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O. Introduction 

In this note we study certain spaces of  distributions F;q=Fpq(R ") where s real, 
0 < p ,  q<--~. They are intimately related to certain spaces studied by Triebel [10] 
and Lizorkin [5] (cf. also [6]) when 1 < p ,  q <- oo. Our main result is a certain equivalen- 
ce theorem (see Sec. 3) which says that the spaces do not depend on the special 
sequence of testfunctions {q),},~z entering in their definition. This extends Triebel's 
corresponding result. But we have to give an entirely new proof, relying on two 
deep results by Fefferman & Stein: 1 ~ their real variable characterization of the 
Hardy classes H~[1], 2 ~ their sequence valued version of  the Hardy & Littlewood 

maximal theorem [2]. (Incidentally it follows f rom [I] that F~ if  0 < p < ~  
while as F~ M. O. !) As an application we prove (see Sec. 5) a multiplier theorem 
of  the Mikhlin type, extending the one by Triebel and Lizorkin. We also give (see 
Sec, 6) an application to approximation theory related to a theorem of Freud's  
[3]. Finally we briefly indicate (see Sec. 7) how the result might be extended to the 

case of a Riemannian manifold. 

1. Definitions 

By Lp where 0 < p ~  we denote the space of measurable functions f= f (x )  
(xER") such that 

IISIl , -- ( f  ISO<)l" dx) " "  < 

By l q where O < q - < ~  we denote the space of sequences t =  {t,}~ez such that 

tlhq = ( ~ e z  it~iq) TM < co. 

We consider also spaces of  sequence valued measurable functions L, (l q) and lq(Lp), 
defined in the obvious way. I f  1 <-p, q<=~ these are all Banach spaces, in the general 

case only quasi-Banach space. 
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By 50 we denote the space of  rapidly decreasing functmns m R" and by 5:" 
the dual space of tempered distributions. 

We choose a sequence of testfunctions {~0~}v~z, with ~0~(x)=2*"~0(2*x), where 
q~CS: with supp ~ =  {2-x<= ]{[<-_2}. For convenience let us also assume that {q~}~z 
is normalized in the sense that 

~ cz ( ~  (0)  2 = 1 (or ~ <  z go~. ~0~ = 5). 

We can now define our principal spaces. 

Definition 1.1. Let s real, 0<p ,  q<=oo. Then we set (the spaces of Triebel--  
Lizorkin type) 

F~ q = { f l f  ~ 5f' 8, {2~ g0~ ~f}v~z E Lp(lq)}. 

We equip F~ q with the quasi-norm 

Definition 1.2. Let s real, 0<p ,  q<=oo, a_>0. Then we set (poised spaces of  
Besov type) 

B~q(a) = { f i f E &  a" & {2v*(1 + 2Vlx])arp~*f}v~z E lq(Lp)}. 

We equip B*pq(a) with the quasi-norm 

l[fl[B;q (,) = I!{ 2`'s(1 • 2v x )arpv*f}~ezll,,(L,). 

If a = 0  we simply write B~q(0)=B~, q (BeSov space). 

Remark 1.1. Conformally with the notation of  [7] we should perhaps have 
written P and/~,  rather than F and B, We also, as is customary in the case of 
"homogeneous" spaces, have to work modulo polynomials. Thus the above quasi- 
norms are genuine quasi-norms only after such an identification. 

Let us now rapidly state some propertes of these spaces which can be proven 
in a more or less standard way (cf. [10]). 

1. The spaces F; q and B*nq(a ) are complete. The embeddings from ~9 ~ and into 
5~' are continuous. They are thus quasi-Banach (Banach if l<-p, q<_~o) spaces of 
tempered distributions. 

2. 5: is a dense subspace of F;  q and B~pq(a) if 0<p ,  q < ~ .  
3. We have embedding theorems, e.g. the embedding B~q(a)~B~lq(a ) if  

s--n/p=sl--n/Pl,  s>=sl, q<=ql. 
4. We have duality theorems, e.g. the duality (F~a)'~ F~; ~" if l=<p, q_<_oo. 
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2. Some lemmata 

The following elementary result will do us a great service. 

Lemma 2.1. Let u be any Cl funetion in R" and let O<r<=o~. Then we have the 
mequality 

u ~ <= C{6-"/'(MuO~/'+3(Vu)**}, 6 <= 1 

where M denotes the Hardy & Littlewood maximal operator and where we have defined 
U** by 

u**(x) = sup lu(x-y)~/(1 + [yl) "/' 
yER n 

and (Vu) ** m a similar fashion. 

Proof. By the mean value theorem we have for any x, zER" 

[u(x-z)[  <= C{6-~"/'(f,~_~_,,<etu(y)l" dy) ~'" +a sup lVu(y)]}. 
[ x - - z - y [ < 6  

By definition of  M and (Vu) ~ follows 

u (x  - z)l <= C { 6  - "/" (Mu" (x)) ~'' + 6 (Vu)** (x)} (1 + 6 + Izl) "/'. 

I f  6<= 1 we clearly get the desired inequality. 

We also need a few results connected with M. First we recall the following 
elementary 

Lemma 2.2. Let f by any measurable function in R" and let b>n,  Then holds 

f If(y)I/(1 + Ix - y  )b dy <~ CMf(x) .  

We need also the following extension of  the Hardy  & Lit t lewood maximal 
theorem. 

Lemma 2.3. (Fefferman & Stein [2]) Let f--{f~}~Ez be a sequence of  measurable 
functions in R" and let 1 <p, q <-~. Then holds 

NMflIL~(Iq) ~ CIIf[IL~(lq) 

where of course Mf - -  {M/'~}~ ~ z.  

3. The equivalence proof 

I f f E F ;  q and if {~ov}~E z is the sequence of  test functions o f  Sec. 1 we set 

q~**f(x) ----- I1 {q~**f(x)}~ e z lira, 

qo *~* f ( x )  ----- sup 2v' I~0~ * f ( x  -- y)I/( 1 + 2~ly I) a. 
FER ~ 
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We also set 
tP+f(x) = ]l{q~+/(x)}~z[ll,, 

q~+ f ( x )  = 2~*q~v*f(x). 

Clearly q~+fELp. Below we show that also (o**fELp, at least if a is sufficiently large. 
More generally, let {O-v}vez be a general sequence of test functions, with e~(x)= 
-2v"tr(2~x) (but with no restriction on supp ~) and define tr**f, a**t"~j, o '+f as 
above. Then we have the following 

Theorem 3.1. Assume that o-EB;-Sql(a)OB[*+"'q~(a) with a > n/min (p, q), ql - 
=min  (1, q). Then holds: 

f E  F~ q ==~ ~r* *fE Lp. (3.1) 

In particular (3.1) holds with cr=~o. 

Proof. (Cf. Fefferman & Stein [1], pp. 183 187.) Let us start with the identity 

We then get 

2 "~ la~, . f (x  -- z)l <= ~ '  2 "* f ~ )  (y)l q~v . f ( x  - z -  y)' dy <= 

-<_ ~ '  2." f2( . -~ la ,  tp~_u(2"y)l(1 + 2  v yl)ady cp**f(x) (1 +2~lz]) a < 

<_-- ~ '  2("- ~}* f ](o'* ~ov_.) (y)[ (1 + 2 ~- u l yl)a dy ~C*f(x) (1 + 2 ~-")~ (1 + 2" Izl) a 

where we have used the elementary inequality: 

m a x ( l + u + v , l + u v ) < = ( l + u ) ( l •  u>-_ O, v>=O. 

In other words we have 

a~*f(x)  ~ ~ t.,-~,q~v f ( x )  (3.2) 

with t~ = ~'2-~'(1+2~)af0 +2~lYl)~ Here by hypothesis 

( ~  ]tdqO x/q~ <- C. 
Therefore follows 

o-**f <= C~o**f. (3.3) 

Thus we have reduced ourselves to proving (3.1) with o-=~o. To this end we first 
note that (3.3) in particular entails 

(Vq~)**f <= CqC*f. 

On the other hand lemma 2.1 implies (with r=n/a) 

~o**f< Cl6-"/'r ,5 <= I. [ k \ Y V  d ]  ] \ ~UJV J J ~  
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Thus we get 
[l~o**fllLp <-- C{ (5-~/" (M(q~+ f)')i/'[ [Lgl~) + (5 I[~o**fllL,}. 

By lemma 2.3 we have (since r < m i n  (p, q)) 

[(M(~,+ f) ' )  '/" IL~"% M + r l i t  < 

+ r 1Iv 
_<-C (~o~ f)IIL~/.(~/') = CIl~+fllz.,q) = CIIflle 7 �9 

Thus we have 

tl~0**fllLp ~ C{(5 -"/" l l f l l ,7  7- (5 I]q~**flkp}, (5 ~ 1. 

If  we knew already that ][~o**fllLp<oo we could, taking (5 sufficiently small, con- 
clude that 

[g0**fllL, <= C[If[lr7 (3.4) 

and we were through. But if Ik0**fllz = ~  this argument does not apply. To cir- 
cumvent this difficulty we use an approximation argument. The above proof  at 
least shows that (3.4) is valid if f 6 6  e. For a generalfEF~ ~ we find a sequence {f~}T=l 
in 5 a such t h a t f ~ f i n  Sa" as i~oo, with supi IIf~llF;~<oo. It is easily seen that 

so an application of (3.3) to f i  effectively yields 119**fll,~ < oo. The proof  is complete. 

Corollary 3.1. The space F~ ~ is independent of the particular sequence of test 
functions {9~}~z chosen. 

Proof. Obvious. 

4, Some variants of  the above result 

We begin with the following simple variant of th. 3.1. 

Theorem 4.1. Assume that aEB~Sql(a) with a>n/min (p, q), ql=min (1, q). 
Then holds: 

fE F~, q =~ a+fE Lp (4.1} 

Proof. The proof  of  th. 3.1 clearly also gives in place of (3.2) 

Z t :r a+~f(x) <= t~_, q~ f(x)  

with t ; = 2 - ~ s f ( 1  +2~lyl)"la.q)~(y)l dy. This gives in place of (3.3): 

a + f --< Cq~**f. 

Since we know already that ~o**fELp it follows that a+fELp. 
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Next  we want  to relax the condit ion on cr in th. 4.1. In  this direction we can 

prove:  

Theorem 4.2. Assume that aEBJ-"'ql(a) where a>n/min (1, p, q), ql = m i n  (1, q). 
Then holds again (4.1). 

Proof. F r o m  lemma 2.2 and l emma 2.3 follows readily that  

f ~  F~q =* {2~* (2~" f IcP~ . f ( x - y ) " / ( 1  + 2~ Ly[) b dy) */~} ~ Lp(lq) 

where  r < m i n ( p ,  q), b>n. F r o m  this follows again readily 

fE  F~, q =, {2~r ~o~.f(x--y)f/(1 q-.2Vlyt)ady}< Lp(l ~) 

"with a as in the hypothes is  o f  the theorem.  The p r o o f  of  th. 3.1 now yields 

< " �9 f l~o~ . f ( x - y ) / (1  +2~lyt)"dv a+ f(x)  = ~ t~-u2 ~+") 

wi th  t " = 2 - ~ * + " ) f  (1 +2~lyl)  ~ [a* q%(y)l dy. The rest o f  the p r o o f  is the same. v J 

5. A multiplier theorem 

We have the following 

Theorem 5.1. Assume that mEB~ where a>n/min (p, q). Then fE F~=~ 
 m.f rgq 

Proof (Cf. Stein [9], pp, 96 99.) Let  us set g = m . f .  We want  to est imate 
~o ~- g. Choose a in such a way tha t  th. 3.1. is applicable and  tha t  in addi t ion #~ ( 4 ) -  1 
in supp ~ .  Then we have 

~p~ceg = (cp~.m).(a~. f )  
a n d  we get 

, o r  

O,*~g 2vSl~pv.g(x ) <= f q~v.m(y)!(1 T2~lyl)"dytr** f (x)  <- C ~ f(x)  

~o'g <= Ca~*f. 

Since a**f~Lp we get go+ gELp and gE F~ q. 
In  order  to get a true multiplier  theorem we have to express the condi t ion 

.on m in terms o f  m. 



On spaces of Triebel--Lizorkin type 129 

Corollary 5.1. The conclusion of  th. 5.1. is valid in particular i f  ID ~ rh(~)l <= C I~t -l ' l  
for all multi-indices c~ with [~[<=T where T is an integer>n/2+a. 

Proof  Use Bernstein's theorem on absolutely convergent Fourier integrals. 

Remark 5.1. Using the results of  Sec. 4 it is possible ot relax the assumptions 
on m (and rh). In particular we can as a special case obtain H6rmander ' s  version 
o f  Mikhlin's multiplier theorem [4]. 

6. An application to approximation theory 

We start by recalling the following known result (in the periodic case with 
n = l ) :  

Theorem 6.1. (Freud [3] )Le t fbe long  to the closure o f  ~ in B~= (T1). Then f '  (x) 
exists at a point xET/3]" ~nf ' ( x )  tends to a limit as n~oo. Here ~ . f  denote the Fejer 

sums o f  f 
We can now prove the following analogue of  th. 6.1, which for 1 < p  <- ~ was 

given in [8]. 

Theorem 6.2. Let f be in the closure o f  5 e in F ~ 1 7 6  ") where 0 < p N ~ .  
Assume that, for some or, a ~ f ( x )  converges as v ~  a.e. for  x in set o f  positive 

measure. Then the same is true for  any other kernel such that the difference with the 

first one belongs to BZ"l(a) where a>n/min  (1,p). 

Proof  I t  suffices of  course to prove that a t * f  tends to 0 a.e. throughout R ", 
for every ~rEBZ"~(a). Since # ( 0 ) = 0  this certainly is true iffES& On the other hand 
by th. 4.2. sup la~ . f (x)  -< ~ a.e. for a general f Thus it suffices to apply the usual 
density argument. 

Example 6.1. Th. 6.2 is applicable notably in the case of  Riesz means, i.e. 

{(1 -1~l) ~ if I~[< 1 

#(~) = 0 elsewhere 
provided 2 > a - � 8 9  

7. Concluding remarks 

In retrospect we notice that in the preceding treatment only very little of  the 
structure of  the underlying space R n has been utilized. This indicates that there 
exist generalizations. In the place of  R" we may indeed consider any (complete) 
Riemannian manifold f2: The spaces F~=F~q(f2)  are then defined by a condition 
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o f  t he  t y p e  

{2"* q~ (]/------A/2~)f }~ ~ z E Lp(1 q) 

w h e r e  A is t h e  L a p l a c e - - B e l t r a m i  o p e r a t o r  o n  f2. ( In  p a r t i c u l a r  we  c a n  t h u s  de f ine  

H a r d y - c l a s s e s  H ~ = H p ( f 2 ) . )  W e  p l a n  to  r e t u r n  to  t h i s  t o p i c  in  a f o r t h c o m i n g  p u b l i c -  

a t i o n .  
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