A *p*-extremal length and *p*-capacity equality

Joseph Hesse

1. Introduction

Let G be a domain in the compactified euclidean n-space $\overline{R}^n = R^n \cup \{\infty\}$, let E and F be disjoint non-empty compact sets in the closure of G. We associate two numbers with this geometric configuration as follows. Let $M_p(E, F, G)$ be the pmodulus (reciprocal of the p-extremal length) of the family of curves connecting E and F in G. Let cap_p (E, F, G) be the p-capacity of E and F relative to G, defined as the infimum of the numbers $\int_G |\nabla u(x)|^p dm(x)$ where u is an ACL function in G with boundary values 0 and 1 on E and F, respectively. We show in this paper that cap_p (E, F, G)= $M_p(E, F, G)$ whenever E and F do not intersect ∂G . This generalizes Ziemer's [7] result where he makes the assumption that either E or F contains the complement of an open n-ball.

We also obtain a continuity theorem (Theorem 5.9) for the *p*-modulus and a theorem (Theorem 4.15) on the kinds of densities that can be used in computing the *p*-modulus.

2. Notation

For $n \ge 2$ we denote by $\overline{\mathbb{R}}^n$ the one point compactification of \mathbb{R}^n , euclidean *n*-space: $\overline{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$. All topological considerations in this paper refer to the metric space $(\overline{\mathbb{R}}^n, q)$ where q is the chordal metric on $\overline{\mathbb{R}}^n$ defined by stereographic projection. If $A \subset \overline{\mathbb{R}}^n$ then \overline{A} and ∂A denote the closure and boundary of A, respectively. If $b \in \overline{\mathbb{R}}^n$ and $B \subset \overline{\mathbb{R}}^n$ then q(b, B) denotes the chordal distance of b from B.

If $x \in \mathbb{R}^n$ we let |x| denote the usual euclidean norm of x. $B^n(x, r)$ denotes the open *n*-ball with center x and radius r. We write $B^n(1) = B^n(0, 1)$. If $x \in \mathbb{R}^n$ and $A \subset \mathbb{R}^n$ we let d(x, A) denote the euclidean distance of x from A.

Lebesgue *n*-measure on \mathbb{R}^n is denoted by m_n or by *m* if there is no chance for confusion. We let $\Omega_n = m_n(\mathbb{B}^n(1))$.

3. The *p*-modulus and *p*-capacity

3.1. Definition. Let Γ be a collection of curves in \overline{R}^n . We let $\mathscr{J}(\Gamma)$ denote the set of Borel functions $\varrho: \mathbb{R}^n \to [0, \infty]$ satisfying the condition that for every locally rectifiable $\gamma \in \Gamma$ we have $\int_{\gamma} \varrho ds \ge 1$. $\mathscr{J}(\Gamma)$ is called the set of *admissible densities* for Γ . For $p \in (1, \infty)$ the *p*-modulus of Γ , denoted by $M_p(\Gamma)$, is defined as

$$M_p(\Gamma) = \inf \int_{\mathbb{R}^n} \varrho^p \, dm_n$$

where the infimum is taken over all $\varrho \in \mathscr{J}(\Gamma)$. For the basic facts about the *p*-modulus, see [5, Chap. 1]. The *p*-extremal length of Γ is defined as the reciprocal of the *p*-modulus of Γ .

3.2. Definition. Let G be a domain in $\overline{\mathbb{R}}^n$ and let E and F be compact, disjoint, non-empty sets in \overline{G} . Let $\Gamma(E, F, G)$ denote the set of curves connecting E and F in G. More precisely, if $\gamma \in \Gamma(E, F, G)$ then $\gamma: I \to G$ is a continuous mapping where I is an open interval and $\overline{\gamma(I)} \cap E$ and $\overline{\gamma(I)} \cap F$ are both non-empty. We write $M_p(E,$ F, G) for the p-modulus of $\Gamma(E, F, G)$. Let $\mathscr{A}(E, F, G)$ denote the set of real valued functions u such that (1) u is continuous on $E \cup F \cup G$, (2) u(x)=0 if $x \in E$ and u(x)=1 if $x \in F$, and (3) u restricted to $G - \{\infty\}$ is ACL. For the definition and basic facts about ACL functions see [5, Chap. 3]. If $p \in (1, \infty)$ we define the p-capacity of E and F relative to G, denoted by $\operatorname{cap}_p(E, F, G)$, by

$$\operatorname{cap}_{p}(E, F, G) = \inf \int_{G} |\nabla u|^{p} dm_{n}$$

where the infimum is taken over all $u \in \mathscr{A}(E, F, G)$.

The *p*-capacity has the following continuity property.

3.3. Theorem. Let $E_1 \supset E_2 \supset ...$ and $F_1 \supset F_2 \supset ...$ be disjoint sequences of nonempty compact sets in the closure of a domain G. Let $E = \bigcap_{i=1}^{\infty} E_i$, $F = \bigcap_{i=1}^{\infty} F_i$. Then

$$\lim_{i\to\infty} \operatorname{cap}_p(E_i, F_i, G) = \operatorname{cap}_p(E, F, G).$$

Proof. Since $\mathscr{A}(E_i, F_i, G) \subset \mathscr{A}(E_{i+1}, F_{i+1}, G) \subset \mathscr{A}(E, F, G)$ for all *i*, it follows that cap_n (E_i, F_i, G) is monotone decreasing in *i* and therefore

$$\lim_{i\to\infty} \operatorname{cap}_p(E_i, F_i, G) \ge \operatorname{cap}_p(E, F, G).$$

For the reverse inequality, choose $u \in \mathscr{A}(E, F, G)$ and $\varepsilon \in (0, 1/2)$. Define $f:(-\infty, \infty) \rightarrow [0, 1]$ by

$$f(x) = \begin{cases} 0 & \text{if } x \leq \varepsilon \\ (1-2\varepsilon)^{-1}(x-1+\varepsilon)+1 & \text{if } \varepsilon < x < 1-\varepsilon \\ 1 & \text{if } x \geq 1-\varepsilon. \end{cases}$$

Let $u'=f\circ u$. Since f is Lipschitz continuous on $(-\infty, \infty)$ with Lipschitz constant $(1-2\varepsilon)^{-1}$, it follows that u' is ACL on $G-\{\infty\}$ and $|\nabla u'| \leq (1-2\varepsilon)^{-1} |\nabla u|$ a.e. in G.

Let A and B be open sets in \overline{R}^n such that $\{x \in E \cup F \cup G: u(x) < \varepsilon\} = (E \cup F \cup G)$ $\cap A$ and $\{x \in E \cup F \cup G: u(x) > 1 - \varepsilon\} = (E \cup F \cup G) \cap B$. For large *i* we have $E_i \subset A$ and $F_i \subset B$ and, for such *i*, we can extend *u'* continuously to $E_i \cup F_i \cup G$ by setting u'=0 on $\partial G \cap (E_i - E)$ and u'=1 on $\partial G \cap (F_i - F)$. Therefore $u' \in \mathscr{A}(E_i, F_i, G)$ for large *i*. This implies that for large *i* we have

$$\operatorname{cap}_p(E_i, F_i, G) \leq \int_G |\nabla u'|^p \, dm \leq \frac{1}{(1-2\varepsilon)^p} \int_G |\nabla u|^p \, dm.$$

Hence

$$\lim_{i\to\infty}\operatorname{cap}_p(E_i,F_i,G) \leq \frac{1}{(1-2\varepsilon)^p}\int_G |\nabla u|^p \, dm$$

Since $u \in \mathscr{A}(E, F, G)$ and $\varepsilon \in (0, 1/2)$ are arbitrary, we get the reverse inequality, as desired.

4. Complete Families of Densities

4.1. Definition. Let Γ be a collection of curves in \overline{R}^n . Let $\mathscr{B} \subset \mathscr{J}(\Gamma)$. We say \mathscr{B} is *p*-complete if

$$M_p(\Gamma) = \inf \int_{\mathbb{R}^n} \varrho^p \, dm$$

where the infimum is taken over all $\rho \in \mathcal{B}$.

4.2. Example. Let $\mathscr{B} \subset \mathscr{J}(\Gamma)$ be the collection of $\varrho \in \mathscr{J}(\Gamma)$ such that ϱ is lower semicontinuous. It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24] that \mathscr{B} is *p*-complete for all $p \in (1, \infty)$.

4.3. Lemma. Let $\varphi: \mathbb{R}^n \to [0, \infty]$ be a Borel function and assume $\varphi \in L^p(\mathbb{R}^n)$, $p \in (1, \infty)$. Let $r: \mathbb{R}^n \to [0, \infty]$ satisfy $|r(x_2) - r(x_1)| \leq |x_2 - x_1|$ for all $x_1, x_2 \in \mathbb{R}^n$. Define $T_{\varphi,r}: \mathbb{R}^n \to [0, \infty]$ by

$$T_{\varphi,r}(x) = \frac{1}{\Omega_n} \int_{B^n(1)} \varphi(x+r(x)y) \, dm_n(y).$$

Then $T_{\varphi,r}$ has the following properties.

(1) If $r(x_0) > 0$ then

$$T_{\varphi,r}(x_0) = \frac{1}{\Omega_n r(x_0)^n} \int_{B^n(x_0,r(x_0))} \varphi(y) \, dm(y) < \infty.$$

(2) If φ is lower semicontinuous then so is $T_{\varphi,r}$.

(3) If $r(x_0) > 0$ then $T_{\varphi,r}$ is continuous at x_0 .

(4) If φ is finite and continuous on a domain G in \mathbb{R}^n and if $0 \leq r(x) < d(x, \mathbb{R}^n - G)$ then $T_{\varphi,r}$ is finite and continuous on G.

(5) $|T_{\varphi,r}(x)r(x)^{n/p}| \leq C$ for some constant $C \in [0, \infty)$ and all $x \in \mathbb{R}^n$. The constant C depends on φ .

(6) Let $k = \sup |r(x_2) - r(x_1)| |x_2 - x_1|^{-1}$ where the supremum is taken over all $x_1, x_2 \in \mathbb{R}^n, x_1 \neq x_2$. Then $||T_{\varphi,r}||_p \leq (1-k)^{-n/p} ||\varphi||_p$ where $|| ||_p$ is the usual $L^p(\mathbb{R}^n)$ norm and the right hand side of the inequality is infinite in case k = 1.

Proof. (1) follows from the change of variables $y' = x_0 + r(x_0)y$ and Hölders inequality. To prove (2), let $x_0 \in \mathbb{R}^n$ be arbitrary and suppose $\{x_j\}_{j=1}^{\infty}$ is a sequence in \mathbb{R}^n tending to x_0 . Fatou's lemma and the lower semicontinuity of φ imply

$$\liminf_{j \to \infty} T_{\varphi, r}(x_j) = \liminf_{j \to \infty} \frac{1}{\Omega_n} \int_{B^n(1)} \varphi(x_j + r(x_j) y) dm(y)$$
$$\geq \frac{1}{\Omega_n} \int_{B^n(1)} \liminf_{j \to \infty} \varphi(x_j + r(x_j) y) dm(y)$$
$$\geq \frac{1}{\Omega_n} \int_{B^n(1)} \varphi(x_0 + r(x_0) y) dm(y) = T_{\varphi, r}(x_0).$$

This shows that $T_{\varphi,r}$ is lower semicontinuous. To prove (3), we observe that since r is continuous, r(x) > 0 for all x in some neighborhood of x_0 and therefore, by (1),

$$T_{\varphi,r}(x) = \frac{1}{\Omega_n r(x)^n} \int_{B^n(x,r(x))} \varphi(y) \, dm(y)$$

for all x in some neighborhood of x_0 . The right hand side of the above formula is continuous in x and therefore, $T_{\varphi,r}$ is continuous at x_0 . We proceed to prove (4). We observe that if $x \in G$ then $x+r(x)y \in G$ for any $y \in \mathbb{R}^n$ with $|y| \leq 1$. Fix $x_0 \in G$ and let B be a closed ball with center x_0 and lying in G. Then $B' = \{x': x' = x+r(x)y, x \in B, |y| \leq 1\}$ is a compact subset of G. Since φ is uniformly continuous on B', given $\varepsilon > 0$ there exists a $\delta > 0$ such that $|\varphi(x'_2) - \varphi(x'_1)| < \varepsilon$ if $x'_1, x'_2 \in B'$ and $|x'_2 - x'_1| < \delta$. Let $x_1 \in B$ with $|x_1 - x_0| < \delta/2$. Then $|(x_1 + r(x_1)y) - (x_0 + r(x_0)y)| < \delta$ for any $|y| \leq 1$. Hence,

$$|T_{\varphi,r}(x_1) - T_{\varphi,r}(x_0)| \leq \frac{1}{\Omega_n} \int_{B^n(1)} \left| \varphi \left(x_1 + r(x_1) y \right) - \varphi \left(x_0 + r(x_0) y \right) \right| dm(y) < \varepsilon.$$

Hence, $T_{\varphi,r}$ is continuous on G. To prove (5) we need only consider $x \in \mathbb{R}^n$ such that r(x) > 0. For such x we have

$$T_{\varphi,r}(x) = \frac{1}{\Omega_n r(x)^n} \int_{B^n(x,r(x))} \varphi(y) \, dm(y)$$

A *p*-extremal length and *p*-capacity equality

Applying Hölder's inequality with exponents p and p/(p-1), we get

$$T_{\varphi,r}(x) \leq \frac{1}{\Omega_n r(x)^n} \left[\int_{B^n(x,r(x))} \varphi^p(y) \, dm(y) \right]^{1/p} [\Omega_n r(x)^n]^{(p-p)/p}.$$

Hence,

$$T_{\varphi,r}(x)r(x)^{n/p} \leq C = \Omega_n^{-1/p} \left[\int_{\mathbb{R}^n} \varphi^p \, dm \right]^{1/p} < \infty,$$

as desired. We proceed to prove (6).

$$\|T_{\varphi,r}\|_{p}^{p} = \int_{\mathbb{R}^{n}} T_{\varphi,r}^{p}(x) \, dm(x) = \int_{\mathbb{R}^{n}} \left[\frac{1}{\Omega_{n}} \int_{B^{n}(1)} \varphi(x+r(x)y) \, dm(y) \right]^{p} \, dm(x).$$

After applying Hölder's inequality to the inner integral and simplifying, we get

$$\|T_{\varphi,r}\|_p^p \leq \frac{1}{\Omega_n} \int_{\mathbb{R}^n} \int_{\mathbb{B}^n(1)} \varphi^p(x+r(x)y) \, dm(y) \, dm(x).$$

Interchanging the order of integration gives

$$\|T_{\varphi,r}\|_p^p \leq \frac{1}{\Omega_n} \int_{B^n(\mathbf{1})} \int_{R^n} \varphi^p (x+r(x)y) \, dm(x) \, dm(y). \tag{4.4}$$

Define, for $y \in B^n(1)$, $\theta_y : \mathbb{R}^n \to \mathbb{R}^n$ by $\theta_y(x) = x + r(x)y$. It easily follows that θ_y is injective and hence, by a theorem in topology, $\theta_y(\mathbb{R}^n)$ is a domain. Since θ_y is Lipschitz continuous, it follows [6, Thm. 1, Cor. 2] that the change of variables formula for multiple integrals holds with θ_y as the mapping function. Therefore

$$\int_{\theta_{\mathbf{y}}(\mathbf{R}^n)} \varphi^p(\mathbf{x}) \, dm(\mathbf{x}) = \int_{\mathbf{R}^n} \varphi^p \circ \theta_{\mathbf{y}}(\mathbf{x}) \, \mu'_{\mathbf{y}}(\mathbf{x}) \, dm(\mathbf{x}) \tag{4.5}$$

where μ'_{y} is the volume derivative [5, Def. 24. 1] of the homeomorphism θ_{y} . Since

$$\mu'_{y}(x) = \lim_{r \to 0} \frac{m(\theta_{y}(\overline{B^{n}(x, r)}))}{\Omega_{n}r^{n}} \quad \text{a.e.} \quad x,$$

the estimates

$$m(\theta_{y}(\overline{B^{n}(x,r)})) \geq \Omega_{n} \{ \inf_{|x'-x'|=r} |\theta_{y}(x') - \theta_{y}(x)| \}^{n}$$

and

$$|\theta_y(x') - \theta_y(x)| \ge (1-k)|x' - x|$$

yield $\mu'_{y}(x) \ge (1-k)^{n}$ a.e. x in \mathbb{R}^{n} . This result and (4.4) and (4.5) give

$$\|T_{\varphi,r}\|_{p}^{p} \leq \frac{1}{\Omega_{n}(1-k)^{n}} \int_{B^{n}(1)} \int_{R^{n}} \varphi^{p}(x) dm(x) dm(y) = (1-k)^{-n} \|\varphi\|_{p}^{p},$$

as desired.

For the remainder of this paper, G will denote a domain in \overline{R}^n , E and F will be compact, disjoint non-empty sets in \overline{G} . We write $\Gamma = \Gamma(E, F, G)$. We let $d: \mathbb{R}^n \to [0, \infty)$ be the function defined by $d(x) = d(x, ((\overline{R}^n - G) \cup E \cup F) - \{\infty\})$ and

135

we let $l.s.c.(R^n)$ be the extended real valued lower semicontinuous functions defined on R^n .

4.6. Lemma. Let $\mathcal{A} \subset \mathcal{J}(\Gamma)$ be the set of $\varrho \in \mathcal{J}(\Gamma)$ satisfying (1) $\varrho \in 1.s.c.(\mathbb{R}^n)$ $\cap L^p(\mathbb{R}^n)$, (2) ϱ is continuous on $G - (E \cup F \cup \{\infty\})$, and (3) $\varrho(x) \cdot d(x)^{n/p}$ is bounded above for $x \in \mathbb{R}^n$. Then \mathcal{A} is a p-complete family.

Proof. It suffices to prove that $M = \inf \int_{\mathbb{R}^n} \varrho^p(x) dm(x) \leq M_p(\Gamma)$ where the infimum is taken over all $\varrho \in \mathscr{A}$. Choose $\varrho \in \mathscr{J}(\Gamma) \cap L^p(\mathbb{R}^n) \cap 1.$ s.c. (\mathbb{R}^n) . Let $\varepsilon \in (0, 1)$ and let $g = T_{\varrho, \varepsilon d}$. Suppose $\gamma \in \Gamma$ is locally rectifiable. We may assume, by reparametrizing γ , that $\gamma:(a, b) \to G$ where $a, b \in [-\infty, \infty]$ and that the length of $\gamma | [t_1, t_2]$ is equal to $t_2 - t_1$ for all $t_1, t_2 \in (a, b)$. Note that γ restricted to closed subintervals of (a, b) is absolutely continuous.

Let $\gamma_y:(a, b) \to G$, $y \in B^n(1)$, be the curve defined by $\gamma_y(t) = \gamma(t) + \varepsilon d(\gamma(t))y$. Choose $e \in \overline{\gamma(a, b)} \cap E$. Let $t_j \in (a, b)$, j=1, 2, ..., be such that $\gamma(t_j) \to e$ as $j \to \infty$. If $e \neq \infty$ then clearly $\gamma_y(t_j) \to e$ as $j \to \infty$. If $e = \infty$ then, for fixed $t' \in (a, b)$, the triangle inequality and the fact that d is Lipschitz continuous with Lipschitz constant 1 imply $|\gamma_y(t_j) - \gamma_y(t')| \ge (1-\varepsilon) |\gamma(t_j) - \gamma(t')|$ and therefore, $\gamma_y(t_j) \to \infty = e$ as $j \to \infty$. Hence $\overline{\gamma_y(a, b)} \cap E \neq \emptyset$. Similarly, $\overline{\gamma_y(a, b)} \cap F \neq \emptyset$. Therefore $\gamma_y \in \Gamma$. Also, γ_y restricted to closed subintervals of (a, b) is absolutely continuous. An easy estimate shows $|\gamma'_y(t)| \le 1+\varepsilon$ a.e. on (a, b).

We have

$$\int_{\gamma} g \, ds = \int_{a}^{b} g(\gamma(t)) \, dt = \frac{1}{\Omega_{n}} \int_{a}^{b} \int_{B^{n}(1)} \varrho(\gamma(t) + \varepsilon d(\gamma(t))y) \, dm(y) \, dt$$
$$= \frac{1}{\Omega_{n}} \int_{B^{n}(1)} \int_{a}^{b} \varrho(\gamma_{y}(t)) |\gamma_{y}'(t)| |\gamma_{y}'(t)|^{-1} \, dt \, dm(y)$$
$$\ge \frac{1}{(1+\varepsilon)\Omega_{n}} \int_{B^{n}(1)} \int_{\gamma_{y}} \varrho \, ds \, dm(y) \ge \frac{1}{1+\varepsilon}.$$

This result and lemma 4.3 show $(1+\varepsilon)g \in \mathscr{A} \subset \mathscr{J}(\Gamma)$. Hence,

$$M \leq (1+\varepsilon)^p \|g\|_p^p = (1+\varepsilon)^p \|T_{\rho, \varepsilon d}\|_p^p.$$

From lemma 4.3(6) we get

$$M \leq \frac{(1+\varepsilon)^p}{(1-\varepsilon)^n} \int_{\mathbb{R}^n} \varrho^p(x) \, dm(x).$$

Since $\varepsilon \in (0, 1)$ and $\varrho \in \mathscr{J}(\Gamma) \cap L^p(\mathbb{R}^n) \cap 1.s.c.(\mathbb{R}^n)$ are arbitrary, we get $M \leq M_p(\Gamma)$, as desired.

4.7. Definition. For $r \in (0, 1)$ we define $E(r) = \{x \in \overline{R}^n : q(x, E) \leq r\}$ and $F(r) = \{x \in \overline{R}^n : q(x, F) \leq r\}$. Let $\varrho: \mathbb{R}^n \to [0, \infty]$ be a Borel function. We define $L(\varrho, r)$ as

136

the infimum of the integrals $\int_{\gamma} \rho ds$ where γ is a locally rectifiable curve in G connecting E(r) and F(r). Since $L(\rho, r)$ is non-decreasing for decreasing r, we can define

$$L(\varrho) = \lim_{r\to 0} L(\varrho, r).$$

4.8. Note. We observe that $L(\varrho) \ge 1$ if and only if for every $\varepsilon \in (0, 1)$ there exists a $\delta \in (0, 1)$ such that $\int_{\gamma} \varrho \, ds \ge 1 - \varepsilon$ for every locally rectifiable curve γ in G connecting E(r) and F(r) with $r \le \delta$.

4.9. Lemma. Suppose there exists a p-complete family $\mathscr{B}_0 \subset \mathscr{J}(\Gamma)$ such that $L(\varrho) \geq 1$ for every $\varrho \in \mathscr{B}_0$. Then the family $\mathscr{B} \subset \mathscr{J}(\Gamma)$ consisting of all $\varrho \in \mathscr{J}(\Gamma)$ such that (1) $\varrho \in 1.s.c.(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ and (2) ϱ is continuous on $G - \{\infty\}$ is p-complete.

Proof. Let \mathscr{B}_1 be the set of $\varrho \in \mathscr{J}(\Gamma)$ such that $\varrho \in l.s.c.(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ and $L(\varrho) \ge 1$. It follows from the Vitali-Caratheodory theorem [4, Thm. 2.24] that \mathscr{B}_1 is *p*-complete.

Let $\varrho \in \mathscr{B}_1$ and $\varepsilon \in (0, 1)$. Let δ be as in 4.8 and choose $\delta' \in (0, 1)$ such that if $x \in E - \{\infty\}$ (resp., $F - \{\infty\}$) and $y \in \mathbb{R}^n$, $|x - y| < \delta'$ then $y \in E(\delta)$ (resp., $F(\delta)$). Let $r: \mathbb{R}^n \to [0, 1]$ be defined by $r(x) = \varepsilon \delta' \min(1, d(x, \mathbb{R}^n - G))$. Let $g = T_{\varrho, r}$. Suppose $\gamma \in \Gamma$ is locally rectifiable and assume that $\gamma: (a, b) \to G$ is parametrized as in the proof of 4.6. Let $\gamma_y: (a, b) \to G, y \in \mathbb{B}^n(1)$, be the curve defined by $\gamma_y(t) = \gamma(t) + r(\gamma(t))y$. It follows, using the same method as in the proof of 4.6, that γ_y connects $E(\delta)$ and $F(\delta)$. A computation similar to the one in the proof of 4.6 yields

$$\int_{\gamma} g \, ds \geq \frac{1}{(1+\varepsilon)\Omega_n} \int_{B^n(1)} \int_{\gamma_y} \varrho \, ds \, dm(y) \geq \frac{1-\varepsilon}{1+\varepsilon}.$$

The above and lemma 4.3 show $(1+\varepsilon)(1-\varepsilon)^{-1}g\in\mathscr{B}$. Let $M=\inf \int_{\mathbb{R}^n} \varrho^p(x) dm(x)$, where the infimum is taken over all $\varrho\in\mathscr{B}$. Then, by lemma 4.3,

$$M \leq \frac{(1+\varepsilon)^p}{(1-\varepsilon)^p} \|g\|_p^p = \frac{(1+\varepsilon)^p}{(1-\varepsilon)^p} \|T_{\varrho,r}\|_p^p \leq \frac{(1+\varepsilon)^p}{(1-\varepsilon)^p (1-\varepsilon)^n} \|\varrho\|_p^p.$$

Since $\varrho \in \mathscr{B}_1$ and $\varepsilon \in (0, 1)$ are arbitrary and since \mathscr{B}_1 is *p*-complete, it follows from the above that $M \leq M_p(\Gamma)$. This completes the proof since the reverse inequality is trivial.

4.10. Lemma. Suppose $(E \cup F) \cap \partial G = \emptyset$. Let $\varrho: \mathbb{R}^n \to [0, \infty]$ be a Borel function and assume $\varrho | G - (E \cup F \cup \{\infty\})$ is finite valued and continuous. Let $\varepsilon \in (0, \infty)$. Then there exists a locally rectifiable curve $\gamma \in \Gamma$ such that

$$\int_{\gamma} \varrho \, ds \leq L(\varrho) + \varepsilon.$$

Proof. We may assume that $L(\varrho) < \infty$. Let $\{\varepsilon_k\}_{k=1}^{\infty}$ be a sequence of positive numbers such that $\sum_{k=1}^{\infty} \varepsilon_k < \varepsilon/8$. Let $\{r_k\}_{k=1}^{\infty}$ be a strictly monotone decreasing sequence of positive numbers such that (1) $\lim_{k\to\infty} r_k = 0$ and (2) $E(r_k) \cap F(r_k) = \emptyset$.

 $E(r_k), F(r_k) \subset G$, and $\infty \notin \partial E(r_k), \partial F(r_k)$ for k=1,2,... It follows that $\partial E(r_k) \cap E=\emptyset$, $\partial F(r_k) \cap F=\emptyset$ for k=1,2,... Let Γ_k be the curves in G connecting $E(r_k)$ and $F(r_k)$, k=1,2,... Choose $\gamma_k \in \Gamma_k$ such that γ_k is locally rectifiable and

$$\int_{\gamma_k} \varrho \, ds \leq L(\varrho, r_k) + \frac{\varepsilon}{2} \leq L(\varrho) + \frac{\varepsilon}{2}. \tag{4.11}$$

Let x_{kj} (resp., y_{kj}), defined for j < k, the be last (resp., first) point of γ_k in $E(r_j)$ (resp., $F(r_j)$). We have $x_{kj} \in \partial E(r_j)$ and $y_{kj} \in \partial F(r_j)$. By considering successive subsequences and then a diagonal sequence and then relabeling the sequences, we may assume $x_{kj} \rightarrow x_j \in \partial E(r_j)$ and $y_{kj} \rightarrow y_j \in \partial F(r_j)$ as $k \rightarrow \infty$. Let $V_j \subset G - (E \cup F \cup \{\infty\})$ (resp., $W_j \subset G - (E \cup F \cup \{\infty\})$) be an open euclidean ball with center x_j (resp., y_j) such that $\int \varrho ds < \varepsilon_j$ where the integral is taken over any line segment lying in V_j (resp., W_j), $j=1, 2, \ldots$. This can be done since ϱ is continuous on $G - (E \cup F \cup \{\infty\})$ and hence, locally bounded there.

Let Ψ_j (resp., Φ_j) be the set of rectifiable curves $\alpha:[a, b] \rightarrow G$ such that $\alpha(a) \in V_j$ (resp., $\alpha(a) \in W_j$) and $\alpha(b) \in V_{j-1}$ (resp., $\alpha(b) \in W_{j-1}$), j=2, 3, ... Let Λ be the set of rectifiable curves $\alpha:[a, b] \rightarrow G$ such that $\alpha(a) \in V_1$ and $\alpha(b) \in W_1$. For any positive integer k there exists a curve in the sequence $\{\gamma_i\}_{i=1}^{\infty}$, say $\gamma_{i(k)}$, such that $x_{i(k), j} \in V_j$ and $y_{i(k), j} \in W_j$ for j=1, 2, ..., k. This implies that $\gamma_{i(k)}$ has distinct subcurves in $\Psi_2, \Psi_3, ..., \Psi_k, \Phi_2, \Phi_3, ..., \Phi_k, \Lambda$. Hence, for every positive integer k we have, using (4.11),

$$\inf_{\gamma \in A} \int_{\gamma} \varrho \, ds + \sum_{j=2}^{k} \inf_{\gamma \in \Psi_j} \int_{\gamma} \varrho \, ds + \sum_{j=2}^{k} \inf_{\gamma \in \Phi_j} \int_{\gamma} \varrho \, ds \leq \int_{\gamma_{i}(k)} \varrho \, ds \leq L(\varrho) + \frac{\varepsilon}{2}.$$

Since k is arbitrary, we get

$$\inf_{\gamma \in \Lambda} \int_{\gamma} \varrho \, ds + \sum_{j=2}^{\infty} \inf_{\gamma \in \Psi_j} \int_{\gamma} \varrho \, ds + \sum_{j=2}^{\infty} \inf_{\gamma \in \Phi_j} \int_{\gamma} \varrho \, ds \leq L(\varrho) + \frac{\varepsilon}{2}.$$
(4.12)

Choose $\theta \in \Lambda$ such that

$$\int_{\theta} \varrho \, ds < \inf_{\gamma \in \mathcal{A}} \int_{\gamma} \varrho \, ds + \varepsilon_1. \tag{4.13a}$$

Choose $\tau_j \in \Psi_j$, $\sigma_j \in \Phi_j$, j = 2, 3, ..., such that

$$\int_{\tau_j} \varrho \, ds < \inf_{\gamma \in \psi_j} \int_{\gamma} \varrho \, ds + \varepsilon_j \tag{4.13b}$$

and

$$\int_{\sigma_j} \varrho \, ds < \inf_{\gamma \in \Phi_j} \int_{\gamma} \varrho \, ds + \varepsilon_j. \tag{4.13c}$$

Let α_j (resp., β_j) be the line segment in V_j (resp., W_j) connecting the endpoints of τ_j and τ_{j+1} (resp., σ_j and σ_{j+1}), $j=2, 3, \ldots$ Let α_1 (resp., β_1) be the line segment in V_1 (resp., W_1) connecting the endpoints of τ_2 and θ (resp., σ_2 and θ). We have

$$\int_{\alpha_j} \rho \, ds < \varepsilon_j, \quad \int_{\beta_j} \rho \, ds < \varepsilon_j, \quad j = 1, 2, \dots. \tag{4.13d}$$

Let $\gamma \in \Gamma$ be the locally rectifiable curve $\gamma = ... \tau_3 \alpha_2 \tau_2 \alpha_1 \theta \beta_1 \sigma_2 \beta_2 \sigma_3 ...$ We have, by (4.12) and (4.13)

$$\int_{\gamma} \varrho \, ds = \sum_{j=1}^{\infty} \int_{\alpha_j} \varrho \, ds + \sum_{j=1}^{\infty} \int_{\beta_j} \varrho \, ds + \int_{\theta} \varrho \, ds + \sum_{j=2}^{\infty} \int_{\tau_j} \varrho \, ds + \sum_{j=2}^{\infty} \int_{\sigma_j} \varrho \, ds$$
$$\leq \sum_{j=1}^{\infty} \varepsilon_j + \sum_{j=1}^{\infty} \varepsilon_j + \varepsilon_1 + \sum_{j=2}^{\infty} \varepsilon_j + \sum_{j=2}^{\infty} \varepsilon_j + L(\varrho) + \frac{\varepsilon}{2} \leq L(\varrho) + \varepsilon,$$

as desired.

4.14. Lemma. Suppose $(E \cup F) \cap \partial G = \emptyset$. Let $\mathscr{B} \subset \mathscr{J}(\Gamma)$ be the set of $\varrho \in \mathscr{J}(\Gamma)$ such that (1) $\varrho \in 1.s.c.(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ and (2) ϱ is continuous on $G - \{\infty\}$. Then \mathscr{B} is *p*-complete.

Proof. Lemma 4.10 shows that $L(\varrho) \ge 1$ for every ϱ in the *p*-complete family \mathscr{A} defined in lemma 4.6. Hence, this family \mathscr{A} satisfies the hypotheses of lemma 4.9. Therefore, \mathscr{B} is *p*-complete.

4.15. Theorem. Suppose $(E \cup F) \cap \partial G = \emptyset$. Let $\mathscr{C} \subset \mathscr{J}(\Gamma)$ be the set of $\varrho \in \mathscr{J}(\Gamma)$ such that (1) $\varrho \in 1.s.c.(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$, (2) ϱ is continuous on $G - \{\infty\}$, (3) $\varrho(x) \cdot d(x)^{n/p}$ is bounded above for $x \in \mathbb{R}^n$, and (4) $L(\varrho) \ge 1$. Then \mathscr{C} is a p-complete family.

Proof. Choose ϱ in the *p*-complete family \mathscr{B} of lemma 4.14 and let $\varepsilon \in (0, 1)$. Let $g = T_{\varrho, \varepsilon d}$. It follows exactly as in the proof of lemma 4.6 that $\int_{\gamma} g ds \ge (1+\varepsilon)^{-1}$ for every locally rectifiable curve $\gamma \in \Gamma$. An application of lemma 4.3 and lemma 4.10 shows $(1+\varepsilon)g \in \mathscr{C}$. Let $M = \inf \int_{\mathbb{R}^n} \varrho^p(x) dm(x)$ where the infimum is taken over all $\varrho \in \mathscr{C}$. We have, by lemma 4.3,

$$M \leq (1+\varepsilon)^p \|g\|_p^p \leq \frac{(1+\varepsilon)^p}{(1-\varepsilon)^n} \|\varrho\|_p^p = \frac{(1+\varepsilon)^p}{(1-\varepsilon)^n} \int_{\mathbb{R}^n} \varrho^p(x) \, dm(x).$$

Since $\varrho \in \mathscr{B}$ and $\varepsilon \in (0, 1)$ are arbitrary and \mathscr{B} is *p*-complete, it follows that $M \leq M_p(\Gamma)$. Since the reverse inequality is trivial, we are done.

4.16. Comments. (1) Part 2 of lemma 4.6 was proved independently by Aseev [1], Ohtsuka [3, Thm. 2.8], and the author. Lemma 4.10 is modeled after [3, lemma 2.9].

5. Relations between the *p*-modulus and *p*-capacity

5.1 Definition. Let $\gamma : [a, b] \to \mathbb{R}^n$ be a rectifiable curve in \mathbb{R}^n and let $\gamma_0 : [0, L] \to \mathbb{R}^n$ be the arc length parametrization of γ . Let f be an ACL function defined in a neighborhood of $\gamma([a, b]) = \gamma_0([0, L])$. We say f is absolutely continuous on γ if

$$\int_0^t \nabla f \cdot \frac{d\gamma_0}{dt} dt = f \circ \gamma_0(t) - f \circ \gamma_0(0)$$

for all $t \in [0, L]$. The integrand is the inner product of $d\gamma_0/dt$ and ∇f =the gradient of f. We use the convention that $\partial f/\partial x_i = 0$ at points x where $\partial f/\partial x_i$ is not defined. The above definition differs slightly from [5, Def. 5.2] in that we require a little more than the absolute continuity of $f \circ \gamma_0$.

5.2. Lemma. $M_p(\Gamma) \leq \operatorname{cap}_p(E, F, G)$.

Proof. Let $u \in \mathscr{A}(E, F, G) \cap L^{p}(G)$. Let Γ_{0} be the locally rectifiable curves $\gamma \in \Gamma$ for which u is absolutely continuous on every rectifiable subcurve of γ . Define $\varrho: \mathbb{R}^{n} \to [0, \infty]$ by

$$\varrho(x) = \begin{cases} |\nabla u(x)| & \text{if } x \in G - \{\infty\} \\ 0 & \text{if } x \in R^n - G. \end{cases}$$

Suppose $\gamma \in \Gamma_0$ and $\gamma:(a, b) \to G$ is parametrized as in the proof of lemma 4.6. If $a < t_1 < t_2 < b$ then

$$\int_{\gamma} \varrho \, ds = \int_{a}^{b} \varrho \circ \gamma(t) \, dt \ge \int_{t_{1}}^{t_{2}} \left| \nabla u(\gamma(t)) \right| \, dt \ge \left| \int_{t_{1}}^{t_{2}} \nabla u(\gamma(t)) \cdot \frac{d\gamma}{dt} \, dt \right|$$
$$= |u \circ \gamma(t_{2}) - u \circ \gamma(t_{1})|.$$

Since t_1 and t_2 are arbitrary, the above implies $\int_{\gamma} \rho \, ds \ge 1$. Hence, $\rho \in \mathscr{J}(\Gamma_0)$. Therefore

$$M_p(\Gamma_0) \leq \int_{\mathbb{R}^n} \varrho^p(x) \, dm(x) = \int_G |\nabla u(x)|^p \, dm(x)$$

By a theorem of Fuglede [5, Thm. 28.2] we have $M_p(\Gamma) = M_p(\Gamma_0)$. Therefore,

$$M_p(\Gamma) \leq \int_G |\nabla u(x)|^p \, dm(x).$$

Since $u \in \mathcal{A}(E, F, G) \cap L^{p}(G)$ is arbitrary, we get the desired result.

5.3. Lemma. Let U be a domain in \mathbb{R}^n , let $g: U \to [0, \infty)$ be continuous and suppose K is a non-empty bounded compact set with $K \subset U$. Define $f: U \to [0, \infty)$ by $f(x) = = \inf \int_{\beta} g \, ds$ where the infimum is taken over all rectifiable curves $\beta: [a, b] \to U$ with $\beta(a) \in K$ and $\beta(b) = x$. Then, (1) if the closed line segment $[x_1, x_2]$ lies in U then

$$|f(x_2) - f(x_1)| \le \max_{x \in [x_1, x_2]} g(x) |x_2 - x_1|$$
(5.4)

and (2) if $f: U \rightarrow [0, \infty)$ satisfies (5.4) then f is differentiable a.e. in U and $|\nabla f(x)| \leq g(x)$ a.e. in U.

Proof. Let β be a rectifiable curve connecting K and x_1 . Then

$$f(x_2) \leq \int_{\beta} g \, ds + \int_{[x_1, x_2]} g \, ds \leq \int_{\beta} g \, ds + \max_{x \in [x_1, x_2]} g(x) |x_2 - x_1|.$$

Since β is arbitrary, we get

$$f(x_2) \leq f(x_1) + \max_{x \in [x_1, x_2]} g(x) |x_2 - x_1|.$$

In a similar way, we get

$$f(x_1) \leq f(x_2) + \max_{x \in [x_1, x_2]} g(x) |x_2 - x_1|.$$

This proves (5.4).

If f satisfies (5.4) then f is locally Lipschitz continuous in U and therefore, by the theorem of Rademacher and Stepanov [5, Thm. 29.1], f is differentiable a.e. in U. Suppose now that $x_0 \in U$ is a point of differentiability of f. Then $f(x_0+h)$ $-f(x_0) = \nabla f(x_0) \cdot h + |h| \varepsilon(h)$ where $h \in \mathbb{R}^n$ and $\lim \varepsilon(h) = 0$ as $h \to 0$. For small $t \in (0, 1)$ let $h = t \nabla f(x_0) / |\nabla f(x_0)|$. Substituting in the above formula gives $||\nabla f(x_0)| + \varepsilon(h)|$ $\leq \max_{x \in [x_0, x_0+h]} g(x)$. If we let $t \to 0$ we get $|\nabla f(x_0)| \leq g(x_0)$, as desired.

5.5. Theorem. Suppose $(E \cup F) \cap \partial G = \emptyset$. Then $M_p(\Gamma) = \operatorname{cap}_p(E, F, G)$.

Proof. It suffices, by lemma 5.2, to prove

$$\operatorname{cap}_{p}(E, F, G) \leq M_{p}(\Gamma).$$
(5.6)

We assume, without any loss of generality, that E is bounded and we let $\mathscr{C} \subset \mathscr{J}(\Gamma)$ be as in theorem 4.15. The proof is divided into four cases.

Case 1. Suppose $\infty \notin G$. Let $\varrho \in \mathscr{C}$ and define $u: G \to [0, \infty)$ by $u(x) = \min(1, \inf \int_{\beta} \varrho \, ds)$ where the infimum is taken over all rectifiable curves β in G connecting E and x. It follows, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leq \varrho$ a.e. in G. Therefore

$$\operatorname{cap}_p(E, F, G) \leq \int_G |\nabla u|^p \, dm \leq \int_{\mathbb{R}^n} \varrho^p.$$

Since $\varrho \in \mathscr{C}$ is arbitrary and \mathscr{C} is *p*-complete, we get (5.6).

Case 2. Suppose $\infty \in G$ and $\infty \in F$. Choose $\varrho \in \mathscr{C}$ and $\varepsilon \in (0, 1)$. Since $L(\varrho) \ge 1$ we can choose a small $r \in (0, 1)$ so $\int_{\gamma} \varrho ds \ge 1-\varepsilon$ for every locally rectifiable curve γ in G connecting E(r) and F(r). Define $u:G - \{\infty\} \to [0, \infty)$ by u(x) $= \min(1, (1-\varepsilon)^{-1} \inf \int_{\beta} \varrho ds)$ where the infimum is taken over all rectifiable curves β in G connecting E(r) and x. Since u is identically 1 in a deleted neighborhood of ∞ , we see that *u* extends continuously to all of *G*. It follows, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leq (1-\varepsilon)^{-1} \rho$ a.e. in *G*. Therefore,

$$\operatorname{cap}_p(E, F, G) \leq \int_G |\nabla u|^p \, dm \leq (1-\varepsilon)^{-p} \int_{\mathbb{R}^n} \varrho^p \, dm.$$

Since $\rho \in \mathscr{C}$ and $\varepsilon \in (0, 1)$ are arbitrary and \mathscr{C} is *p*-complete, we get (5.6).

Case 3. Suppose $\infty \in G$, $\infty \notin F$ and $1 . Choose <math>\varrho \in \mathscr{C}$. Since $((\overline{R}^n - G) \cup E \cup F) - \{\infty\}$ lies inside some ball, it follows that $|x| \leq \text{constant} \cdot d(x)$ for large |x|. Therefore,

$$\varrho(x) \le C|x|^{-n/p} \tag{5.7}$$

for some constant $C \in (0, \infty)$ and all large |x|, say $|x| > r_0$. Define $v: G - \{\infty\} \to [0, \infty)$ by $v(x) = \inf \int_{\beta} \varrho \, ds$ where the infimum is taken over all rectifiable curves β connecting E and x. We proceed to show that $v(\infty)$ can be defined continuously. Set $v(\infty) = \inf \int_{\beta} \varrho \, ds$ where the infimum is taken over all continuous β such that $\beta: [a, b] \to G$ with $\beta(a) \in E, \beta(b) = \infty$ and $\beta [[a, t]$ is rectifiable for all $t \in [a, b]$. Choose any $x_0 \in \mathbb{R}^n$ so that the curve $[x_0, \infty]$ lies in G, where $[x_0, \infty](t) = tx_0, t \in [1, \infty]$. Let γ by any rectifiable curve in G connecting E and x_0 . Let β the curve obtained by connecting the curves γ and $[x_0, \infty]$. Then

$$v(\infty) \leq \int_{\beta} \varrho \, ds = \int_{\gamma} \varrho \, ds + \int_{[x_0, \infty]} \varrho \, ds.$$

Clearly $\int_{\gamma} \rho \, ds$ is finite and $\int_{[x_0,\infty]} \rho \, ds$ is finite by the estimate (5.7) and the fact that 1 < n/p. Hence $v(\infty)$ is finite. Choose $r \in (r_0,\infty)$ large enough so that the complement in \overline{R}^n of $\overline{B^n(0,r)}$ lies in G and $E \subset B^n(0,r)$. Let $x_0 \in G - \{\infty\}$ and $|x_0| > r$.

Suppose β is a rectifiable curve in G connecting E and x_0 . We have

$$v(\infty) \leq \int_{\beta} \varrho \, ds + \int_{[x_0,\infty]} \varrho \, ds \leq \int_{\beta} \varrho \, ds + C \int_{r}^{\infty} t^{-n/p} \, dt.$$

Since the above is true for all such β , we get

$$v(\infty) - v(x_0) \le c \int_r^\infty t^{-n/p} dt.$$
(5.8a)

Suppose now that β is a curve connecting E and ∞ and is of the type used in defining $v(\infty)$. Let τ be a curve which is part of a great circle on the sphere $\{x \in \mathbb{R}^n : |x| = |x_0|\}$ and which connects x_0 and y_0 where y_0 is some point on the curve β . Let β_1 be a subcurve of β connecting E and y_0 . We have

$$v(x_0) \leq \int_{\beta_1} \varrho \, ds + \int_{\tau} \varrho \, ds \leq \int_{\beta} \varrho \, ds + \int_{\tau} \varrho \, ds.$$

Also,

$$\int_{\tau} \varrho \, ds \leq \frac{C}{|x_0|^{n/p}} \cdot \operatorname{length}(\tau) \leq 2\pi C |x_0|^{1-n/p}.$$

Hence

$$v(x_0) \leq \int_{\beta} \varrho \, ds + 2\pi C |x_0|^{1-n/p} \leq \int_{\beta} \varrho \, ds + 2\pi C r^{1-n/p}.$$

Since the above is true for all β connecting E and ∞ , we have

$$v(x_0) - v(\infty) \le 2\pi C r^{1 - n/p}.$$
 (5.8b)

Relations (5.8) show v is continuous at ∞ .

Define $u: G \rightarrow [0, \infty)$ by $u(x) = \min(1, v(x))$. Then it follows, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \leq \varrho$ a.e. in G. Therefore

$$\operatorname{cap}_p(E, F, G) \leq \int_G |\nabla u|^p \, dm \leq \int_{\mathbb{R}^n} \varrho^p \, dm.$$

Since $\rho \in \mathscr{C}$ is arbitrary and \mathscr{C} is *p*-complete, we get (5.6).

Case 4. Suppose $\infty \in G$, $\infty \notin F$ and $p \ge n$. Define $\theta : \mathbb{R}^n \to [0, 1]$ by

$$\theta(x) = \begin{cases} 1/e & \text{if } |x| \leq e \\ 1/(|x| \log |x|) & \text{if } |x| > e. \end{cases}$$

It is straightforward to verify that $\theta \in L^p(\mathbb{R}^n)$ and $\int_0^\infty \theta(|x|) d|x| = \infty$. Choose $\varrho \in \mathscr{C}$ and $\varepsilon \in (0, 1)$. Let $\varrho' = \varrho + \varepsilon \theta$. Define $u: G - \{\infty\} \rightarrow [0, \infty)$ by $u(x) = \min(1, \inf \int_\beta \varrho' ds)$ where the infimum is taken over all rectifiable β in G connecting E and x. Choose $r \in (0, \infty)$ so that $E \subset B^n(0, r)$. If $|x_0| > r$ and if β connects E and x_0 then

$$\int_{\beta} \varrho' \, ds \ge \varepsilon \int_{\beta} \theta \, ds \ge \varepsilon \int_{r}^{|\mathbf{x}_{0}|} \theta(|\mathbf{x}|) \, d|\mathbf{x}|.$$

It follows that if $|x_0|$ is large then $\int_{\beta} \varrho' ds \ge 1$. Therefore, *u* extends continuously to $u: G \rightarrow [0, \infty)$. We get, using lemma 5.3, that $u \in \mathscr{A}(E, F, G)$ and $|\nabla u| \le \varrho'$ a.e. in *G*. Hence,

$$\operatorname{cap}_p(E, F, G) \leq \int_G |\nabla u|^p \, dm \leq \int_{\mathbb{R}^n} (\varrho + \varepsilon \theta)^p \, dm.$$

Since $\rho \in \mathscr{C}$ and $\varepsilon \in (0, 1)$ are arbitrary and \mathscr{C} is *p*-complete, we get (5.6).

We use the previous theorem to prove a continuity theorem for the modulus.

5.9. Theorem. Suppose $E_1 \supset E_2 \supset ...$ and $F_1 \supset F_2 \supset ...$ are disjoint sequences of non-empty compact sets in a domain G. Then

$$\lim_{i\to\infty} M_p(E_i, F_i, G) = M_p\left(\bigcap_{i=1}^{\infty} E_i, \bigcap_{i=1}^{\infty} F_i, G\right).$$

Proof. The theorem follows immediately from theorems 5.5 and 3.3.

5.10. Comment. The reader may wish to compare the proof of 5.6 with Ziemer's proof [7]. Ziemer defines a function u derived from a density ϱ in a way that is similar to the one in this paper. Ziemer's technique will not work for the situation considered in this paper since the "limiting curve" of [7, lemma 3.3] need not necessarily lie in G. The present proof "works" because there is a *p*-complete family of densities ϱ with $L(\varrho) \ge 1$.

References

- 1. ASEEV, V. V., A certain module property, Dokl. Akad. Nauk. SSSR 200 (1971), pp. 513-514.
- 2. GEHRING, F. W., Extremal length definitions for the conformal capacity in space, *Michigan Math.* J. 9 (1962), pp. 137-150.
- 3. OHTSUKA, M., Extremal length and precise functions in 3-space, to appear.
- 4. RUDIN, W., Real and complex analysis, McGraw-Hill Book Company, New York (1966).
- 5. VÄISÄLÄ, J., Lectures on n-dimensional quasiconformal mappings, Springer-Verlag lecture notes 229 (1971).
- 6. VARBERG, D. E., Change of variables in multiple integrals, American Mathematical Monthly 78 (1971), pp. 42-45.
- 7. ZIEMER, W. P., Extremal length and p-capacity, Michigan Math. J. 16 (1969), pp. 43-51.

Received April 11, 1974

Joseph Hesse University of Iowa Division of Mathematical Sciences Iowa City, Iowa 52240 USA

144