An application of a general Tauberian remainder theorem

Sonja Lyttkens

1. Introduction

Let Φ be a real-valued, measurable and bounded function on **R** and let $F \in L^1(\mathbf{R})$. Introduce the Fouriertransform \hat{F} of F

$$\hat{F}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} F(x) \, dx$$

and the convolution

$$\Phi * F(x) = \int_{-\infty}^{\infty} \Phi(x-y) F(y) \, dy.$$

Let us consider a Tauberian relation of the form

(1.1) $|\Phi * F(x)| \leq \varrho(x), \quad x \geq x_0$

where $\varrho \searrow$

In an earlier paper [6] a new method was developed and a new set of conditions on \hat{F} were introduced in order to derive an estimate of $|\Phi(x)|$ as $x \to \infty$ from (1.1) and a Tauberian condition for Φ . As an application such results were proved when $1/\hat{F}(\zeta)$, $\zeta = \xi + i\eta$, is analytic in a strip $-\gamma < \eta < \gamma$ around the real axis and the order of magnitude of $1/\hat{F}$ in this strip is known.

In the present paper I use the results in [6] and a lemma for analytic functions proved in Section 2 below to obtain corresponding results when $1/\hat{F}$ is analytic in the strip $0 < \eta < \gamma$ only and the order of magnitude of $1/\hat{F}$ in this strip is known. In this way some new results are obtained. For instance, Theorem 1 in Section 3 below uses no condition on the derivative of $1/\hat{F}$, a condition which is imposed in all earlier theorems of this type (but for the partial result contained in Theorem 1 in [5]). In Theorems 2 and 3 conditions are imposed also on the derivative of $1/\hat{F}$. Theorem 2 extends earlier results of Ganelius and Frennemo and Theorem 3 deals with the case when the 'remainder' $\varrho(x)$ in (1.1) is majorized by $e^{-\alpha x}$ for some $\alpha \ge \gamma$. In 3.3 I also consider the case when $1/\hat{F}(\zeta), \zeta = \xi + i\eta$, is analytic in a domain $0 < \eta < \gamma(\zeta)$ which tapers off at infinity. Theorems 4 and 5 deal with this case. The theorems are stated for the Tauberian condition $\Phi(x)+Kx \nearrow$, $x > x_0$, for some positive constant K. It is easy to see that corresponding results for the more general Tauberian condition used in 4.2 in [6] can be obtained in an analogous way.

The estimates obtained in Theorems 4 and 5 are best possible and the same holds true for Theorems 1–3 for a wide range of majorants of $1/\hat{F}$ and remainders ϱ .

All functions are supposed to be measurable. I use the notations

and

$$M_{s}\{f; a, b\} = \left(\int_{a}^{b} |f(x)|^{s} dx\right)^{1/s}$$
$$\|f\|_{s} = M_{s}\{f; -\infty, \infty\}.$$

2. A result for analytic functions

2.1. Preliminaries

Let γ be a positive, even function on **R** such that $\gamma(\xi) \setminus$, $\xi \ge 0$. Let $\zeta = \xi + i\eta$ and let D_{γ} denote the domain

(2.1.1)
$$D_{\gamma} = \{\zeta; 0 < \eta < \gamma(\xi)\}.$$

Let $W_0(X) \nearrow$, $X \ge 0$, and introduce the class $\mathscr{A}_0 = \mathscr{A}_0(\gamma; W_0)$ of functions g on **R** as follows.

Definition. $g \in \mathscr{A}_0(\gamma; W_0)$ if $g(\xi)$, $\xi \in \mathbb{R}$, are continuous boundary values of a function g analytic in D_{γ} and such that

$$(2.1.2) \qquad M_2\{g(\xi+i\delta); -X, X\} \leq W_0(X), \quad 0 \leq \delta < \gamma(X), \quad X \geq X_0.$$

Let
$$W_1(X) \nearrow X \ge 0$$
 and

(2.1.3)
$$\lim_{X\to\infty} W_0(X)/XW_1(X) \leq 1.$$

Introduce the function

$$(2.1.4) W = \sqrt{W_0 W_1}.$$

The class $\mathscr{A}_1 = \mathscr{A}_1(\gamma; W_0, W_1)$ is defined as follows.

Definition. $g \in \mathcal{A}_1(\gamma; W_0, W_1)$ if $g \in \mathcal{A}_0(\gamma; W_0)$ and

(2.1.5)
$$M_2\{g'(\xi+i\delta); -X, X\} \leq W_1(X), \quad 0 < \delta < \gamma(X), \quad X \geq X_0.$$

If $g \in \mathscr{A}_0(\gamma; W_0)$ then $g(\xi + i\delta) \rightarrow g(\xi)$, $\delta \rightarrow 0+$, uniformly on every compact interval. Hence, for every a > 0,

$$(2.1.6) M_2\{g(\xi+i\delta)-g(\xi); -a, a\} \to 0, \quad \delta \to 0+.$$

An application of a general Tauberian remainder theorem

Let us now prove that if $g \in \mathscr{A}_1(\gamma; W_0, W_1)$ then $g'(\xi + i\delta) \rightarrow g'(\xi), \delta \rightarrow 0+$, almost everywhere on the real axis and, for every a > 0,

$$(2.1.7) M_2\{g'(\xi+i\delta)-g'(\xi); -a, a\} \to 0, \quad \delta \to 0+.$$

Choose b > a such that

(2.1.8)
$$\int_{0}^{\gamma(b)} \left(|g'(b+i\eta)|^2 + |g'(-b+i\eta)|^2 \right) d\eta < \infty,$$

and let ω denote the open interval (-b, b). The assumption (2.1.5) implies that there is a function $h \in L^2(\omega)$ and a sequence $(\delta_n)_1^{\infty}$ such that $\delta_n \to 0+$, $n \to \infty$, and $g'(\xi + i\delta_n)$ converges weakly in $L^2(\omega)$ to $h(\xi)$ as $n \to \infty$. By using the identity

$$g(\xi+i\delta_n)-g(-b+i\delta_n)=\int_{-b}^{\xi}g'(t+i\delta_n)\,dt,\quad \xi\in\omega,\quad 0<\delta_n<\gamma(b)$$

and letting $n \rightarrow \infty$ we thus obtain

$$g(\xi)-g(-b)=\int_{-b}^{\xi}h(t)\,dt,\quad \xi\in\omega.$$

It follows that g' = h a.e. on ω . Thus $g' \in L^2(\omega)$ and

(2.1.9)
$$\lim_{n \to \infty} \int_{-b}^{b} g'(t+i\delta_n) k(t) dt = \int_{-b}^{b} g'(t) k(t) dt, \quad k \in L^2(\omega).$$

Let K_{δ} , $0 \le \delta < \gamma(b)$, denote the open rectangle with corners in $\pm b + i\delta$, $\pm b + i\gamma(b)$, let Γ_{δ} denote its boundary and put $K = K_0$, $\Gamma = \Gamma_0$. If $\zeta \in K$ then by representing $g'(\zeta)$ by its Cauchy integral over Γ_{δ_n} , $n > n_0$ and letting $n \to \infty$ we obtain from (2.1.8) and (2.1.9) that $g'(\zeta)$ may be represented by its Cauchy integral over Γ . Therefore

$$g'(\zeta) = \frac{1}{2\pi i} \int_{\Gamma-\omega} \frac{g'(w)}{w-\zeta} dw + \frac{1}{2\pi i} \int_{\omega} \frac{g'(w)}{w-\zeta} dw = \varphi_1(\zeta) + \varphi_2(\zeta), \quad \zeta \in K.$$

The function φ_1 is analytic on ω and hence $\varphi_1(\xi + i\delta) \rightarrow \varphi_1(\xi)$ as $\delta \rightarrow 0+$, uniformly on (-a, a). The function φ_2 is analytic in the upper half-plane. By using well-known results for the Hilbert transform (see [7], Theorems 91 and 93) it is easy to see that there is a function $\varphi_2 \in L^2(\mathbf{R})$ such that $\varphi_2(\xi + i\delta) \rightarrow \varphi_2(\xi)$, $\delta \rightarrow 0+$, almost everywhere on **R** and

$$\|\varphi_2(\xi+i\delta)-\varphi_2(\xi)\|_2\to 0, \quad \delta\to 0+.$$

Let $\varphi(\xi) = \varphi_1(\xi) + \varphi_2(\xi)$. From the above results for φ_1 and φ_2 it follows that $g'(\xi + i\delta) \rightarrow \varphi(\xi), \delta \rightarrow 0+$, almost everywhere on ω and $M_2\{g'(\xi + i\delta) - \varphi(\xi); -a, a\} \rightarrow 0, \delta \rightarrow 0+$, the last result by using Minkowski's inequality. Now $g'(\xi + i\delta_n)$ converges weakly in $L^2(\omega)$ to $g'(\xi)$ as $n \rightarrow \infty$ and hence $\varphi = g'$ a.e. on ω . Thus the result stated is proved.

2.2. A fundamental lemma

The lemma below connects the classes \mathscr{A}_0 and \mathscr{A}_1 with the classes \mathscr{B}_2 and \mathscr{B}_1 introduced in 2.6 in [6] and thus makes it possible to apply the Tauberian theorems in [6] if $1/\hat{F}$ belongs to \mathscr{A}_0 or \mathscr{A}_1 .

Lemma. Let $g \in \mathcal{A}_0(\gamma; W_0)$. Then for every $X \ge \max(X_0, 2\gamma(0))$, there exist functions $f = f_X$ and $k = k_X$ in $L^2(\mathbf{R})$ such that

$$(2.2.1) g(\xi) = f(\xi) + k(\xi), \quad -X \leq \xi \leq X,$$

where k is the Fourier transform in the L²-sense of a function $K = K_X$ such that K(x) = 0, x > 0,

 $||K||_2 \le (2\pi)^{-1/2} W_0(2X)$

and

 $||K||_{\infty} \le 2X^{1/2} W_0(2X)$

and f satisfies

$$(2.2.4) M_2\{f^{(n)}; -X, X\} \le 2n! W_0(2X)\gamma(2X)^{-n}, \quad n = 0, 1, 2, \dots$$

Let us further suppose that $g \in \mathscr{A}_1(\gamma; W_0, W_1)$ and let W be defined by (2.1.4). Then there exists X_1 such that if $X \ge X_1$ then it also holds true that

$$||K||_{\infty} \leq 3XW(2X)$$

$$(2.2.6) ||K||_1 \le 2W(2X)$$

and

$$(2.2.7) M_2\{f^{(n)}; -X, X\} \leq 5(n-1)! W_1(2X) \gamma(2X)^{1-n}, \quad n=1, 2, \dots$$

Proof. Let us suppose that $g \in \mathscr{A}_0(\gamma; W_0)$ and let us choose $X \ge \max(X_0, 2\gamma(0))$ and put $\beta = \gamma(2X)$ and $a = X + \beta$. Then g is analytic in the rectangle $|\xi| < 2X$, $0 < \eta < \beta$ and

(2.2.8)
$$M_2\{g(\xi+i\delta); -2X, 2X\} \leq W_0(2X), \quad 0 \leq \delta < \beta.$$

Let $u(\xi)$, $\xi \in \mathbb{R}$ be continuous, $u(\xi)=1$, $|\xi| \le a$, $u(\xi)=0$, $|\xi| \ge 2X$ and u linear over the remaining intervals. Since $a=X+\beta<2X$ we have

$$||ug||_2 \leq W_0(2X).$$

Introduce the inverse Fourier transform of ug,

$$G = (ug)^{\vee}.$$

Parseval's relation yields

 $||G||_2 \le (2\pi)^{-1/2} W_0(2X)$

and using Schwarz' inequality we have

$$(2.2.11) ||G||_{\infty} \le ||ug||_1 \le 2X^{1/2} W_0(2X).$$

Let *H* denote the Heaviside function, H(x)=1, x>0, H(x)=0, x<0 and let $f=(GH)^{\wedge}$ and $k=(G(x)H(-x))^{\wedge}$, the transforms being in the L²-sense. Then K(x)==G(x)H(-x) satisfies (2.2.2) and (2.2.3) according to (2.2.10) and (2.2.11). Furthermore, f+k=ug, a.e. on the real axis and hence

(2.2.12)
$$f(\xi) + k(\xi) - g(\xi) = 0$$
, a.e. on $(-a, a)$.

To prove (2.2.1) and (2.2.4) let $\zeta = \xi + i\eta$ and introduce the functions

$$f(\zeta) = \int_0^\infty e^{-i\zeta x} G(x) \, dx, \quad \eta < 0, \quad k(\zeta) = \int_{-\infty}^0 e^{-i\zeta x} G(x) \, dx, \quad \eta > 0.$$

These functions are analytic in the domains where they are defined,

(2.2.13)
$$\lim_{\delta \to 0+} f(\xi - i\delta) = f(\xi) \quad \text{a.e.,} \quad \lim_{\delta \to 0+} g(\xi + i\delta) = g(\xi) \quad \text{a.e. and} \\ \|f(\xi - i\delta) - f(\xi)\|_2 + \|k(\xi + i\delta) - k(\xi)\|_2 \to 0, \quad \delta \to 0+,$$

(see [7], Theorems 93 and 95). Furthermore, by Parseval's relation and (2.2.10)

(2.2.14)
$$\|f(\xi - i\delta)\|_2^2 + \|k(\xi + i\delta)\|_2^2 \leq W_0^2(2X), \quad \delta > 0.$$

Now, by Minkowski's inequality and (2.2.12)

$$M_2\{f(\xi-i\delta)+k(\xi+i\delta)-g(\xi+i\delta); -a, a\} \leq \leq \|f(\xi-i\delta)-f(\xi)\|_2+\|k(\xi+i\delta)-k(\xi)\|_2+M_2\{g(\xi+i\delta)-g(\xi); -a, a\}, \\ 0<\delta<\beta.$$

Hence, by (2.1.6) and (2.2.13)

$$(2.2.15) \qquad M_2\left\{f(\xi-i\delta) - \left(g(\xi+i\delta) - k(\xi+i\delta)\right); -a, a\right\} \to 0, \quad \delta \to 0+1$$

The function f is analytic in the lower half-plane and the function g-k is analytic in the rectangle $-a < \xi < a$, $0 < \eta < \beta$. The relation (2.2.15) implies that f can be analytically continued across the interval (-a, a) by g-k. Therefore f is continuous on (-a, a). The function g has continuous boundary values on (-a, a) by assumption and hence k has continuous boundary values on (-a, a). Since X < a the identity (2.2.1) thus follows from (2.2.12).

To prove (2.2.4) let ψ denote the analytic function which equals f in the lower half-plane and equals g-k in D_y . Then

$$M_2\{\psi(\xi-i\delta); -a, a\} \leq \|f(\xi-i\delta)\|_2, \quad 0 \leq \delta,$$

 $M_2\{\psi(\xi+i\delta); -a, a\} \le M_2\{g(\xi+i\delta); -a, a\} + \|k(\xi+i\delta)\|_2, \quad 0 < \delta < \beta,$ and hence, by (2.2.8) and (2.2.14)

(2.2.16)
$$\left(\int_{-a}^{a} |\psi(\xi+i\eta)|^2 d\xi\right)^{1/2} \leq 2W_0(2X), \quad \eta < \beta.$$

The function ψ is analytic in the rectangle $|\xi| < a$, $|\eta| < \beta$. Therefore, Cauchy's formula and an application of Schwarz' inequality yield

$$|\psi^{(n)}(\xi)|^2 = \left|\frac{n!}{2\pi\beta^n}\int_0^{2\pi}\psi(\xi+\beta e^{i\theta})e^{-in\theta}\,d\theta\right|^2 \leq \frac{1}{2\pi}\left(\frac{n!}{\beta^n}\right)^2\int_0^{2\pi}|\psi(\xi+\beta e^{i\theta})|^2\,d\theta.$$

Integrating over the interval $(-a+\beta, a-\beta)$ and inverting the order of integration we have

$$\int_{-a+\beta}^{a-\beta} |\psi^{(n)}(\xi)|^2 d\xi \leq \frac{1}{2\pi} \left(\frac{n!}{\beta^n}\right)^2 \int_0^{2\pi} d\theta \int_{-a+\beta}^{a-\beta} |\psi(\xi+\beta e^{i\theta})|^2 d\xi.$$

The inner integral can be majorized by $4W_0^2(2X)$ according to (2.2.16). Since $X=a-\beta$, $\beta=\gamma(2X)$ and $\psi=f$ on the interval (-a, a) this proves (2.2.4).

Let us now prove the results under the assumption $g \in \mathscr{A}_1(\gamma; W_0, W_1)$. Choose α , $1 < \alpha \leq 9/8$. According to (2.1.3) there exists $X_1, X_1 \geq \max(X_0, \alpha(\alpha-1)^{-1}\gamma(0))$, such that

(2.2.17)
$$W_0(2X) \leq 2\alpha X W_1(2X), \quad X \geq X_1.$$

Choose X, $X \ge X_1$, and introduce $\beta = \gamma(2X)$, $a = X + \beta$ and the functions u, G, f, K and ψ as before. Combining (2.2.3) and (2.2.17) we have $||K||_{\infty} \le 2^{3/2} \alpha^{1/2} X W(2X)$ which proves (2.2.5). Furthermore $|u'(\xi)| = (2X - a)^{-1} \le \alpha X^{-1}$, $a < |\xi| < 2X$, $u'(\xi) = 0$, $|\xi| < a$, and u vanishes outside (-2X, 2X). Thus (2.2.8) and (2.2.17) yield

$$\|u'g\|_{2} \leq \alpha X^{-1}W_{0}(2X) \leq 2\alpha^{2}W_{1}(2X)$$

and the assumptions for g' imply that $||ug'||_2 \leq W_1(2X)$. Hence

(2.2.18)
$$\left\| \frac{d}{d\xi} \left(u(\xi) g(\xi) \right) \right\|_{2} \leq (1 + 2\alpha^{2}) W_{1}(2X)$$

Now, by an inequality by Carlson and Beurling, $||G||_1 \leq ||\hat{G}||_2 ||\hat{G}'||_2$. By applying this inequality with $\hat{G} = ug$ and using (2.2.9) and (2.2.18) we get

$$\|G\|_{1} \leq (1+2\alpha^{2})^{1/2} W(2X),$$

which proves (2.2.6).

To prove (2.2.7) we observe that

(2.2.19)
$$||f'(\xi - i\delta)||_2^2 + ||k'(\xi + i\delta)||_2^2 \le \left\|\frac{d}{d\xi} \left(u(\xi)g(\xi)\right)\right\|_2^2, \quad \delta > 0.$$

By using (2.2.18), (2.2.19), the definition of ψ and the assumptions for g' we obtain

(2.2.20)
$$\left(\int_{-a}^{a} |\psi'(\xi+i\eta)|^2 d\xi\right)^{1/2} \leq 2(1+\alpha^2) W_1(2X), \quad \eta < \beta.$$

The inequality (2.2.7) then follows from (2.2.20) in the same way as (2.2.4) was derived from (2.2.16). This completes the proof of the lemma.

In some cases when $g'(\zeta) \to 0$ as $|\zeta| \to \infty$, $\zeta \in D_{\gamma}$, it is better to use L^s -estimates instead of L^2 -estimates. In this way the following result is obtained.

Remark. Let s be constant, $1 < s \le 2$, and 1/s + 1/s' = 1. Let g satisfy the conditions in the definition of \mathscr{A}_1 but for the fact that M_2 is replaced by M_s in (2.1.2) and (2.1.5). Then there is X_1 such that, for every $X \ge X_1$, (2.2.1) holds true, where $k = \hat{K}$, K(x) = 0, x > 0, and, but for a constant factor depending on s, the inequalities (2.2.4)—(2.2.7) hold true if M_2 is replaced by M_s and W is replaced by $W_0^{1/s'} W_1^{1/s}$.

3. Tauberian theorems

3.1. Preliminaries

Let Φ be bounded on **R** and $F \in L^1(\mathbf{R})$. Let us consider a Tauberian relation of the type

$$(3.1.1) \qquad |\Phi * F(x)| \leq \varrho(x), \quad x \geq x_0,$$

where $1/\hat{F}$ belongs to the class $\mathscr{A}_0(\gamma; W_0)$ or $\mathscr{A}_1(\gamma; W_0, W_1)$ introduced in Section 2 and ϱ belongs to the class \mathscr{E} defined in 3.1 in [6]. This means that $\varrho > 0$, $\varrho \searrow$ and for every $\varepsilon > 0$ there exist x_{ε} and δ_{ε} such that

$$\varrho(x-y) \leq (1+\varepsilon)\varrho(x), \quad x \geq x_{\varepsilon}, \quad 0 \leq y \leq \delta_{\varepsilon}.$$

For the sake of simplicity I also introduce the following regularity conditions on ϱ and on the functions W_n , n=0, 1. Note that the condition (3.1.3) below makes ϱ regular in the sense introduced in 4.3 in [6].

If $S(x) \neq x > x_0$, let χ_s denote the function

(3.1.2)
$$\chi_{S}(x) = \frac{xD^{+}S(x)}{S(x)}$$

Let $\lim_{X\to\infty} (\log W_n(X))^{-1} (\log \log W_n(X))^{-1} \chi_{W_n}(X)$ exist, finite or infinite and let $r=1/\varrho$ satisfy

(3.1.3)
$$\lim_{x\to\infty} (\log x)^{-1} \log \chi_r(x) = \omega.$$

These assumptions are maintained throughout the present paper.

Let $v(x) \nearrow$, $x \ge 0$, v(x) > 1, x > 0 and introduce the class R[v] as in 2.3 in [6] by the following definition.

Definition. $\varrho \in R[v]$ if $\varrho > 0$, $\varrho \setminus , \varrho(x) \to 0$, $x \to \infty$ and $\varrho(x-y) \leq \varrho(x)v(y)$, $y \geq 0$, $x \in \mathbb{R}$.

In the theorems below I impose a condition of the type $\varrho \in R[v]$, where v is a function determined by the class $\mathscr{A}_0(\gamma; W_0)$ or $\mathscr{A}_1(\gamma; W_0, W_1)$ respectively. This

condition can always be replaced by $\rho \in R[bv]$ for some constant b > 1 and the same result will hold true but for the fact that the constants will depend also on b.

For the sake of simplicity I use the following Tauberian condition. Let, for some positive constant K,

$$(3.1.4) \qquad \qquad \Phi(x) + Kx \nearrow, \quad x \ge x_0.$$

This condition may be weakened in the following way. If the result of the theorem is $\Phi(x) = O(\sigma(x)), x \to \infty$, then (3.1.4) may be replaced by

$$(3.1.5) \qquad \qquad \mathbf{x}'(x) - \Phi(x+y) \leq K\sigma(x), \quad 0 < y \leq \sigma(x), \quad x \geq x_0$$

and the same result will be valid.

3.2. The function $1/\hat{F}$ analytic in a strip above the real axis

Three theorems will be proved in which the domain D_{γ} introduced in (2.1.1) is a strip, i.e. $\gamma \equiv \text{constant}$.

Introduce the functions t_0 and t in the following way. Let $W = \sqrt{W_0 W_1}$, let

(3.2.1)
$$U_0(X) = XW_0(X), \quad U(X) = XW(X)$$

and let U_0^{-1} and U^{-1} denote the inverse functions of U_0 and U respectively. Let

(3.2.2)
$$t_0(x) = 1/U_0^{-1}\left(\frac{1}{\varrho(x)}\right)$$

and

(3.2.3)
$$t(x) = 1/U^{-1}\left(\frac{1}{\varrho(x)}\right).$$

With these notations the theorems may be stated as follows.

Theorem 1. (1) Let Φ be bounded on \mathbb{R} and $\Phi(x)+Kx \nearrow$, $x>x_0$ for some K>0. Let $F \in L^1(\mathbb{R})$ and $|\Phi * F(x)| \leq \varrho(x), x \geq x_0$.

(2) Let $1/\hat{F} \in \mathscr{A}_0(\gamma; W_0)$, $\gamma \equiv constant$, and let $\psi = \Phi * F$ satisfy

$$(3.2.4) M_2\{\psi; x, \infty\} \leq \varrho(x), \quad x \geq x_0.$$

(3) Let θ be constant, $0 < \theta < 1$, and

$$(3.2.5) \qquad \qquad \varrho \in R[e^{\theta \gamma x}].$$

Then

(3.2.6)
$$\overline{\lim_{x\to\infty}} \frac{|\Phi(x)|}{t_0(x)} \leq C_1 K + C_2,$$

where $C_1 = C_1(\gamma)$, $C_2 = C_2(\gamma, \theta)$ and t_0 is defined by (3.2.2).

Theorem 2. Let Conditions (1) and (3) of Theorem 1 hold true and let $1/\hat{F} \in \mathcal{A}_1(\gamma; W_0, W_1), \gamma \equiv \text{constant}$. Then

(3.2.7)
$$\lim_{x\to\infty}\frac{|\Phi(x)|}{t(x)} \leq C_1 K + C_2,$$

where $C_1 = C_1(\gamma)$, $C_2 = C_2(\gamma, \theta)$ and t is defined by (3.2.3).

Theorem 3. Let Condition (1) of Theorem 1 hold true and let $1/\hat{F} \in \mathcal{A}_1(\gamma; W_0, W_1)$, $\gamma \equiv constant$. Let t be defined by (3.2.3) and suppose that for some constants θ , c and β , $\theta \geq 1$, $c \geq 0$, $\beta > \gamma$,

(3.2.8)
$$\varrho \in R[1 + (\theta x)^{c+1} e^{\theta \gamma x}]$$

and

(3.2.9)
$$W_1\left(\frac{1}{t(x)}\right)x^{c+3/2}\exp\left(x\beta\theta^2\log\theta\right) \leq W\left(\frac{1}{t(x)}\right), \quad x \geq x_1.$$

Then (3.2.7) holds true with $C_1 = C_1(\gamma, c)$ and $C_2 = C_2(\gamma, c, \theta)$.

Before proving the theorems I shall make a number of comments. Introduce χ_W according to (3.1.2) and let \underline{W} be defined by

$$(3.2.10) \qquad \underline{W} = \min(W_0, W_1).$$

If $\underline{W}(X) = o(W(X))$, $X \to \infty$, then C_2 is independent of θ in Theorem 2. If $\chi_{W_0}(X) \to \infty$, $X \to \infty$, then we may choose $C_2 = 0$ in the result of Theorems 1 and 2 and also in Theorem 3 provided that (3.2.9) holds true with t replaced by rt, $1 \le r \le B$, for some B > 1.

Let λ denote a positive constant and replace the assumption $\Phi(x) + Kx \nearrow$ by (3.1.5) where $\sigma = \lambda t_0$ in Theorem 1 and $\sigma = \lambda t$ in Theorems 2 and 3. Then the results (3.2.6) and (3.2.7) respectively hold true with $C_1 = (1+\lambda)C(\gamma)$ and $C_2 = C_2(\gamma, \theta)$.

The condition $0 < \theta < 1$ can be replaced by $\theta \ge 1$ in Theorem 1 provided that, for some A > 0,

$$(3.2.11) \qquad \qquad \log W_0(X) \leq A \chi_{W_0}(X), \quad X \geq X_1,$$

and in Theorem 2 provided that

$$(3.2.12) \qquad \log W(X) \le A \chi_W(X), \quad X \ge X_1$$

and then the results (3.2.6) and (3.2.7) of these theorems hold true with $C_1 = C_1(\gamma, \theta, A)$ and $C_2 = 0$.

It follows from the last remark that Theorem 3 is of any interest only if (3.2.12) is not satisfied. In fact, Theorem 3 can be applied only if W and ρ are sufficiently small. This is due to the fact that (3.2.9) and (2.1.3) imply that

(3.2.13)
$$t(x) = O\left(x^{-2c-3}\exp\left(-2x\beta\theta^2\log\theta\right)\right), \quad x \to \infty$$

and (3.2.8) implies that $1/\varrho(x) = O(x^{c+1}e^{\theta \gamma x}), x \to \infty$. If the conditions of Theorem 3 are satisfied for some $\theta > 1$ then, by the above inequalities and the definition of t, W is dominated by a polynomial and ϱ is exponentially decreasing.

The condition (3.2.4) of Theorem 1 is irrelevant if $M_2\{\varrho; x, \infty\} \leq A\varrho(x), x \geq x_0$ for some constant A. The same holds true for a larger set of functions ϱ if W_0 does not increase too slowly. For instance, if $\varrho \in L^s(x_0, \infty)$ for some s, 0 < s < 2 and (3.2.11) is satisfied or if $1/\log(1/\varrho) \in L^s(x_0, \infty)$ for some s > 0 and $\log \log W_0(X) \leq \leq A\chi_{W_0}(X), X \geq X_1$, then the condition (3.2.4) of Theorem 1 may be omitted and the same result holds true but for the fact that C_1 will depend also on s and A.

Let the conditions of Theorem 2 and any of the above-mentioned conditions on ρ and W_0 be satisfied. Then either Theorem 1 or Theorem 2 may be applied, and if $W_1(X) = o(W_0(X))$, $X \to \infty$, Theorem 2 seems to yield the best estimate. This is so, however, only when W_0 does not increase too fast. Let us suppose for instance that, for some A > 0,

$$(3.2.14) \qquad \qquad \log X \leq A \chi_{W_0}(X), \quad X \geq X_1.$$

Then $\log X \leq 2A\chi_W(X)$, $X \geq X_1$. By combining this inequality with (2.1.3) we get $W_0(X) \leq W(e^{2A}X)$, $X \geq X_2$ and hence $t_0(x) \leq e^{2A}t(x)$, $x \geq x_1$. Thus Theorem 2 does not, except possibly for the value of the constants, yield a better estimate than Theorem 1. If $W_0(X) = o(W_1(CX))$, $X \to \infty$ for every C > 0 then $t_0(x) = o(t(x))$, $x \to \infty$, and Theorem 1 yields a better estimate than Theorem 2.

It follows from a theorem of Ganelius ([4], Th. 4.2.1, p. 34) that the estimates obtained in Theorems 2 and 3 are best possible in the sense that (3.2.7) cannot be replaced by $\Phi(x) = O(\delta(x)t(x)), x \to \infty$, for any function δ such that $\delta(x) \to 0, x \to \infty$, if

$$(3.2.15) \qquad \qquad \log W_0(X) = O(X^2), \quad X \to \infty$$

and if either (3.2.14) is satisfied or $XW_1(X) = O(W_0(X))$, $X \to \infty$. Therefore, by the above argument, Theorem 1 is best possible in the sense that (3.2.6) cannot be replaced by $\Phi(x) = O(\delta(x)t_0(x))$, $x \to \infty$, for any function δ such that $\delta(x) \to 0$, $x \to \infty$, if (3.2.14) and (3.2.15) hold true and ϱ and W_0 satisfy any of the conditions which yield that the assumption (3.2.4) may be omitted in Theorem 1. The above statements hold, in fact, true if (3.2.15) is replaced by

(3.2.16)
$$\lim_{X\to\infty} X^{-1}\log\log W_0(X) < \frac{\pi}{2\gamma}.$$

This follows by applying Ganelius' method with the auxiliary function e^{-x^2} , used by him, replaced by $\exp(-e^{ax}-e^{-ax})$ where

$$\lim_{X\to\infty} X^{-1}\log\log W_0(X) < \alpha < \frac{\pi}{2\gamma}.$$

Proceeding to the proof of the theorems I shall first introduce some notations. These are the same as the ones used in [6] but for the function S and the classes

246

 \mathscr{B}_1 and \mathscr{B}_2 . For the sake of convenience S and hence \mathscr{B}_1 and \mathscr{B}_2 are introduced here in a way slightly different from their definitions in [6].

The sequence $P = (P_n)_0^\infty$ and the function h_P are introduced as in [6]. Thus

(3.2.17)
$$h_P(x) = \sum_{n=0}^{\infty} \frac{x^n}{P_n}, \quad x \ge 0.$$

For the conditions on (P_n) the reader is referred to 2.1 in [6]. For the present purpose it suffices to know that the sequences $P_n=n! \gamma^{-n}$, n=0, 1, 2, ... and $P_0=1, P_n==(n-1)! \gamma^{1-n}$, n=1, 2, ..., satisfy these conditions. Note that these sequences are also regular in the sense introduced in 4.3 in [6].

The functions S_n , n=0, 1, 2, ... and \overline{S}_1 are introduced as in 2.1 in [6]. Thus $S_n(X) \nearrow$, $X \ge X_0$, $n=0, 1, 2, ..., S_0(X) \le \frac{3}{2} X S_1(X)$, $X \ge X_1$, and

$$(3.2.18) \qquad \qquad \overline{S}_1 = \sup_{n \ge 1} S_n.$$

Let $S(X) \swarrow$, $X \ge X_0$, and

$$(3.2.19) S \ge \sqrt{S_0 S_1}$$

When S and ρ are given, the function $\tau = \tau_{S,\rho}$ is introduced as in 4.3 in [6] by the following definition. Let T(X) = XS(X), let T^{-1} denote the inverse function of T and

(3.2.20)
$$\tau(x) = 1/T^{-1}\left(\frac{1}{\varrho(x)}\right).$$

The classes $\mathscr{B}_1((P_n), (S_n), S)$ and $\mathscr{B}_2((P_n), (S_n), S)$ of functions $g(\xi), \xi \in \mathbb{R}$ are introduced literally in the same way as the classes \mathscr{B}_1 and \mathscr{B}_2 are introduced in 2.6 in [6] by the following definition.

Definition. $g \in \mathscr{B}_1((P_n), (S_n), S)$ if for every $X \ge X_0$ there exist functions $f = f_X$ and $k = k_X$ satisfying

$$f(\xi)+k(\xi)=g(\xi), \quad -X\leq \xi\leq X,$$

and such that

$$M_2\{f^{(n)}; -X, X\} \leq P_n S_n(X), \quad n = 0, 1, 2, \dots$$

and $k = \hat{K}$ where K(x) = 0, $||K||_{\infty} \le XS(X)$ and (3.2.21) $||K||_1 \le S(X)$.

 $\mathscr{B}_2((P_n), (S_n), S)$ denotes the class of functions g satisfying the above conditions but for the fact that k is Fourier transform in the L²-sense of K and (3.2.21) is replaced by

$$\|K\|_2 \leq S(X).$$

The condition (3.2.19) thus replaces the definition $S = \sqrt{S_0 S_1}$ used in [6]. It is easy to see that the theorems in [6] hold true also for functions S satisfying (3.2.19) if τ and \mathcal{B}_1 and \mathcal{B}_2 are defined as above. S. Lyttkens

If $S = \sqrt{S_0 S_1}$ I use the same notation as in [6]. Thus, for k = 1, 2, let

$$\mathscr{B}_k((P_n), (S_n)) = \mathscr{B}_k((P_n), (S_n), \sqrt{S_0 S_1})$$

When all the functions S_n equal S, I write, for k=1, 2,

$$\mathscr{B}_k((P_n), S) = \mathscr{B}_k((P_n), (S_n)), \quad S_n = S, \quad n = 0, 1, 2, \dots$$

Proof of Theorem 1. Let $P_n = n! \ \gamma^{-n}$, n=0, 1, 2, ..., and let h_P be defined by (3.2.17). Then $h_P(x) = e^{\gamma x}$ and $\varrho \in R[h_P(\theta x)]$ according to the assumption (3.2.5). Let $S(X) = 2W_0(2X)$. By applying the lemma in 2.2 we find that the assumption $1/\hat{F} \in \mathscr{A}_0(\gamma; W_0)$ implies that $1/\hat{F} \in \mathscr{B}_2((P_n), S)$. The function S is regular in the sense introduced in 4.3 in [6] according to the regularity conditions imposed on W_0 , and the sequence (P_n) satisfies

$$\log\left(P_{n+1}/P_n\right) = o(n), \quad n \to \infty.$$

The assumption $1/\hat{F} \in \mathscr{A}_0(\gamma; W_0)$ further yields that $1/\hat{F}$ is continuous on **R** and hence \hat{F} cannot vanish on **R**. Thus the conditions of Theorem 3 in [6], modified according to the remark in 4.4 in [6], are satisfied. By applying this theorem we get

(3.2.23)
$$\overline{\lim} |\Phi(x)|/\tau(x) \leq C_0 K + C,$$

where τ is defined by (3.2.20), $C_0 = C_0(\gamma)$ and $C = C(\gamma, \theta)$. Since $\tau = 2t_0$ this proves (3.2.6).

Proof of Theorem 2. Let us choose $P_n = n! \gamma^{-n}$ as in the previous proof. Then $\varrho \in R[h_P(\theta_X)]$ and (3.2.22) is satisfied. Let $\varkappa = \max(1, \gamma)$, $\underline{W} = \min(W_0, W_1)$ and let us choose $S_0(X) = 2W_0(2X)$, $S_n(X) = 5\varkappa \underline{W}(2X)$, n=1, 2, ..., and $S(X) = 5\varkappa W(2X)$. Then $\sqrt{S_0S_1} < S$ and $S_0(X) \le XS_1(X)$, $X \ge X_1$, according to (2.1.3). From the lemma in Section 2 and the assumption $1/\hat{F} \in \mathscr{A}_1(\gamma; W_0, W_1)$ it follows that $1/\hat{F} \in \mathscr{B}_1((P_n), (S_n), S)$. Furthermore, $\overline{S_1} \le S$ and S is regular in the sense introduced in 4.3 in [6] according to the regularity conditions imposed on W_0 and W_1 . Thus, the conditions of Theorem 3 in [6] are satisfied. By applying this theorem we obtain (3.2.23). Since $\tau \le 5\varkappa t$ this proves (3.2.7).

Proof of Theorem 3. Let $P_0=1$, $P_n=(n-1)! \gamma^{1-n}$, n=1, 2, ... Then (3.2.22) is satisfied and $h_P(x)=1+xe^{\gamma x}$. Thus $\varrho \in R[(1+\theta x)^c h_P(\theta x)]$ according to the assumption (3.2.8). Let $S_0(X)=2W_0(2X)$, $S_n(X)=5W_1(2X)$, n=1, 2, ..., and S(X)=5W(5X). Then $\sqrt{S_0S_1} < S$ and $S_0(X) \leq XS_1(X)$, $X \geq X_1$. The assumption (3.2.9) implies that $W_1(X)=o(W(X))$, $X \rightarrow \infty$, and therefore $\overline{S}_1(X) \leq S(X)$, $X \geq X_2$. From the lemma in Section 2.2 and the assumption $1/\hat{F} \in \mathscr{A}_1(\gamma; W_0, W_1)$ it follows that $1/\hat{F} \in \mathscr{B}_1((P_n), (S_n), S)$. Since $\tau = 5t$ the assumption (3.2.9) yields

(3.2.24)
$$\overline{S}_1\left(\frac{1}{\tau(x)}\right) x^{c+3/2} \exp\left(x\beta\theta^2\log\theta\right) \le S\left(\frac{1}{\tau(x)}\right), \quad x \ge x_0.$$

248

If the inequality (3.2.24) were satisfied with $x^{c+3/2}$ replaced by x^{c+2} then Theorem 4 in [6] could be applied and (3.2.23) would follow with $C_0 = C_0(\gamma, c)$ and $C = C(\gamma, c, \theta)$. To obtain (3.2.23) under the assumption (3.2.24) we proceed as follows. Let

$$p(x) = \sup_{n} \frac{x^{n}}{P_{n}}, \quad x \ge 0.$$

Theorem 4 in [6] was proved for a large class of sequences (P_n) satisfying the inequality $h_P(x) \leq C(P)(1+x)p(x), x \geq 0$. For the sequence chosen in this proof it is easy to verify the stronger inequality

(3.2.25)
$$h_P(x) \leq C(\gamma) (1 + \sqrt{x}) p(x), \quad x \geq 0.$$

By taking into account the improvements obtained in Lemma 3 in [6] and hence in Theorem 4 in [6] by using the inequality (3.2.25) the result (3.2.23) follows. Since $\tau = 5t$ this proves Theorem 3.

3.3. $1/\hat{F}$ analytic in a domain above the real axis which tapers of f at infinity

Let us now consider the case when $1/\hat{F}$ is analytic in a domain D_{γ} of the type (2.1.1) and $\gamma(\xi) \to 0$, $\xi \to \infty$. Proceeding as in 5.4 in [6] we introduce an auxiliary sequence $(M_n)_0^{\infty}$ such that the sequence $P_n = n! \ M_n$, n = 0, 1, 2, ... satisfies the conditions introduced in 2.1 in [6] and is regular in the sense introduced in 4.3 in [6]. To this end it suffices to choose (M_n) such that $M_0 = 1$, $M_n^{1/n} \swarrow$, $n \ge 1$, $M_n^{1/n} \to \infty$, $n \to \infty$, $(n! \ M_n)_0^{\infty}$ is logarithmically convex and $\lim_{n\to\infty} (\log n)^{-1} \log (M_{n+1}/M_n)$ exists, finite or infinite.

Let *m* be the function defined by

$$(3.3.1) mtext{ } m(x) = \sup_{n} \frac{x^{n}}{M_{n}}, \quad x \ge 0.$$

Then, for $\xi \ge 0$,

(3.3.2)
$$\gamma(\xi)^{-n} \leq M_n m(\gamma(\xi)^{-1}), \quad n = 0, 1, 2, \dots$$

Let us first suppose that $g=1/\hat{F}\in\mathcal{A}_0(\gamma; W_0)$. Choose X, $X \ge \max(X_0, 2\gamma(0))$, and introduce $f=f_X$ and $k=k_X$ as in the lemma in Section 2. By combining (2.2.4) and (3.3.2) we get

$$(3.3.3) \quad M_2\{f^{(n)}; -X, X\} \leq 2n! M_n W_0(2X) m(\gamma(2X)^{-1}), \quad n=0, 1, 2, \dots.$$

Let

$$(3.3.4) S^*(X) = 2W_0(2X)m(\gamma(2X)^{-1})$$

and

$$(3.3.5) P_n = n! M_n, \quad n = 0, 1, 2, \dots$$

S. Lyttkens

and let h_P be defined by (3.2.17). It follows from the lemma and (3.3.3) that

$$(3.3.6) 1/\hat{F} \in \mathscr{B}_2((P_n), S^*)$$

and the theorems in 4.3 in [6] may be applied.

In certain cases it is possible to obtain sharp results also with this method. Let us suppose that (M_n) can be chosen so that, for some $\mu > 2$,

(3.3.7)
$$2W_0(2X)m(\gamma(2X)^{-1}) \leq W_0(\mu X), \quad X \geq X_1.$$

Let

$$S(X) = W_0(\mu X).$$

Then $S^*(X) \leq S(X)$, $X \geq X_1$ and (3.3.6) yields that $1/\hat{F} \in \mathscr{B}_2((P_n), S)$.

If $\Phi(x)+Kx \nearrow$, $x \ge x_0$ for some K>0, $|\Phi * F(x)| \le \varrho(x)$, $x \ge x_0$ and $\psi = \Phi * F$ satisfies $M_2\{\psi; x, \infty\} \le \varrho(x), x \ge x_0$, then Theorems 3' or 3 in [6], modified according to the remark in 4.4 in [6], may be applied and yield that $\Phi(x) = O(\tau(x)), x \to \infty$, where τ is defined by (3.2.20). Since $\tau < \mu t_0$ we thus obtain a result of the same form as in Theorem 1, namely

(3.3.8)
$$\Phi(x) = O\left(1/U_0^{-1}\left(\frac{1}{\varrho(x)}\right)\right), \quad x \to \infty$$

where U_0 is defined by (3.2.1).

In Theorem 1 the function γ was constant, and if \varkappa is constant, $0 < \varkappa < \gamma$, then (3.3.8) holds true for $\varrho \in R[e^{\varkappa x}]$. In the present case when $\gamma(\xi) \to 0$, $\xi \to \infty$, the result (3.3.8) is obtained only for a smaller class of functions ϱ . For instance, if θ is constant, $0 < \theta < 1$, and $P_n = n! M_n$ satisfies (3.2.22), then (3.3.8) holds true for $\varrho \in R[h_P(\theta x)]$.

To illustrate the method we shall prove the following theorem in which W_0 is chosen as the exponential function. The result of the theorem is best possible in the sense that (3.3.9) cannot be replaced by $\Phi(x)=O(\delta(x)/\log(1/\varrho(x)), x \to \infty)$, for any function δ such that $\delta(x) \to 0, x \to \infty$. This follows from Ganelius' theorem in the same way as the corresponding result for Theorem 1 since $W_0(X)=\exp(\beta X)$ satisfies (3.2.11), (3.2.14) and (3.2.15).

Theorem 4. Let K, α , β and s, s < 2, denote positive constants. Let Φ be a bounded function on \mathbf{R} such that $\Phi(x) + Kx \nearrow$, $x \ge x_0$. Let $F \in L^1(\mathbf{R})$ and $|\Phi * F(x)| \le \varrho(x)$, $x \ge x_0$, where $\varrho \in L^s(x_0, \infty)$. Suppose further that $1/\hat{F} \in \mathcal{A}_0(\gamma; W_0)$ where $\gamma(\xi) = (\log \xi)^{-\alpha}$, $\xi \ge \xi_0$, and $W_0(X) = \exp(\beta X)$. If $\varrho \in \mathbb{R}[\exp(Bx/(\log(x+e))^{\alpha})]$ for some B > 0 then

(3.3.9)
$$\Phi(x) = O\left(1/\log\left(\frac{1}{\varrho(x)}\right)\right), \quad x \to \infty.$$

Proof of Theorem 4. Let $M_n = (\log (n+e))^{\alpha n}$, n=0, 1, 2, ..., and let m be defined by (3.3.1). It is easy to see that $\log m(x) = o(\exp(x^{1/\alpha}))$, $x \to \infty$. Therefore (3.3.7) holds true for $\mu=3$ and it follows that $1/\hat{F}\in\mathscr{B}_2((P_n), S)$ where $S(X) = \exp(3\beta X)$ and $P_n = n! M_n$, n=0, 1, 2, The sequence (P_n) satisfies (3.2.22). Let h_P be defined by (3.2.17). It is easy to verify that $h_P(x) > \exp(x(\log(x+e))^{-\alpha}), x \ge x_1$. Let $\varkappa = \frac{1}{2} \min(1, B^{-1})$ and $\varrho^* = \varrho^{\varkappa(1-s/2)}$. Then $\varrho^* \in R[bh_P(x/2)]$ for some b > 1 and $\psi = \Phi * F$ satisfies $M_2\{\psi; x, \infty\} \le M_2\{\varrho; x, \infty\} \le \varrho^*(x), x \ge x_1$. Theorem 3 in [6], modified according to the remark in 4.4 in [6], may be applied with ϱ replaced by ϱ^* . Thus we get

$$\Phi(x) = O\left(1/\log\left(\frac{1}{\varrho^*(x)}\right)\right), \quad x \to \infty.$$

Since $\varrho^* = \varrho^{*(1-s/2)}$ this proves (3.3.9).

Let us now suppose that $g=1/\hat{F}\in\mathcal{A}_1(\gamma; W_0, W_1)$ and $\gamma(\xi)\to 0, \xi\to\infty$. In some cases when $W_1(X)/W_0(X)$ tends to zero in an appropriate way as $X\to\infty$ and $\gamma(\xi)$ does not tend to zero too fast as $\xi\to\infty$, we may obtain sharp results even when W_0 is a polynomial and thus (3.3.7) cannot be satisfied. Let us suppose that (M_n) may be chosen so that, for some $\lambda \ge 1$

(3.3.10)
$$\lim_{X\to\infty} W_1(X)m(\gamma(X)^{-1})W(X)^{-1} < \lambda.$$

If X is large enough and $f=f_X$ denotes the function introduced in the lemma in Section 2 then, by (2.2.7), (3.3.2) and (3.3.10)

$$(3.3.11) M_2\{f^{(n)}; -X, X\} \leq 5\lambda(n-1)! M_{n-1}W(2X), \quad n=2, 3, \dots$$

Let

(3.3.12)
$$S_0(X) = 2W_0(2X), \quad S_1(X) = 5W_1(2X), \quad S_n(X) = S(X) = 5\lambda W(2X),$$

 $n = 2, 3, ...,$

and

$$(3.3.13) P_0 = 1, P_n = (n-1)! M_{n-1}, n = 1, 2, \dots$$

Then $\sqrt{S_0S_1} < S$, $S_0(X) \leq XS_1(X)$, $X \geq X_1$ and $\overline{S}_1(X) = S(X)$, $X \geq X_1$. From the lemma and (3.3.11) it follows that $1/\hat{F} \in \mathscr{B}_1((P_n), (S_n), S)$. If $|\Phi * F(x)| \leq \varrho(x)$, $x \geq x_0$ and $\Phi(x) + Kx \nearrow$, $x \geq x_0$ for some K > 0, then Theorems 3' or 3 in [6] may be applied and yield a result of the same form as in Theorem 2, namely

(3.3.14)
$$\Phi(x) = O\left(1/U^{-1}\left(\frac{1}{\varrho(x)}\right)\right), \quad x \to \infty,$$

where U is defined by (3.2.1). In Theorem 2, $\gamma \equiv \gamma_0$ and the result (3.3.14) holds true for $\varrho \in R[e^{\varkappa x}]$ if \varkappa is constant, $0 < \varkappa < \gamma_0$. In the present case where $\gamma(\xi) \rightarrow 0$, $\xi \rightarrow \infty$, (3.3.14) is obtained only for a smaller class of functions ϱ which cannot contain the class $R[e^{\varkappa x}]$ for any $\varkappa > 0$. If W is majorized by a polynomial then such a restriction on the class of functions ϱ for which (3.3.14) holds true is necessary. This is a consequence of the following theorem ([5], Th. 6, p. 347).

S. Lyttkens

Theorem. Let δ , \varkappa and α , $\alpha < 1$, be positive constants and let $(1+|x|)^{\delta+1/2}F(x) \in L^1(\mathbb{R})$. If $|\Phi * F(x)| \leq \varrho(x)$, $x \geq x_0$, implies that $\Phi(x) = O(\varrho(x)^{\alpha})$, $x \to \infty$, for every bounded function Φ satisfying the Tauberian condition (3.1.4) and for every $\varrho \in \mathbb{R}[e^{xx}]$ then $1/\hat{F}(\xi)$, $\xi \in \mathbb{R}$, are continuous boundary values of a function $g(\zeta)$, $\zeta = \xi + i\eta$, analytic in the strip $0 < \eta < \alpha \varkappa$.

If W is dominated by a polynomial then $1/U^{-1}(1/\varrho(x)) = O(\varrho(x)^{\alpha}), x \to \infty$ for some α , $0 < \alpha < 1$, and from the above theorem it follows that it is impossible to obtain the estimate (3.3.14) for $\varrho \in R[e^{\kappa x}]$ for any $\kappa > 0$ if the conditions for $1/\hat{F}$ are imposed only in a domain D_{γ} which tapers off at infinity.

The method described above will be used to prove Theorem 5 below. The L^2 -conditions for $1/\hat{F}$ and its derivative are now replaced by an O-condition in order to include the case when the assumption (3.3.15) holds true with $0 < a \le 1/2$. If a > 1/2 then the assumption (3.3.15) may be replaced by the corresponding L^2 -condition and if $0 < a \le 1/2$ it may be replaced by a corresponding L^s -condition, 0 < s < 1/(1-a).

The result of the theorem is best possible in the sense that (3.3.16) cannot be replaced by $\Phi(x) = O(\delta(x) \varrho(x)^{1/(a+1)})$, $x \to \infty$, for any function δ such that $\delta(x) \to 0$, $x \to \infty$. This follows from Ganelius' theorem in the same way as the corresponding result for Theorem 2.

Theorem 5. Let K, a and α denote positive constants. Let Φ be a bounded function on **R** such that $\Phi(x)+Kx \nearrow$, $x \ge x_0$, let $F \in L^1(\mathbf{R})$ and $|\Phi * F(x)| \le \varrho(x)$, $x \ge x_0$. Suppose that $1/\hat{F}(\xi)$, $\xi \in \mathbf{R}$ are boundary values of a function $g(\zeta)$, $\zeta = \xi + i\eta$, analytic in the domain $D_{\gamma} = \{\zeta | 0 < \eta < \gamma(\xi)\}$ and such that

(3.3.15)
$$(1+|\zeta|)^{1-a}g'(\zeta)$$
 is bounded in D_{γ} .

If $\gamma(\xi) = (2\alpha/\log \xi)^{\alpha}$, $\xi \ge \xi_0$, and $\varrho \in R[\exp(Bx^{1/(\alpha+1)})]$ for some B, $0 < B < \alpha+1$, then

(3.3.16)
$$\Phi(x) = O(\varrho(x)^{1/(a+1)}), \quad x \to \infty.$$

Proof of Theorem 5. Let us first consider the case a > 1/2. The assumptions on \hat{F} imply that $1/\hat{F} \in \mathscr{A}_1(\gamma; W_0, W_1)$ where, apart from constant factors, $W_0(X) =$ $= X^{a+1/2}$, $W_1(X) = X^{a-1/2}$ and $W(X) = X^a$. Let $M_0 = 1$, $M_n = n^{n\alpha} e^{-n\alpha}$, n=1, 2, ...and let m be defined by (3.3.1). It is easy to see that $\log m(x) \le \alpha x^{1/\alpha}, x \ge 0$. Therefore $m(\gamma(X)^{-1}) \le X^{1/2}, X \ge X_1$. Since $W_1(X) = O(X^{-1/2} W(X)), X \to \infty$, (3.3.10) is satisfied for some $\lambda \ge 1$ and (3.3.11) follows. Therefore $1/\hat{F} \in \mathscr{B}_1((P_n), (S_n), S)$, where (S_n) and S are defined by (3.3.12) and (P_n) by (3.3.13). The sequence (P_n) satisfies (3.2.22) and $\tau(x) = \text{const } \varrho(x)^{1/(a+1)}$. It is easy to see that

$$h_P(x) \ge \exp\left((1+\alpha)x^{1/(1+\alpha)}\right), \quad x \ge x_1.$$

Let $\theta = (B/(1+\alpha))^{1+\alpha}$. Then $0 < \theta < 1$ and $\varrho \in R[bh_P(\theta x)]$ for some $b \ge 1$. The result thus follows from Theorem 3 in [6].

The case $0 < a \le 1/2$ is treated similarly by using L^s -estimates instead of L^2 -estimates and by the aid of the remarks to the lemma in Section 2 and to Lemma 1 in 2.2 in [6]. The details are omitted.

In Section 5 of the paper [6] some examples were given under the assumption that $1/\hat{F}$ is analytic in a domain including the real axis. Corresponding results when $1/\hat{F}$ is analytic in a domain D_{γ} of the type (2.1.1) were stated without proof. These results now either follow directly from the above theorems or are easily proved by using the same methods.

References

- BEURLING, A., Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, C. R. du 9^e congrès des mathématiciens scandinaves à Helsingfors 1938, Helsinki 1939, 345—366.
- 2. FRENNEMO, L., On general Tauberian remainder theorems, Math. Scand. 17 (1965), 77-88.
- 3. GANELIUS, T., The remainder in Wiener's Tauberian theorem, Mathematica Gothoburgensia 1, Acta Universitatis Gothoburgensis, Göteborg 1962.
- 4. GANELIUS, T., Tauberian remainder theorems, Lecture Notes in Math. 232, Springer-Verlag 1971.
- 5. LYTTKENS, S., The remainder in Tauberian theorems II, Ark. Mat. 3 (1956), 315-349.
- 6. LYTTKENS, S., General Tauberian remainder theorems, Math. Scand. 35 (1974), 61-104.
- 7. TITCHMARSH, E. C., Introduction to the theory of Fourier integrals, Oxford 1967.

Received September 23, 1974

Sonja Lyttkens Uppsala Universitet Matematiska inst. Sysslomansg. 8 S-752 23 Uppsala Sweden