Space analogues of some theorems for subharmonic and meromorphic functions

Ronald Gariepy and John L. Lewis

1. Introduction

Denote points in *n* dimensional Euclidean space \mathbb{R}^n , $n \ge 3$, by $x = (x_1, x_2, ..., x_n)$. Let r = |x| and $x_1 = r \cos \theta$, $0 \le \theta \le \pi$. For r > 0 let $B(r) = \{x : |x| < r\}$, $S(r) = \{x : |x| = r\}$, and S = S(1). For $0 \le \alpha \le \pi$, let $C(\alpha) = S \cap \{x : \theta < \alpha\}$. If *E* is a set contained in S(r), let ∂E denote the boundary of *E* relative to S(r). Let H^m denote *m* dimensional Hausdorff measure on \mathbb{R}^n .

If f is defined on a set $E \subset \mathbb{R}^n$, let $\theta(r)$ for $0 < r < \infty$ be defined by

$$H^{n-1}(C(\theta(r))) = H^{n-1}(p(S(r) \cap E))$$

where p denotes the radial projection of $\mathbf{R}^n - \{0\}$ onto S. For $0 \leq \theta \leq \theta(r)$, let

$$\hat{f}(r,\theta) = \sup \int_{F} f(ry) dH^{n-1}y,$$

where the supremum is taken over all measurable sets $F \subset p(S(r) \cap E)$ with

$$H^{n-1}(F) = H^{n-1}(C(\theta)).$$

Given a set $E \subset [0, \infty)$, let
 $\overline{\log \operatorname{dens}} E = \limsup_{r \to \infty} \left(\int_{E \cap (1, r)} \frac{dt}{t} \Big/ \log r \right)$
 $\underline{\log \operatorname{dens}} E = \liminf_{r \to \infty} \left(\int_{E \cap (1, r)} \frac{dt}{t} \Big/ \log r \right).$

Let u be equal H^n almost every where on \mathbb{R}^n to the difference of two subharmonic functions. By the Riesz representation theorem there is associated with this difference a unique signed Borel measure v whose total variation on compact sets is finite. Let $v = v^+ - v^-$ denote the Jordan decomposition of v. To simplify matters, we will assume that $v^+(B(1))=0$ or equivalently that u is equal H^n almost everywhere in B(1) to a subharmonic function.

From [1, Thm. 2] we see there exist functions u_1 and u_2 subharmonic in \mathbb{R}^n with associated measures $-v^-$ and $-v^+$ respectively, such that $u_2(0)=0$ and $u=u_1-u_2$, H^n almost everywhere in \mathbb{R}^n . For convenience in making the following definitions, we assume that $u=u_1-u_2$ except on the polar set where u_1 and u_2 are both $-\infty$. Otherwise, one may replace u by u_1-u_2 in the definitions.

If f and g are real valued functions on \mathbb{R}^n , let

$$(f \lor g)(x) = \max \{f(x), g(x)\}, \quad x \in \mathbf{R}^n.$$

For $0 < r < \infty$ let

$$n(r) = \sup \left\{ \hat{u}(r,\theta) \colon 0 \leq \theta \leq \pi \right\} = \int_{S} (u \vee 0) (ry) dH^{n-1}y,$$

and

$$T(r) = m(r) + \hat{u}_2(r, \pi) = \int_S (u_1 \vee u_2) (ry) dH^{n-1}y$$

We note that $\hat{u}_2(r, \pi) \ge u_2(0) = 0$ for r > 0 since u_2 is subharmonic. Hence,

$$0 \leq m(r) \leq T(r) \quad \text{for} \quad 0 < r < \infty,$$

and consequently since $u_1 \vee u_2$ is subharmonic, either $m(r) \equiv 0$ or T(r) is positive for $r \geq r_0$ (r_0 large). In this paper we consider only u for which the second possibility occurs.

In analogy with the case for meromorphic functions we define the deficiency δ , order ρ , and lower order μ of u by

$$\delta = \liminf_{r \to \infty} \frac{m(r)}{T(r)},$$
$$\varrho = \limsup_{r \to \infty} \frac{\log T(r)}{\log r},$$
$$\mu = \liminf_{r \to \infty} \frac{\log T(r)}{\log r}.$$

Observe that $0 \le \mu \le \varrho \le \infty$, and $0 \le \delta \le 1$. We remark that if h_1 and h_2 are subharmonic in \mathbb{R}^n , h_2 is harmonic in B(1), $h_2(0)=0$, and $u=h_1-h_2$, except on a polar set in \mathbb{R}^n , then

$$\liminf_{r\to\infty}\frac{m(r)}{m(r)+\hat{h}_2(r,\pi)}\leq\delta.$$

Consider for $0 < \gamma < \infty$ the ultra-spherical differential equation

(1.1)
$$\frac{d}{d\theta}\left[(\sin\theta)^{n-2}\frac{df}{d\theta}\right] = -\gamma(\gamma+n-2)(\sin\theta)^{n-2}f(\theta), \quad 0 < \theta < \pi.$$

It is well known and easy to show that (1.1) has two linearly independent solutions $\psi_{\gamma}, \phi_{\gamma}$, satisfying

(1.2a)
$$\lim_{\theta \to 0} \psi_{\gamma}(\theta) = \psi_{\gamma}(0) = 1,$$

(1.2b)
$$\lim_{\theta \to 0} (\sin \theta)^{n-2} \frac{d\varphi_{\gamma}}{d\theta} = -1.$$

It follows from (1.1), (1.2a), and (1.2b) that

(1.2c)
$$\psi_{\gamma}(\theta) \frac{d\varphi_{\gamma}}{d\theta}(\theta) - \varphi_{\gamma}(\theta) \frac{d\psi_{\gamma}}{d\theta}(\theta) = -(\sin\theta)^{2-n}, \quad 0 < \theta < \pi.$$

It is also easily shown that

(1.3a) Each ψ_{γ} has at least one zero in $(0, \pi)$ and if $\alpha = \alpha(\gamma)$ denotes the first zero of ψ_{γ} , then ψ_{γ} is decreasing on $[0, \alpha]$.

(1.3b) If
$$0 < \tau < \gamma$$
, then $\psi_{\gamma} < \psi_{\tau}$ on $(0, \alpha(\gamma))$,

(1.3c) $\lim_{\tau \to \gamma} \psi_{\tau} = \psi_{\gamma}$ uniformly on conpact subsets of $[0, \pi)$.

It follows from (1.3a) that given γ and δ , $0 \le \delta \le 1$, there is a unique $\theta_0 = \theta_0(\delta, \gamma)$ with $0 \le \theta_0 \le \alpha(\gamma)$ and $\psi_{\gamma}(\theta_0) = 1 - \delta$. In §4 we will prove

Theorem 1. Let u be as above with deficiency δ , order ϱ , and lower order μ . Given γ , $0 < \gamma < \infty$, let $E(\gamma)$ denote the set of all r > 0 such that

$$H^{n-1}(\{y: u(ry) > 0\} \cap S) \geq H^{n-1}[C(\theta_0(\delta, \gamma))].$$

Then,

$$\overline{\log \operatorname{dens}} E(\gamma) \ge 1 - \frac{\mu}{\gamma}$$

and

$$\underline{\log \operatorname{dens}} E(\gamma) \geq 1 - \frac{\varrho}{\gamma}$$

Theorem 1 implies that

$$\limsup_{r\to\infty} H^{n-1}(\{y:u(ry)>0\}\cap S) \ge H^{n-1}[C(\theta_0(\delta,\gamma))]$$

whenever $\gamma > \mu$. From (1.3c) it follows that

(1.4)
$$\limsup_{r\to\infty} H^{n-1}\big(\{y:u(ry)>0\}\cap S\big) \geq H^{n-1}\big[C\big(\theta_0(\delta,\mu)\big)\big]$$

for $0 < \mu < \infty$. In §5 we show that (1.4) is sharp. The inequality (1.4) is analogous to a spread conjecture made by Edrei and proved by Baernstein [2] in \mathbb{R}^2 .

Considering ψ_{γ} as a function defined on S, we let

$$A(\gamma) = \int_{C(\alpha(\gamma))} \psi_{\gamma} dH^{n-1}.$$

Suppose now that u is subharmonic in \mathbb{R}^n , i.e. $u_2 \equiv 0$, and let

$$M(r) = \max \{ u(x) : x \in S(r) \}, \quad r > 0.$$

In §6 we prove

Theorem 2. If u is subharmonic in \mathbb{R}^n with order ϱ , lower order μ , and γ is given, $0 < \gamma < \infty$, let

$$E_1(\gamma) = \{r : T(r) \ge A(\gamma)M(r)\}$$

Then

$$\overline{\log \operatorname{dens}} E_1(\gamma) \geq 1 - \frac{\mu}{\gamma}.$$

and

$$\underline{\log \operatorname{dens}} E_1(\gamma) \geq 1 - \frac{\varrho}{\gamma}.$$

We note that Theorem 2 has been obtained by Essén and Shea [7], using a different method. Theorem 2 implies that if $\gamma > \mu$, then

$$\limsup_{r\to\infty}\frac{T(r)}{M(r)}\geq A(\gamma).$$

Letting $\gamma \rightarrow \mu$, we have by (1.3c) that

$$\limsup_{r\to\infty}\frac{T(r)}{M(r)} \ge A(\mu)$$

when $0 < \mu < \infty$. This result has been obtained and shown to be sharp by Dahlberg [5]. In §7 we prove

Theorem 3. If u is subharmonic in \mathbb{R}^n with lower order μ , order ϱ , and $0 < \gamma < \infty$, let $E_2(\theta, \gamma)$ denote the set of r > 0 for which

$$H^{n-1}(\{y: u(ry) \ge \psi_{y}(\theta) M(r)\} \cap S) \ge H^{n-1}(C(\theta)),$$

when $0 < \theta \leq \alpha(\gamma)$. Then

$$\overline{\log \text{ dens }} E_2(\theta, \gamma) \ge 1 - \frac{\mu}{\gamma},$$
$$\underline{\log \text{ dens }} E_2(\theta, \gamma) \ge 1 - \frac{\varrho}{\gamma}$$

for $0 < \theta \leq \alpha(\gamma)$.

We note that Theorem 3 can be obtained in \mathbb{R}^2 by using a method of Baernstein (see [6, Ch. 8]).

In the proof of Theorems 1—3, we first use a method of the authors [8] to obtain a differential inequality (see (2.6)). Using this inequality, and methods of Essén [6], and Essén and Shea [7], we obtain an integral inequality (see \$3). Finally, using this integral inequality and a method of Barry [3, 4] we obtain Theorems 1—3.

2. Spherical Symmetrization

Given a closed set $F \subset \mathbb{R}^n$ define the spherical symmetrization F^* of F as follows: If $F \cap S(r) = \varphi$, then $F^* \cap S(r) = \varphi$. Otherwise,

$$H^{n-1}(F^* \cap S(r)) = H^{n-1}(F \cap S(r))$$

and $F^* \cap S(r)$ is either the point (r, 0, ..., 0) or the closed cap on S(r) centered at (r, 0, ..., 0). Let $u=u_1-u_2$ where u_1, u_2 , are subharmonic in B(R), R>0, with continous second partials. Given $t, -\infty < t < \infty$, let $F(t) = \{x: u(x) \ge t\}$ and note that F(t) is closed. Define an associated function u^* by letting

$$u^*(x) = \sup \{t \colon x \in F^*(t)\}$$
 whenever $x \in B(R)$.

It is easily seen that u^* is symmetric with respect to the x_1 axis, and $\{x: u^*(x) \ge t\} = F^*(t)$. It follows that u and u^* are equimeasurable and

(2.1)
$$\hat{u}(r,\theta) = \int_{C(\theta)} u^*(ry) dH^{n-1}y$$

whenever $r \in (0, R)$, $\theta \in [0, \pi]$. Also for fixed $r, r \in (0, R)$, $u^*(r, \theta)$ is a nonincreasing function of θ on $[0, \pi]$. We note that Gehring [9] has shown that u^* is Lipschitz in $B(R_1)$ whenever $R_1 < R$.

Let f be a function defined on (0, R). Define $f_{\#}$ on (R^{2-n}, ∞) by $f_{\#}(s) = f(r)$ when $s = r^{2-n}$ and $r \in (0, R)$. Let

$$Lf(r) = (n-2)^2 r^{4-2n} \liminf_{h \to 0} \left[\frac{f_{\#}(r^{2-n}+h) + f_{\#}(r^{2-n}-h) - 2f_{\#}(r^{2-n})}{h^2} \right]$$

for $r \in (0, R)$. Note that if f has a second derivative on (0, R), then

$$Lf(r) = r^{3-n} \frac{d}{dr} \left[r^{n-1} \frac{df}{dr} \right], \quad r \in (0, R).$$

Let

$$P(r, \theta) = \hat{u}(r, \theta) + \hat{u}_2(r, \pi)$$

for $r \in (0, R)$ and $\theta \in [0, \pi]$. Given $r_0 \in (0, R)$ we shall show that

(2.2a)
$$LP(r_0, \theta) \ge 0 \text{ for } 0 \le \theta \le \pi,$$

and

(2.2b)
$$LP(r_0, \theta) \ge -c(\sin \theta)^{n-2} \frac{\partial u^*}{\partial \theta}(r_0, \theta),$$

for almost every θ with respect to one dimensional Lebesgue measure on $[0, \pi]$. Here c is the surface area of the n-2 dimensional unit sphere, and for each fixed θ , $LP(r, \theta) = Lf(r)$, where $f(r) = P(r, \theta)$. To prove (2.2a) let $G(\theta) \subset S$ be such that

(i)
$$S \cap \{y : u(r_0 y) > u^*(r_0, \theta)\} \subset G(\theta) \subset S \cap \{y : u(r_0 y) \ge u^*(r_0, \theta)\},\$$

(ii)
$$H^{n-1}(G(\theta)) = H^{n-1}(C(\theta)),$$

(iii)
$$\hat{u}(r_0, \theta) = \int_{G(\theta)} u(r_0 y) dH^{n-1} y = \int_{C(\theta)} u^*(r_0 y) dH^{n-1} y,$$

for $\theta \in [0, \pi]$. Let

$$q(r, \theta) = \int_{G(\theta)} u(ry) dH^{n-1}y + \hat{u}_2(r, \pi)$$

for $r \in (0, R)$ and $\theta \in [0, \pi]$. Clearly, $q(r, \theta) \leq P(r, \theta)$, with equality holding at (r_0, θ) . Hence for fixed θ ,

$$(2.3) \quad LP(r_0,\theta) \ge Lq(r_0,\theta) = L\left[\int_{G(\theta)} u_1(r_0y) dH^{n-1}y + \int_{S-G(\theta)} u_2(r_0y) dH^{n-1}y\right] = \\ = \int_{G(\theta)} \left(r^{3-n} \frac{\partial}{\partial r} r^{n-1} \frac{\partial}{\partial r} u_1\right) (r_0y) dH^{n-1}y + \\ + \int_{S-G(\theta)} \left(r^{3-n} \frac{\partial}{\partial r} r^{n-1} \frac{\partial}{\partial r} u_2\right) (r_0y) dH^{n-1}y.$$

Let Δ denote the Laplacian in \mathbb{R}^n and let $\widetilde{\Delta}$ be the spherical part of Δ defined by

$$\Delta = r^{1-n} \frac{\partial}{\partial r} r^{n-1} \frac{\partial}{\partial r} + r^{-2} \widetilde{\Delta}.$$

Observe that for H^{n-1} almost every $x \in G(\theta) \cap \{y : u(r_0 y) = u^*(r_0, \theta)\}$, we have

$$0 = \tilde{\Delta u}(r_0 x) = \tilde{\Delta u}_1(r_0 x) - \tilde{\Delta u}_2(r_0 x).$$

Using this fact, the subharmonicity of u_1, u_2 , and (2.3), we obtain

(2.4)
$$LP(r_{0},\theta) \geq -\int_{S \cap \{y: u(r_{0},y) > u^{*}(r_{0},\theta)\}} \widetilde{\Delta}u_{1}(r_{0}y) dH^{n-1}y - \int_{S \cap \{y: u(r_{0},y) \leq u^{*}(r_{0},\theta)\}} \widetilde{\Delta}u_{2}(r_{0}y) dH^{n-1}y.$$

Now as in [8, §3], we may apply Green's formula for almost every $t \in \mathbf{R}$ to obtain

and
$$-\int_{S \cap \{y: u(r_0 y) > t\}} \widetilde{\Delta} u_1(r_0 y) dH^{n-1} y = r_0^{3-n} \int_{S(r_0) \cap u^{-1}(t)} \frac{\partial u_1}{\partial n} dH^{n-2}$$
$$-\int_{S \cap \{y: u(r_0 y) \le t\}} \widetilde{\Delta} u_2(r_0 y) dH^{n-1} y = -r_0^{3-n} \int_{S(r_0) \cap u^{-1}(t)} \frac{\partial u_2}{\partial n} dH^{n-2}$$

96

where $\partial/\partial n$ is the normal derivative taken into $S(r_0) \cap \{x: u(x) > t\}$. Hence for almost every $t \in \mathbf{R}$,

$$(2.5) \quad -\int_{S \cap \{y: u(r_0 y) > t\}} \widetilde{\Delta}u_1(r_0 y) dH^{n-1} y - \int_{S \cap \{y: u(r_0 y) \le t\}} \widetilde{\Delta}u_2(r_0 y) dH^{n-1} y = = r_0^{3-n} \int_{S(r_0) \cap u^{-1}(t)} \frac{\partial}{\partial n} (u_1 - u_2) dH^{n-2} = r_0^{3-n} \int_{S(r_0) \cap u^{-1}(t)} |\tilde{\nabla}u| dH^{n-2},$$

where $\tilde{\nabla}$ denotes the spherical gradient of u on $S(r_0)$. Letting $t \rightarrow u^*(r_0, \theta)$ from the right through a properly chosen sequence and using (2.4), (2.5), we see that (2.2a) is true.

Let J be the set of $\theta \in [0, \pi]$ where

$$\frac{\partial u^*}{\partial \theta}(r_0,\theta)=-r_0|\tilde{\nabla}u^*(r_0,\theta)|<0.$$

Since $LP(r_0, \theta) \ge 0$, we see that (2.2b) is valid for almost every $\theta \in [0, \pi] - J$. Let $K = \{u^*(r_0, \theta) : \theta \in J\}$. Then in [8, (2.2)] it was shown for almost every $t = u^*(r_0, \theta) \in K$ that

$$\int_{u^{-1}(t)\cap S(r_0)} |\tilde{\nabla}u| \, dH^{n-2} \ge \int_{\partial C_1(\theta)} |\tilde{\nabla}u^*| \, dH^{n-2}$$

where $C_1(\theta) = \{r_0 y: y \in C(\theta)\}$. Note that if $J_1 \subset J$ has positive one dimensional Lebesgue measure, then $\{u^*(r_0, \theta): \theta \in J_1\}$ has positive Lebesgue measure. Thus it follows from (2.4), (2.5), and the above inequality that (2.2b) is true.

Let

$$T(r, \theta) = \widehat{(u \vee 0)}(r, \theta) + \widehat{u}_2(r, \pi)$$

for $\theta \in [0, \pi]$ and $r \in (0, R)$. For given $r_0 \in (0, R)$, let $\theta_1, 0 \le \theta_1 \le \pi$, be such that

$$H^{n-1}(C(\theta_1)) = H^{n-1}(\{y : u(r_0 y) > 0\} \cap S).$$

Note that $P(r, \theta) \leq T(r, \theta)$ for $\theta \in [0, \pi]$ and $r \in (0, R)$, with equality holding when $r = r_0, \theta \in [0, \theta_1]$. Hence, if $\theta \in [0, \theta_1]$, then

$$LT(r_0, \theta) \geq LP(r_0, \theta).$$

If $\theta \in (\theta_1, \pi]$, then $T(r_0, \theta) = P(r_0, \theta_1)$ and

$$LT(r_0, \theta) \ge LP(r_0, \theta_1) \ge 0 = \frac{\partial}{\partial \theta} (u \lor 0)^* (r_0, \theta).$$

From these inequalities and (2.2) we obtain

(2.6a)
$$LT(r, \theta) \ge 0 \text{ for } \theta \in [0, \pi], r \in (0, R),$$

(2.6b)
$$LT(r,\theta) \ge -c(\sin\theta)^{n-2}\frac{\partial}{\partial\theta}(u\vee\theta)^*(r,0)$$

for almost every $\theta \in [0, \pi]$ when $r \in (0, R)$.

Ronald Gariepy and John L. Lewis

3. Differential and integral inequalities

Let u be as in §2 and observe that

$$T(r, \theta) = \int_{C(\theta)} (u^* \vee 0) (ry) dH^{n-1}y + \hat{u}_2(r, \pi)$$

is continuous in $B(R) - \{0\}$, since u^* is Lipschitz in $B(R_1)$ whenever $R_1 < R$, and u_2 is subharmonic. This observation and (2.6a) imply for fixed $\theta \in [0, \pi]$ see ([10, Ch. 10, §7]) that $T_{\pm}(s, \theta)$ is a convex function of s on (R^{2-n}, ∞) . Hence for each h > 0,

(3.1)
$$T_{\#}(s+h,\theta) + T_{\#}(s-h,\theta) - 2T_{\#}(s,\theta) \ge 0$$

when $s \in (R^{2-n} + h, \infty)$.

Given $\tau \in (0, \infty)$ and $\beta \in (0, \alpha(\tau))$, let g be a solution of (1.1) with τ replacing γ and suppose that

(3.2a)
$$g'(\theta) = \frac{dg}{d\theta} \leq 0 \quad \text{on} \quad (0, \beta),$$

(3.2b) $\sigma(r) = -\int_0^\beta T(r,\theta)g'(\theta)d\theta$, is a bounded continuous function on (0, R),

(3.2c)
$$\lim_{\theta \to 0} (\sin \theta)^{n-2} g'(\theta)$$
 and $\lim_{\theta \to 0} T(r, \theta) g(\theta)$ exist finitely for $r \in (0, R)$.

From (3.1), (3.2), the Fatou lemma, and (2.6b) we obtain

$$L\sigma(r) \geq -\int_0^\beta LT(r,\,\theta)g'(\theta)\,d\theta \geq c\int_0^\beta \frac{\partial}{\partial\theta}\,(u\vee 0)^*(r,\,\theta)\,(\sin\theta)^{n-2}g'(\theta)\,d\theta.$$

Since for fixed r, $(u \lor 0)^*(r, \theta)$ is absolutely continuous on $[0, \pi]$, we may integrate the right hand integral twice by parts. Using (3.2c) and (1.1), we obtain

$$0 \leq c \int_{0}^{\beta} \frac{\partial}{\partial \theta} (u \vee 0)^{*} (r, \theta) (\sin \theta)^{n-2} g'(\theta) d\theta =$$

= $c (u \vee 0)^{*} (r, \theta) (\sin \theta)^{n-2} g'(\theta) + \tau (\tau + n - 2) T(r, \theta) g(\theta)|_{0}^{\beta} +$
 $+ \tau (\tau + n - 2) \sigma(r) = -h(r) + \tau (\tau + n - 2) \sigma(r)$

for $r \in (0, R)$. Hence,

$$L\sigma(r) \ge -h(r) + \tau(\tau + n - 2)\sigma(r) \ge 0$$

when $r \in (0, R)$. From (3.3) and (3.2b) we deduce that $\sigma_{\#}$ is convex on (R^{2-n}, ∞) . Thus σ is a convex function of r^{2-n} on (0, R). It follows that the left and right hand derivatives of σ exist at each $r \in (0, R)$ (denoted by $\sigma'(r), \sigma'_{+}(r)$), and $r^{n-1}\sigma'_{-}(r)$ is a nondecreasing fuction on (0, R). Moreover,

$$L\sigma(r) = r^{3-n} \frac{d}{dr} [r^{n-1}\sigma'_{-}(r)]$$

except possibly on a set of Lebesgue measure zero in (0, R). Since we have (3.2b), we also see that σ is nondecreasing on (0, R). Hence, the left and right hand derivatives of σ are nonnegative.

We now argue as in [7]. Fix $R_1 \in (0, R)$ and let

$$\Phi(r) = \int_{r}^{R_{1}} \frac{h(t)}{t^{1+\tau}} dt, \quad r \in (0, R_{1}].$$

From (3.3) we obtain

$$\Phi(r) \ge \tau(\tau+n-2) \int_{r}^{R_{1}} \frac{\sigma(t)}{t^{1+\tau}} dt - \int_{r}^{R_{1}} \frac{\frac{d}{dt} [t^{n-1}\sigma'_{-}(t)]}{t^{n+\tau-2}} dt.$$

Integrating the second integral twice by parts, we obtain

(3.4)
$$\Phi(r) \ge -t^{1-\tau} \sigma'_{-}(t) - (\tau + n - 2) t^{-\tau} \sigma(t)|_{r}^{R_{1}}$$

Next we use a method of Barry [3, 4]. Let

$$\Psi(r) = r^{\tau}[\Phi(r) + R_1^{1-\tau}\sigma'_{-}(R_1) + (\tau + n - 2)R_1^{-\tau}\sigma(R_1)]$$

for $r \in (0, R_1]$. From (3.4) we have

(3.5)
$$\Psi(r) \geq r\sigma'_{-}(r) + (\tau + n - 2)\sigma(r), \quad r \in (0, R_1].$$

Assume that

(3.6a) h is continuous on $(0, R_1]$,

(3.6b)
$$\sigma \lor 0 \not\equiv 0 \text{ on } (0, R_1).$$

Then since σ is nondecreasing on $(0, R_1)$, there exists $r_1, 0 < r_1 < R_1$, such that σ is positive on $[r_1, R_1]$. From (3.5) and (3.6a) it follows that Ψ is positive with a continuous derivate on $[r_1, R_1]$. Using (3.5) and (3.3) we obtain

$$r\Psi'(r) = \tau\Psi(r) - h(r) \ge \tau r\sigma'_{-}(r) + \tau(\tau + n - 2)\sigma(r) - h(r) \ge \tau r\sigma'_{-}(r) \ge 0$$

when $r \in [r_1, R_1)$.

Let

$$\Gamma = \{r : h(r) \leq 0\}.$$

Observe from the above inequality that

 $r\Psi'(r) \ge \tau\Psi(r)$ for $r\in\Gamma\cap[r_1,R_1]$.

Thus

$$\tau \int_{\Gamma \cap [r_1, R_1]} \frac{dr}{r} \leq \int_{\Gamma \cap [r_1, R_1]} \frac{\Psi'(r)}{\Psi(r)} dr \leq \int_{r_1}^{R_1} \frac{\Psi'(r)}{\Psi(r)} dr = \log \left[\frac{\Psi(R_1)}{\Psi(r_1)} \right]$$

Using (3.5) it follows that

(3.7)
$$\tau \int_{\Gamma \cap [r_1, R_1]} \frac{dr}{r} \leq \log \left(R_1 \sigma'_- (R_1) + (\tau + n - 2) \sigma(R_1) \right) - \log \left(r_1 \sigma'_- (r_1) + (\tau + n - 2) \sigma(r_1) \right).$$

4. Proof of Theorem 1

Let $u=u_1-u_2$, H^n almost everywhere, be as in Theorem 1 with order ϱ , lower order μ , and deficiency δ . From Fubini's Theorem we see that it sufficies to prove Theorem 1 for u_1-u_2 . Hence we assume that $u=u_1-u_2$ off of a polar set. Define $T(r, \theta), r \in (0, \infty), \theta \in (0, \pi)$, relative to u as in §2. Observe that $T \ge 0$ in $\mathbb{R}^n - \{0\}$, since $u_2(0)=0$ and u_2 is subharmonic. Also, $T(r)=T(r, \pi)$ is nondecreasing on $(0, \infty)$, and by assumption T(r)>0 for sufficiently large r, say $r \ge r_0$.

Let γ , $0 < \gamma < \infty$, and $\theta_0 = \theta_0(\delta, \gamma)$ be as in Theorem 1. We assume that $\mu < \gamma$ and $0 < \delta \le 1$, since otherwise the first part of Theorem 1 is trivially true. Let τ satisfy, $\mu < \tau < \gamma$. Note that

$$\limsup_{r\to\infty}\frac{\hat{u}_2(r,\pi)}{T(r)}=1-\delta=\psi_{\gamma}(\theta_0)<\psi_{\tau}(\theta_0),$$

thanks to (1.3b). Hence for sufficiently large r, say $r \ge r_0$, we have

(4.1)
$$\hat{u}_{2}(r,\pi) < \psi_{\tau}(\theta_{0}) T(r) + \frac{1}{2} \left[\psi_{\gamma}(\theta_{0}) - \psi_{\tau}(\theta_{0}) \right] T(r) \leq$$
$$\leq \psi_{\tau}(\theta_{0}) T(r) + \frac{1}{2} \left[\psi_{\gamma}(\theta_{0}) - \psi_{\tau}(\theta_{0}) \right] T(r_{0}).$$

There exist nonincreasing sequences $\{v_j\}$, $\{w_j\}$ of subharmonic functions in \mathbb{R}^n , with continuous second partial derivatives and pointwise limits u_1, u_2 , respectively. Let $p_j = (v_j - w_j) \vee 0$ and put

$$T_j(r,\theta) = \hat{p}_j(r,\theta) + \hat{w}_j(r,\pi), \quad r \in (0,\infty), \quad \theta \in [0,\pi].$$

As in §3 we see that T_j is continuous in $\mathbb{R}^n - \{0\}$ and for fixed $\theta \in [0, \pi]$ that $T_j[r, \theta]$ is convex as a function of r^{2-n} on $(0, \infty)$. Since

(4.2)
$$0 \leq T_j(r,\theta) - T(r,\theta) \leq \hat{v}_j(r,\pi) - \hat{u}_1(r,\pi) + \hat{w}_j(r,\pi) - \hat{u}_2(r,\pi),$$

100

it follows from the subharmonicity of the above functions, and Dini's Theorem that T_i converges to T uniformly on compact subsets of $\mathbb{R}^n - \{0\}$.

With $g=\psi_{\tau}$, $\theta_0=\theta_0(\delta, \gamma)$, define σ_j and h_j relative to p_j as in §3 with $\beta=\theta_0$. Let σ be the corresponding quantity for u. From (1.3a) and (1.3b) we see that $g=\psi_{\tau}$ satisfies (3.2a). Also (1.1) and (1.2a), imply that $\lim_{\theta\to 0} g'(\theta)=0$. Using this fact, and the fact that T_j is continous in $\mathbb{R}^n - \{0\}$, we find (3.2b) and (3.2c) are true with T_j , σ_j , replacing T, σ , and R>0 arbitrary. Moreover (3.6) is true with h_j , σ_j , replacing h, σ , provided $R_1 \ge r_0$, as we see from (4.2).

Since T_j converges uniformly to T on compact subsets of $\mathbb{R}^n - \{0\}$, it follows that σ_j converges uniformly to σ on compact subsets of $(0, \infty)$. Hence σ is non-decreasing, convex as a function of r^{2-n} on $(0, \infty)$, and at each $r \in (0, \infty)$ where $\sigma'_-(r) = \sigma'_+(r)$, we have $\lim_{j \to \infty} \sigma'_{j-}(r) = \sigma'_-(r)$ (see [11, p. 46, Lemma 1]). Also $\sigma(r_0) > 0$ since $T(r_0) > 0$.

We note that

(4.3)
$$h_{j}(r) = -cp_{j}^{*}(r, \theta_{0}) (\sin \theta_{0})^{n-2} \psi_{\tau}'(\theta_{0}) + \tau(\tau + n - 2) [\hat{w}_{j}(r, \pi) - T_{j}(r, \theta_{0}) \psi_{\tau}(\theta_{0})], \quad r \in (0, \infty).$$

Let $K_j = \{r: h_j(r) \leq 0\}$ and let K be the set of r > 0 where

$$H^{n-1}(\{y: (u \vee 0) (ry) > 0\} \cap S) < H^{n-1}(C(\theta_0)).$$

Let r_1 , R_1 , be fixed points where the left and right hand derivatives of σ are equal, and $r_0 < r_1 < R_1$. If $r \in K \cap [r_1, R_1]$, then $\lim_{j \to \infty} p_j^*(r, \theta_0) = 0$, since p_j converges pointwise to $u \vee 0$ off of a polar set. Since for $r \in K \cap [r_1, R_1]$, we have

$$\lim_{j\to\infty}T_j(r,\,\theta_0)=T(r,\,\theta_0)=T(r),$$

it follows from (4.1), (4.3), that $r \in K_j \cap [r_1, R_1]$ for sufficiently large *j*. Hence by the Fatou lemma,

$$\int_{K\cap[r_1, R_1]}\frac{dr}{r} \leq \liminf_{j\to\infty}\int_{K_j\cap[r_1, R_1]}\frac{dr}{r}.$$

We now replace Γ , σ , in (3.7) by K_j , σ_j . Letting $j \rightarrow \infty$ in (3.7) and using the above inequality, it follows that

(4.4)
$$\tau \int_{K \cap [r_1, R_1]} \frac{dr}{r} \leq \log \left(R_1 \sigma'_- (R_1) + (\tau + n - 2) \sigma(R_1) \right) - \log \left(r_1 \sigma'_- (r_1) + (\tau + n - 2) \sigma(r_1) \right).$$

Next since $r^{n-1}\sigma'(r)$ is nondecreasing on $(0, \infty)$, we have

$$\sigma(2R_1) \ge \sigma(2R_1) - \sigma(R_1) = \int_{R_1}^{2R_1} \sigma'_{-}(r) \, dr \ge 2^{1-n} R_1 \sigma'_{-}(R_1).$$

From this inequality and (4.4), we obtain

$$\tau \frac{\int_{K \cap [r_1, R_1]} \frac{dr}{r}}{\log R_1} \leq \frac{\log \left[(2^{n-1} + \tau + n - 2) \sigma(2R_1) \right]}{\log R_1} - \frac{\log \left[r_1 \sigma'_-(r_1) + (\tau + n - 2) \sigma(r_1) \right]}{\log R_1}.$$

Letting $2R_1 \rightarrow \infty$, through a properly chosen sequence and observing that $\sigma(2R_1) \leq \leq T(2R_1)$, we get

$$\tau \log \operatorname{dens} K \leq \mu$$

Hence,

(4.5)
$$\underline{\log \operatorname{dens}}\left[(0,\infty)-K\right] \geq 1-\frac{\mu}{\tau}.$$

Letting $\tau \rightarrow \gamma$, we obtain the first part of Theorem 1. The proof of the second part of Theorem 1 is similar. We omit the details.

5. Some examples

We now show that (1.4) with $\delta \in (0, 1]$ and $\mu \in (0, \infty)$ is sharp. Let $\psi_{\mu}, \varphi_{\mu}$, be solutions to (1.1) and satisfy (1.2) with $\mu = \gamma$. Let

$$u(r,\theta) = r^{\mu}[\psi_{\mu}(\theta_{0})\varphi_{\mu}(\theta) - \varphi_{\mu}(\theta_{0})\psi_{\mu}(\theta)]$$

when $r \in (0, \infty)$, $0 \leq \theta \leq \theta_0 = \theta_0(\delta, \mu)$, and

 $u(r, \theta) = 0$

for $r \in (0, \infty)$, $\theta \in (\theta_0, \pi)$. Using (1.2c) we find that φ_{μ}/ψ_{μ} is decreasing on $(0, \theta_0)$ and consequently $u(r, \theta) > 0$ whenever $r \in (0, \infty)$, $\theta \in (0, \theta_0)$. Using (1.2), one can verify that $u = u_1 - u_2$ in $\mathbb{R}^n - \{0\}$, where u_1, u_2 are subharmonic in \mathbb{R}^n and satisfy (i) The measure associated with u_1 is concentrated on $\{y: y_1 = r \cos \theta_0, 0 < r < \infty\}$,

(ii) The measure associated with u_2 is concentrated on the positive x_1 axis,

(iii) $u_2(0)=0$ and $u_2=-\infty$ on the positive x_1 axis.

From (1.2) and Green's second identity, it follows that

$$r^{n-1}\frac{d\hat{u}_2}{dr}(r,\pi) = -c\lim_{\theta\to 0} (\sin\theta)^{n-2} \int_0^r \frac{\partial u}{\partial \theta}(s,\theta) s^{n-3} ds = c\psi_{\mu}(\theta_0) (\mu+n-2)^{-1} r^{\mu+n-2}.$$

Thus,

$$\mu(\mu + n - 2)\hat{u}_2(r, \pi) = c\psi_{\mu}(\theta_0)r^{\mu},$$

103

where c is as in (2.2b). From (1.1) and (1.2) we see that $\mu(\mu + n - 2)m(r) = cr^{\mu} \left[\left(\varphi_{\mu}(\theta) \psi'_{\mu}(\theta_{0}) - \psi_{\mu}(\theta_{0}) \varphi'_{\mu}(\theta) \right) (\sin \theta)^{n-2} \right]_{0}^{\theta_{0}} = c \left(1 - \psi_{\mu}(\theta_{0}) \right) r^{\mu}.$ Hence u has lower order μ and

$$\frac{\hat{u}_2(r,\pi)}{T(r)}=\psi_\mu(\theta_0)=1-\delta.$$

By suitably redefining u in B(1), we obtain a function which satisfies the hypotheses of Theorem 1 and for which equality holds in (1.4). Hence (1.4) is sharp.

6. Proof of Theorem 2

Given $\tau \in (0, 1)$ let ψ_{τ} and φ_{τ} denote solutions of (1.1) as in §1 with $\gamma = \tau$. By (1.2a) we have

(6.1)
$$(\sin \alpha(\tau))^{n-2} \psi'_{\tau}(\alpha(\tau)) =$$
$$= -\tau(\tau+n-2) \int_0^{\alpha(\tau)} \psi_{\tau}(\theta) (\sin \theta)^{n-2} d\theta = -c^{-1}\tau(\tau+n-2)A(\tau)$$

where A is as in §1. Let

$$g(\theta) = \varphi_{\tau}'(\alpha(\tau))\psi_{\tau}(\theta) - \psi_{\tau}'(\alpha(\tau))\varphi_{\tau}(\theta) \quad \text{for} \quad \theta \in (0, \pi),$$

and note that g is a solution to (1.1) with $\gamma = \tau$. We claim that

(6.2a) $\lim_{\theta \to 0} (\sin \theta)^{n-2} g(\theta) = 0 \quad \text{and} \quad \lim_{\theta \to 0} (\sin \theta)^{n-2} g'(\theta) = \psi'_{\tau} (\alpha(\tau)),$

(6.2b)
$$g' < 0$$
 on $(0, \alpha(\tau))$ and $g'(\alpha(\tau)) = 0$,

(6.2c)
$$g(\alpha(\tau)) = -(\sin \alpha(\tau))^{2-n}.$$

Statement (6.2a) follows from (1.1) and (1.2). Using (1.3a) and (1.2c) we see that $\psi'_{\tau} < 0$ on $(0, \alpha(\tau)]$ and that $\varphi'_{\tau}/\psi'_{\tau}$ is decreasing on $(0, \alpha(\tau)]$. Thus (6.2b) follows. Letting $\theta = \alpha(\tau)$ in (1.2c) we obtain (6.2c).

Now let u be as in Theorem 2 with order ϱ and lower μ . Then u is subharmonic in \mathbb{R}^n (i.e. $u_2 \equiv 0$) and T(r) > 0 for $r \geq r_0$. Assume that $u \geq 0$ since otherse we can consider $u \vee 0$. Let v_j be as in §4, where now $w_j \equiv 0$. Put $\beta = \alpha(\tau)$ and define T_j , σ_j and T, σ relative to v_j and u as in §3.

Observe that, for $r \in (0, \infty)$ and $\theta \in [0, \alpha(\tau)]$,

$$0 \leq T_i(r,\theta) \leq cM(r,v_i) \int_0^{\theta} (\sin\zeta)^{n-2} d\zeta \leq k (\sin\theta)^{n-1} M(r,v_i)$$

where k is a positive constant. From this observation and (6.2) we see that (3.2) is valid with T_i , σ_j replacing T, σ . Let h_j correspond to v_j as in §3 and note that

by (6.1) and (6.2) we have

$$\left(\sin\alpha(\tau)\right)^{n-2}h_j(r) = \tau(\tau+n-2)\left[T_j(r,\alpha(\tau)) - A(\tau)M(r,v_j)\right]$$

Hence h_j is continuous and as in §4 we see that σ and σ_j are nondecreasing convex functions of r^{2-n} on $(0, \infty)$ which are positive for $r \ge r_0$.

Let

$$K_j = \{r : h_j(r) \leq 0\},$$

$$K = \{r : T(r, \alpha(\tau)) < A(\tau) M(r, u)\},$$

and let $r_1 < R_1$ be such that $\sigma(r_1) > 0$, $\sigma'_-(r_1) = \sigma'_+(r_1)$ and $\sigma'_-(R_1) = \sigma'_+(R_1)$. Arguing as in §4 we obtain (4.4) and then (4.5). Hence

$$\overline{\log \operatorname{dens}} \{r : T(r) \ge A(\tau) M(r, u)\} \ge$$

$$\overline{\log \operatorname{dens}} \{r : T(r, \alpha(\tau)) \ge A(\tau) M(r, u)\} \ge 1 - \frac{\mu}{\tau}$$

and the first part of theorem 2 is valid with $\gamma = \tau$. The proof of the second part is similar. We omit the details.

7. Proof of Theorem 3

Given $\tau \in (0, \infty)$ and $\theta_1 \in (0, \alpha(\tau)]$, let

$$g(\theta) = -\varphi_{\tau}(\theta_1)\psi_{\tau}(\theta) + \psi_{\tau}(\theta_1)\varphi_{\tau}(\theta) \quad \text{for} \quad \theta \in (0, \pi)$$

and note that g is a solution to (1.1). We assert that

(7.1a)
$$\lim_{\theta \to 0} (\sin \theta)^{n-2} g(\theta) = 0 \text{ and } \lim_{\theta \to 0} (\sin \theta)^{n-2} g'(\theta) = -\psi_{\tau}(\theta_1),$$

(7.1b)
$$g' < 0$$
 on $(0, \theta_1)$ and $g(\theta_1) = 0$,

(7.1c)
$$g'(\theta_1) = -(\sin \theta_1)^{2-n}$$
.

Statements (7.1a) and (7.1c) follow immediately from (1.1) and (1.2). Using (1.3a) and (1.2c) we see that $\psi'_{\tau} < 0$ and that $\varphi'_{\tau}/\psi'_{\tau}$ is desreasing on $(0, \theta_1]$. Thus, using (1.2c),

$$g'(\theta) = -\psi'_{\tau}(\theta)\psi_{\tau}(\theta_{1})\left(\frac{\varphi_{\tau}(\theta_{1})}{\psi_{\tau}(\theta_{1})} - \frac{\varphi'_{\tau}(\theta)}{\psi'_{\tau}(\theta_{1})}\right) \leq \\ \leq -\psi'_{\tau}(\theta)\psi_{\tau}(\theta_{1})\left(\frac{\varphi_{\tau}(\theta_{1})}{\psi_{\tau}(\theta_{1})} - \frac{\varphi'_{\tau}(\theta_{1})}{\psi'_{\tau}(\theta_{1})}\right) = -\frac{\psi'_{\tau}(\theta)}{\psi'_{\tau}(\theta_{1})}(\sin\theta_{1})^{2-n} < 0 \quad \text{for} \quad \theta \in (0, \theta_{1}].$$

Thus (7.1b) is valid.

104

Let $\{v_j\}$ be as in §4 and let h_j correspond to v_j as in §3 with $\beta = \theta_1$. Let K denote the set of r>0 such that

$$H^{n-1}(\{y : u(ry) \ge \psi_{\tau}(\theta_1) M(r, u)\} \cap S) < H^{n-1}(C(\theta_1))$$

and let

$$K_j = \{r : h_j(r) \leq 0\}.$$

From (7.1) we find that

$$K_j = \{r : v_j^*(r, \theta_1) \leq \psi_\tau(\theta_1) M(r, v_j)\}.$$

Since $\{v_j\}$ is a nonincreasing sequence with pointwise limit u, it follows for $r_1 < R_1$, as in §4, that

$$\int_{K\cap(r_1,R_1)}\frac{dr}{r} \leq \liminf_{j\to\infty}\int_{K_j\cap(r_1,R_1)}\frac{dr}{r}$$

Arguing as in §4 we obtain

$$\overline{\log \operatorname{dens}}\left[(0,\infty)-K\right] \ge 1-\frac{\mu}{\tau}$$

which is the first half of the conclusion of Theorem 3 with $\theta = \theta_1$ and $\gamma = \tau$. The proof of the second half is similar. We omit the details.

References

- ARSOVE, M. Functions representable as differences of subharmonic functions, *Trans Amer. Math.* Soc. 75 (1953), 327–365.
- 2. BAERNSTEIN, II. A. Proof of Edrei's spread conjecture, Proc. London Math. Soc. (3) 26 (1973), 418-434.
- 3. BARRY, P. On a theorem of Besicovitch, Quart. J. Math., Oxford (2) 14 (1963), 293-302.
- 4. BARRY, P. On a theorem of Kjellberg, Quart. J. Math., Oxford (2) 15 (1964), 179-191.
- 5. DAHLBERG, B. Mean values of subharmonic functions, Ark. Mat. 10 (1972), 293-309.
- 6. Essén, M. Lectures on the $\cos \pi \lambda$ theorem, Lecture notes University of Kentucky, 1973.
- ESSÉN, M. and SHEA, D. Applications of Denjoy integral inequalities to growth problems for subharmonic and meromorphic functions, research announcement, *Lond. Math. Soc. Lecture Notes* 12 (1974), 59-68.
- 8. GARIEPY, R. and LEWIS, J. A maximum principle with applications to subharmonic functions in *n* space, Ark. Mat. 12 (1974), 253-266.
- 9. GEHRING, F. Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519.
- 10. SAKS, S. and ZYGMUND, A. Analytic functions, 2nd ed., Hafner co., 1965.
- 11. TSUN, M. Potential theory in modern function theory, Maruzen co., 1959.

Received July 2, 1974

Ronald Gariepy and John Lewis University of Kentucky Lexington, Kentucky 40596, USA