
Uniform convergence of random Fourier series 

Michael B. Marcus* 

1. Introduction 

We study the uniform convergence of  the random trigonometric series 

, ~ = 0  a ,q ,  cos (nt + 4',) (1.1) 

where {t/, e i*-} is a sequence of  independent complex valued random variables (t/. 
and q~. are real). Various additional conditions are put on {q,e l~-} (and {a,}) in 
the different results obtained. This work was motivated by our desire to prove 
the following theorem. 

Theorem 1.1. Let {q.e ~-} be independent symmetric complex valued random 
variables, E ~1, ~=1 and lim inf,~= E q.[>O. Let {a,}~l 2 and assume that a, is non- 
increasing (a,O. Then 

( " ~  ~2~112 

~ n = ~  ~.d.a k=,"kJ (1.2) 

is a necessary and sufficient condition for the uniform convergence a.s. o f  the series 
(1.1). 

The sufficient part of this theorem was obtained by Salem and Zygmund [7] 
in the case where (b, is a real number and {q.} a Rademacher sequence (a Rade- 
macher sequence is a sequence of independent random variables {e.} where e.-- +_ 1 
each with probability 1/2) and extended to independent symmetric {q.e i~-} by Ka- 
hane [4]. In fact for sufficiency neither the condition a.~ nor l i m i n f . ~  EIr/.l>0 
is needed, on the other hand symmetry is not needed for necessity. Theorem 1.1 
was obtained for random trigonometric series that are also stationary Gaussian 
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processes in [6] but the proof  makes critial use of  Slepian's lemma and this lemma 
cannot be used (as far as we can see) in the non-Gaussian case. The proof  of Theorem 
1.1 is given in Section 5. 

The necessary part of  Theorem 1.1 is a consequence of some new conditions 
for a Rademacher series 

, ~  a.e, cos nt, (1.3) 

({so} is a Rademacher sequence) to be unbounded on all intervals of  [0, 2zc]. The 
conditions have much greater generality than a, , .  The proof  utilizes results of 
Salem and Zygmund [7] on lower bounds for the supremum of partial sums of 
(1.3). It is given in Section 2. 

In section 3 we show that as long as {t/,e i*-} is independent and symmetric, 
the function 4~, does not affect the uniform convergence of the series (1.1). 
These results utilize and extend Billard's theorem ([4] pg. 49 Theorem 2) in which 
the same observation is applied to Rademacher and Steinhaus series. 

In Section 4 we use a recent result of Hoffman--Jorgensen [2] to show that 
if (1.3) does not converge uniformly then (1.1) is unboudned a.s. under very general 
conditions o n  {qne i*.} (when {a.} is held fixed). This enables us to extend the results 
of  Section 2 to the series (1.1). Theorem 4.3 shows the failure of  uniform convergence 
for a much wider class of  series than is considered in Theorem 1.1. 

Section 5 applies some recent results of  Jain and Marcus [3] and Fernique 
[1] to our problem. Sufficient conditions that are sharper than (1.2) are obtained 
and a conjecture is made on a necessary and sufficient condition for the uniform 
convergence a.s, of  (1.1) when {q,e i*.} satisfy the hypothesis of  Theorem 1.1. 

We acknowledge with gratitude many helpful discussions with Professor Naresh 
Jain. 

2. Discontinuity of Rademacher processes 

A Rademacher sequence is a sequence of independent random variables ej = +_ 1 
each with probability 1/2. In this section we specialize to the process 

X(t)  = ~'~=o aj~j cosjt ,  (2.1) 

tE[0, 2hi, a2El 2. With no loss o f  generality we take aj>=O. Since the series converges 
a.s. for each fixed value of t equality in (2.1) is meaningful. 

Lemma 2.1. Consider (2.1). Define n ( k ) = 2  2~, k = 0 ,  1, ..., and 

Rk ----- ~',(k)~_j<n(g+l) a~ (2.2) 

Tk = ~,(k)<=j<,(k+l)a} (2.3) 
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Suppose 

and 

Tk _ 0 (n (k)- o) for some 

2ff=l (2kRk) 1/2 = ~.  

0 > 0 ,  (2.4) 

(2.5) 

Then the sample paths of (2.1) are a.s. unbounded on every subinterval of [0, 2re]. 

Proof. Let j be an integer such that 0-2-J+2_->e1>0 for some number e~. 
One of  the sums 

~ L l t 2 j , + l p  ~1/2 (2.5a) ~ jt,.jn+l ] ~ oo 

where l=0 ,  1, . . . , j - 1 .  To simplify the notation, assume that this happens when 
I=0.  

Let 

Xk ( t) = Z n ( k ) ~  j<n(k-b l) a j  e j  COS nt 
and 

Mk (a, r )  = max Xk (t) 
a~_t~_fl 

for 0<-~<-fl<=2n. Following Salem and Zygmund [7], in particular see the proof  
of  (4.7.1), we define 

1 fP e~X~ (t) dt. Jk - A [ ~ ,  fl] - fl_-----~., 

In this reference, it is shown that 

e(Jk) ~= e ll4~2Rk-~'Tk 1 (fl_(~)l/2j (2.6) 

E(j~) <= eli2a2Rk [1.~ a2~ T~/2 aTk ] 
fl-----------a + (fl -- a) 2 R~ eal2 ~2Rk (2.7) 

here 2_->0 is an arbitrary constant which will be specified later and a > 0  is some 
fixed constant. In [7], 4.24, we find the well known (by now) inequality 

Note that 

E~(J~) 
P{A -> 5E(J~)} => ( 1 - 6 )  ' Z(J~) " 

e;CMk(~'#) ~ Jk 

(2.8) 

therefore by (2.6) and (2.8) we have 

P Mk(O~,fl) >= 2Rk--2 Tk+-~'log 1 (fl--a)l"2J+-2 - l ~  -->(1--5)2 E(J~,) " 

(2.9) 
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In all that  follows ~, fl, 2, fi will depend on k. We set o=e  -(lls)z2Rk and 22= 
-(16~e21ogn(k))/Rk where e<-(el/3.162) 1/2. Fur thermore  a and fl will always 

satisfy 

Tk 
(fl cO - 2 ~  = O(n(k)-"@ (2.10) 

Therefore  for n(k)>~N, for  some N sufficiently large, 

22T~'/2 ~--~ log 6 (k) = Mk (~, fl) >= 2Rk -- 23 Tk ( f l_  c01/2 

= 12Rk-(16e)21~ I R~,J 2Rk (fi_~)1/2 [--~k) 2Rk >= 

1 
>= 2Rk = ~(logn(k)Rk) 1/~ (2.11) 

16 

on a set of  measure greater than 

E 2 (&) 
(1 - -  6)  ~ E ( J ~ )  " 

(2.12) 

We now use (2.6) and (2.7) to obtain a lower bound  for  (2.12). In order  to do this 
we must  estimate the sizes o f  the various terms in (2.6) and (2.7). These are given 
below (the Ci, i =  1, 2, 3 are constants). 

'~2T~'/2 = C1 logn(k)  [Tk]V2 

a22T~,/2 logn(k)  [ Tk ]1/2 
/~_~ - c2 - U : - ; -  t ~ )  = o (,, (k) - ' " 9  

e-'Urk __ e-C~ Oog,, (k))'rdR~ : 1 -- 0 (n (k)-~ 

aTk C(312)~2Rk <_ C1n(k)_E~e(3/2)162~lognfk) = Cln(k)_(~l_(a/2)16~). 
(~ _ ~)2 g~, 

Since 0 > e l ,  we have that  if (2.10) is satisfied 

P{M~(~ ,  # )=>  ~2~/2R~/~} => 1 - Cn(k)  -~" (2.13) 

for  k sufficiently large, where C is a constant  and e'=el/4, 
We now proceed to show that  (2.1) is unbounded  on any interval in [0, 2re]. 

Any such interval, call it / ,  contains a subinterval o f  length n(jk) -1 with initial 
point  an integral multiple of  n(jk) -1 as long as we choose k sufficiently large. Let 
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[a, f l]cI denote this subinterval, a--fl=n(jk) -1, the value of a is unimportant. It  
follows from (2.13) that for k>=ko sufficiently large 

P{Mj(k+l)(O~, r )  ~ 82J(k+l)/2R}/~k+l)} ~ 1 -- Cn(j(k + 1)) -~' 

since (2.10) is satisfied i.e. 

1 TJtk+l) < C'n( j (k+ 1))-~ 2 = C'n( j (k+ 1)) - t~247 -< (~_~)~ ~ = = R j  (k + 1) 

<- C'n(j(k + 1))-,i. 

(We assume k>-ko is sufficiently large so that Tk/R~<=C'n(k) -~ for some constant 
C', see (2.4)). 

The meaning of (2.14) is that on a set of measure close to 1, Xj(k+l)(t) is larger 
than a term of a divergent sequence (see (2.5a)) on a subinterval of L We will show 
that the maxima of the processes Xjk(t), k=ko, k 0 + l ,  ... occur on top of each 
other (in some sense) and consequently, with probability close to 1, 

Z;: o xj , ,  (t) (2.15) 
is bounded on I. It then follows that since the Xk(t) are independent and symmetric 
and since "unbounded" is a tail event that (2.1) is unbounded a.s. on L (Alternately, 
we could use the contraction principle, Kahane [4], p. 18). We proceed to show 
that with probability close to 1 (2.15) is unbounded on I. 

Bernstein's inequality ([7] (4.2.3)) states that if P is a trigonometric polynomial 
of  degree n and M is the maximum of  IP then max P'] <=riM. In order to use this 
inequality we must show that~tk=maxt~to,~]  [J[k(t)[ is not much bigger than 
Mk(~, fl). Define H(k)=[Rk log n(k)] 1/2. From the proof  of  (4.31) [7] we obtain that 
for some constant C" independent of k 

e{-Mk <= C'H(k)} >- (1 -n (k ) -~ ) .  (2.16) 

Let (O, ~', P) be the measure space for X(t), ~o ~ g2. Let 

Aj(k+l)  -~ {CO : M j ( k + l ) ( ~  , r )  ~ eH(j(k + 1)), ]~S(k+l) <= C'H( j ( k  + 1))}. 

Using (2.13) and (2.16) we obtain 

P(Aj(k+I)) > 1  - C n ( j ( k +  1))-*' (2.17) 

for some absolute constant C (not necessarily the same as the one in (2.13)). 
Each path in Aj(k+l) exceeds eH(j(k+ 1)). It follows from Bernstein's inequality 

that it exceeds (e/2)H(](k+ 1)) over a subinterval of  (a, fl) of  lenght at least 

( )) = ~ n j ( k + l  -5. 
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Let m=[e/(2C")]+l ([] denotes integral part). Recall that f l -~x=n(jk)  -1. Divide 
[cqfl] into intervals of length 1/(2m)n(j(k+l)) -2 and label these intervals I~, 
l=1  . . . . .  2mn(jk)-ln(j(k+l))  2. Each path in Aj(k+l) has the property that it 
exceeds (e/2)H(j(k+l)) for all t~/l for at least one value o f / .  Let 

Bp = {o9: min ~j(k+l) < (e/2)H(j(k+ 1)), l ----- 1, . . . , p -  1; 
t~It 

inf Xj (k + 1)(t) ~ (~/2) O ( j  (k  + 1))} (2.18) 
tEIp 

i.e. the first Ii over which Xj(k+l)(t ) is not less than (e/2)H(j(k+l)). Let [0q, ill] 
be a subinterval of length (1/2m)n(j(k+l)) -2. By (2.13) 

P{Mj(k+2)(~, ill) >--- eH(j(k + 2))} >= 1 - C n ( j ( k  + 2)) -r (2.19) 
because 

( i l l -  oq) -2 [ ~ ]  <= (2m)2C ' n ( j ( k  + 1))'n(j(k + 2)) -o = 
tRj(k+2)) 

---- (2m) 2 C" n ( j  (k + 2))-t~ t J- 2~] <= Const n ( j  (k + 2))- % 

It is important to observe that neither C' nor m depends on k so (2.19) holds for 
k>-_ko. Also by (2.16) 

P{~j~+~ <= C"H(j(~ + 2))}  -> 1 - . ( j ( ~  + 2))-~.  
We have 

P m a x  (Xj(k+l)(t)+Xj(k+2)(t)) > (e /2)H(j(k+l))+eH(j(k+2))}  
t E [0, #] 

= Z P { X j (  k+~ )(t)eB}P{Mj(. ~+~ )(I,,) >_ ~H(j(k+2))}>= 
P 

>= P(Aj(~+.)P(Aj~+~) >= 1-C[n(j(k+ 1))-" +n(j(k+2))-e]. (2.20) 

Here Aj(k+~) is defined as in (2.17). Note that Nj(k+2)(Ip) stands for Mj(k+2)(% 6) 
where Ip=[% 3]. The statement (2.20) follows because Mj(k+2) is independent of 
Xj~k+l) and because the bound for Mj(k+2)(Ip) depends only on the length of Ip 
(and hence is the same for all p). 

I f  we divide [0q, ill] into intervals of length (1/2m)n(j(k+2)) we can show 
by the above argument, that each path in Aj~k+I)C~Aj(k+2) is not less than 
(~ /2)[n( j (k+l) )+n( j (k+2))]  over at least one of these intervals. Iterating the 
above argument we obtain 

I m ( ,)} ,) P m a x  1-,Yj<I~+I)(t) >- t=xH J (k+l  >- i - C  xn k + l  -~'. 
(t fi[~,/~] 

(2.21) 

Thus we have shown that (2.15) is unbounded on I with probability close to 1. This 
completes the proof. 
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Note that (2.21) can be used to obtain a lower bound for the maximum of 
the partial sums of X(t)  under hypothesis (2.4), irregardless of whether (2.5) holds. 

Lemma 2.2. Let aj~ in (2.1) then (2.5) is a sufficient condition for X(t)  to be un- 
bounded on all intervals of  [0, 2hi. 

Proof. Consider (2.1) with %. and suppose that (2.5) is satisfied. Form a new 
series 

~'~~ bjej cos , t  (2.22) 

where the bi are defined as follows: 

b1 = a,(k)+,(k-1), n(k) <=j <= n(k)e-n(k- -1)  

bj = aj, n ( k ) + n ( k - 1 )  =<j < n ( k + l ) .  

Define T~ and R~ as in (2.2) and (2.3) but for the series (2.22). We now show that 
{T[} and {R~} satisfy (2.4) and (2.5). For (2.5) we observe that 

' ' > Z  Z R k _  1 -k  R k  = n(k) -n(k- -1)~_j<n(k)  a~ -7- n ( k ) + n ( k - 1 ) ~ j < n ( k + l )  a j  = 

since aj~. Therefore 

~ '  (2~,R~_01/2 + ~ (2kR~,) ~/2 ~ ~ ,  (2~'Rt,) ~/2 = ~, 

so {Rk} satisfies (2.5). For  (2.4) let an(k)+n(k_l)=-a and n ( k - 1 ) = N ,  then 

Ts : Na 4 + Z a~ 

Rk Na 2 + . ~  aj 

where the sum is taken over n(k)+n(k--1)~<j<n(k+l) .  We have 

since 

and 

T~ 1 
= n(k) -l'z, <= 

(R~) ~ n (k - 1) 

2 1 Na 47- ~ aj 

( + Z a9 u 

1 ' 4 a 4 •  aj 

a 2 a -> a ' +  a ~ ' a ~ = > a  - ~ - ~ - ~ a j .  

For the least inequality we use that a>=aj for n(k)+n(k-1)<=j<n(k  + 1). 
It follows from Lemma 2.1 that (2.22) is unbounded on all intervals of  [0, 2re]. 

By the contraction principle [4], p. 18; (2.1) is also. 
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Lemma 2.3. Let aft and Rk be as defined in (2.2) then 

Z (2kRk) 112 < ~ (2.23) 
i f  and only i f  

n(log n) 1/2 < oo. (2.24) 

Proof. By a change of variables (2.24) holds if and only if 

(2 k .~~ Rk) 1/2 < oo. (2.25) 

Therefore (2.24) implies (2.23). For the reverse implication we have 

Z~~ (2kRg) 1/2 ~ Z ~ = I  (2 k Z~~ R,) 112- Z~~ (2 k Z~~ Rn)I'2= 

= Z f f = l ( 2 k Z Z k R , ) l / ~ ' - - i  X7 = tzk+l X; '•  R,)V2 > ]/~- .~.a k= l  \ ,~a n=k+ l  - -  

> - -  1/2. 
-~ 1 k Rk 

Theorem 2.4. Let aj~, then (2.24) is a necessary and sufficient condition for the 
uniform convergence of(2.1). 

Proof. Sufficiency is given in [7] (5.1.5), necessity by the previous three lemmas. 
Let 

r x22J+l-1 a~)l/2 
Sj = \~./k=2$ 

Paley and Zygmund [8] (see also [7] (5.2.2) ff and [4] pg 73) have shown that ~ '  Sj < 
< ~  is necessary for the uniform convergence of (2.1). This condition is different 
from ours even when aj~. In the following example the series in (2.24) diverges 
but ~ '  Sj<~o. As above let n (k )=2  ~. Take aj=(k3n(k))-~/2, n (k )~=j<n(k+l ) ,  
then S j=  2J/2(k3n(k))-l/~, 2 k ~ j ~  2 k + l. 

sj  : ZL , 2J,  (k"n (k + <- k-"'3 < 

Recall (2.24) is satisfied if and only if  (2.25) is satisfied. The series in (2.25) is 

Z k ~  / Z f = 2 u s ] ) l l 2  ~ Z ~ = I  2k/2 (Z~=+:k - -1S] )  112 ~ 1/2 Z k = 1 2 k / 2 k - 3 / 2  = 0% 

It is quite easy to find examples where ~ S j=  ~, and condition (2.4) is not sat- 
isfied. 

Remark. In [7] (5.5.1) there is a result like Theorem 2.4 dealing with the case 
aft but additional conditions are placed on" the {a j}. 
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3. Equivalence classes of uniformly convergent random Fourier series 

We show that for random Fourier series involving independent symmetric 
random variables the distribution of the phase has no effect on the uniform con- 
vergence of the series. Consider 

a.r/n cos (nt + ~.) (3.0) 

where {r/.e i~-} is a sequence of independent symmetric complex valued random 
variables (~]n and ~b. are real and not necessarily independent of each other). Any 
such sequence can be written in the form {Iqnlei~'-} (cb'. being the obvious modi- 
fication of ~b.). Note that {Iq.I} is also an independent sequence. 

Theorem 3.1. Let {[r/.le e*-} and {lq.]e i~ be sequences o f  independent complex 
valued random variables as described above. The uniform convergence a.s. o f  

an Innl cos (nt + ~n) (3.1) 

implies the uniform convergence a.s. o f  

~ '  an Iq,] cos (nt + On). (3.2~ 

Proof. Let (f21, ~ ,  P1) be the probability space for {]qn]e/~-} and introduce 
an independent Rademacher sequence {~,} defined on (02, ~ , / 2 ) .  Consider 

~ '  anon It/hi cos (nt + ~n) (3.3) 

on the product space ( O 1 • 2 1 5 2 1 5  Since {[qnle i~-} are symmetric 
(3.3) is stochastically similar to (3.1) and consequently converges uniformly a.s. 
(with respect to PI• It follows that for each o91C~1 where ~1=f2~, P ( O l ) = I  

~ '  an ~. l q. (og0l co s (nt + ~n (o91)) (3.4) 

converges uniformly a.s. (P~) on 122. 
Let {~g,} be a sequence of independent random variables each one uniformly 

distributed on [0, 2re] with probability space (Os, ~3 , /3 ) .  By Billard's theorem 
([4], pg. 49, Theorem 2), 

~ '  an Iq, (~ cos (nt + ~,  (C~ "~ ~n) (3.5) 

converges uniformly a.s, (P3), for each COlE O x. 
Since the 7' n are uniformly distributed on [0, 2rt] (3.5) is stochastically similar to 

~ '  an It/, (o901 cos (nt + On (o91) + IIIn). (3.6) 

Applying Billard's theorem again we see that 

an~, [qn[ cos (nt + 0,) 
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converges uniformly a.s. (P I •  P2). Since {[qn[ ei~ is symmetric the theorem follows. 
For  emphasis we add the following: 

Corollary 3.2. Let {7,} be independent, symmetric real valued random variables 
{~,} real numbers; then if 

~ an q, Cos (nt + ~,) 

converges uniformly a.s. so does 

an [~ln COS (nt + r 

.for every independent symmetric {[q,[ei~-}. 
Let {q,e ~-} be independent symmetric complex valued random variables; then if 

~ a.q, cos(nt +~bn) 

converges uniformly a.s. so does 

a,~nq, cos (nt + ~,) 

for any sequence {%} of real numbers ({8,} is a Rademacher sequence independent 

of  {,,}). 

Proof. This is simply a restatement of Theorem 3.1. We need only note that 
since {]7,1} are independent {e,q.} is a sequence of independent symmetric random 
variables. 

4. Undbounded random trigonometric series 

We want to infer f rom the unboundedness a.s. of  the series (2.1) that 

a,~/. cos (nt + ~.) (4.1) 

is also unbounded a.s. where the {a,} are the same and {q,d ~.} are independent 
complex valued random variables (q, and ~. real). In this section 1/, d ~- is not as- 
sumed to by symmetric unless specifically stated. By unbounded we mean that the 
partial sums of (4.1) are unbounded. 

A recent theorem of  Hoffmann--Jorgensen ([2], Theorem 5.7) says that certain 
series of continuous functions multiplied by a Raclemacher sequence is bounded 
a.s. (or uniformly convergent a.s.) if they are bounded a.s. (or uniformly convergent 
a.s.) when multiplied by any other sequence of  independent identically distributed 
random variables. We state this theorem specialized to our problem and add an 
observation that enables us to use it when the random variables are not identically 
distributed. 
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T h e o r e m  4.1. Let {q.} be independent nondegenerate random variables such that 

P(Iq,-r/i]  > a) > 6 (4.2) 

for  some a, 6 > 0  uniformly in n({~/~} is an independent copy o f  {q,}). Then i f  

a,~l, cos nt (4.3) 
is bounded a.s. 

a,~, cos nt (4.4) 

converges uniformly a.s., where {~,} is a Rademaeher sequence. 

Statement  (4.2) is satisfied i f  either 

{q,} are identically distributed 
o r  

(4.5) 

Eq~, <= M ,  lim in fE  q , - E t l , [  = C > 0 (M,  C are numbers). (4.6) 

Proof. In Theorem 5.7 [2] it is shown that the boundedness a.s. of (4.3) implies 
the boundedness a.s. of (4.4) under condition (4.5). The only use of the provision 
"identically distributed" was to show that for some N 

(m* . . . . p , ) [ -  1, 1] < 1/2 (4.7) 

for all n, when p, is the measure corresponding to the symmetric random variable 
qn--~/~ and the convolution is taken N times. (Of course under (4.5) all the/~, are 
the same.) However (4.7) will also be true under condition (4.2) as can be seen by 
considering the random walk ~n, l T . . .  +~,,N where ~,,j are independent copies 
of r / , - q ' .  Therefore Hoffmann Jorgensen's theorem follows under the more 
general hypothesis (4.2). We use Theorem 3, pg. 49 [4] to show that if (4.4) is bounded 
a.s. it converges uniformly a.s. 

We now show that (4.6) implies (4.2). Let (f21, ~ ,  P~) and (02, ~2, P~) be the 
probability spaces of {~/,}, {r/i} and El,  E 2 the corresponding expectation operators. 
Let E be expectation on the product space (f21• . ~ •  PI• Note that 

E l ~ , - - E ~ ,  I <- E I q - q ~  I <-_ 2El~,--E~n I. (4.8) 

The right side of (4.8) follows from the triangle inequality. The left side from Jensen's 
inequality as follows: 

E2lr/n-rt;,I--> '~t.--Ezrt;[ - [..-En.: 

E, E~ Iq.- n" >= E1 ,t . --Eq.I = E,1.--E,7. i .  

(Of course E1 E2 ---- E.) 
By [7] (4.2.4) 

2 t 

P [ I n . - n ' I  > 0 ~ [ n . - n ' l ]  -> ( 1 - 0 )  3 E I n . - n . t  
E i n . - n . ' [  ~" 



118 Michael B. Marcus 

Therefore  

P[Iq,  - ~;,[ > OC] > (1 - O)zC ~ 
- - /  4 M  " 

This completes  the proof .  

Remark 1. Theorem 5.7 [2] is p roved  in a much  more  general setting than  is 
given here. The  modificat ion given in our  Theorem 3.1 also applies in the general 
setting. 

Remark 2. When {qn} are not  identically distr ibuted some condi t ion like (4.2) 
is necessary, Otherwise we can easily obtain counterexamples .  Choose  any sequence 
{an} so that  (4.2) is unbounded  a.s. (use L e m m a  2.1 or  2.2) and let {bn}6P. Pick 
any symmetr ic  {r/n } such that  Eq 2,- 1 and 

P(annn > bn) < oo. 

By the Borel Cantelli l emma  (4.3) is absolutely convergent  a.s. 

Theorem 4,2, Let {qne i~} be independent complex valued random variables. 
I f  either 

{rl~ e i~"} is identically distributed (4.9) 
o r  

Eq2, <= M, l iminfE[qoei~,-Eqne i~. > 0, (4.10) 
n ~  

then the boundedness a.s. o f  (4.1) implies the uniform convergence a.s. o f  (4.4). 

Proof Let {q',e~',} be an independent  copy of  {q,e*~-}. I f  (4.1) is bounded  
a.s. so is 

~ a n [ ( q ,  cosq) ,--r l~cos~)cosnt+(rlnsincb,--r l~sinq~)sinnt] .  (4.11) 

This series can be put  in the fo rm 

where 
a ,  ~, cos (nt + 0,) (4.12) 

~, = q,e i~. q'n ei~; (4.13) 

and {~,e i~ is independent  and symmetric.  By Theorem 3, pg. 49 [4] (4.12) con- 
verges uni formly  a.s. By our  Corol lary  (3.2) 

Z anen~n COS nt (4.14) 

also converges uni formly  a.s., where {e,} is a Rademache r  sequence independent  
of 
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We now use Theorem (4.1) on (4.14). Therefore  (4.4) converges uniformly if 
{e,r is identically distributed which is the case under  (4.9). Since E e , ~ , = 0  and 

2<: 2 E~,,=4Eq,, using (4.6) we see that (4.4) converges uniformly a.s. if 

l i m i n f E l ~ ,  t > 0. (4.15) 

By (4.8), (4.15) and (4.10) are equivalent. 
In [4] Chapter  8 w a condit ion under  which the series (4.4) does not  converge 

uniformly a.s. is extended to series of  the form (4.1) under  the additional condi- 
tions that  {~/,e i~-} is symmetric, Eq~= 1 and Eq4n<:C ", (C" is a constant).  This result 
is contained in Theorem 4.2. To  see this we use [7] (4.2.4) 

P[~,~ > 61 -> (1 - 6 )  2 (Eq"~)2 ( 1 - 6 )  3 
Eq 4 = C --= ~' 

Consequently E[rln[~6l/2~ and l im in f .~=  E[q. >0 .  The random variables q. do 
not have to have a four th  moment ;  they needn ' t  even have a second moment  as 
long as (4.2) is satisfied. 

Finally we state our  most  general condit ion on the coefficients {an} that imply 
(4.1) is unbounded  a.s. 

Theorem 4.3. Consider the series (4.1) with {qn e~o"} independent. I f  {q.e i~.} 
satisfies either (4.9) or (4.10) and i f  {an} satisfies (2.4) and (2.5) then (4.1) is unbounded 
a . s ,  

Proof. The p roo f  follows f rom Lemma 2.1 and Theorem 4.2. 

5. Some Conditions for the Uniform Convergence of Random Fourier Series 

We define 

and 

 2(h) -- Z a. sin 2 n_h 2 (5,1) 

o(u) l au. 
J 0  u(log I/u) 

The  following theorem is obtained in [3]. 

Theorem 5.1. Consider the series (3.0) where {~1, e i~"} is independent and symmet- 
ric, D/.2=l  and {a.}ql 2. I f  I ( a ) < o o  the series converges uniformly a.s. 

It is shown in [5], Theorem 1 (see also [6] tha t  (2.24) implies I ( a ) < ~ ;  there- 
fore this theorem can be used to supply the sufficiency part  o f  Theorem 1.1. The 
necessary par t  comes f rom Theorem 4.3. 
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It is interesting to see where the function tr 2 (h) comes from. Let 

X(t)  = ~ ~  a. [r/, cos nt + ~ sin nt] (5.2) 

where {a,}El 2, {~/.} is independent and symmetric, Eq2,= 1 and {r/i} is an independent 
copy of  {q,}. Since {Ela2,q2, }El 2 the series converges for each t a.s. hence X(t )  is 
well defined. Notice that 

a 2 (h) = E X( t  + h) - X(t)  2. 

That is, X(t)  is a weakly stationary process with increments variance a2(h). How- 
ever, as we have shown in Section 3, it doesn't matter whether the series (3.0) are 
stationary or not; therefore we simply define a2 (h) as a function of  the coefficients 
as in (5.1). 

I f  {17. e to-} satisfies the hypothesis of Theorem 1.1 we will say it has property 
A. When {t/.e ~~ has property A all the conditions we have given fo r  uniform con- 
vergence or unboundedness a.s. of  the series (3.0) depend only on the coefficients 
{a,}. In fact we know of  no examples of  coefficients {a,} for which (3.0) converges 
uniformly for some {t/.e i*-} with property A and not for every other one having 
property A. Nevertheless by placing further conditions on the random variables 
{~h ei*"} we can obtain much stronger conditions for uniform convergence. In order 
to show this we need the following definitions, 

Let f(h),  h~[0, 2re] be a positive continuous real valued function and let 

m (y) = 2 {h E [0, 2re] : f (h)  < y} 

where 2 is Lebesgue measure. Let f(h) be the generalized inverse of  m given by 
f(h) = sup {y:m (y) <h  }. The function f is called the "monotone rearrangement" of 
f.  Let ff be the monotone rearrangement of  a. 

A random variable is called subgaussian if for any real 2 

E[e ~r <= e ~ / 2  

where a2=EX 2. Both a zero mean normal random variable and ~.= • 1 each with 
probability 1/2 are subgaussian. 

Theorem 5.2. Let {qne ~-} be independent and symmetric, E[q,12=l, {an}El ~ 
and assume that either 

~n Illn is subgaussian ({e,} is a Rademacher sequence independent o f  Iq.I) (5.3) 
o r  

I~, <-M a.s. where M is a constant independent of  n. (5.4) 

Then i f  I ( f f ) < ~ ,  (3.0) converges uniJbrmly a.s. 

Proof. This theorem is proved in [3] (Theorem 3.2), for series of the form (5.2) 
when the random variables {~/,} and {~7~} are independent and subgaussian. When 
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this series converges uniformly a.s. it is easy to see that both the cosine series and 
the sine series converges uniformly a.s. ([3] Lemma 4.1). Therefore if (5.3) is satis- 
fied I ( 6 ) < ~  implies the uniform convergence of ~ a,e,[q, I cos nt. This result 
extends to the series (3.0) by Corollary 3.2. 

Suppose (5.4) is satisfied. Let (f2a, ~ ,  PI) be the probability space of {Iq, I} 
and (f22, ~2 , /2 )  be the probability space of {5,} and consider 

a.~.lq.! c o s t a  

on (I21• ~ a •  Pa• For each co~E f21, f21~f21, P ( O 0 = I ,  

(5.5) 

~,~ a,e, 'rl,(o91) cos nt 

converges uniformly a.s. (P~) by the contraction principle ([4], pg. 19, Theorem 5)~ 
By Fubini's theorem (5.5) converges uniformly a.s. and the theorem follows by 
Corollary 3.2. 

We know [3] that I (a)<oo implies 1(0) finite and that the converse is false. 
The reason that I(0) is so important is a consequence of a remarkable theorem o f  
Fernique [1] which gives us: 

Theorem 5.3. Let {q,e ie,,} be independent and symmetric glq.12=l, {a,}Cl  ~ 
and suppose that ~, [q,I is a normal random variable; then 1(6)<oo is necessary and 
sufficient for the uniform convergence of  (3.0). 

Proof. Fernique's theorem together with line (2.8) in [3] says that I ( f f ) < ~  
is necessary and sufficient for sample path continuity of a stationary Gaussian 
process. By the proof of Theorem 5.2 (5.5) converges uniformly a.s. for ~, Ir/~I under 
our hypothesis. Therefore by Corollary 3.2 so does (3.0). 

This leads us to the following: 

Conjecture. Let {~lne i~.} satisfy the hypothesis of Theorem 1.1, then I(tY)<o~ 
is necessary and sufficient for the uniform convergence of (3.0). 

The results of Section 4 show that for the necessary part of the conjecture 
one need only show that I ( 6 ) - ~  implies that the series (2.1) does not converge 
uniformly. 



122 Michael B. Marcus: Uniform convergence of random Fourier series 

References 

1. FERNIQUE, X., Des resultats nouveaux sur les processus Gaussiens, manuscript. 
2. HOFFMANN--JORGENSEN, J., Sums of independent Banach space valued random variables, preprint 

series 1972/73 No 15., Aarhus Universitet Matematisk Institut, Denmark.  
3. JAIN, N. C. and MARCUS, M. B., Sufficient conditions for the continuity of stationary Gaussian 

processes and applications to random series of functions, Ann. Instit. Fourier, to appear. 
4. KAHANE, J. P., Some random series o f  functions, (1968). D. C. Heath, Lexington, Mass., U.S.A. 
5. MARCUS. M B., A comparison of continuity conditions for Gaussian processes, Ann. o f  Proba- 

bility, I (1973), 123 130. 
6. MARCUS. i .  B., Continuity of Gaussian processes and random Fourier series, Ann. o f  Probability, 

1 (1973), 968--981. 
7. SALEM, R. and ZYGMUND, A., Some properties of trigonometric series whose terms have random 

signs, Aeta Math.. 91 (1954), 245 301. 
8. PALEY, R. E. A. C. and ZYGMUND, A., On some series of functions (t) (2) (3), Proceedings o f  

Cambridge Phil. Soc., 26 (1930L 337 357; 26 (1930), 458--474; 28 (1932), 190 205. 

Received May 10, 1974 Michael B. Marcus 
Northwestern University 
Evanston, Illinois 60201 
U.S.A. 


