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1. Introduction 

It is well known that the classical Hadamard problem on the characterization 
of quasi-analytic classes of functions admits several equivalent formulations and 
solutions in terms of holomorphic functions, asymptotic series, divergent series, 
etc. (See [4] and [7].) Some of the techniques employed to attack this problem pro- 
ceeded from the weighted approximation theory which originated with S. Bernstein. 
More precisely, from the very beginning of weighted approximation theory, there 
was an interdependence with quasi-analytic function theory. For applications of 
weighted approximation theory to the Hadamard problem, see, for instance, [2], 
[3], [5] and [6]. On the other hand, the Denjoy--Cafleman theorem on quasi-ana- 
lyticity has been widely used to get results in weighted approximation theory. In 
fact, almost all these results contain a hypothesis implying that some weight is 
fundamental in the sense of S. Bernstein by using the above theorem. See, for in- 
stance, [7], [9], [10], [11] and [12]. Furthermore, the classical problem which con- 
sisted of characterizing the fundamental weights on the real line was completely 
solved by S. Mergelyan [8]. The key to Mergelyan's solution is a result which is 
appropriate for approximation, not only for the real line, but also for dosed nowhere 
dense sets in the complex plane. 

Our purpose here is twofold. First, we give a simple proof of Mergelyan's 
theorem (Theorem 1). Then, by using this result we establish that quasi-analyticity 
is equivalent to the fact that some weight is fundamental (Theorem 2). So, in some 
sense, we cement the interdependence mentioned above. As an application, we get 
another solution of Hadamard's problem (Theorem 3). All this is done by using 
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techniques of weighted approximation theory such as those employed by Nachbin 
[10], and no appeal is made to classical results on quasi-analyticity. This approach 
seems to be interesting in looking for a solution of the generalized quasi-analyticity 
problem posed by S. Mandelbrojt [7]. 

2. Preliminaries 

Let u be a locally bounded and nonnegative function defined on R (u is called 
a weight on R). Cu= (R) will denote the vector space of all continuous and complex 
valued functions f on R such that uf vanishes at infinity. The topology on Cu= (R) 
will be given by the semi-norm 

fH-Ilufll : sup { ufl(t); tER}. 

The weight u is called fundamental when the set ~ (R) of all complex valued poly- 
nomials on R is a dense subset of  Cu=(R). We put ~u for the set of all P E ~ ( R )  
such that uP is bounded and []uPl[<=l where, for a bounded function g on R, Ilgll 
stands for sup {]g(t)], tER}. Also, we put 

and 
Mu(z) = suP{le(z)[; PEru},  for 

u(t) for tER. 
u ~(t) - 1 + ltl' 

zEC,  

D will denote the set of  all z E C such that Im (z) ~ 0. For  any such z, we put 

1 
g ~ ( t ) - - t - z '  for tER. 

Remark 1. The set o~((R) of  all continuous and complex valued functions on 
R having compact support is dense in Cu= (R). For weights u and v such that u<=v, 
u is fundamental when v is fundamental. Furthermore, writing C= (R) for CI= (R), 
if the weight u is bounded, C= (R) is a dense subset of Cu= (R), while the inclusion 
C~ (R) c Cuo~ (R) is continuous. 

Remark2. Let zED and A=C[gz ,  gz] be the complex algebra generated by 
the functions gz and ~z. Notice that A c C= (R). Since A separates points, is non- 
vanishing at every point, and is self-adjoint, by the Stone--Weierstrass theorem 
(applied to a compactification of  R), it follows that A is dense in C= (R). Whence, 
by Remark 1, A is dense in Cu= (R) for all u bounded. 
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Remark 3. Let a, b ER, a # 0 ,  and let a( t )=at+b,  for tER. For  a complex valued 
function f on R, let T(f )=fo~r .  Then T(JUf(R))=~ff(R) and T ( ~ ( R ) ) = ~ ( R ) .  Also, 
the restriction T.Cu~(R) is an isometry of Cu=(R) onto C(uoa)=(R). Hence u is 
fundamental if (and only if) u o o- is fundamental.  

3. Mergelyan's theorem 

In [8], Mergelyan has proved the following important  result: if u is a weight 
on R such that N (R) c Cu= (R), then ~ (R) is dense in Cu= (R) if, and only if, Mu. (z) = 
= + ~ for some zE D. The original proof  depends on several properties of  the func- 
tion Mu.. Also, it uses the result, due to N. Akiezer, that if H ~ D  is an infinite set 
having an accumulation point in D, the set {g=, gz; zEH} is total in C=(R);  the 
proof  of  this result is rather complicated [1]. Further, in proving the sufficiency of 
the condition on Mu.(z ) the additional hypothesis on u is used. 

We will prove the following more general version of Mergelyan's result. 

Theorem 1. A weight u on R is. fundamental i f  and only i f  M~. (z) = + oo for 
some z E D. 

Proof. a) Necessity : since u is fundamental,  ~ (R) is a dense subset of Cu= (R). 
In particular, u is bounded. Let zED. Given 5>0,  since gzECu=(R), there exists 
P E ~  (R) such that 

(1) lu(gz P)II --< ~. 

Let C=in f{ ( l+l t l ) lgz ( t ) [ ; tER}  and let Q=C(1-P/gz) /~.  Then QE~,,, by (1), 
whence M~,(z)>=IQ(z)]-C/,. Since C is a positive constant depending only on z, 
letting , ~ 0  implies M~,(z) = ~-oo. 

Before proving the sufficiency, we will state two lemmas. 

Lemma 1. Let v be a weight on R. I f  M~(z) = +oo for some zE D, then ~ ( R ) c  
c Cv~ (R). 

Proof. Let g be the vector space of all P E ~ ( R )  such that vP is bounded. For  
any such P, put ][PIIo=I[vPI[. Then I[" ][, is a semi-norm on g. Assume that [1. ]1~ is 
not  a norm. Then there exists P E~ (R ) ,  P C 0 ,  such that vP=O. This implies that 
v has a finite set as its support  whence g = ~  (R). Otherwise, ] �9 ][~ is a norm. Assume 
that  g has finite dimension, say m. We have m => 1 since m = 0 would imply Mo (z) = 0. 
Notice that P E 8  and n=degree  (P) imply t"Eg, whence the set {1, ..., t 'n-l} is a 
basis for o ~ and the mapping ~Oi: g -+C given by ~i (a0+. . .  5-am-ltm-1)=ai iS con- 
tinuous for i = 0  . . . . .  m--1.  Also, the set ~ is closed and bounded, hence ~ is 
compact  by our assumption. From the compactness of  ~O~(~), there exists a posi- 
tive constant C such that for all PESo ,  P=ao+. . . •  ~-*, we have ]a~[<=C 
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for all i --0 . . . . .  m - 1 .  Thus IP (z ) l  < c ~7 '=~ 1 [z[ i for all PE~v;  that is Mv(z)< + 0% 
contradicting the hypothesis. Then g has infinite dimension. Since thE8 implies 
tmEg for all O<=m<=n it follows g = ~ ( R ) .  To finish the proof, note that vP vanishes 
at infinity for all P E ~ ( R )  since vP(1 +t 2) is bounded. 

Lemma 2. Let u be a weight on R such that ~ ( R ) c C u ~ ( R ) .  !f: for some z ED, 

g~E~(R), the closure o f ~ ( R ) ,  then C[gz, g~]c~(R) .  

Proofl Let g = ~ ( R ) .  Since 8 is a vector subspace of Cu= (R), it is enough 
to prove that g~"(gz)"Eg for all n, mEN. First, we will prove by induction that 

(2) gz"~(R)cE  for all nEN. 

In fact, for n = 0  this is clear. Assume that it is true for some n and let PE~(R) .  
Since a=g~(e-P(z))C~(R) and gn+l(e-P(z))-g"zO, w e  have 

(3) g.+l(p_ e(z)) E g. 
Note that i f  g is a continuous and bounded complex valued function on R, then 
the mapping f ~  gf  from Cu= (R) into itself is continuous. So 

(4) g~-cgo~ for all ~ Cu= (R). 

Since g"~+~Eg~g--g~(R), the above remark and the induction hypothesis imply 
~ + I E g .  Then, from g~+IP=~+a(P-P(z ) ) t -e ( z )g  n+~ and (3), we get ~+~PEg.  

Thus (2) is proved. Notice that hEg implies ~Eg whence, from (2), (~z)m=gr~E~ 
for all mEN, and then, from (4), g~(~)mEg~"~(R) c g ~ ( R )  for all n, mEN. Using 
(2) and the fact that 8 is closed, we conclude that g~" (~)~Eg for all n, mEN. 

Proof of Theorem 1, continued, b) Sufficiency: We have M,.  (z) = + oo for some 
z E D. From Lemma 1, it follows that (1 + t ~) ~ (R) c Cu* (R) whence ~ (R) c Cu= (R). 
Let QE~ , ,  be such that Q(z)~-O, and put 

g~ ( Q - a ( z ) ) .  P = Q (z) 

Then P E ~ ( R )  and g , - P  =g~Q/Q(z). Hence, 

u(t)[g~(t)-e( t ) l  <-IQ(z)l-1(l+]t[)lg~(t)lu*(t)la(t)] <= constant.  IQ(z)l -~ 

for all tER. Letting Q(z)~oo, we have that ][u(g~-P)l]--,O. So g~E~(R). From 

Lemma 2, it follows that C[gz, g~]c~(R) .  Since u is bounded, by Remark 2 
we have that C[g~, ~ ]  is dense in Cu=(R), and so we conclude that ~ ( R )  is dense 
in Cu= (R). 

Remark 4. From the proof  of  the necessity of the condition in Theorem 1, it 
follows that M,. (z) = + oo for every zED whenever u is fundamental. 
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4. Fundamental weights and quasi-analytic classes of functions 

In the following, M will denote a sequence (As/,), hEN, of positive real numbers. 
C(M) will denote the vector space of all complex valued C = functions f on 

R such that there exist positive constants C and c (depending on f )  for which 

(5) [f(n)(t)] <= CcnMn for all tER, nEN. 

C(M) is called quasi-analytic i f fEC(M) vanishes identically when there exists sER 
such that f~")(s)=0 for all nEN. 

Remark 5. Let a be as in Remark3. Then C ( M ) o a c C ( M ) .  

We write 7u for the weight on R given by 

yM(t) = inf{M, ltl-"; nEN} for all tER. 

Remark 6. We have N(R)cC(yM)=(R). Further, either ~ t  is an upper-semi- 
continuous function with compact support (when lim sup M~/"< +,~) or it is a 
continuous function that never vanishes. In the first case, ~ is fundamental by the 
Weierstrass theorem. 

Theorem 2. C(M) is quasi-analytic if  and only if 7M is fundamental. 

Proof. The necessity of the condition follows from the proof of Lemma 2.29 
in Nachbin [10] and so we just sketch the proot: In fact, assume that C(M) is quasi- 
analytic, and let L be a continuous linear form on C(TM)~(R) that vanishes on 
~(R) (see Remark 6). Letting e~(t)=eiX t for all t, xER, define f :  R-*C by f(x)~- 
=L(ex) for all xER. Then fEC(M)  and, from the assumption, f<")(0)=0 for all 
hEN; that is, f ~ 0  by quasi-analyticity. Since the vector space generated by {ex; xER} 
is dense in C(~M)= (R), it follows that L vanishes identically. By the Hahn--Banach 
theorem, we conclude that ~(R) is dense in C(TM) ~ (R). 

Now let us prove the sufficiency. Assume that C(M) is not quasi-analytic. 
From Remark 5, there exists fE C(M) such that 

f r  for all nEN and f l [ 0 , + ~ ~  (6) 
Let 

and put 
U =  {zEC; Re(z) > 0}, V=  {zEC; Re(z) > 1} 

F(z) = f+= f(t) e- ,t dt for all z E U. 

Integrating by parts and using induction, we get, in view of (6), 

(7) z"F(z) = f+'~ f(")(t)e-~tdt for all zEU, nEN. 

Let C, c be as in (5). From this and (7), it follows that 

(8) [V(z)[ _-< CcnM, lz[ -" for all zEF, nEN. 
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Since F is a holomorphic function not identically zero, we have 

F(~) ~ 0  for some ~EV. 

Let u be the weight given by 

u(t) = (l +[tl)JF(l +it)lll +it[ -~ for all tER, 

fix P E # , , ,  and let 
G(z) = P ( i - i z ) F ( z ~ z  -1 for all zEU. 

~fhen G is holomorplfic in V and continuous on V. Letting tER, since [G(1 + i t ) ] =  
= u*( t )P( t ) ,  we have that ]G[-<I on 0V because P E r u . -  Also, G is bounded on 
V from (8). Since c~ E V, it follows from the maximum modulus theorem that ]G (~) _<-1 
whence [e(i i~)l<-i~ F(c0[ -1. Notice that, P being arbitrary, Mu,( i - - ie )< + ~ .  
Since i--i~ ED, Remark 4 implies that u is not fundamental. Furthermore, (8) implies 

~ n 

u(t) <= r I1 +it l -"  <= 1/2CM, + 

for all t~R, nEN whence 

(') u(t) --< 1/2C7M c for all t E R. 

From this and Remarks 1 and 3, we conclude that 7M is not fundamental since u is 
not  fundamental. 

Corollary 1. Let q9 be a complex valued C ~ .function on R with compact sup- 
port and not identically zero. Put M.-II~o<n>II for all hEN. Then Y~t is not funda- 
mental. 

Proof. Since q~E C(M), C(M) is not auasi-analytic and the conclusion follows 
from Theorem 2. 

Remark 7. The above corollary provides a simple counterexample to local- 
izability (see Chapter 31 of  Nachbin [10]). Notice also that, in this case, 7M is a 
continuous and positive function by Remark 6. 

Corollary 2. Let u be a weight on R such that ~ ( R ) c C u = ( R )  a n d S ( R )  is not 
dense. Let M.=llut"]l, for all hEN. Then C(M)  is not quasi-analytic. 

Proof. Since u<=Tu, the conclusion follows from Theorem2 and Remark 1. 

Lemma 3. For M fixed, let u ( t ) - ( 1  + It ])7M(t)for all tER. Then u is fundamental 
if, and only if, YM is fundamental. 
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Proo f  Since 7M -< U, in view o f  Remark  1 it is enough to prove that  u is funda- 
mental when ~ is fundamental .  In fact, let M" be defined by M ~ = M , + I  for all 

n~N.  For  t r  we have 

V~r(t)[t] -a = inf{M.+lt t]  -~"+1), nCN} -> 7M(t), 
and hence 

tlVu(t)<= VM'(t) for  all tER.  
Also 

7M(t) ~- 7M(0) <= ~t(0)yM,(t)/?M,(1) 

for  t --< 1. So, there exists a positive constant  C such that u<= CTu,.  Since 7M is 
fundamental ,  it follows f rom T h e o r e m 2  that  C ( M )  is quasi-analytic. Then 

C ( M ' )  is quasi-analytic whence ?M' is fundamental  by Theorem 2. So, f rom Remark  1, 
we conclude that  u is fundamental .  

Put  T~t(t) = s u p { t t " M ; ~ ;  nEN} for  all t~R.  

Theorem 3. C ( M )  is quasi-analytie if, and only if, there exist a complex number 

z and a sequence o f  polynomials (P,) such that 

I m ( z )  ~ 0, [P, ~ TM for  all n, and P , ( z )  ~ ~.  

Proo f  Let u be as in Lemma 3. F rom this and Theorem 2, we have that C ( M )  

is quasi-analytic if, and only if, u is fundamental .  Since ~ . . = { P E ~ ( R ) ;  PI~TM}, 

Theorem 3 follows from Theorem 1. 

Remark  8. From Theorem 2, it follows that to each characterization o f  funda-  
mental  weights, there corresponds a characterization o f  quasi-analytic classes. See 
[8] for  other applications o f  this. 

Remark  9. Sufficiency of  the condit ion in Theorem 2 could also be obtained 
by using the Corol lary o f  Theorem 1 in Mergelyan [8] in connect ion with the classical 

Den joy - -Ca r l em a n  theorem. 
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