r} r^{n-1} \frac{\partial}{\partial r} u_{2}\right)\left(r_{0} y\right) d H^{n-1} y
\end{align*}
$$

Let Δ denote the Laplacian in \mathbf{R}^{n} and let $\tilde{\Delta}$ be the spherical part of Δ defined by

$$
\Delta=r^{1-n} \frac{\partial}{\partial r} r^{n-1} \frac{\partial}{\partial r}+r^{-2} \pi
$$

Observe that for H^{n-1} almost every $x \in G(\theta) \cap\left\{y: u\left(r_{0} y\right)=u^{*}\left(r_{0}, \theta\right)\right\}$, we have

$$
0=\tilde{\Delta u}\left(r_{0} x\right)=\tilde{\Delta} u_{1}\left(r_{0} x\right)-\tilde{\Delta} u_{2}\left(r_{0} x\right)
$$

Using this fact, the subharmonicity of u_{1}, u_{2}, and (2.3), we obtain

$$
\begin{gather*}
L P\left(r_{0}, \theta\right) \geqq-\int_{S \cap\left\{y: u\left(r_{0} y\right)>u^{*}\left(r_{0}, \theta\right)\right\}} \tilde{\Delta} u_{1}\left(r_{0} y\right) d H^{n-1} y- \tag{2.4}\\
-\int_{S \cap\left\{y: u\left(r_{0} y\right) \leqq u^{*}\left(r_{0}, \theta\right)\right\}} \tilde{d} u_{2}\left(r_{0} y\right) d H^{n-1} y
\end{gather*}
$$

Now as in [8, §3], we may apply Green's formula for almost every $t \in \mathbf{R}$ to obtain
and

$$
-\int_{S \cap\left\{y: u\left(r_{0} y\right) \leqq t\right\}} \tilde{\Delta} u_{2}\left(r_{0} y\right) d H^{n-1} y=-r_{0}^{3-n} \int_{S\left(r_{0}\right) \cap u^{-1}(t)} \frac{\partial u_{2}}{\partial n} d H^{n-2}
$$

where $\partial / \partial n$ is the normal derivative taken into $S\left(r_{0}\right) \cap\{x: u(x)>t\}$. Hence for almost every $t \in \boldsymbol{R}$,

$$
\begin{align*}
& -\int_{S \cap\left\{y: u\left(r_{0} y\right)>t\right\}} \tilde{\Delta u_{1}\left(r_{0} y\right) d H^{n-1} y-\int_{S \cap\left\{y: u\left(r_{0} y\right) \leqq t\right\}} \tilde{\Delta} u_{2}\left(r_{0} y\right) d H^{n-1} y=} \tag{2.5}\\
& =r_{0}^{3-n} \int_{S\left(r_{0}\right) \cap u^{-1}(t)} \frac{\partial}{\partial n}\left(u_{1}-u_{2}\right) d H^{n-2}=r_{0}^{3-n} \int_{S\left(r_{0}\right) \cap u^{-1}(t)}|\tilde{\nabla} u| d H^{n-2}
\end{align*}
$$

where $\tilde{\nabla}$ denotes the spherical gradient of u on $S\left(r_{0}\right)$. Letting $t \rightarrow u^{*}\left(r_{0}, \theta\right)$ from the right through a properly chosen sequence and using (2.4), (2.5), we see that (2.2a) is true.

Let J be the set of $\theta \in[0, \pi]$ where

$$
\frac{\partial u^{*}}{\partial \theta}\left(r_{0}, \theta\right)=-r_{0}\left|\hat{\nabla} u^{*}\left(r_{0}, \theta\right)\right|<0 .
$$

Since $L P\left(r_{0}, \theta\right) \geqq 0$, we see that (2.2b) is valid for almost every $\theta \in[0, \pi]-J$. Let $K=\left\{u^{*}\left(r_{0}, \theta\right): \theta \in J\right\}$. Then in $[8,(2.2)]$ it was shown for almost every $t=u^{*}\left(r_{0}, \theta\right) \in K$ that

$$
\int_{u^{-1}(\theta) \cap s\left(r_{2}\right)}|\tilde{\nabla} u| d H^{n-2} \cong \int_{\partial c_{1}(\theta)} \tilde{\nabla} u^{*} \mid d H^{n-2}
$$

where $C_{\mathbf{x}}(\theta)=\left\{r_{0} y: y \in C(\theta)\right\}$. Note that if $J_{1} \subset J$ has positive one dimensional Lebesgue measure, then $\left\{u^{*}\left(r_{0}, \theta\right): \theta \in J_{1}\right\}$ has positive Lebesgue measure. Thus it follows from (2.4), (2.5), and the above inequality that (2.2b) is true.

Let

$$
T(r, \theta)=\widehat{(u \vee 0)}(r, \theta)+\hat{u}_{2}(r, \pi)
$$

for $\theta \in[0, \pi]$ and $r \in(0, R)$. For given $r_{0} \in(0, R)$, let $\theta_{1}, 0 \leqq \theta_{1} \leqq \pi$, be such that

$$
H^{n-1}\left(C\left(\theta_{1}\right)\right)=H^{n-1}\left(\left\{y: u\left(r_{0} y\right)>0\right\} \cap S\right) .
$$

Note that $P(r, \theta) \leqq T(r, \theta)$ for $\theta \in[0, \pi]$ and $r \in(0, R)$, with equality holding when $r=r_{0}, \theta \in\left[0, \theta_{1}\right]$. Hence, if $\theta \in\left[0, \theta_{1}\right]$, then

$$
L T\left(r_{0}, \theta\right) \geqq L P\left(r_{0}, \theta\right) .
$$

If $\theta \in\left(\theta_{1}, \pi\right]$, then $T\left(r_{0}, \theta\right)=P\left(r_{0}, \theta_{1}\right)$ and

$$
L T\left(r_{0}, \theta\right) \geqq L P\left(r_{0}, \theta_{1}\right) \geqq 0=\frac{\partial}{\partial \theta}(u \vee 0)^{*}\left(r_{0}, \theta\right) .
$$

From these inequalities and (2.2) we obtain

$$
\begin{equation*}
L T(r, \theta) \geqq 0 \quad \text { for } \quad \theta \in[0, \pi], \quad r \in(0, R), \tag{2.6a}
\end{equation*}
$$

for almost every $\theta \in[0, \pi]$ when $r \in(0, R)$.

3. Differential and integral inequalities

Let u be as in $\S 2$ and observe that

$$
T(r, \theta)=\int_{C(\theta)}\left(u^{*} \vee 0\right)(r y) d H^{n-1} y+\hat{u}_{2}(r, \pi)
$$

is continuous in $B(R)-\{0\}$, since u^{*} is Lipschitz in $B\left(R_{1}\right)$ whenever $R_{1}<R$, and u_{2} is subharmonic. This observation and (2.6a) imply for fixed $\theta \in[0, \pi]$ see ($[10$, Ch. 10, §7]) that $T_{\#}(s, \theta)$ is a convex function of s on $\left(R^{2-n}, \infty\right)$. Hence for each $h>0$,

$$
\begin{equation*}
T_{\#}(s+h, \theta)+T_{\#}(s-h, \theta)-2 T_{\#}(s, \theta) \geqq 0 \tag{3.1}
\end{equation*}
$$

when $s \in\left(R^{2-n}+h, \infty\right)$.
Given $\tau \in(0, \infty)$ and $\beta \in(0, \alpha(\tau))$, let g be a solution of (1.1) with τ replacing γ and suppose that

$$
\begin{equation*}
g^{\prime}(\theta)=\frac{d g}{d \theta} \leqq 0 \quad \text { on } \quad(0, \beta) \tag{3.2a}
\end{equation*}
$$

(3.2b) $\sigma(r)=-\int_{0}^{\beta} T(r, \theta) g^{\prime}(\theta) d \theta$, is a bounded continuous function on ($0, R$),
(3.2c) $\lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} g^{\prime}(\theta)$ and $\lim _{\theta \rightarrow 0} T(r, \theta) g(\theta)$ exist finitely for $r \in(0, R)$.

From (3.1), (3.2), the Fatou lemma, and (2.6b) we obtain

$$
L \sigma(r) \geqq-\int_{0}^{\beta} L T(r, \theta) g^{\prime}(\theta) d \theta \geqq c \int_{0}^{\beta} \frac{\partial}{\partial \theta}(u \vee 0)^{*}(r, \theta)(\sin \theta)^{n-2} g^{\prime}(\theta) d \theta
$$

Since for fixed $r,(u \vee 0)^{*}(r, \theta)$ is absolutely continuous on $[0, \pi]$, we may integrate the right hand integral twice by parts. Using (3.2c) and (1.1), we obtain

$$
\begin{gathered}
0 \leqq c \int_{0}^{\beta} \frac{\partial}{\partial \theta}(u \vee 0)^{*}(r, \theta)(\sin \theta)^{n-2} g^{\prime}(\theta) d \theta= \\
=c(u \vee 0)^{*}(r, \theta)(\sin \theta)^{n-2} g^{\prime}(\theta)+\left.\tau(\tau+n-2) T(r, \theta) g(\theta)\right|_{0} ^{\beta}+ \\
+\tau(\tau+n-2) \sigma(r)=-h(r)+\tau(\tau+n-2) \sigma(r)
\end{gathered}
$$

for $r \in(0, R)$. Hence,

$$
\begin{equation*}
L \sigma(r) \geqq-h(r)+\tau(\tau+n-2) \sigma(r) \geqq 0 \tag{3.3}
\end{equation*}
$$

when $r \in(0, R)$. From (3.3) and (3.2b) we deduce that $\sigma_{\#}$ is convex on $\left(R^{2-n}, \infty\right)$. Thus σ is a convex function of r^{2-n} on $(0, R)$. It follows that the left and right hand derivatives of σ exist at each $r \in(0, R)$ (denoted by $\sigma^{\prime}(r), \sigma_{+}^{\prime}(r)$), and $r^{n-1} \sigma_{-}^{\prime}(r)$ is
a nondecreasing fuction on $(0, R)$. Moreover,

$$
L \sigma(r)=r^{3-n} \frac{d}{d r}\left[r^{n-1} \sigma_{-}^{\prime}(r)\right]
$$

except possibly on a set of Lebesgue measure zero in ($0, R$). Since we have (3.2b), we also see that σ is nondecreasing on ($0, R$). Hence, the left and right hand derivatives of σ are nonnegative.

We now argue as in [7]. Fix $R_{1} \in(0, R)$ and let

$$
\Phi(r)=\int_{r}^{R_{1}} \frac{h(t)}{t^{1+\tau}} d t, \quad r \in\left(0, R_{1}\right]
$$

From (3.3) we obtain

$$
\Phi(r) \geqq \tau(\tau+n-2) \int_{r}^{R_{1}} \frac{\sigma(t)}{t^{1+\tau}} d t-\int_{r}^{R_{1}} \frac{d}{d t}\left[t^{n-1} \sigma_{-}^{\prime}(t)\right] ~ t^{n+\tau-2} \quad d t
$$

Integrating the second integral twice by parts, we obtain

$$
\begin{equation*}
\Phi(r) \geqq-t^{1-\tau} \sigma_{-}^{\prime}(t)-\left.(\tau+n-2) t^{-\tau} \sigma(t)\right|_{r} ^{R_{1}} . \tag{3.4}
\end{equation*}
$$

Next we use a method of Barry [3, 4]. Let

$$
\Psi(r)=r^{\tau}\left[\Phi(r)+R_{1}^{1-\tau} \sigma_{-}^{\prime}\left(R_{1}\right)+(\tau+n-2) R_{1}^{-\tau} \sigma\left(R_{1}\right)\right]
$$

for $r \in\left(0, R_{1}\right]$. From (3.4) we have

$$
\begin{equation*}
\Psi(r) \geqq r \sigma_{-}^{\prime}(r)+(\tau+n-2) \sigma(r), \quad r \in\left(0, R_{\mathbf{1}}\right] . \tag{3.5}
\end{equation*}
$$

Assume that
(3.6a) h is continuous on $\left(0, R_{1}\right]$,
(3.6b) $\sigma \vee 0 \neq 0$ on $\left(0, R_{1}\right)$.

Then since σ is nondecreasing on ($0, R_{1}$), there exists $r_{1}, 0<r_{1}<R_{1}$, such that σ is positive on $\left[r_{1}, R_{1}\right]$. From (3.5) and (3.6a) it follows that Ψ is positive with a continuous derivate on $\left[r_{1}, R_{1}\right.$). Using (3.5) and (3.3) we obtain

$$
r \Psi^{\prime}(r)=\tau \Psi(r)-h(r) \geqq \tau r \sigma_{-}^{\prime}(r)+\tau(\tau+n-2) \sigma(r)-h(r) \geqq \tau r \sigma_{-}^{\prime}(r) \geqq 0
$$

when $r \in\left[r_{1}, R_{1}\right)$.
Let

$$
\Gamma=\{r: h(r) \leqq 0\}
$$

Observe from the above inequality that

$$
r \Psi^{\prime}(r) \geqq \tau \Psi(r) \text { for } r \in \Gamma \cap\left[r_{1}, R_{1}\right] .
$$

Thus

$$
\tau \int_{\Gamma \cap\left[r_{1}, R_{1}\right]} \frac{d r}{r} \leqq \int_{\Gamma \cap\left[r_{1}, R_{1}\right]} \frac{\Psi^{\prime}(r)}{\Psi(r)} d r \leqq \int_{r_{1}}^{R_{1}} \frac{\Psi^{\prime}(r)}{\Psi(r)} d r=\log \left[\frac{\Psi\left(R_{1}\right)}{\Psi\left(r_{1}\right)}\right]
$$

Using (3.5) it follows that

$$
\begin{gather*}
\tau \int_{\Gamma \cap\left[r_{1}, R_{1}\right]} \frac{d r}{r} \leqq \log \left(R_{1} \sigma_{-}^{\prime}\left(R_{1}\right)+(\tau+n-2) \sigma\left(R_{1}\right)\right)- \tag{3.7}\\
-\log \left(r_{1} \sigma_{-}^{\prime}\left(r_{1}\right)+(\tau+n-2) \sigma\left(r_{1}\right)\right)
\end{gather*}
$$

4. Proof of Theorem 1

Let $u=u_{1}-u_{2}, H^{n}$ almost everywhere, be as in Theorem 1 with order ϱ, lower order μ, and deficiency δ. From Fubini's Theorem we see that it sufficies to prove Theorem 1 for $u_{1}-u_{2}$. Hence we assume that $u=u_{1}-u_{2}$ off of a polar set. Define $T(r, \theta), r \in(0, \infty), \theta \in(0, \pi)$, relative to u as in $\S 2$. Observe that $T \geqq 0$ in $\mathbf{R}^{n}-\{0\}$, since $u_{2}(0)=0$ and u_{2} is subharmonic. Also, $T(r)=T(r, \pi)$ is nondecreasing on $(0, \infty)$, and by assumption $T(r)>0$ for sufficiently large r, say $r \geqq r_{0}$.

Let $\gamma, 0<\gamma<\infty$, and $\theta_{0}=\theta_{0}(\delta, \gamma)$ be as in Theorem 1. We assume that $\mu<\gamma$ and $0<\delta \leqq 1$, since otherwise the first part of Theorem 1 is trivially true. Let τ satisfy, $\mu<\tau<\gamma$. Note that

$$
\limsup _{r \rightarrow \infty} \frac{\hat{u}_{2}(r, \pi)}{T(r)}=1-\delta=\psi_{\gamma}\left(\theta_{0}\right)<\psi_{\imath}\left(\theta_{0}\right)
$$

thanks to (1.3b). Hence for sufficiently large r, say $r \geqq r_{0}$, we have

$$
\begin{gather*}
\hat{u}_{2}(r, \pi)<\psi_{\tau}\left(\theta_{0}\right) T(r)+\frac{1}{2}\left[\psi_{y}\left(\theta_{0}\right)-\psi_{\tau}\left(\theta_{0}\right)\right] T(r) \leqq \tag{4.1}\\
\leqq \psi_{\tau}\left(\theta_{0}\right) T(r)+\frac{1}{2}\left[\psi_{\gamma}\left(\theta_{0}\right)-\psi_{\tau}\left(\theta_{0}\right)\right] T\left(r_{0}\right)
\end{gather*}
$$

There exist nonincreasing sequences $\left\{v_{j}\right\},\left\{w_{j}\right\}$ of subharmonic functions in \mathbf{R}^{n}, with continuous second partial derivatives and pointwise limits u_{1}, u_{2}, respectively. Let $p_{j}=\left(v_{j}-w_{j}\right) \vee 0$ and put

$$
T_{j}(r, \theta)=\hat{p}_{j}(r, \theta)+\hat{w}_{j}(r, \pi), \quad r \in(0, \infty), \quad \theta \in[0, \pi]
$$

As in $\S 3$ we see that T_{j} is continous in $\mathbf{R}^{n}-\{0\}$ and for fixed $\theta \in[0, \pi]$ that $T_{j}[r, \theta]$ is convex as a function of r^{2-n} on $(0, \infty)$. Since

$$
\begin{equation*}
0 \leqq T_{j}(r, \theta)-T(r, \theta) \leqq \hat{v}_{j}(r, \pi)-\hat{u}_{1}(r, \pi)+\hat{w}_{j}(r, \pi)-\hat{u}_{2}(r, \pi) \tag{4.2}
\end{equation*}
$$

it follows from the subharmonicity of the above functions, and Dini's Theorem that T_{j} converges to T uniformly on compact subsets of $\mathbf{R}^{n}-\{0\}$.

With $g=\psi_{\tau}, \theta_{0}=\theta_{0}(\delta, \gamma)$, define σ_{j} and h_{j} relative to p_{j} as in $\S 3$ with $\beta=\theta_{0}$. Let σ be the corresponding quantity for u. From (1.3a) and (1.3b) we see that $g=\psi_{\tau}$ satisfies (3.2a). Also (1.1) and (1.2a), imply that $\lim _{\theta \rightarrow 0} g^{\prime}(\theta)=0$. Using this fact, and the fact that T_{j} is continous in $\mathbf{R}^{n}-\{0\}$, we find (3.2b) and (3.2c) are true with T_{j}, σ_{j}, replacing T, σ, and $R>0$ arbitrary. Moreover (3.6) is true with h_{j}, σ_{j}, replacing h, σ, provided $R_{1} \geqq r_{0}$, as we see from (4.2).

Since T_{j} converges uniformly to T on compact subsets of $\mathbf{R}^{n}-\{0\}$, it follows that σ_{j} converges uniformly to σ on compact subsets of $(0, \infty)$. Hence σ is nondecreasing, convex as a function of r^{2-n} on $(0, \infty)$, and at each $r \in(0, \infty)$ where $\sigma_{--}^{\prime}(r)=\sigma_{+}^{\prime}(r)$, we have $\lim _{j \rightarrow \infty} \sigma_{j-}^{\prime}(r)=\sigma_{-}^{\prime}(r)$ (see [11, p. 46, Lemma 1]). Also $\sigma\left(r_{0}\right)>0$ since $T\left(r_{0}\right)>0$.

We note that

$$
\begin{gather*}
h_{j}(r)=-c p_{j}^{*}\left(r, \theta_{0}\right)\left(\sin \theta_{0}\right)^{n-2} \psi_{\tau}^{\prime}\left(\theta_{0}\right)+\tau(\tau+n-2)\left[\hat{w}_{j}(r, \pi)-\right. \tag{4.3}\\
\left.-T_{j}\left(r, \theta_{0}\right) \psi_{\tau}\left(\theta_{0}\right)\right], \quad r \in(0, \infty) .
\end{gather*}
$$

Let $K_{j}=\left\{r: h_{j}(r) \leqq 0\right\}$ and let K be the set of $r>0$ where

$$
H^{n-1}(\{y:(u \vee 0)(r y)>0\} \cap S)<H^{n-1}\left(C\left(\theta_{0}\right)\right)
$$

Let r_{1}, R_{1}, be fixed points where the left and right hand derivatives of σ are equal, and $r_{0}<r_{1}<R_{1}$. If $r \in K \cap\left[r_{1}, R_{1}\right]$, then $\lim _{j \rightarrow \infty} p_{j}^{*}\left(r, \theta_{0}\right)=0$, since p_{j} converges pointwise to $u \vee 0$ off of a polar set. Since for $r \in K \cap\left[r_{1}, R_{1}\right]$, we have

$$
\lim _{j \rightarrow \infty} T_{j}\left(r, \theta_{0}\right)=T\left(r, \theta_{0}\right)=T(r)
$$

it follows from (4.1), (4.3), that $r \in K_{j} \cap\left[r_{1}, R_{1}\right]$ for sufficiently large j. Hence by the Fatou lemma,

$$
\int_{K \cap\left[r_{1}, R_{1}\right]} \frac{d r}{r} \leqq \liminf _{j \rightarrow \infty} \int_{K_{j} \cap\left[r_{1}, R_{1}\right]} \frac{d r}{r} .
$$

We now replace Γ, σ, in (3.7) by K_{j}, σ_{j}. Letting $j \rightarrow \infty$ in (3.7) and using the above inequality, it follows that

$$
\begin{gather*}
\tau \int_{K \cap\left[r_{1}, R_{1}\right]} \frac{d r}{r} \leqq \log \left(R_{1} \sigma_{-}^{\prime}\left(R_{1}\right)+(\tau+n-2) \sigma\left(R_{1}\right)\right)- \tag{4.4}\\
-\log \left(r_{1} \sigma_{-}^{\prime}\left(r_{1}\right)+(\tau+n-2) \sigma\left(r_{1}\right)\right)
\end{gather*}
$$

Next since $r^{n-1} \sigma^{\prime}(r)$ is nondecreasing on $(0, \infty)$, we have

$$
\sigma\left(2 R_{1}\right) \geqq \sigma\left(2 R_{1}\right)-\sigma\left(R_{1}\right)=\int_{R_{1}}^{2 R_{1}} \sigma_{-}^{\prime}(r) d r \geqq 2^{1-n} R_{1} \sigma_{-}^{\prime}\left(R_{1}\right)
$$

From this inequality and (4.4), we obtain
$\tau \frac{\int_{K \cap\left[r_{1}, R_{1}\right]} \frac{d r}{r}}{\log R_{1}} \leqq \frac{\log \left[\left(2^{n-1}+\tau+n-2\right) \sigma\left(2 R_{1}\right)\right]}{\log R_{1}}-\frac{\log \left[r_{1} \sigma_{-}^{\prime}\left(r_{1}\right)+(\tau+n-2) \sigma\left(r_{1}\right)\right]}{\log R_{1}}$.
Letting $2 R_{1} \rightarrow \infty$, through a properly chosen sequence and observing that $\sigma\left(2 R_{1}\right) \leqq$ $\leqq T\left(2 R_{1}\right)$, we get

$$
\tau \underline{\log \text { dens } K} \leqq \mu
$$

Hence,

$$
\begin{equation*}
\underline{\log \text { dens }}[(0, \infty)-K] \geqq 1-\frac{\mu}{\tau} \tag{4.5}
\end{equation*}
$$

Letting $\tau \rightarrow \gamma$, we obtain the first part of Theorem 1. The proof of the second part of Theorem 1 is similar. We omit the details.

5. Some examples

We now show that (1.4) with $\delta \in(0,1]$ and $\mu \in(0, \infty)$ is sharp. Let $\psi_{\mu}, \varphi_{\mu}$, be solutions to (1.1) and satisfy (1.2) with $\mu=\gamma$. Let

$$
u(r, \theta)=r^{\mu}\left[\psi_{\mu}\left(\theta_{0}\right) \varphi_{\mu}(\theta)-\varphi_{\mu}\left(\theta_{0}\right) \psi_{\mu}(\theta)\right]
$$

when $r \in(0, \infty), 0 \leqq \theta \leqq \theta_{0}=\theta_{0}(\delta, \mu)$, and

$$
u(r, \theta)=0
$$

for $r \in(0, \infty), \theta \in\left(\theta_{0}, \pi\right)$. Using (1.2c) we find that $\varphi_{\mu} / \psi_{\mu}$ is decreasing on ($0, \theta_{0}$) and consequently $u(r, \theta)>0$ whenever $r \in(0, \infty), \theta \in\left(0, \theta_{0}\right)$. Using (1.2), one can verify that $u=u_{1}-u_{2}$ in $\mathbf{R}^{n}-\{0\}$, where u_{1}, u_{2} are subharmonic in \mathbf{R}^{n} and satisfy
(i) The measure associated with u_{1} is concentrated on $\left\{y: y_{1}=r \cos \theta_{0}, 0<r<\infty\right\}$,
(ii) The measure associated with u_{2} is concentrated on the positive x_{1} axis,
(iii) $u_{2}(0)=0$ and $u_{2}=-\infty$ on the positive x_{1} axis.

From (1.2) and Green's second identity, it follows that

$$
r^{n-1} \frac{d \hat{u}_{2}}{d r}(r, \pi)=-c \lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} \int_{0}^{r} \frac{\partial u}{\partial \theta}(s, \theta) s^{n-3} d s=c \psi_{\mu}\left(\theta_{0}\right)(\mu+n-2)^{-1} r^{\mu+n-2}
$$

Thus,

$$
\mu(\mu+n-2) \hat{u}_{2}(r, \pi)=c \psi_{\mu}\left(\theta_{0}\right) r^{\mu},
$$

where c is as in (2.2b). From (1.1) and (1.2) we see that
$\mu(\mu+n-2) m(r)=c r^{\mu}\left[\left(\varphi_{\mu}(\theta) \psi_{\mu}^{\prime}\left(\theta_{0}\right)-\psi_{\mu}\left(\theta_{0}\right) \varphi_{\mu}^{\prime}(\theta)\right)(\sin \theta)^{n-2}\right]_{0_{0}}^{\theta_{0}}=c\left(1-\psi_{\mu}\left(\theta_{0}\right)\right) r^{\mu}$. Hence u has lower order μ and

$$
\frac{\hat{u}_{2}(r, \pi)}{T(r)}=\psi_{\mu}\left(\theta_{0}\right)=1-\delta
$$

By suitably redefining u in $B(1)$, we obtain a function which satisfies the hypotheses of Theorem 1 and for which equality holds in (1.4). Hence (1.4) is sharp.

6. Proof of Theorem 2

Given $\tau \in(0,1)$ let ψ_{τ} and φ_{τ} denote solutions of (1.1) as in $\S 1$ with $\gamma=\tau$. By (1.2a) we have

$$
\begin{gather*}
(\sin \alpha(\tau))^{n-2} \psi_{\tau}^{\prime}(\alpha(\tau))= \tag{6.1}\\
=-\tau(\tau+n-2) \int_{0}^{\alpha(\tau)} \psi_{\tau}(\theta)(\sin \theta)^{n-2} d \theta=-c^{-1} \tau(\tau+n-2) A(\tau)
\end{gather*}
$$

where A is as in $\S 1$. Let

$$
g(\theta)=\varphi_{\tau}^{\prime}(\alpha(\tau)) \psi_{\tau}(\theta)-\psi_{\tau}^{\prime}(\alpha(\tau)) \varphi_{\tau}(\theta) \quad \text { for } \quad \theta \in(0, \pi)
$$

and note that g is a solution to (1.1) with $\gamma=\tau$. We claim that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} g(\theta)=0 \quad \text { and } \quad \lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} g^{\prime}(\theta)=\psi_{\tau}^{\prime}(\alpha(\tau)), \tag{6.2a}
\end{equation*}
$$

Statement (6.2a) follows from (1.1) and (1.2). Using (1.3a) and (1.2c) we see that $\psi_{\tau}^{\prime}<0$ on $(0, \alpha(\tau)]$ and that $\varphi_{\tau}^{\prime} / \psi_{\tau}^{\prime}$ is decreasing on ($\left.0, \alpha(\tau)\right]$. Thus (6.2b) follows. Letting $\theta=\alpha(\tau)$ in (1.2c) we obtain (6.2c).

Now let u be as in Theorem 2 with order ϱ and lower μ. Then u is subharmonic in \mathbf{R}^{n} (i.e. $u_{2} \equiv 0$) and $T(r)>0$ for $r \geqq r_{0}$. Assume that $u \geqq 0$ since otherse we can consider $u \vee 0$. Let v_{j} be as in $\S 4$, where now $w_{j} \equiv 0$. Put $\beta=\alpha(\tau)$ and define T_{j}, σ_{j} and T, σ relative to v_{j} and u as in $\S 3$.

Observe that, for $r \in(0, \infty)$ and $\theta \in[0, \alpha(\tau)]$,

$$
0 \leqq T_{j}(r, \theta) \leqq c M\left(r, v_{j}\right) \int_{0}^{\theta}(\sin \zeta)^{n-2} d \zeta \leqq k(\sin \theta)^{n-1} M\left(r, v_{j}\right)
$$

where k is a positive constant. From this observation and (6.2) we see that (3.2) is valid with T_{j}, σ_{j} replacing T, σ. Let h_{j} correspond to v_{j} as in $\S 3$ and note that
by (6.1) and (6.2) we have

$$
(\sin \alpha(\tau))^{n-2} h_{j}(r)=\tau(\tau+n-2)\left[T_{j}(r, \alpha(\tau))-A(\tau) M\left(r, v_{j}\right)\right]
$$

Hence h_{j} is continuous and as in $\S 4$ we see that σ and σ_{j} are nondecreasing convex functions of r^{2-n} on $(0, \infty)$ which are positive for $r \geqq r_{0}$.

Let

$$
\begin{gathered}
K_{j}=\left\{r: h_{j}(r) \leqq 0\right\} \\
K=\{r: T(r, \alpha(\tau))<A(\tau) M(r, u)\}
\end{gathered}
$$

and let $r_{1}<R_{\mathbf{1}}$ be such that $\sigma\left(r_{1}\right)>0, \sigma_{-}^{\prime}\left(r_{1}\right)=\sigma_{+}^{\prime}\left(r_{1}\right)$ and $\sigma_{-}^{\prime}\left(R_{1}\right)=\sigma_{+}^{\prime}\left(R_{1}\right)$.
Arguing as in $\S 4$ we obtain (4.4) and then (4.5). Hence

$$
\begin{gathered}
\overline{\log \operatorname{dens}}\{r: T(r) \geqq A(\tau) M(r, u)\} \geqq \\
\overline{\log \operatorname{dens}}\{r: T(r, \alpha(\tau)) \geqq A(\tau) M(r, u)\} \geqq 1-\frac{\mu}{\tau},
\end{gathered}
$$

and the first part of theorem 2 is valid with $\gamma=\tau$. The proof of the second part is similar. We omit the details.

7. Proof of Theorem 3

Given $\tau \in(0, \infty)$ and $\theta_{1} \in(0, \alpha(\tau)]$, let

$$
g(\theta)=-\varphi_{\tau}\left(\theta_{1}\right) \psi_{\tau}(\theta)+\psi_{\tau}\left(\theta_{1}\right) \varphi_{\tau}(\theta) \quad \text { for } \quad \theta \in(0, \pi)
$$

and note that g is a solution to (1.1). We assert that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} g(\theta)=0 \quad \text { and } \quad \lim _{\theta \rightarrow 0}(\sin \theta)^{n-2} g^{\prime}(\theta)=-\psi_{\tau}\left(\theta_{1}\right) \tag{7.1a}
\end{equation*}
$$

$$
\begin{array}{cl}
g^{\prime}<0 & \text { on }\left(0, \theta_{1}\right) \text { and } g\left(\theta_{1}\right)=0, \\
& g^{\prime}\left(\theta_{1}\right)=-\left(\sin \theta_{1}\right)^{2-n} . \tag{7.1c}
\end{array}
$$

Statements (7.1a) and (7.1c) follow immediately from (1.1) and (1.2). Using (1.3a) and (1.2c) we see that $\psi_{\tau}^{\prime}<0$ and that $\varphi_{\tau}^{\prime} / \psi_{\tau}^{\prime}$ is desreasing on ($0, \theta_{1}$]. Thus, using (1.2c),

$$
\begin{gathered}
g^{\prime}(\theta)=-\psi_{\tau}^{\prime}(\theta) \psi_{\tau}\left(\theta_{1}\right)\left(\frac{\varphi_{\tau}\left(\theta_{1}\right)}{\psi_{\tau}\left(\theta_{1}\right)}-\frac{\varphi_{\tau}^{\prime}(\theta)}{\psi_{\tau}^{\prime}(\theta)}\right) \leqq \\
\leqq-\psi_{\tau}^{\prime}(\theta) \psi_{\tau}\left(\theta_{1}\right)\left[\frac{\varphi_{\tau}\left(\theta_{1}\right)}{\psi_{\tau}\left(\theta_{1}\right)}-\frac{\varphi_{\tau}^{\prime}\left(\theta_{1}\right)}{\psi_{\tau}^{\prime}\left(\theta_{1}\right)}\right]=-\frac{\psi_{\tau}^{\prime}(\theta)}{\psi_{\tau}^{\prime}\left(\theta_{1}\right)}\left(\sin \theta_{1}\right)^{2-n}<0 \quad \text { for } \quad \theta \in\left(0, \theta_{1}\right] .
\end{gathered}
$$

Thus (7.1b) is valid.

Let $\left\{v_{j}\right\}$ be as in $\S 4$ and let h_{j} correspond to v_{j} as in $\S 3$ with $\beta=\theta_{1}$. Let K denote the set of $r>0$ such that
and let

$$
H^{n-1}\left(\left\{y: u(r y) \geqq \psi_{\tau}\left(\theta_{1}\right) M(r, u)\right\} \cap S\right)<H^{n-1}\left(C\left(\theta_{1}\right)\right)
$$

$$
K_{j}=\left\{r: h_{j}(r) \leqq 0\right\}
$$

From (7.1) we find that

$$
K_{j}=\left\{r: v_{j}^{*}\left(r, \theta_{1}\right) \leqq \psi_{\tau}\left(\theta_{1}\right) M\left(r, v_{j}\right)\right\} .
$$

Since $\left\{v_{j}\right\}$ is a nonincreasing sequence with pointwise limit u, it follows for $r_{1}<R_{1}$, as in §4, that

$$
\int_{K \cap\left(r_{1}, R_{1}\right)} \frac{d r}{r} \leqq \liminf _{j \rightarrow \infty} \int_{K_{j} \cap\left(r_{1}, R_{1}\right)} \frac{d r}{r} .
$$

Arguing as in $\S 4$ we obtain

$$
\overline{\log \operatorname{dens}}[(0, \infty)-K] \geqq 1-\frac{\mu}{\tau}
$$

which is the first half of the conclusion of Theorem 3 with $\theta=\theta_{1}$ and $\gamma=\tau$. The proof of the second half is similar. We omit the details.

References

1. Arsove, M. Functions representable as differences of subharmonic functions, Trans Amer. Math. Soc. 75 (1953), 327-365.
2. Baernstein, II. A. Proof of Edrei's spread conjecture, Proc. London Math. Soc. (3) 26 (1973), 418-434.
3. Barry, P. On a theorem of Besicovitch, Quart. J. Math., Oxford (2) 14 (1963), 293-302.
4. Barrx, P. On a theorem of Kjellberg, Quart. J. Math., Oxford (2) 15 (1964), 179-191.
5. Dahl berg, B. Mean values of subharmonic functions, Ark. Mat. 10 (1972), 293-309.
6. Essén, M. Lectures on the cos $\pi \lambda$ theorem, Lecture notes University of Kentucky, 1973.
7. Essén, M. and Shea, D. Applications of Denjoy integral inequalities to growth problems for subharmonic and meromorphic functions, research announcement, Lond. Math. Soc. Lecture Notes 12 (1974), 59-68.
8. Gariepy, R. and Lewis, J. A maximum principle with applications to subharmonic functions in n space, Ark. Mat. 12 (1974), 253-266.
9. Gehring, F. Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519.
10. SAKS, S. and Zygmund, A. Analytic functions, 2nd ed., Hafner co., 1965.
11. Tsum, M. Potential theory in modern function theory, Maruzen co., 1959.
