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1. Introduction 

Let G be a domain in the compactified euclidean n-space R"=R"v {co}, let 
E and F be disjoint non-empty compact  sets in the closure of  G. We associate two 
numbers with this geometric configuration as follows. Let Mp(E, F,G) be the p-  
modulus (reciprocal of  the p-extremal length) of  the family of  curves connecting 
E and F in G. Let capp (E, F, G) be the p-capacity of  E and F relative to G, defined 
as the infimum of  the numbers fG Vu(x)] p dm(x) where u is an ACL function in 
G with boundary values 0 and 1 on E and F, respectively. We show in this paper  
that capp (E, F, G)--Mp(E, F, G) whenever E and F do not intersect OG. This gen- 
eralizes Ziemer's [7] result where he makes the assumption that either E or F con- 
tains the complement of  an open n-ball. 

We also obtain a continuity theorem (Theorem 5.9) for the p-modulus and 
a theorem (Theorem 4.15) on the kinds of  densities that can be used in computing 
the p-modulus. 

2. Notation 

For  n->2 we denote by R" the one point compactification of R", euclidean 
n-space: /~"=R"U {co}. All topological considerations in this paper refer to the 
metric space (/~", q) where q is the chordal metric on R" defined by stereographic 
projection, ff  A c/~"  then A and OA denote the closure and boundary of  A, respect- 
ively. I f  bER" and Bc /~"  then q(b, B) denotes the chordal distance of  b from B. 

I f  xER" we let Ixl denote the usual euclidean norm of  x. B"(x, r) denotes the 
open n-ball with center x and radius r. We write B" ( 1 ) - B "  (0, 1). I f  x E R" and A ~ R" 
we let d(x, A) denote the euclidean distance of  x from A. 

Lebesgue n-measure on R" is denoted by mn or by m if there is no chance for 
confusion. We let f2, =m,(Bn(1)). 
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3. The p-modulus and p-capacity 

3.1. Definition. Let F be a collection of curves in R". We let dr(F) denote the 
set of  Borel functions ~:R"~[0,  co] satisfying the condition that for every locally 
rectifiable ?CF we have fr Qds>=l. J (F)  is called the set of  admissible densities 
for  F. For  pE(1, ~ )  the p-modulus ofF, denoted by Mp(F), is defined as 

Mp(F) = inffR, o; din, 

where the infimum is taken over all 0 E J (F). For  the basic facts about the p-modulus, 
see [5, Chap. 1]. The p-extremal length of F is defined as the reciprocal of  the p- 
modulus of  F. 

3.2. Definition. Let G be a domain in _~" and let E and F be compact, disjoint, 
non-empty sets in G. Let F (E, F, G) denote the set of  curves connecting E and F 
in G. More precisely, if 7CF(E, F, G) then ?:I~G is a continuous mapping where 
I is an open interval and ? (I) A E and ? (I) A F are both non-empty. We write Mp (E, 
F, G) for  the p-modulus of F (E, F, G). Let d (E, F, G) denote the set of real val- 
ued functions u such that (1) u is continuous on EU F U  G, (2) u ( x ) = 0  if xCE and 
u(x) = 1 if xEF, and (3) u restricted to G {oo} is ACL. For the definition and basic 
facts about ACL functions see [5, Chap. 3]. I f  p6(1, ~ )  we define the p-capacity 
of E and F relative to G. denoted by capp (E, F, G), by 

capp (E, F, G) = inffa VulP dm, 

where the infimum is taken over all u Cd(E, F, G). 
The p-capacity has the following continuity property. 

3.3. Theorem. Let E1D E= D... and 1:1D F~ D... be disjoint sequences of non- 
empty compact sets in the closure of a domain G. Let E=~T=I E~, F--~q~IF i. Then 

lim capp (E~, F~. G) -- capp (E, F, G). 

Proof Since d(Ei,  Fi, G)c.~(Ei+a, F,+I, G ) c d ( E ,  F, G) for all i, it follows 
that Capp (E~, F~, G) is monotone decreasing in i and therefore 

lira capp (Ei, Fi, G) >= capp (E, F, G). 

For  the reverse inequality, choose uC~(E, F, G) and e~(0,1/2). Define 
f : ( - o o ,  o~)+[0, 1] by 

f ( x ) =  1--2e)- l (x- - l+e)+l  if e < x <  i - - e  
if x--> 1--~. 
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Let u ' = f o u .  Since f is Lipschitz continuous on (_0% o~) with Lipschitz constant 
(1--2e) -1, it follows that u' is A C L  on G-{oo} and [Vu' <_-(1-2e) -11Vul a.e. 
in G. 

Let A and B be open sets in Kn such that {x E E U F U G: u (x) < e} = (E U F U  G) 
NA and { x E E U F U G : u ( x ) > I - e } = ( E U F U G ) N B .  For large i we have E i c A  
and F~cB and, for such i, we can extend u" continuously to Ei U FlU G by setting 
u ' = 0  on O G N ( E i - E )  and u ' = l  on OGO(Fi--F) .  Therefore u'Gr4(Ei, Fi, G) for 
large i. This implies that for large i we have 

So ' fo  capp (Ei, Fi, G) <= IVu'f  dm <= (I_2Q--I----~ IVulP dm. 

Hence 

1 f IVul p din. lim cap~ (Ei, F~, G) <= (1 -" 28) ~' 

Since u E d ( E ,  F, G) and eE(0, 1/2) are arbitrary, we get the reverse inequality, 
as desired. 

4. Complete Families of Densities 

4.1. Definition. Let F be a collection of curves in /~". Let ~ c J ( F ) .  We say 
o~ is p-complete if 

Mp (F) = inffR. 0 p dm 

where the infimum is taken over all 0EN. 

4.2. Example. Let N ~ _ J ( F )  be the collection of  0 E J ( F )  such that 0 is lower 
semicontinuous. It follows from the Vitali-Caratheodory theorem [4, Thin. 2.24] 
that ~ is p-complete for all pE(1, ~) .  

4.3. Lemma. Let q~:R"~[0, oo] be a Borel function and assume ~0ELP(R"), 
pE(1, oo). Let r:R"-+[0, oo] satisfy [r(x2)--r(xl)l <- Ix~--xl[ for  all xl ,  x~E R". Define 
T~,~:R"~[O, Do]by 

f 1 ~o (x + r (x) y) dm. (y). 

Then T~,, has the following properties. 
(1) I f  r(xo) >0  then 

1 
t ~  

T~,, (xo) = j ~ q~ (y) dm (y) < ~o. 
f2,,r(Xo)" "(Xo,.(Xo)) 

(2) I f  ~p is lower semicontinuous then so is T~... 
(3) I f  r(xo)>O then T~o,r is continuous at x o. 
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(4) I f  go is finite and continuous on a domain G in R" and i fO<r(x)<d(x ,  R " - G )  
then T~,r is finite and continuous on G. 

(5) To,,(x)r(x) "Iv <-C for some constant CE[0, ~ )  and all xER". The constant 
C depends on ~o. 

(6) Let k = s u p  f (x2)--r(xl)  ]x2 x l - 1  where the supremum is taken over all 
Xl, xzE R", x l r  x~. Then IIT~,rl]p<-(1 -k)-"/Pll~ollp where lip is the usual LP(R ") norm 
and the right hand side of the inequality is infinite in ease k -  1. 

Proof. (1) follows f rom the change of  variables y'--xo+r(xo)y and H61ders 
inequality. To prove (2), let xoER" be arbitrary and suppose {x j};= 1 is a sequence 
in R" tending to xo. Fatou's  lemma and the lower semicontinuity of  rp imply 

l iminf  T~ r(xj) = liminfl/~ qg(xi+r(xj)y)dm(y) 
j ~  ' ) ~  ~ .  "(1) 

> 1 [ 
lim inf ~o(xy + r(xj) y) dm O,) 

-- (2. J B.(1) i~ 

1 
f B  ~O(xo+r(xo)y)drn(y) = Tr > 

- -  O .  " ( i )  

This shows that T~o,r is lower semicontinuous. To prove (3), we observe that since 
r is continuous, r(x)>O for all x in some neighborhood of Xo and therefore, by (1), 

1 r 
T~.r(x) -- O,r(x)" jB-(~.~(x)) go(y) dm (y) 

for all x in some neighborhood of x~. The right hand side of  the above formula 
is continuous in x and therefore, T~,, is continuous at x o. We proceed to prove 
(4). We observe that i f  xEG then x+r (x ) yEG for any yER" with [y ~1 .  Fix xoEG 
and let B b e a  closed ball with center Xo and lying in G. Then B ' =  {x ' : x ' - - x+r(x )y ,  
xEB, lY[ <- 1} is a compact  subset of  G. Since ~o is uniformly continuous on B',  given 

t t t / ! ~>0  there exists a 6 > 0  such that [rp(x~)--q~(x~)l<e if Xl, XzEB and [x~ x~ <6 .  
Let xlEB with [Xl-Xo <6/2. Then I(x~+r(xOy) (xo+r(xo)y)]<6 for any [yl<-l. 
Hence, 

l i b  (p (X 1 -]- rtxOy) -- q~ (Xo + r(xo)y)] dm (y) < ~. IT~,~(xO- T~,,,(Xo)l <= ~ -(1) 

Hence, T~,r is continuous on G. To prove (5) we need only consider x ER ~ such 
that r(x)>0. For  such x we have 

i f .  go(y)dm(y) T e . , ( x ) -  O.r(x)" "(x,,(~)) 
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Applying H61der's inequality wltla exponents p and p/(p 1), we get 

1 I f .  T~,, (x) <-- Q, r Ix)" - (x,, (x)) 

Hence, 
r~,r(x) r(x)"/" <: c = [ f , o  9" am] 1'" < 

as desired. We proceed to prove (6). 

r(x) y) dm (y)lVdm (x). T4 ,[,~ = f R T~,r(x) drn(x) = L,,[__~, f B.(,)~O(X 

After applying H61der's inequality to the inner integral and simplifying, we get 

1 fR fB (p'(x+r(x)y)dm(y)dm(x). I] To,,II~ -< ~ , -(1) 

Interchanging the order of integration gives 

l f s  fg q~V(x+r(x)y)dm(x)dm(y). (4.4) lIT~,,ll; <= ~ ,  -(1) - 

Define, for yEB"(1), 0r :R"~R" by Oy(x)=x+r(x)y. It easily follows that 0r is 
injective and hence, by a theorem in topology, Oy(R") is a domain. Since 0y is Lipschitz 
continuous, it follows [6, Thm. I. Cor. 2] that the change of variables formula for 
multiple integrals holds with 0y as the mapping function. Therefore 

f o.,..,  .(x)dm (x) = f R- q~Ve O~ (x)l~ (x) dm (x) (4.5) 

where p~ is the volume derivative [5, Def. 24. 1] of the homeomorphism 0y. Since 

/~:;(x) = lira m(O,(B"(x, r))) a.e. x, 
r~O ~'~n rn 

the estimates 

m(O,(B"(x, r))) => ~2,{ inf Oy(x')-O,(x)}" 
X' - -X ' I~r  

and 
IO,(x')-O,(x)[ >= ( 1 - k ) l x ' - x [  

yield #s a.e. x in R". This result and (4.4) and (4.5) give 

1 fB /R (~ IIT~,~II~ <= ~ . (1 - -k )"  -(1)~ - 

as desired. 
For  the remainder of this paper, G will denote a domain in/~", E and F will 

be compact, disjoint non-empty sets in G. We write F=F(E, F, G). We let 
d :R"~[0 ,  oo) be the function defined by d(x)=d(x, ( ( K " - G ) U E U F ) - { ~ } )  and 
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we let l.s.c.(R n) be the extended real valued lower semicontinuous functions defined 
on R". 

4.6. Lemma. Let d c J ( F )  be the set of aCJ(F) satisfying (1) QEI.s.c.(R n) 
ALP(Rn), (2) a is continuous on G--(EU FU {co}), and (3) Q(x).d(x) "/p is bounded 
above for xE R n. Then d is a p-complete family. 

Proof It suffices to prove that M-----inffR, QP(x) drn(x)<--Mr(F) where the 
infimum is taken over all QEd.  Choose CEJ (F )  f~ LP(R ") A 1.s.c. (R"). Let ~6(0, 1) 
and let g =  To. ~a- Suppose ~ EF is locally rectifiable. We may assume, by reparametriz- 
ing 7, that ~:(a, b)-~G where a, bC[ o~,~ ] and that the length of ~ I[q, t2] is equal 
to t2--tl for all q ,  t2 E (a, b). Note that y restricted to closed subintervals of (a, b) 
is absolutely continuous. 

Let ~r:(a,b)-+G, yEB"(1), be the curve defined by 7y(t)=~(t)+sd(7(t))y. 
Choose eCy(a, b)AE. Let tiE(a, b), j = l ,  2 . . . . .  be such that 7(tj)-+e as j-+oo. I f  
eCho then clearly yy(tj)-+e a s j -+~ .  If  e=oo then, for fixed t'C(a,b), the triangle 
inequality and the fact that d is Lipschitz continuous with Lipschitz constant 1 
imply [yr(tj)-7y(t')l>=(1-5)17(tj)-7(t')[ and therefore, 7 y ( t j ) ~ o = e  as j---~.  
Hence 7y(a, b) 0 E r  Similarly, yy(a, b) (] F r  Therefore 7yEF. Also, 7y restricted 
to closed subintervals of (a, b) is absolutely continuous. An easy estimate shows 

t -<1 IVy(t)]= +~ a.e. on (a, b). 
We have 

f, r o . 0 (Y (t) + ed(y (t)) y) am (y) at g (Is : g (~) (t)) dt = ~ n  n(1) 

liB/o fa, -a~ Q(yy(t))]Ty(t)l[~y(t)l dtdm(y) 

> odsdm(y) >= 1+5 = (1 ~- -(1) 

This result and lemma 4.3 show ( l + e ) g E a / c J ( F ) .  Hence, 

m =< (1 +5)'llgll~ = (1 +eFllTo,,al[ ~. 

From lemma 4.3 (6) we get 
t~ 

M = (1(1 q-- 5)p5)" j R, 0 v (x) dm (x). 

Since 5C(0, 1) and OE,,C(F)fqLP(R")AI.s.c.(R ") are arbitrary, we get M-<_M~(F), 
as desired. 

4.7. Definition. For rE(0, 1) we define E(r)--{xrR":q(x, E)-~r} and F ( r ) =  
={x~K":q(x, F)<=r}. Let 0:R"-+[0, o~] be a Borel function. We define L(o,r) as 
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the infimum of the integrals f~ ads where 7 is a locally rectifiable curve in G connect- 
ing E(r) and F(r). Since L(Q, r) is non-decreasing for decreasing r, we can define 

L (0) = lim L (Q, r). 
r ~ 0  

4.8. Note. We observe that L(Q)~ 1 if and only if for every e E(0, 1) there exists 
a 6E(0, 1) such that fr  Q ds>-I e for everylocally rectifiable curve T in G connect- 
ing E(r) and F(r) with r<=6. 

4.9. Lemma. Suppose there exists a p-complete family ~ o c J ( F )  such that 
L(0)->I for every QE~0- Then the family ~ c J ( F )  consisting of all 0 E J ( F )  such 
that (1) oEI.s.c.(R")ALP(R ") and (2) Q is continuous on G {~} is p-complete. 

Proof. Let ~1 be the set of 0 E J ( F )  such that eEl.s.c. (R") 0 LP(R ") andL(0) ->1. 
It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24] that ~1 is p-complete. 

Let CE~I and 5E(0, 1). Let 6 be as in 4.8 and choose 6"E(0, 1) such that if 
xEE- - {~}  (resp., F {~o}) and yER", Ix-yl<~" then yEE(6) (resp., F(6)). Let 
r:Rn-+[0, 1] be defined by r(x)=56" min (1, d(x, R"--G)). Let g=To, r. Suppose 
7EF is locally rectifiable and assume that 7:(a, b)-+G is parametrized as in the- 
proof of 4.6. Let 7y:(a,b)-+G, yEB"(1), be the curve defined by 7y ( t )~y ( t )+  
+r(7  (t))y. I t  follows, using the same method as in the proof of 4.6, that ~y connects. 
E(6) and F(6). A computation similar to the one in the proof of 4.6 yields 

= ~ 0 dsdm(y) => 1+51 - e  

The above and lemma 4.3 show (1+5)(1 5)-~gE~. Let M = i n f f R ,  OP(X)dm(x), 
where the infimum is taken over all 0E~.  Then, by lemma 4.3, 

(1 § 5) p (1 + e) p ( 1 -+- e) p 
m ~ ~--5)p IIgll~ = (1 - e )  --------'--7 IIT~ <= (1-5)"(1 -~)"  IIQII~. 

Since 0E~I  and eE(0, 1) are arbitrary and since ~1 is p-complete, it follows from 
the above that M<-Mp(F). This completes the proof since the reverse inequality 
is trivial. 

4.10. Lemma. Suppose (EUF)fqOG=O. Let o:R"-+[0, ~] be a Borel funetion 
and assume 0 'G--(EU FU {oo}) is finite valued and continuous. Let eE(0, oo). Then 
there exists a locally rectifiable eurve 7 E F such that 

f rods <= L(e)+ 5. 

Proof. We may assume that L (Q)<~ .  Let {Sk}~=~ be a sequence of positive 
numbers such that ~ = 1 e k < 5 / 8 .  Let {rk}ff= 1 be a strictly monotone decreasing 
sequence of positive numbers such that (1) Limk~ = rk=0 and (2)E(rk)0 F(rk)=O,. 
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E(rg), F(rg)cG, and ~ ~OE(r,), OF(rk) for k =  1,2 . . . . .  It follows that OE(rk) N E = 0 ,  
OF(rk)NF=O for k = l , 2  . . . . .  Let F k be the curves in G connecting E(rk) and F(rk), 
k = l ,  2 . . . . .  Choose 7kEF k such that Vk is locally rectifiable and 

J '  ~ e 

L Oats ~ L(e, rk)+-~ -<-= L(O)• (4.11) 
I: 

Let Xkj (resp., Ykj), defined f o r j < k ,  the be last (resp., first) point of 7k in E(rfl (resp., 
F(rfl). We have XkjEOE(rfl and ykjEOF(r~). By considering successive subsequences 
and then a diagonal sequence and then relabeling the sequences, we may assume 
Xk~-~xjEOE(ri) and yk~y~EOF(rfl as k~oo. Let V~G-(EUFU{~})  (resp., 
Wi~G--(E~FU {o~})) be an open euclidean ball with center xj (resp., yfl such 
that f ods<ej where the integral is taken over any line segment lying in V~ (resp., 
Wfl, j = l ,  2, .... This can be done since 0 is continuous on G-(EUFU {co}) and 
hence, locally bounded there. 

Let ~ (resp., (b2) be the set of  rectifiable curves ~: [a, b]-~G such that a(a)E V~ 
(resp., a(a)~W~) and a(b)EVj_ 1 (resp., e (b)~Wj_0,  j = 2 ,  3, .... Let A be the set 
of rectifiable curves a:[a, b]~G such that e(a)~V~ and a(b)~ Wa. For  any positive 
integer k there exists a curve in the sequence {~,}~'=~, say ?~(k~, such that Xr V~ 
and Y~k),iE Wj for j = l ,  2 . . . .  , k. This implies that 7r has distinct subcurves in 
~pz, t / ,  . . . . .  ~u,, ~ ,  ~ . . . . .  q~, A. Hence, for every positive integer k we have, 
using (4.11), 

L L L f  k k '~ inf ~ds + ~aj=~ inf od~e +.~j=2 inf ods -~ ods ~_ L(Q)+-~. 
"/EA 7~Tt j  ~C~j  7i(k) 

Since k is arbitrary, we get 

inff~ds+Z~-=uinf fQds+Z~.=2inf f~ds<=L(q)-I- 2 .  (4.12) 
"/EA d 7 7EVJj ~EOj 

Choose OEA such that 

f0 f ~ds < inf ods+el. (4.13a) 
TEA 7 

Choose -cj E 7~j, aj C ~j, j = 2, 3 . . . . .  such that 

:and 
f ~ d s <  inf / Q d s §  (4.13b) 

f 

f. eds< inf f Qds+sj. (4.13c) 
j ? E'C'j d 
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Let ~j (resp., flj) be the line segment in Vj (resp., Wj) connecting the endpoints 
of  z~ and zj+~ (resp., o-j and crj+O, j = 2 ,  3 . . . . .  Let (z I (resp., fix) be the line segment 
in V x (resp., WO connecting the endpoints of  % and 0 (resp., o- 2 and 0). We have 

f ods<ej ,  J~ ods<qi ,  j = l , 2  . . . . .  (4.13d) 
J J 

Let 7CF be the locally rectifiable curve 7-...za~%cqOflltr2fl~aa .... We have, by 
(4.12) and (4.13) 

f ods= 2;=,f=ods 2:;= s +foOdS+ Z;- foods 
T <- 

as desired. 

4.14. Lemma. Suppose (EU F)AOG=O. Let ~ c J ( F )  be the set of OCJ(F) 
such that (1) O~I.s.c.(R")F)LP(R ") and (2) 0 # continuous on G-{oo}. Then o~ is 
p-complete. 

Proof. Lemma 4.10 shows that L(O)-->I for every 0 in the p-complete family 
d defined in lemma 4.6. Hence, this family d satisfies the hypotheses of lemma 
4.9. Therefore, ~ is p-complete. 

4.15. Theorem. Suppose (EU F) ~OG-O. Let ~ c ~ ( F )  be the set of OCJ(F) 
such that (1) O~I.s.c.(R")(~LP(Rn), (2) 0 is continuous on G {~}, (3) r "/p 
is bounded above for xER ~, and (4) L(r Then ~q is a p-complete family. 

Proof. Choose C in the p-complete family ~ of lemma 4.14 and let eC(0, l). 
Let g =  To, *d" It follows exactly as in the proof  of lemma 4.6 that f~ gds>-(1 +e)-x 
for every locally rectifiable curve yEF. An application of lemma 4.3 and lemma 
4.10 shows (l+e)g~Cg. Let M : i n f f R ,  QP(x) dm(x) where the infimum is taken 
over all QEcg. We have, by lemma 4.3, 

( l + e )  p (I+g)P f OV(x)dm(x)" 
M ~ (l +e)PlJgJj~ <= (1 e)" 0lip (l--~)" 3 R- 

Since 0 E ~ and e E (0, 1) are arbitrary and ~ is p-complete, it follows that M<= Mp (F). 
Since the reverse inequality is trivial, we are done. 

4.16. Comments. (1) Part 2 of  lemma 4.6 was proved independently by Aseev 
[1], Ohtsuka [3, Thm. 2.8], and the author. Lemma 4.10 is modeled after [3, lemma 

2.91. 
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5. Relations between the p-modulus and p-capacity 

5.1 Definition. Let 7 :[a, b]~R" be a rectifiable curve in R" and let 7o:[0, L]-*R" 
be the arc length parametrization of 7- L e t f b e  an ACL function defined in a neigh- 
borhood of  ~([a, hi)=70([0, L]). We say f is absolutely continuous on y if 

f ~  v f  .~-~dt = fo,o(t)-fo7o(O ) 

for all tel0, L]. The integrand is the inner product of  dyo/dt and Vf=the  gradient 
o f f  We use the convention that Of/Oxi=O at points x where Of/Oxf is not defined. 
The above definition differs slightly from [5, Def. 5.2] in that we require a little 
more than the absolute continuity of f o  7o. 

5.2. Lemma. Mv(F)~caPv(E , F, GO. 

Proof Let u E ~r (E, F, GO N L" (GO. Let F 0 be the locally rectifiable curves 7 E F 
for which u is absolutely continuous on every rectifiable subcurve of  7- Define 
Q: R n -*  [0, oo] by 

iVu(x)] if x E G - { c o }  

Q ( x ) =  0 if x E R " - G .  

Suppose 7EF 0 and y:(a, b)~G is parametrized as in the prooI ot lemma 4.0. If  
a<ta<t2<b then 

f, f' f f" ods = eo ,(t)dt _-> "IVu(7(0)I dt >= Vu(y(t)).--87 
d a 1 l 

= lu~ (h) - uo7 (ix) 1. 

Since tl and t= are arbitrary, the above implies fv 0 d s ~ l .  Hence, eEJ (F0) .  There- 
fore 

Mp(Fo) <= fn. or(x) dm (x) = ]Vu(x)lp dm (x). 

By a theorem of Fuglede [5, Thin. 28.2] we have Mv(F)-Mp(ro). Therefore, 

Mp(F) <= fG Vu(x)l" dm (x). 

Since uEd(E,  F, GO I')LP(GO is arbitrary, we get the desired result. 

5.3. Lemma. Let U be a domain in R n, let g: Uo[0,  o~) be continuous and suppose 
K is a non-empty bounded compact set with K c U .  Define f:U~[O, ~) by f ( x ) =  
= inf fg g ds where the infimum is taken over all rectifiable curves 13: [a, b] ~ U with 
fl(a)EK and fl(b)=x. Then, (1) i f  the dosed line segment Ix1, x2] lies in U then 

[ f (x2)- f (x l )  <- max g(x)lx2--Xl] (5.4) 
x E Ix1, x21 
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and ( 2 ) / f f :  U-+[0, oo) satisfies (5.4) then f is differentiable a.e. in U and Vf(x)l <=g(x) 
a.e. in U. 

Proof. Let fl be a rectifiable curve connecting K and x~. Then 

f(x,)<<-fgds+f gds<=fgds+ max g(x) x2-xl].  
xl ,  x2l x E [xx, x~] 

Since fl is arbitrary, we get 

f(x~) <= f ( x  0 + 

In a similar way, we get 

f (xO "< f(x2) + 

max g(x)Ix~-xll.  
x E [xt, x~] 

max g(x)fx2-xll .  
x E {xt, x=] 

This proves (5.4). 
If f satisfies (5.4) then f is locally Lipschitz continuous in U and therefore, 

by the theorem of  Rademacher and Stepanov [5, Thm. 29.1], f is differentiable 
a.e. in U. Suppose now that x0E U is a point of differentiability of f .  Then f ( x  o + h) 
-f(Xo)-Vf(xo) .h+[hIe(h) where hER" and lim e(h)=0 as h+0 .  For  small tE(0, l) 
let h--tVf(xo)/]Vf(xo)]. Substituting in the above formula gives IVf(xo)l+~(h) I 
<=maxxcEx0,xo+hlg(x). If  we let t-~0 we get Vf(xo)t<--g(xo), as desired. 

5.5. Theorem. Suppose (E U F) A oqG = O. Then Mp (F) - capp (E, F, G). 

Proof. It suffices, by lemma 5.2, to prove 

capp (E, F; G) ~ M~ (F). (5.6) 

We assume, without any loss of  generality, that E is bounded and we let c g c J ( F )  
be as in theorem 4.15. The proof is divided into four cases. 

Case 1. Suppose ooEG. Let 0Ec~ and define u:G-~[0,~o) by u(x) 
=m in  (1, inf fp  0 ds) where the infimum is taken over all rectifiable curves fi in G 
connecting E and x. It follows, using lemma 5.3, that uEd(E,  F, G) and [Vu!~Q 
a.e. in G. Therefore 

cap,, (E, F, 6) _<= fo  IVul" am _<- JR. op. 

Since QECg is arbitrary and cg is p-complete, we get (5.6). 

Case 2. Suppose ~oEG and ~oEF. Choose 0ECr and eE(0, 1). Since L(0)->I 
we can choose a small rE(0, 1 ) s o  fr ods>=l e for every locally rectifiable 
curve y in G connecting E(r) and F(r). Define u:G--{oo}-~[0, oo) by u(x) 
= min (1, (1 -- e) -1 inf fp ~o ds) where the infimum is taken over all rectifiable curves 
fl in G connecting E(r) and x. Since u is identically 1 in a deleted neighborhood 
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of  0% we see that  u extends continuously to all of  G. It follows, using lemma 5.3, 
that uEd(E,  F, G) and [ V u ] = ( 1 - e ) - l ~  a.e. in G. Therefore, 

capv (E, F, G) ~ f~lVul"dm <- (1--e)-" fR~ 

Since 0ECg and eE(0, 1) are arbitrary and ~ is p-complete, we get (5.6). 

Case 3. Suppose ~EG, o ~ F  and l < p < n .  Choose 0E~- Since ((R" G) 
�9 E U  F ) - - { ~ }  lies inside some ball, it follows that [x l<-constant �9 d(x) for large 
lxl. Therefore, 

O(x) <= Cix -"/P (5.7) 

for some constant CE(0, ~ )  and all large lxl, say txl>ro. Define v:G {~}~[0,  ~ )  
by v ( x ) = i n f  f~ o ds where the infimum is taken over all rectifiable curves fl 
connecting E and x. We proceed to show that v l~ )  can be defined continuously. 
Set v (oo)= in f f~  ods where the infimum is taken over all continuous fl such that 

fi:[a, b]~G with fl(a)EE, f l ( b ) = ~  and ill[a, t] is rectifiable for all tE[a, b). Choose 
any xoER" so that the curve [x0, ~]  lies in G, where [x0, ~,](t)=tXo, tE[1, ~]. 
Let 7 by any rectifiable curve in G connecting E and x, .  Let fi the curve obtained 
by connecting the curves ~ and [x0, o~]. Then  

Clearly f~ O ds is finite and f~xo, =l ~ ds is finite by the estimate 1 5.7) and the fact that 
1 <nip. Hence v (oo) is finite. Choose r E lr0, ~ )  large enough so that the complement 
in /~" of  B"(0, r) lies in G and EcB"(O, r). Let x0EG--{~} and x01>r. 

Suppose fl is a rectifiable curve in G connecting E and x0. We have 

Since the above is true for all such t ,  we get 

v(oo)- v(2o) <= e l 7  t-"/~ dt. (5.8a) 

Suppose now that/~ is a curve connecting E and ~ and is of  the type used in defining 
v(o~). Let z be a curve which is part of  a great circle on the sphere {xER": [xj = Ix0 } 
and which connects Xo and Y0 where Y0 is some point on the curve/L Let/~1 be a 
subcurve o f / / connec t i ng  E and Yo- We have 

Also, 

f - length (z) <= 2rcC Ix01 ~ "/P. 
C 

O ds <- Xol,/~ 
i 

Hence 

V(Xo) <= f aeds + Z~rCIxol ~-"/v <= fa ods + Z~zCrl-"/P" 
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Since the above is true for all fl connecting E and ~ ,  we have 

v (Xo) -- v (~)  <= 21rCr 1- nip. (5.8b) 

Relations (5.8) show v is continuous at ~ .  
Define u :G~ [0 ,  co) by u ( x ) = m i n  (1, v(x)). Then it follows, using lemma 5.3, 

that u E d ( E ,  F, G) and 1Vu<=o a.e. in G. Therefore 

F, a) fG Ivul" am <= f .~ e" dm. capp (E, 

Since 0Ecg is arbitrary and cg is p-complete, we get (5.6). 

Case 4. Suppose ~oEG, ~ o l F  and p>--n. Define 0 :R"~[0, 1] by 

f l / e  if  x <= e 

O(x) = ~'[1/({x log txl) if ]xl > e. 

I t  is straightforward to verify that 0 E L p (R") and f o  0 (Ix]) d Ix I - ~ .  Choose 0 E cg and 
eE(0,1). Let 0"=O~-e0. Define u : G - - { ~ } ~ [ 0 , ~ )  by u(x )=min(1 ,  i n f f p Q ' d s )  
where the infimum is taken over all rectifiable fl in G connecting E and x. Choose 

rE(0, ~ )  so that EcB"(O,  r). I f  x0[>r  and if fl connects E and x0 then 

f e'ds >= Otis >= e f2"~ 

I t  follows that if  ix0 is large then fp O" ds >-1. Therefore, u extends continuously 
to u:G-~[0, ~) .  We get, using lemma 5.3, that u q d ( E , / 7 ,  G) and IVu]-<0" a.e. 
in G. Hence, 

capp (E, F, G) <= f G Vu]" dm <- f .~ (o + dm. 

Since ~Ecg and eE(0, 1) are arbitrary and cg is p-complete, we get (5.6). 
We use the previous theorem to prove a continuity theorem for the modulus. 

5.9. Theorem. Suppose E1D E~ ~ . . .  and F a D F~ ~ . . .  are disjoint sequences of  
non-empty compact sets in a domain G. Then 

Proof. The theorem follows immediately f rom theorems 5.5 and 3.3. 
5.10. Comment, The reader may wish to compare the proof  of  5.6 with Ziemer's 

proof  [7]. Ziemer defines a function u derived f rom a density 0 in a way that is 
similar to the one in this paper. Ziemer's technique will not work for the situation 
considered in this paper since the "limiting curve" of  [7, lemma 3.3] need not 
necessarily lie in G. The present p roo f "works"  because there is a p-complete family 
of  densities Q with L ( 0 ) ~ I .  
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