A p-extremal length and p-capacity equality

Joseph Hesse

1. Introduction

Let G be a domain in the compactified euclidean n-space $\bar{R}^{n}=R^{n} \cup\{\infty\}$, let E and F be disjoint non-empty compact sets in the closure of G. We associate two numbers with this geometric configuration as follows. Let $M_{p}(E, F, G)$ be the p modulus (reciprocal of the p-extremal length) of the family of curves connecting E and F in G. Let $\operatorname{cap}_{p}(E, F, G)$ be the p-capacity of E and F relative to G, defined as the infimum of the numbers $\int_{G}|\nabla u(x)|^{p} d m(x)$ where u is an $A C L$ function in G with boundary values 0 and 1 on E and F, respectively. We show in this paper that $\operatorname{cap}_{p}(E, F, G)=M_{p}(E, F, G)$ whenever E and F do not intersect ∂G. This generalizes Ziemer's [7] result where he makes the assumption that either E or F contains the complement of an open n-ball.

We also obtain a continuity theorem (Theorem 5.9) for the p-modulus and a theorem (Theorem 4.15) on the kinds of densities that can be used in computing the p-modulus.

2. Notation

For $n \geqq 2$ we denote by \bar{R}^{n} the one point compactification of R^{n}, euclidean n-space: $\bar{R}^{n}=R^{n} \cup\{\infty\}$. All topological considerations in this paper refer to the metric space (\bar{R}^{n}, q) where q is the chordal metric on \bar{R}^{n} defined by stereographic projection. If $A \subset \bar{R}^{n}$ then \bar{A} and ∂A denote the closure and boundary of A, respectively. If $b \in \bar{R}^{n}$ and $B \subset \bar{R}^{n}$ then $q(b, B)$ denotes the chordal distance of b from B.

If $x \in R^{n}$ we let $|x|$ denote the usual euclidean norm of $x . B^{n}(x, r)$ denotes the open n-ball with center x and radius r. We write $B^{n}(1)=B^{n}(0,1)$. If $x \in R^{n}$ and $A \subset R^{n}$ we let $d(x, A)$ denote the euclidean distance of x from A.

Lebesgue n-measure on R^{n} is denoted by m_{n} or by m if there is no chance for confusion. We let $\Omega_{n}=m_{n}\left(B^{n}(1)\right)$.

3. The p-modulus and p-capacity

3.1. Definition. Let Γ be a collection of curves in \bar{R}^{n}. We let $\mathscr{J}(\Gamma)$ denote the set of Borel functions $\varrho: R^{n} \rightarrow[0, \infty]$ satisfying the condition that for every locally rectifiable $\gamma \in \Gamma$ we have $\int_{\gamma} \varrho d s \geqq 1 . \mathscr{J}(\Gamma)$ is called the set of admissible densities for Γ. For $p \in(1, \infty)$ the p-modulus of Γ, denoted by $M_{p}(\Gamma)$, is defined as

$$
M_{p}(\Gamma)=\inf \int_{R^{n}} \varrho^{p} d m_{n}
$$

where the infimum is taken over all $\varrho \in \mathscr{F}(\Gamma)$. For the basic facts about the p-modulus, see [5, Chap. 1]. The p-extremal length of Γ is defined as the reciprocal of the p modulus of Γ.
3.2. Definition. Let G be a domain in \bar{R}^{n} and let E and F be compact, disjoint, non-empty sets in \bar{G}. Let $\Gamma(E, F, G)$ denote the set of curves connecting E and F in G. More precisely, if $\gamma \in \Gamma(E, F, G)$ then $\gamma: I \rightarrow G$ is a continuous mapping where I is an open interval and $\overline{\gamma(I)} \cap E$ and $\overline{\gamma(I)} \cap F$ are both non-empty. We write $M_{p}(E$, $F, G)$ for the p-modulus of $\Gamma(E, F, G)$. Let $\mathscr{A}(E, F, G)$ denote the set of real valued functions u such that (1) u is continuous on $E \cup F \cup G$, (2) $u(x)=0$ if $x \in E$ and $u(x)=1$ if $x \in F$, and (3) u restricted to $G-\{\infty\}$ is $A C L$. For the definition and basic facts about $A C L$ functions see [5, Chap. 3]. If $p \in(1, \infty)$ we define the p-capacity of E and F relative to G, denoted by $\operatorname{cap}_{p}(E, F, G)$, by

$$
\operatorname{cap}_{p}(E, F, G)=\inf \int_{G}|\nabla u|^{p} d m_{n}
$$

where the infimum is taken over all $u \in \mathscr{A}(E, F, G)$.
The p-capacity has the following continuity property.
3.3. Theorem. Let $E_{1} \supset E_{2} \supset \ldots$ and $F_{1} \supset F_{2} \supset \ldots$ be disjoint sequences of nonempty compact sets in the closure of a domain G. Let $E=\bigcap_{i=1}^{\infty} E_{i}, F=\bigcap_{i=1}^{\infty} F_{i}$. Then

$$
\lim _{i \rightarrow \infty} \operatorname{cap}_{p}\left(E_{i}, F_{i}, G\right)=\operatorname{cap}_{p}(E, F, G)
$$

Proof. Since $\mathscr{A}\left(E_{i}, F_{i}, G\right) \subset \mathscr{A}\left(E_{i+1}, F_{i+1}, G\right) \subset \mathscr{A}(E, F, G)$ for all i, it follows that $\operatorname{cap}_{p}\left(E_{i}, F_{i}, G\right)$ is monotone decreasing in i and therefore

$$
\lim _{i \rightarrow \infty} \operatorname{cap}_{p}\left(E_{i}, F_{i}, G\right) \geqq \operatorname{cap}_{p}(E, F, G)
$$

For the reverse inequality, choose $u \in \mathscr{A}(E, F, G)$ and $\varepsilon \in(0,1 / 2)$. Define $f:(-\infty, \infty) \rightarrow[0,1]$ by

$$
f(x)= \begin{cases}0 & \text { if } x \leqq \varepsilon \\ (1-2 \varepsilon)^{-1}(x-1+\varepsilon)+1 & \text { if } \varepsilon<x<1-\varepsilon \\ 1 & \text { if } x \geqq 1-\varepsilon\end{cases}
$$

Let $u^{\prime}=f \circ u$. Since f is Lipschitz continuous on $(-\infty, \infty)$ with Lipschitz constant $(1-2 \varepsilon)^{-1}$, it follows that u^{\prime} is $A C L$ on $G-\{\infty\}$ and $\left|\nabla u^{\prime}\right| \leqq(1-2 \varepsilon)^{-1}|\nabla u|$ a.e. in G.

Let A and B be open sets in \bar{R}^{n} such that $\{x \in E \cup F \cup G: u(x)<\varepsilon\}=(E \cup F \cup G)$ $\cap A$ and $\{x \in E \cup F \cup G: u(x)>1-\varepsilon\}=(E \cup F \cup G) \cap B$. For large i we have $E_{i} \subset A$ and $F_{i} \subset B$ and, for such i, we can extend u^{\prime} continuously to $E_{i} \cup F_{i} \cup G$ by setting $u^{\prime}=0$ on $\partial G \cap\left(E_{i}-E\right)$ and $u^{\prime}=1$ on $\partial G \cap\left(F_{i}-F\right)$. Therefore $u^{\prime} \in \mathscr{A}\left(E_{i}, F_{i}, G\right)$ for large i. This implies that for large i we have

Hence

$$
\operatorname{cap}_{p}\left(E_{i}, F_{i}, G\right) \leqq \int_{G}\left|\nabla u^{\prime}\right|^{p} d m \leqq \frac{1}{(1-2 \varepsilon)^{p}} \int_{G}|\nabla u|^{p} d m
$$

$$
\lim _{i \rightarrow \infty} \operatorname{cap}_{p}\left(E_{i}, F_{i}, G\right) \leqq \frac{1}{(1-2 \varepsilon)^{p}} \int_{G}|\nabla u|^{p} d m
$$

Since $u \in \mathscr{A}(E, F, G)$ and $\varepsilon \in(0,1 / 2)$ are arbitrary, we get the reverse inequality, as desired.

4. Complete Families of Densities

4.1. Definition. Let Γ be a collection of curves in \bar{R}^{n}. Let $\mathscr{B} \subset \mathscr{J}(\Gamma)$. We say \mathscr{B} is p-complete if

$$
M_{p}(\Gamma)=\inf \int_{R^{n}} \varrho^{p} d m
$$

where the infimum is taken over all $\varrho \in \mathscr{B}$.
4.2. Example. Let $\mathscr{B} こ \mathscr{J}(\Gamma)$ be the collection of $\varrho \in \mathscr{J}(\Gamma)$ such that ϱ is lower semicontinuous. It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24] that \mathscr{B} is p-complete for all $p \in(1, \infty)$.
4.3. Lemma. Let $\varphi: R^{n} \rightarrow[0, \infty]$ be a Borel function and assume $\varphi \in L^{p}\left(R^{n}\right)$, $p \in(1, \infty)$. Let $r: R^{n} \rightarrow[0, \infty]$ satisfy $\left|r\left(x_{2}\right)-r\left(x_{1}\right)\right| \leqq\left|x_{2}-x_{1}\right|$ for all $x_{1}, x_{2} \in R^{n}$. Define $T_{\varphi, r}: R^{n} \rightarrow[0, \infty] b y$

$$
T_{\varphi, r}(x)=\frac{1}{\Omega_{n}} \int_{B^{n}(\mathbf{1})} \varphi(x+r(x) y) d m_{n}(y)
$$

Then $T_{\varphi, r}$ has the following properties.
(1) If $\left(x_{0}\right)>0$ then

$$
T_{\varphi, r}\left(x_{0}\right)=\frac{1}{\Omega_{n} r\left(x_{0}\right)^{n}} \int_{B^{n}\left(x_{0}, r\left(x_{0}\right)\right)} \varphi(y) d m(y)<\infty
$$

(2) If φ is lower semicontinuous then so is $T_{\varphi, r}$.
(3) If $r\left(x_{0}\right)>0$ then $T_{\varphi, r}$ is continuous at x_{0}.
(4) If φ is finite and continuous on a domain G in R^{n} and if $0 \leqq r(x)<d\left(x, R^{n}-G\right)$ then $T_{\varphi, r}$ is finite and continuous on G.
(5) $\left|T_{\varphi, r}(x) r(x)^{n / p}\right| \leqq C$ for some constant $C \in[0, \infty)$ and all $x \in R^{n}$. The constant C depends on φ.
(6) Let $k=\sup \left|r\left(x_{2}\right)-r\left(x_{1}\right)\right|\left|x_{2}-x_{1}\right|^{-1}$ where the supremum is taken over all $x_{1}, x_{2} \in R^{n}, x_{1} \neq x_{2}$. Then $\left\|T_{\varphi, r}\right\|_{p} \leqq(1-k)^{-n / p}\|\varphi\|_{p}$ where $\left\|\|_{p}\right.$ is the usual $L^{p}\left(R^{n}\right)$ norm and the right hand side of the inequality is infinite in case $k=1$.

Proof. (1) follows from the change of variables $y^{\prime}=x_{0}+r\left(x_{0}\right) y$ and Hölders inequality. To prove (2), let $x_{0} \in R^{n}$ be arbitrary and suppose $\left\{x_{j}\right\}_{j=1}^{\infty}$ is a sequence in R^{n} tending to x_{0}. Fatou's lemma and the lower semicontinuity of φ imply

$$
\begin{aligned}
& \liminf _{j \rightarrow \infty} T_{\varphi, r}\left(x_{j}\right)=\underset{j \rightarrow \infty}{\liminf } \frac{1}{\Omega_{n}} \int_{B^{n}(\mathbb{1})} \varphi\left(x_{j}+r\left(x_{j}\right) y\right) d m(y) \\
& \quad \geqq \frac{1}{\Omega_{n}} \int_{B^{n}(1)} \liminf _{j \rightarrow \infty} \varphi\left(x_{j}+r\left(x_{j}\right) y\right) d m(y) \\
& \quad \geqq \frac{1}{\Omega_{n}} \int_{B^{n}(1)} \varphi\left(x_{0}+r\left(x_{0}\right) y\right) d m(y)=T_{\varphi, r}\left(x_{0}\right) .
\end{aligned}
$$

This shows that $T_{\varphi, r}$ is lower semicontinuous. To prove (3), we observe that since r is continuous, $r(x)=0$ for all x in some neighborhood of x_{0} and therefore, by (1),

$$
T_{\varphi, r}(x)=\frac{1}{\Omega_{n} r(x)^{n}} \int_{B^{n}(x, r(x))} \varphi(y) d m(y)
$$

for all x in some neighborhood of x_{0}. The right hand side of the above formula is continuous in x and therefore, $T_{\varphi, r}$ is continuous at x_{0}. We proceed to prove (4). We observe that if $x \in G$ then $x+r(x) y \in G$ for any $y \in R^{n}$ with $|y| \equiv 1$. Fix $x_{0} \in G$ and let B be a closed ball with center x_{0} and lying in G. Then $B^{\prime}=\left\{x^{\prime}: x^{\prime}=x+r(x) y\right.$, $x \in B,|y| \leqq 1\}$ is a compact subset of G. Since φ is uniformly continuous on B^{\prime}, given $\varepsilon>0$ there exists a $\delta>0$ such that $\left|\varphi\left(x_{2}^{\prime}\right)-\varphi\left(x_{1}^{\prime}\right)\right|<\varepsilon$ if $x_{1}^{\prime}, x_{2}^{\prime} \in B^{\prime}$ and $\left|x_{2}^{\prime}-x_{1}^{\prime}\right|<\delta$. Let $x_{1} \in B$ with $\left|x_{1}-x_{0}\right|<\delta / 2$. Then $\left|\left(x_{1}+r\left(x_{1}\right) y\right)-\left(x_{0}+r\left(x_{0}\right) y\right)\right|<\delta$ for any $|y| \leqq 1$. Hence,

$$
\left|T_{\varphi, r}\left(x_{1}\right)-T_{\varphi, r}\left(x_{0}\right)\right| \leqq \frac{1}{\Omega_{n}} \int_{B^{n}(\mathbf{1})}\left|\varphi\left(x_{1}+r\left(x_{1}\right) y\right)-\varphi\left(x_{0}+r\left(x_{0}\right) y\right)\right| d m(y)<\varepsilon
$$

Hence, $T_{\varphi, r}$ is continuous on G. To prove (5) we need only consider $x \in R^{n}$ such that $r(x)>0$. For such x we have

$$
T_{\varphi, r}(x)=\frac{1}{\Omega_{n} r(x)^{n}} \int_{\mathbf{B}^{n}(x, r(x))} \varphi(y) d m(y)
$$

Applying Hölder's inequality with exponents p and $p /(p-1)$, we get

$$
T_{\varphi, r}(x) \leqq \frac{1}{\Omega_{n} r(x)^{n}}\left[\int_{B^{n}(x, r(x))} \varphi^{p}(y) d m(y)\right]^{1 / p}\left[\Omega_{n} r(x)^{n}\right]^{(p-p) / p} .
$$

Hence,

$$
T_{\varphi, \mathrm{r}}(x) r(x)^{n / p} \leqq C=\Omega_{n}^{-1 / p}\left[\int_{R^{n}} \varphi^{p} d m\right]^{1 / p}<\infty
$$

as desired. We proceed to prove (6).

$$
\left\|T_{\varphi, r}\right\|_{p}^{p}=\int_{R^{n}} T_{\varphi, r}^{p}(x) d m(x)=\int_{R^{n}}\left[\frac{1}{\Omega_{n}} \int_{B^{n}(\mathbf{1})} \varphi(x+r(x) y) d m(y)\right]^{p} d m(x)
$$

After applying Hölder's inequality to the inner integral and simplifying, we get

$$
\left\|T_{\varphi, r}\right\|_{p}^{p} \leqq \frac{1}{\Omega_{n}} \int_{R^{n}} \int_{B^{n}(\mathbf{1})} \varphi^{p}(x+r(x) y) d m(y) d m(x)
$$

Interchanging the order of integration gives

$$
\begin{equation*}
\left\|T_{\varphi, r}\right\|_{p}^{p} \leqq \frac{1}{\Omega_{n}} \int_{B^{n}(\mathbf{1})} \int_{R^{n}} \varphi^{p}(x+r(x) y) d m(x) d m(y) \tag{4.4}
\end{equation*}
$$

Define, for $y \in B^{n}(1), \theta_{y}: R^{n} \rightarrow R^{n}$ by $\theta_{y}(x)=x+r(x) y$. It easily follows that θ_{y} is injective and hence, by a theorem in topology, $\theta_{y}\left(R^{n}\right)$ is a domain. Since θ_{y} is Lipschitz continuous, it follows [6, Thm. 1, Cor. 2] that the change of variables formula for multiple integrals holds with θ_{y} as the mapping function. Therefore

$$
\begin{equation*}
\int_{\theta_{y}\left(R^{n}\right)} \varphi^{p}(x) d m(x)=\int_{R^{n}} \varphi^{p} \circ \theta_{y}(x) \mu_{y}^{\prime}(x) d m(x) \tag{4.5}
\end{equation*}
$$

where μ_{y}^{\prime} is the volume derivative [5, Def. 24. 1] of the homeomorphism θ_{y}. Since

$$
\mu_{y}^{\prime}(x)=\lim _{r \rightarrow 0} \frac{m\left(\theta_{y}\left(\overline{B^{n}(x, r)}\right)\right)}{\Omega_{n} r^{n}} \text { a.e. } x
$$

the estimates

$$
m\left(\theta_{y}\left(\overline{B^{n}(x, r)}\right)\right) \geqq \Omega_{n}\left\{\inf _{\left|x^{\prime}-x^{\prime}\right|=r}\left|\theta_{y}\left(x^{\prime}\right)-\theta_{y}(x)\right|\right\}^{n}
$$

and

$$
\left|\theta_{y}\left(x^{\prime}\right)-\theta_{y}(x)\right| \geqq(1-k)\left|x^{\prime}-x\right|
$$

yield $\mu_{y}^{\prime}(x) \geqq(1-k)^{n}$ a.e. x in R^{n}. This result and (4.4) and (4.5) give

$$
\left\|T_{\varphi, r}\right\|_{p}^{p} \leqq \frac{1}{\Omega_{n}(1-k)^{n}} \int_{B^{n}(1)} \int_{R^{n}} \varphi^{p}(x) d m(x) d m(y)=(1-k)^{-n}\|\varphi\|_{p}^{p}
$$

as desired.
For the remainder of this paper, G will denote a domain in \bar{R}^{n}, E and F will be compact, disjoint non-empty sets in \bar{G}. We write $\Gamma=\Gamma(E, F, G)$. We let $d: R^{n} \rightarrow[0, \infty)$ be the function defined by $d(x)=d\left(x,\left(\left(\bar{R}^{n}-G\right) \cup E \cup F\right)-\{\infty\}\right)$ and
we let l.s.c. $\left(R^{n}\right)$ be the extended real valued lower semicontinuous functions defined on R^{n}.
4.6. Lemma. Let $\mathscr{A} \subset \mathscr{J}(\Gamma)$ be the set of $\varrho \in \mathscr{J}(\Gamma)$ satisfying (1) $\varrho \in$ l.s.c. $\left(R^{n}\right)$ $\cap L^{p}\left(R^{n}\right)$, (2) ϱ is continuous on $G-(E \cup F \cup\{\infty\})$, and (3) $\varrho(x) \cdot d(x)^{n / p}$ is bounded above for $x \in R^{n}$. Then \mathscr{A} is a p-complete family.

Proof. It suffices to prove that $M=\inf \int_{R^{n}} \varrho^{p}(x) d m(x) \leqq M_{p}(\Gamma)$ where the infimum is taken over all $\varrho \in \mathscr{A}$. Choose $\varrho \in \mathscr{J}(\Gamma) \cap L^{p}\left(R^{n}\right) \cap 1$. s.c. $\left(R^{n}\right)$. Let $\varepsilon \in(0,1)$ and let $g=T_{Q, \varepsilon d}$. Suppose $\gamma \in \Gamma$ is locally rectifiable. We may assume, by reparametrizing γ, that $\gamma:(a, b) \rightarrow G$ where $a, b \in[-\infty, \infty]$ and that the length of $\gamma \mid\left[t_{1}, t_{2}\right]$ is equal to $t_{2}-t_{1}$ for all $t_{1}, t_{2} \in(a, b)$. Note that γ restricted to closed subintervals of (a, b) is absolutely continuous.

Let $\gamma_{y}:(a, b) \rightarrow G, y \in B^{n}(1)$, be the curve defined by $\gamma_{y}(t)=\gamma(t)+\varepsilon d(\gamma(t)) y$. Choose $e \in \overline{\gamma(a, b)} \cap E$. Let $t_{j} \in(a, b), j=1,2, \ldots$, be such that $\gamma\left(t_{j}\right) \rightarrow e$ as $j \rightarrow \infty$. If $e \neq \infty$ then clearly $\gamma_{y}\left(t_{j}\right) \rightarrow e$ as $j \rightarrow \infty$. If $e=\infty$ then, for fixed $t^{\prime} \in(a, b)$, the triangle inequality and the fact that d is Lipschitz continuous with Lipschitz constant 1 imply $\left|\gamma_{y}\left(t_{j}\right)-\gamma_{y}\left(t^{\prime}\right)\right| \geqq(1-\varepsilon)\left|\gamma\left(t_{j}\right)-\gamma\left(t^{\prime}\right)\right|$ and therefore, $\gamma_{y}\left(t_{j}\right) \rightarrow \infty=e$ as $j \rightarrow \infty$. Hence $\overline{\gamma_{y}(a, b)} \cap E \neq \emptyset$. Similarly, $\overline{\gamma_{y}(a, b)} \cap F \neq \emptyset$. Therefore $\gamma_{y} \in \Gamma$. Also, γ_{y} restricted to closed subintervals of (a, b) is absolutely continuous. An easy estimate shows $\left|\gamma_{y}^{\prime}(t)\right| \leqq 1+\varepsilon$ a.e. on (a, b).

We have

$$
\begin{gathered}
\int_{\gamma} g d s=\int_{a}^{b} g(\gamma(t)) d t=\frac{1}{\Omega_{n}} \int_{a}^{b} \int_{B^{n}(1)} \varrho(\gamma(t)+\varepsilon d(\gamma(t)) y) d m(y) d t \\
=\frac{1}{\Omega_{n}} \int_{\mathbf{B}^{n}(1)} \int_{a}^{b} \varrho\left(\gamma_{y}(t)\right)\left|\gamma_{y}^{\prime}(t) \| \gamma_{y}^{\prime}(t)\right|^{-1} d t d m(y) \\
\\
\geqq \frac{1}{(1+\varepsilon) \Omega_{n}} \int_{B^{n}(1)} \int_{\gamma_{y}} \varrho d s d m(y) \geqq \frac{1}{1+\varepsilon}
\end{gathered}
$$

This result and lemma 4.3 show $(1+\varepsilon) g \in \mathscr{A} \subset \mathscr{J}(\Gamma)$. Hence,

$$
M \leqq(1+\varepsilon)^{p}\|g\|_{p}^{p}=(1+\varepsilon)^{p}\left\|T_{\varrho, \varepsilon d}\right\|_{p}^{p}
$$

From lemma 4.3 (6) we get

$$
M \leqq \frac{(1+\varepsilon)^{p}}{(1-\varepsilon)^{n}} \int_{R^{n}} \varrho^{p}(x) d m(x)
$$

Since $\varepsilon \in(0,1)$ and $\varrho \in \mathscr{J}(\Gamma) \cap L^{p}\left(R^{n}\right) \cap$ l.s.c. $\left(R^{n}\right)$ are arbitrary, we get $M \leqq M_{p}(\Gamma)$, as desired.
4.7. Definition. For $r \in(0,1)$ we define $E(r)=\left\{x \in \bar{R}^{n}: q(x, E) \leqq r\right\}$ and $F(r)=$ $=\left\{x \in \bar{R}^{n}: q(x, F) \leqq r\right\}$. Let $\varrho: R^{n} \rightarrow[0, \infty]$ be a Borel function. We define $L(\varrho, r)$ as
the infimum of the integrals $\int_{\gamma} \varrho d s$ where γ is a locally rectifiable curve in G connecting $E(r)$ and $F(r)$. Since $L(\varrho, r)$ is non-decreasing for decreasing r, we can define-

$$
L(\varrho)=\lim _{r \rightarrow 0} L(\varrho, r)
$$

4.8. Note. We observe that $L(\varrho) \geqq 1$ if and only if for every $\varepsilon \in(0,1)$ there exists. a $\delta \in(0,1)$ such that $\int_{\gamma} \varrho d s \geqq 1-\varepsilon$ for every locally rectifiable curve γ in G connecting $E(r)$ and $F(r)$ with $r \leqq \delta$.
4.9. Lemma. Suppose there exists a p-complete family $\mathscr{B}_{0} \subset \mathscr{F}(\Gamma)$ such that $L(\varrho) \geqq 1$ for every $\varrho \in \mathscr{B}_{0}$. Then the family $\mathscr{B} \subset \mathscr{J}(\Gamma)$ consisting of all $\varrho \in \mathscr{J}(\Gamma)$ such that (1) $\varrho \in 1$. s.c. $\left(R^{n}\right) \cap L^{p}\left(R^{n}\right)$ and (2) ϱ is continuous on $G-\{\infty\}$ is p-complete.

Proof. Let \mathscr{B}_{1} be the set of $\varrho \in \mathscr{J}(\Gamma)$ such that $\varrho \in 1$.s.c. $\left(R^{n}\right) \cap L^{p}\left(R^{n}\right)$ and $L(\varrho) \geqq 1$. It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24] that \mathscr{B}_{1} is p-complete.

Let $\varrho \in \mathscr{B}_{1}$ and $\varepsilon \in(0,1)$. Let δ be as in 4.8 and choose $\delta^{\prime} \in(0,1)$ such that if $x \in E-\{\infty\}$ (resp., $F-\{\infty\}$) and $y \in R^{n},|x-y|<\delta^{\prime}$ then $y \in E(\delta)$ (resp., $F(\delta)$). Let $r: R^{n} \rightarrow[0,1]$ be defined by $r(x)=\varepsilon \delta^{\prime} \min \left(1, d\left(x, R^{n}-G\right)\right)$. Let $g=T_{\varrho, r}$. Suppose $\gamma \in \Gamma$ is locally rectifiable and assume that $\gamma:(a, b) \rightarrow G$ is parametrized as in the proof of 4.6. Let $\gamma_{y}:(a, b) \rightarrow G, y \in B^{n}(1)$, be the curve defined by $\gamma_{y}(t)=\gamma(t)+$ $+r(\gamma(t)) y$. It follows, using the same method as in the proof of 4.6 , that γ_{y} connects. $E(\delta)$ and $F(\delta)$. A computation similar to the one in the proof of 4.6 yields

$$
\int_{\gamma} g d s \geqq \frac{1}{(1+\varepsilon) \Omega_{n}} \int_{B^{n}(1)} \int_{\gamma_{y}} \varrho d s d m(y) \geqq \frac{1-\varepsilon}{1+\varepsilon} .
$$

The above and lemma 4.3 show $(1+\varepsilon)(1-\varepsilon)^{-1} g \in \mathscr{B}$. Let $M=\inf \int_{R^{n}} \varrho^{p}(x) d m(x)$ where the infimum is taken over all $\varrho \in \mathscr{B}$. Then, by lemma 4.3,

$$
M \leqq \frac{(1+\varepsilon)^{p}}{(1-\varepsilon)^{p}}\|g\|_{p}^{p}=\frac{(1+\varepsilon)^{p}}{(1-\varepsilon)^{p}}\left\|T_{\varrho, r}\right\|_{p}^{p} \leqq \frac{(1+\varepsilon)^{p}}{(1-\varepsilon)^{p}(1-\varepsilon)^{n}}\|\varrho\|_{p}^{p}
$$

Since $\varrho \in \mathscr{B}_{1}$ and $\varepsilon \in(0,1)$ are arbitrary and since \mathscr{B}_{1} is p-complete, it follows from the above that $M \leqq M_{p}(\Gamma)$. This completes the proof since the reverse inequality is trivial.
4.10. Lemma. Suppose $(E \cup F) \cap \partial G=\emptyset$. Let $\varrho: R^{n} \rightarrow[0, \infty]$ be a Borel function and assume $\varrho \mid G-(E \cup F \cup\{\infty\})$ is finite valued and continuous. Let $\varepsilon \in(0, \infty)$. Then there exists a locally rectifiable curve $\gamma \in \Gamma$ such that

$$
\int_{\gamma} \varrho d s \leqq L(\varrho)+\varepsilon .
$$

Proof. We may assume that $L(\varrho)<\infty$. Let $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ be a sequence of positive numbers such that $\sum_{k=1}^{\infty} \varepsilon_{k}<\varepsilon / 8$. Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be a strictly monotone decreasing sequence of positive numbers such that (1) $\operatorname{Lim}_{k \rightarrow \infty} r_{k}=0$ and (2) $E\left(r_{k}\right) \cap F\left(r_{k}\right)=\emptyset$,
$E\left(r_{k}\right), F\left(r_{k}\right) \subset G$, and $\infty \ddagger \partial E\left(r_{k}\right), \partial F\left(r_{k}\right)$ for $k=1,2, \ldots$ It follows that $\partial E\left(r_{k}\right) \cap E=\emptyset$, $\partial F\left(r_{k}\right) \cap F=\emptyset$ for $k=1,2, \ldots$ Let Γ_{k} be the curves in G connecting $E\left(r_{k}\right)$ and $F\left(r_{k}\right)$, $k=1,2, \ldots$. Choose $\gamma_{k} \in \Gamma_{k}$ such that γ_{k} is locally rectifiable and

$$
\begin{equation*}
\int_{\gamma_{k}} \varrho d s \leqq L\left(\varrho, r_{k}\right)+\frac{\varepsilon}{2} \leqq L(\varrho)+\frac{\varepsilon}{2} \tag{4.11}
\end{equation*}
$$

Let $x_{k j}$ (resp., $y_{k j}$), defined for $j<k$, the be last (resp., first) point of γ_{k} in $E\left(r_{j}\right)$ (resp., $\left.F\left(r_{j}\right)\right)$. We have $x_{k j} \in \partial E\left(r_{j}\right)$ and $y_{k j} \in \partial F\left(r_{j}\right)$. By considering successive subsequences and then a diagonal sequence and then relabeling the sequences, we may assume $x_{k j} \rightarrow x_{j} \in \partial E\left(r_{j}\right)$ and $y_{k j} \rightarrow y_{j} \in \partial F\left(r_{j}\right)$ as $k \rightarrow \infty$. Let $V_{j} \subset G-(E \cup F \cup\{\infty\})$ (resp., $W_{j} \subset G-(E \cup F \cup\{\infty\})$) be an open euclidean ball with center x_{j} (resp., y_{j}) such that $\int \varrho d s<\varepsilon_{j}$ where the integral is taken over any line segment lying in V_{j} (resp., $\left.W_{j}\right), j=1,2, \ldots$. This can be done since ϱ is continuous on $G-(E \cup F \cup\{\infty\})$ and hence, locally bounded there.

Let Ψ_{j} (resp., Φ_{j}) be the set of rectifiable curves $\alpha:[a, b] \rightarrow G$ such that $\alpha(a) \in V_{j}$ (resp., $\alpha(a) \in W_{j}$) and $\alpha(b) \in V_{j-1}$ (resp., $\left.\alpha(b) \in W_{j-1}\right), j=2,3, \ldots$ Let A be the set of rectifiable curves $\alpha:[a, b] \rightarrow G$ such that $\alpha(a) \in V_{1}$ and $\alpha(b) \in W_{1}$. For any positive integer k there exists a curve in the sequence $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$, say $\gamma_{i(k)}$, such that $x_{i(k), j} \in V_{j}$ and $y_{l(k), j} \in W_{j}$ for $j=1,2, \ldots, k$. This implies that $\gamma_{(k)}$ has distinct subcurves in $\Psi_{2}, \Psi_{3}, \ldots, \Psi_{k}, \Phi_{2}, \Phi_{3}, \ldots, \Phi_{k}, \Lambda$. Hence, for every positive integer k we have, using (4.11),

$$
\inf _{\gamma \in \Lambda} \int_{\gamma} \varrho d s+\sum_{j=2}^{k} \inf _{\gamma \in \Psi_{j}} \int_{\gamma} \varrho d s+\sum_{j=2}^{k} \inf _{\gamma \in \Phi_{j}} \int_{\gamma} \varrho d s \leqq \int_{\gamma_{i(k)}} \varrho d s \leqq L(\varrho)+\frac{\varepsilon}{2} .
$$

Since k is arbitrary, we get

$$
\begin{equation*}
\inf _{\gamma \in \Lambda} \int_{\gamma} \varrho d s+\sum_{j=2}^{\infty} \inf _{\gamma \in \Psi_{j}} \int_{\gamma} \varrho d s+\sum_{j=2}^{\infty} \inf _{\gamma \in \Phi_{j}} \int_{\gamma} \varrho d s \leqq L(\varrho)+\frac{\varepsilon}{2} . \tag{4.12}
\end{equation*}
$$

Choose $\theta \in \Lambda$ such that

$$
\begin{equation*}
\int_{\theta} \varrho d s<\inf _{\gamma \in A} \int_{\gamma} \varrho d s+\varepsilon_{1} . \tag{4.13a}
\end{equation*}
$$

Choose $\tau_{j} \in \Psi_{j}, \sigma_{j} \in \Phi_{j}, j=2,3, \ldots$, such that

$$
\begin{equation*}
\int_{\tau_{j}} \varrho d s<\inf _{y \in \psi_{j}} \int_{\gamma} \varrho d s+\varepsilon_{j} \tag{4.13b}
\end{equation*}
$$

: and

$$
\begin{equation*}
\int_{\sigma_{j}} \varrho d s<\inf _{\gamma \in \Phi_{j}} \int_{\gamma} \varrho d s+\varepsilon_{j} . \tag{4.13c}
\end{equation*}
$$

Let α_{j} (resp., β_{j}) be the line segment in V_{j} (resp., W_{j}) connecting the endpoints of τ_{j} and τ_{j+1} (resp., σ_{j} and σ_{j+1}), $j=2,3, \ldots$ Let α_{1} (resp., β_{1}) be the line segment in V_{1} (resp., W_{1}) connecting the endpoints of τ_{2} and θ (resp., σ_{2} and θ). We have

$$
\begin{equation*}
\int_{\alpha_{j}} \varrho d s<\varepsilon_{j}, \quad \int_{\beta_{j}} \varrho d s<\varepsilon_{j}, \quad j=1,2, \ldots \tag{4.13d}
\end{equation*}
$$

Let $\gamma \in \Gamma$ be the locally rectifiable curve $\gamma=\ldots \tau_{3} \alpha_{2} \tau_{2} \alpha_{1} \theta \beta_{1} \sigma_{2} \beta_{2} \sigma_{3} \ldots$. We have, by (4.12) and (4.13)

$$
\begin{aligned}
\int_{\gamma} \varrho d s & =\sum_{j=1}^{\infty} \int_{\alpha_{j}} \varrho d s+\sum_{j=1}^{\infty} \int_{\beta_{j}} \varrho d s+\int_{\theta} \varrho d s+\sum_{j=2}^{\infty} \int_{\tau_{j}} \varrho d s+\sum_{j=2}^{\infty} \int_{\sigma_{j}} \varrho d s \\
& \leqq \sum_{j=1}^{\infty} \varepsilon_{j}+\sum_{j=1}^{\infty} \varepsilon_{j}+\varepsilon_{1}+\sum_{j=2}^{\infty} \varepsilon_{j}+\sum_{j=2}^{\infty} \varepsilon_{j}+L(\varrho)+\frac{\varepsilon}{2} \leqq L(\varrho)+\varepsilon
\end{aligned}
$$

as desired.
4.14. Lemma. Suppose $(E \cup F) \cap \partial G=\emptyset$. Let $\mathscr{B} \subset \mathscr{J}(\Gamma)$ be the set of $\varrho \in \mathscr{F}(\Gamma)$ such that (1) $\varrho \in 1$. s.c. $\left(R^{n}\right) \cap L^{p}\left(R^{n}\right)$ and (2) ϱ is continuous on $G-\{\infty\}$. Then \mathscr{B} is p-complete.

Proof. Lemma 4.10 shows that $L(\varrho) \geqq 1$ for every ϱ in the p-complete family \mathscr{A} defined in lemma 4.6. Hence, this family \mathscr{A} satisfies the hypotheses of lemma 4.9. Therefore, \mathscr{B} is p-complete.
4.15. Theorem. Suppose $(E \cup F) \cap \partial G=\emptyset$. Let $\mathscr{C} \subset \mathscr{F}(\Gamma)$ be the set of $\varrho \in \mathscr{F}(\Gamma)$ such that (1) $\varrho \in$ l.s.c. $\left(R^{n}\right) \cap L^{p}\left(R^{n}\right)$, (2) ϱ is continuous on $G-\{\infty\}$, (3) $\varrho(x) \cdot d(x)^{n / p}$ is bounded above for $x \in R^{n}$, and (4) $L(\varrho) \geqq 1$. Then \mathscr{C} is a p-complete family.

Proof. Choose ϱ in the p-complete family \mathscr{B} of lemma 4.14 and let $\varepsilon \in(0,1)$. Let $g=T_{Q, \varepsilon d}$. It follows exactly as in the proof of lemma 4.6 that $\int_{\gamma} g d s \geqq(1+\varepsilon)^{-1}$ for every locally rectifiable curve $\gamma \in \Gamma$. An application of lemma 4.3 and lemma 4.10 shows $(1+\varepsilon) g \in \mathscr{C}$. Let $M=\inf \int_{R^{n}} \varrho^{p}(x) d m(x)$ where the infimum is taken over all $\varrho \in \mathscr{C}$. We have, by lemma 4.3,

$$
M \leqq(1+\varepsilon)^{p}\|g\|_{p}^{p} \leqq \frac{(1+\varepsilon)^{p}}{(1-\varepsilon)^{n}}\|\varrho\|_{p}^{p}=\frac{(1+\varepsilon)^{p}}{(1-\varepsilon)^{n}} \int_{R^{n}} \varrho^{p}(x) d m(x) .
$$

Since $\varrho \in \mathscr{B}$ and $\varepsilon \in(0,1)$ are arbitrary and \mathscr{B} is p-complete, it follows that $M \leqq M_{p}(\Gamma)$. Since the reverse inequality is trivial, we are done.
4.16. Comments. (1) Part 2 of lemma 4.6 was proved independently by Aseev [1], Ohtsuka [3, Thm. 2.8], and the author. Lemma 4.10 is modeled after [3, lemma 2.9].

5. Relations between the p-modulus and p-capacity

5.1 Definition. Let $\gamma:[a, b] \rightarrow R^{n}$ be a rectifiable curve in R^{n} and let $\gamma_{0}:[0, L] \rightarrow R^{n}$ be the arc length parametrization of γ. Let f be an $A C L$ function defined in a neighborhood of $\gamma([a, b])=\gamma_{0}([0, L])$. We say f is absolutely continuous on γ if

$$
\int_{0}^{t} \nabla f \cdot \frac{d \gamma_{0}}{d t} d t=f \circ \gamma_{0}(t)-f \circ \gamma_{0}(0)
$$

for all $t \in[0, L]$. The integrand is the inner product of $d \gamma_{0} / d t$ and $\nabla f=$ the gradient of f. We use the convention that $\partial f / \partial x_{i}=0$ at points x where $\partial f / \partial x_{i}$ is not defined. The above definition differs slightly from [5, Def. 5.2] in that we require a little more than the absolute continuity of $f \circ \gamma_{0}$.
5.2. Lemma. $M_{p}(\Gamma) \leqq \operatorname{cap}_{p}(E, F, G)$.

Proof. Let $u \in \mathscr{A}(E, F, G) \cap L^{p}(G)$. Let Γ_{0} be the locally rectifiable curves $\gamma \in \Gamma$ for which u is absolutely continuous on every rectifiable subcurve of γ. Define $\varrho: R^{n} \rightarrow[0, \infty]$ by

$$
\varrho(x)=\left\{\begin{array}{lll}
|\nabla u(x)| & \text { if } & x \in G-\{\infty\} \\
0 & \text { if } & x \in R^{n}-G
\end{array}\right.
$$

Suppose $\gamma \in \Gamma_{0}$ and $\gamma:(a, b) \rightarrow G$ is parametrized as in the proot of lemma 4.6. It $a<t_{1}<t_{2}<b$ then

$$
\begin{aligned}
\int_{\gamma} \varrho d s=\int_{a}^{b} \varrho \circ \gamma(t) d t & \geqq \int_{t_{1}}^{t_{2}}|\nabla u(\gamma(t))| d t \geqq\left|\int_{t_{1}}^{t_{2}} \nabla u(\gamma(t)) \cdot \frac{d \gamma}{d t} d t\right| \\
& =\left|u \circ \gamma\left(t_{2}\right)-u \circ \gamma\left(t_{1}\right)\right|
\end{aligned}
$$

Since t_{1} and t_{2} are arbitrary, the above implies $\int_{\nu} \varrho d s \geqq 1$. Hence, $\varrho \in \mathscr{F}\left(\Gamma_{0}\right)$. Therefore

$$
M_{p}\left(\Gamma_{0}\right) \leqq \int_{R^{n}} \varrho^{p}(x) d m(x)=\int_{G}|\nabla u(x)|^{p} d m(x)
$$

By a theorem of Fuglede [5, Thm. 28.2] we have $M_{p}(\Gamma)=M_{p}\left(\Gamma_{0}\right)$. Therefore,

$$
M_{p}(\Gamma) \leqq \int_{G}|\nabla u(x)|^{p} d m(x)
$$

Since $u \in \mathscr{A}(E, F, G) \cap L^{p}(G)$ is arbitrary, we get the desired result.
5.3. Lemma. Let U be a domain in R^{n}, let $g: U \rightarrow[0, \infty)$ be continuous and suppose K is a non-empty bounded compact set with $K \subset U$. Define $f: U \rightarrow[0, \infty)$ by $f(x)=$ $=\inf \int_{\beta} g d s$ where the infimum is taken over all rectifiable curves $\beta:[a, b] \rightarrow U$ with $\beta(a) \in K$ and $\beta(b)=x$. Then, (1) if the closed line segment $\left[x_{1}, x_{2}\right]$ lies in U then

$$
\begin{equation*}
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leqq \max _{x \in\left[x_{1}, x_{2}\right]} g(x)\left|x_{2}-x_{1}\right| \tag{5.4}
\end{equation*}
$$

and (2) if $f: U \rightarrow[0, \infty)$ satisfies (5.4) then f is differentiable a.e. in U and $|\nabla f(x)| \leqq g(x)$ a.e. in U.

Proof. Let β be a rectifiable curve connecting K and x_{1}. Then

$$
f\left(x_{2}\right) \leqq \int_{\beta} g d s+\int_{\left[x_{1}, x_{2}\right]} g d s \leqq \int_{\beta} g d s+\max _{x \in\left[x_{1}, x_{2}\right]} g(x)\left|x_{2}-x_{1}\right|
$$

Since β is arbitrary, we get

$$
f\left(x_{2}\right) \leqq f\left(x_{1}\right)+\max _{x \in\left[x_{1}, x_{2}\right]} g(x)\left|x_{2}-x_{1}\right| .
$$

In a similar way, we get

$$
f\left(x_{1}\right) \leqq f\left(x_{2}\right)+\max _{x \in\left[x_{1}, x_{2}\right]} g(x)\left|x_{2}-x_{1}\right|
$$

This proves (5.4).
If f satisfies (5.4) then f is locally Lipschitz continuous in U and therefore, by the theorem of Rademacher and Stepanov [5, Thm. 29.1], f is differentiable a.e. in U. Suppose now that $x_{0} \in U$ is a point of differentiability of f. Then $f\left(x_{0}+h\right)$ $-f\left(x_{0}\right)=\nabla f\left(x_{0}\right) \cdot h+|h| \varepsilon(h)$ where $h \in R^{n}$ and $\lim \varepsilon(h)=0$ as $h \rightarrow 0$. For small $t \in(0,1)$ let $h=t \nabla f\left(x_{0}\right) /\left|\nabla f\left(x_{0}\right)\right|$. Substituting in the above formula gives $\left|\left|\nabla f\left(x_{0}\right)\right|+\varepsilon(h)\right|$ $\leqq \max _{x \in\left[x_{0}, x_{0}+h\right]} g(x)$. If we let $t \rightarrow 0$ we get $\left|\nabla f\left(x_{0}\right)\right| \leqq g\left(x_{0}\right)$, as desired.
5.5. Theorem. Suppose $(E \cup F) \cap \partial G=\emptyset$. Then $M_{p}(\Gamma)=\operatorname{cap}_{p}(E, F, G)$.

Proof. It suffices, by lemma 5.2, to prove

$$
\begin{equation*}
\operatorname{cap}_{p}(E, F, G) \leqq M_{p}(\Gamma) \tag{5.6}
\end{equation*}
$$

We assume, without any loss of generality, that E is bounded and we let $\mathscr{C} \subset \mathscr{F}(\Gamma)$ be as in theorem 4.15. The proof is divided into four cases.

Case 1. Suppose $\infty \notin G$. Let $\varrho \in \mathscr{C}$ and define $u: G \rightarrow[0, \infty)$ by $u(x)$ $=\min \left(1, \inf \int_{\beta} \varrho d s\right)$ where the infimum is taken over all rectifiable curves β in G connecting E and x. It follows, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leqq \varrho$ a.e. in G. Therefore

$$
\operatorname{cap}_{p}(E, F, G) \leqq \int_{G}|\nabla u|^{p} d m \leqq \int_{R^{n}} \varrho^{p}
$$

Since $\varrho \in \mathscr{C}$ is arbitrary and \mathscr{C} is p-complete, we get (5.6).
Case 2. Suppose $\infty \in G$ and $\infty \in F$. Choose $\varrho \in \mathscr{C}$ and $\varepsilon \in(0,1)$. Since $L(\varrho) \geqq 1$ we can choose a small $r \in(0,1)$ so $\int_{\gamma} \varrho d s \geqq 1-\varepsilon$ for every locally rectifiable curve γ in G connecting $E(r)$ and $F(r)$. Define $u: G-\{\infty\} \rightarrow[0, \infty)$ by $u(x)$ $=\min \left(1,(1-\varepsilon)^{-1} \inf \int_{\beta} \varrho d s\right)$ where the infimum is taken over all rectifiable curves β in G connecting $E(r)$ and x. Since u is identically 1 in a deleted neighborhood
of ∞, we see that u extends continuously to all of G. It follows, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leqq(1-\varepsilon)^{-1} \varrho$ a.e. in G. Therefore,

$$
\operatorname{cap}_{p}(E, F, G) \leqq \int_{G}|\nabla u|^{p} d m \leqq(1-\varepsilon)^{-p} \int_{R^{n}} \varrho^{p} d m
$$

Since $\varrho \in \mathscr{C}$ and $\varepsilon \in(0,1)$ are arbitrary and \mathscr{C} is p-complete, we get (5.6).
Case 3. Suppose $\infty \in G, \infty \notin F$ and $1<p<n$. Choose $\varrho \in \mathscr{C}$. Since $\left(\left(\bar{R}^{n}-G\right)\right.$ $\cup E \cup F)-\{\infty\}$ lies inside some ball, it follows that $|x| \leqq$ constant $\cdot d(x)$ for large $|x|$. Therefore,

$$
\begin{equation*}
\varrho(x) \leqq C|x|^{-n / p} \tag{5.7}
\end{equation*}
$$

for some constant $C \in(0, \infty)$ and all large $|x|$, say $|x|>r_{0}$. Define $v: G-\{\infty\} \rightarrow[0, \infty)$ by $v(x)=\inf \int_{\beta} \varrho d s$ where the infimum is taken over all rectifiable curves β connecting E and x. We proceed to show that $v(\infty)$ can be defined continuously. Set $v(\infty)=\inf \int_{\beta} \varrho d s$ where the infimum is taken over all continuous β such that $\beta:[a, b] \rightarrow G$ with $\beta(a) \in E, \beta(b)=\infty$ and $\beta[[a, t]$ is rectifiable for all $t \in[a, b)$. Choose any $x_{0} \in R^{n}$ so that the curve $\left[x_{0}, \infty\right]$ lies in G, where $\left[x_{0}, \infty\right](t)=t x_{0}, t \in[1, \infty]$. Let γ by any rectifiable curve in G connecting E and x_{0}. Let β the curve obtained by connecting the curves γ and $\left[x_{0}, \infty\right]$. Then

$$
v(\infty) \leqq \int_{\beta} \varrho d s=\int_{\nu} \varrho d s+\int_{\left[x_{0}, \infty\right]} \varrho d s
$$

Clearly $\int_{\nu} \varrho d s$ is finite and $\int_{\left[x_{0}, \infty\right]} \varrho d s$ is finite by the estimate (5.7) and the fact that $1<n / p$. Hence $v(\infty)$ is finite. Choose $r \in\left(r_{0}, \infty\right)$ large enough so that the complement in \bar{R}^{n} of $\overline{B^{n}(0, r)}$ lies in G and $E \subset B^{n}(0, r)$. Let $x_{0} \in G-\{\infty\}$ and $\left|x_{0}\right|>r$.

Suppose β is a rectifiable curve in G connecting E and x_{0}. We have

$$
v(\infty) \leqq \int_{\beta} \varrho d s+\int_{\left[x_{0}, \infty\right]} \varrho d s \leqq \int_{\beta} \varrho d s+C \int_{r}^{\infty} t^{-n / p} d t .
$$

Since the above is true for all such β, we get

$$
\begin{equation*}
v(\infty)-v\left(\dot{x}_{0}\right) \leqq c \int_{r}^{\infty} t^{-n / p} d t \tag{5.8a}
\end{equation*}
$$

Suppose now that β is a curve connecting E and ∞ and is of the type used in defining $v(\infty)$. Let τ be a curve which is part of a great circle on the sphere $\left\{x \in R^{n}:|x|=\left|x_{0}\right|\right\}$ and which connects x_{0} and y_{0} where y_{0} is some point on the curve β. Let β_{1} be a subcurve of β connecting E and y_{0}. We have

$$
v\left(x_{0}\right) \leqq \int_{\beta_{1}} \varrho d s+\int_{\tau} \varrho d s \leqq \int_{\beta} \varrho d s+\int_{\tau} \varrho d s
$$

Also,

$$
\int_{\tau} \varrho d s \leqq \frac{C}{\left|x_{0}\right|^{n / p}} \cdot \text { length }(\tau) \leqq 2 \pi C\left|x_{0}\right|^{\mid-n / p}
$$

Hence

$$
v\left(x_{0}\right) \leqq \int_{\beta} \varrho d s+2 \pi C\left|x_{0}\right|^{1-n / p} \leqq \int_{\beta} \varrho d s+2 \pi C r^{1-n / p}
$$

Since the above is true for all β connecting E and ∞, we have

$$
\begin{equation*}
v\left(x_{0}\right)-v(\infty) \leqq 2 \pi C r^{1-n / p} \tag{5.8b}
\end{equation*}
$$

Relations (5.8) show v is continuous at ∞.
Define $u: G \rightarrow[0, \infty)$ by $u(x)=\min (1, v(x))$. Then it follows, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leqq \varrho$ a.e. in G. Therefore

$$
\operatorname{cap}_{p}(E, F, G) \leqq \int_{G}|\nabla u|^{p} d m \leqq \int_{R^{n}} \varrho^{p} d m
$$

Since $\varrho \in \mathscr{C}$ is arbitrary and \mathscr{C} is p-complete, we get (5.6).
Case 4. Suppose $\infty \in G, \infty \notin F$ and $p \geqq n$. Define $\theta: R^{n} \rightarrow[0,1]$ by

$$
\theta(x)= \begin{cases}1 / e & \text { if }|x| \leqq e \\ 1 /(|x| \log |x|) & \text { if }|x|>e\end{cases}
$$

It is straightforward to verify that $\theta \in L^{p}\left(R^{n}\right)$ and $\int_{0}^{\infty} \theta(|x|) d|x|=\infty$. Choose $\varrho \in \mathscr{C}$ and $\varepsilon \in(0,1)$. Let $\varrho^{\prime}=\varrho+\varepsilon \theta$. Define $u: G-\{\infty\} \rightarrow[0, \infty)$ by $u(x)=\min \left(1, \inf \int_{\beta} \varrho^{\prime} d s\right)$ where the infimum is taken over all rectifiable β in G connecting E and x. Choose $r \in(0, \infty)$ so that $E \subset B^{n}(0, r)$. If $\left|x_{0}\right|>r$ and if β connects E and x_{0} then

$$
\int_{\beta} \varrho^{\prime} d s \geqq \varepsilon \int_{\beta} \theta d s \geqq \varepsilon \int_{r}^{\left|x_{0}\right|} \theta(|x|) d|x| .
$$

It follows that if $\left|x_{0}\right|$ is large then $\int_{\beta} \varrho^{\prime} d s \geqq 1$. Therefore, u extends continuously to $u: G \rightarrow[0, \infty)$. We get, using lemma 5.3 , that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leqq \varrho^{\prime}$ a.e. in G. Hence,

$$
\operatorname{cap}_{p}(E, F, G) \leqq \int_{G}|\nabla u|^{p} d m \leqq \int_{R^{n}}(\varrho+\varepsilon \theta)^{p} d m
$$

Since $\varrho \in \mathscr{C}$ and $\varepsilon \in(0,1)$ are arbitrary and \mathscr{C} is p-complete, we get (5.6).
We use the previous theorem to prove a continuity theorem for the modulus.
5.9. Theorem. Suppose $E_{1} \supset E_{2} \supset \ldots$ and $F_{1} \supset F_{2} \supset \ldots$ are disjoint sequences of non-empty compact sets in a domain G. Then

$$
\operatorname{Lim}_{i \rightarrow \infty} M_{p}\left(E_{i}, F_{i}, G\right)=M_{p}\left(\bigcap_{i=1}^{\infty} E_{i}, \bigcap_{i=1}^{\infty} F_{i}, G\right)
$$

Proof. The theorem follows immediately from theorems 5.5 and 3.3.
5.10. Comment. The reader may wish to compare the proof of 5.6 with Ziemer's proof [7]. Ziemer defines a function u derived from a density ϱ in a way that is similar to the one in this paper. Ziemer's technique will not work for the situation considered in this paper since the "limiting curve" of [7, lemma 3.3] need not necessarily lie in G. The present proof "works" because there is a p-complete family of densities ϱ with $L(\varrho) \geqq 1$.

References

1. Aseev, V. V., A certain module property, Dokl. Akad. Nauk. SSSR 200 (1971), pp. 513-514.
2. Gehring, F. W., Extremal length definitions for the conformal capacity in space, Michigan Math. J. 9 (1962), pp. 137-150.
3. Ohtsuka, M., Extremal length and precise functions in 3-space, to appear.
4. Rudin, W., Real and complex analysis, McGraw-Hill Book Company, New York (1966).
5. VÄISÄLÄ, J., Lectures on n-dimensional quasiconformal mappings, Springer-Verlag lecture notes 229 (1971).
6. Varberg, D. E., Change of variables in multiple integrals, American Mathematical Monthly 78 (1971), pp. 42-45.
7. Ziemer, W. P., Extremal length and p-capacity, Michigan Math. J. 16 (1969), pp. 43-51.

Received April 11, 1974

Joseph Hesse
University of Iowa
Division of Mathematical Sciences
Iowa City, Iowa 52240
USA

