Bessel potentials and extension of continuous functions on compact sets

Tord Sjödin*

1. Introduction

Let K be a compact subset of \mathbb{R}^m . H. Wallin [18] proved that if K has classical α -capacity zero for a certain α , then every $f_0 \in C(K)$ can be extended to a continuous function $f \in W_l^p(\mathbb{R}^m)$, where $1 \leq p < \infty$, and l is a positive integer. The number α depends on m, p and l. He also proved a converse statement. However, his results give a complete solution to this extension problem only when p=2 [18, Theorem 3, Theorem 4]. We are going to give a solution to this problem by considering $L^p_{\alpha}(\mathbb{R}^m)$, $1 , <math>\alpha > 0$, α not necessarily an integer. The case studied by H. Wallin is then included since $L^p_{\alpha}(\mathbb{R}^m) = W^p_{\alpha}(\mathbb{R}^m)$, when $1 and <math>\alpha$ is a positive integer.

We state our main result in an even more general form by considering potentials relative to general kernels k(r), of L^{p} -functions. For notations and statement of the theorem, see section 2. See [9] for classical potential theory.

2. Preliminaries and statement of the theorem

We consider \mathbb{R}^m with Euclidean norm. All sets are sets of points in \mathbb{R}^m . Compact and open sets are denoted by K and V respectively.

The spaces C(K), $C^{\infty}(V)$, and $C_0^{\infty}(V)$ are defined in the usual way.

The Lebesgue measure of a set E is denoted by mE and integration with respect to Lebesgue measure is written $\int_E dx$. The spaces $L^p(E)$, $1 \le p < \infty$, with norm $\|\cdot\|_{L^p(E)}$ are defined in the usual way. When $E=R^m$ we write L^p and $\|\cdot\|_p$. The class of positive elements in $L^p(E)$ is denoted by $L^p_+(E)$. As a general rule, a sub index + denotes positive elements. The conjugate of p is q=p/p-1.

The class A_1 consists of all sets which are measurable for all non-negative

^{*} The author is indepted to Professor H. Wallin for many valuable discussions.

Radon measures in \mathbb{R}^m . When $E \in A_1$, $\mathscr{L}^1_+(E)$ denotes the class of complete, non-negative Radon measures μ , which are concentrated on E and satisfy

 $\|\mu\|_1 = \text{total variation of } \mu < \infty.$

For $\alpha > 0$ and $1 \le p < \infty$, $L^p_{\alpha}(\mathbb{R}^m)$ with norm $\|\cdot\|_{\alpha, p}$ is the space of Bessel potentials of order α of L^p -functions. The space $W^p_{\alpha}(\mathbb{R}^m)$, with norm $|\cdot|_{\alpha, p}$, is the usual Sobolev space. See [3] for details.

A kernel k(r) is a non-negative, non-increasing, and lower semi-continuous function $k: (0, \infty) \rightarrow [0, \infty)$. In order to exclude trivialities we assume that,

(i) $\int_{|y|\leq 1} k(|y|) \, dy < \infty,$

(ii)
$$\int_{|y|\geq 1} (k(|y|))^q \, dy < \infty,$$

(iii)
$$k(r) \neq 0$$
.

Also in all cases considered by us we have

(iv) $\int_{|y| \leq 1} (k(|y|))^q dy = \infty.$

See [17, Lemma 2].

The k-potential of a non-negative function f or measure μ is defined by convolution and written k * f and $k * \mu$ respectively.

We now define two capacities, cf. N. G. Meyers [11]. Let k be a kernel and let $1 . The <math>C_{k,p}$ -capacity of an arbitrary set E is defined by

$$C_{k,p}(E) = \inf \|f\|_{p}^{p},$$

where the infimum is taken over all $f \in L^p_+$ satisfying $(k * f)(x) = \int k(|x-y|) \cdot f(y) dy \ge 1$ for every $x \in E$. We call such functions f test functions for $C_{k,p}(E)$.

For $E \in A_1$, we define

$$c_{k,p}(E) = \sup \|\mu\|_1,$$

where the supremum is taken over all $\mu \in \mathscr{L}^1_+(E)$ for which $||k * \mu||_q \leq 1$. Such a measure μ is called a test measure for $c_{k,p}(E)$.

The $c_{k,p}$ -capacity, which is a kind of dual capacity, satisfies $C_{k,p}(A) = (c_{k,p}(A))^p$ for every analytic set A [11, Theorem 14]. All analytic sets are $C_{k,p}$ -capacitable [11, Theorem 8].

Capacities of this type have been studied by many authors [1, 2, 7, 11, 13, 14, 16, 17, 20].

We are now in a position to state our main result.

Theorem 1. Suppose that 1 and that k is a kernel satisfying the condi $tions (i)—(iv) of section 2. Then <math>C_{k,p}(K)=0$ is a necessary and sufficient condition for every function $f_0 \in C(K)$ to be the restriction to K of a continuous k-potential f = k * v, where $v \in L^p$. Furthermore, the above statement remains true if we also require the norm $||v||_p$ to be arbitrarily small.

Theorem 1 remains true for p=1 if we replace the $C_{k,p}$ -capacity by the classical k-capacity [18, p. 56] and if the conditions (i)—(iv) of section 2 are replaced by the conditions (a)—(c) in [18, pp. 56—57]. This was proved by H. Wallin [18, Theorem 1 and Theorem 2]. See also S. Ya. Havinson [8].

The solution of the extension problem described in the introduction is contained in Theorem 1. To prove this, we note that for $1 , <math>\alpha > 0$, and $\alpha \cdot p \leq m$, the Bessel kernel $G_{\alpha}(r)$ [3, p. 220] satisfies the conditions (i)—(iv) of section 2 [3, p. 224], and that the space of potentials $G_{\alpha} * v$, where $v \in L^p$, is precisely the space $L_{\alpha}^p(\mathbb{R}^m)$. When $k(r) = G_{\alpha}(r)$, $\alpha > 0$, the capacities $C_{k,p}$ and $c_{k,p}$ are denoted by $B_{\alpha,p}$ and $b_{\alpha,p}$ and are called Bessel capacities. If α is an integer we have $L_{\alpha}^p(\mathbb{R}^m) = W_{\alpha}^p(\mathbb{R}^m)$ [3, Theorem 11: 1] and Theorem 1 gives a complete solution of the extension problem studied by H. Wallin [18, Theorem 3 and Theorem 4]. The case when $k(r) = G_{\alpha}(r)$ and $\alpha \cdot p > m$ was excluded from Theorem 1. However, this case is trivial since every function in $L_{\alpha}^p(\mathbb{R}^m)$ satisfies (when redefined on a set of Lebesgue measure zero) a Hölder condition. See [17, Proposition 3].

A relation which holds except for a set of $C_{k,p}$ -capacity or $c_{k,p}$ -capacity zero is said to hold $C_{k,p}$ -a.e. and $c_{k,p}$ -a.e. respectively.

Now we define the concepts of capacitary distributions and potentials.

A function $f \in L_{+}^{p}$ such that $(k * f)(x) \ge 1$ $C_{k,p}$ -a.e. on E, and $||f||_{p}^{p} = C_{k,p}(E)$ is called a $C_{k,p}$ -capacitary distribution for E. The potential k * f is called a $C_{k,p}$ -capacitary potential for E. Let $E \in A_{1}$, then any test measure μ for $c_{k,p}(E)$ satisfying $\|\mu\|_{1} = c_{k,p}(E)$, is called a $c_{k,p}$ -capacitary distribution for E and $k * \mu$ is called a $c_{k,p}$ -capacitary potential for E.

Existence and properties of capacitary distributions and potentials was proved by N. G. Meyers [11]. See also V. G. Maz'ja and V. P. Havin [13, 14] and Yu. G. Rešetnyak [16, Theorem 3.1]. Every compact set K satisfying $C_{k,p}(K) < \infty$ has capacitary distributions. In particular this holds for the Bessel capacity $B_{\alpha,p}$, $\alpha > 0$.

3. Some lemmas

We begin with a generalization of the classical boundedness principle for potentials of measures. (See for example [9, p. 72]).

Lemma 1. (D. R. Adams and N. G. Meyers [1]). Let k_1 and k_2 be two kernels and let μ be a non-negative Radon measure. Let $u(x) = k_1 * (k_2 * \mu)^{1/p-1}(x)$, for 1 .Then

$$\sup_{x \in \mathbb{R}^m} u(x) \leq M \cdot \sup_{x \in \text{supp } \mu} u(x)$$

where M depends on m and p only.

See also [13, Theorem 1].

The distance between a point x and a set E is denoted by dist (x, E).

Lemma 2. Let k be a kernel satisfying the conditions (i)—(iv) of section 2. Let $1 and let K be a compact set such that <math>C_{k,p}(K)=0$. For any positive numbers ε and η , there is a function $v \in C_0^{\infty}(\mathbb{R}^m)$ such that the continuous potential f=k*v satisfies

 $f(x) \ge 1$, for all x belonging to some neighbourhood of K, $0 \le f(x) \le M$, for every $x \in \mathbb{R}^m$, where M depends on m and p only. $f(x) \le \varepsilon \cdot M(a)$, for all points x such that dist (x, K) > a, for all $a \ge \eta$,

 $\|v\|_p < \varepsilon.$

Here M(a) is a positive number depending on m, p, k and a.

Lemma 2 was proved with $k(r)=G_{\alpha}(r)$, including differentiability properties, in [17, Lemma 3]. We sketch the proof given there. For any $\delta > 0$, K_{δ} is the set of points x such that dist $(x, K) \leq \delta$. The set K_{δ} has capacitary distributions v_{δ} and μ_{δ} such that

$$v_{\delta}(x) = c_{k,p}(K_{\delta}) \cdot (k * \mu_{\delta})^{\frac{1}{p-1}}(x), \quad \text{a.e. [11]}.$$

The $C_{k,p}$ -capacitary potential $f_{\delta} = k * v_{\delta}$ satisfies

$$f_{\delta}(x) \ge 1, \ C_{k,p}\text{-a.e. on } K_{\delta},$$

$$f_{\delta}(x) \le 1, \text{ everywhere on supp } \mu_{\delta},$$

$$\|v_{\delta}\|_{p} = (C_{k,p}(K_{\delta}))^{1/p} = c_{k,p}(K_{\delta}) = \|\mu_{\delta}\|_{1}.$$

Now Lemma 1 gives that

$$f_{\delta}(x) \leq M$$
, for every $x \in \mathbb{R}^m$,

where M depends on m and p only. We finish the proof of Lemma 2 by regularizing f_{δ} and choosing δ small enough.

A proof of the sufficiency part of Theorem 1 using Lemma 2 and a method used by H. Wallin [18, Theorem 1] was given in [17] and is omitted here.

The following lemma is known in the linear case, J. Deny and J. L. Lions [6, p. 353] (see H. Wallin [18, Lemma 6] and J. Deny [5, Theorem 5] for a proof), and in the non-linear case, V. G. Maz'ja, V. P. Havin [14, Lemma 5.8]. Our proof differs from [14] and uses an idea of H. Wallin [18].

Lemma 3. Let k be a kernel and let p be a real number, $1 . Let <math>g_i$, i=1, 2, be functions with the following property: For every $\varepsilon > 0$ there is a Borel set E such that the restrictions of g_1 and g_2 to $\mathbb{R}^m \setminus E$ are continuous and $C_{k,p}(E) < \varepsilon$. Assume

266

that the set of those points where $g_1(x) \neq g_2(x)$ is a Borel set. If furthermore $g_1(x) = g_2(x)$ a.e. then $g_1(x) = g_2(x)$, $C_{k,p}$ -a.e.

Remark. The lemma is trivial if k does not satisfy the conditions (i)—(iv) of section 2.

Proof of Lemma 3. Let E be the Borel set consisting of those points where $g_1(x) \neq g_2(x)$ and assume that $C_{k,p}(E) = a > 0$. We first assume that a is finite. Choose E_1 , for $0 < \varepsilon < a$, such that the restrictions of g_1 and g_2 to $\mathbb{R}^m \setminus E_1$ are continuous and $C_{k,p}(E_1) < \varepsilon$. By the subadditivity of $C_{k,p}$ we have $C_{k,p}(E \setminus E_1) > a - \varepsilon$. Since $C_{k,p}$ is an inner capacity, there is a compact set K such that $K \subset E \setminus E_1$ and $C_{k,p}(K) > a - \varepsilon$. The set K has $c_{k,p}$ -capacitary distribution μ satisfying

$$\|\mu\|_1^p = C_{k,p}(K).$$

We can find a non-negative function $\varphi \in C_0^{\infty}(\mathbb{R}^m)$ which is supported by the unit ball and has L^1 -norm equal to one. Put $\varphi_n(x) = n^m \cdot \varphi(nx)$, and $\mu_n = \mu * \varphi_n$, n = 1, 2, Then μ_n is a test measure for the set

$${x \in \mathbb{R}^m; \operatorname{dist}(x, K) \leq n^{-1}} \setminus E,$$

since μ_n is absolutely continuous with respect to the Lebesgue measure and mE=0, $n=1, 2, \ldots$. This yields, with $K_n = \{x \in \mathbb{R}^m; \text{ dist } (x, K) \leq n^{-1}\},\$

$$(C_{k,p}(K_n \setminus E))^{1/p} = c_{k,p}(K_n \setminus E) \ge \|\mu_n\|_1 = \|\mu\|_1 = (C_{k,p}(K))^{1/p} > (a-\varepsilon)^{1/p}$$

and thus

$$C_{k,p}((K_n \setminus E) \setminus E_1) > (a-\varepsilon) - \varepsilon > 0,$$

if ε is small enough. Then $(K_n \setminus E) \setminus E_1 \neq \emptyset$, for every $n=1, 2, \ldots$. Choose points $x_n \in (K_n \setminus E) \setminus E_1$ and $y_n \in K$ satisfying $|x_n - y_n| \leq n^{-1}, n = 1, 2, \ldots$. Since K is compact we may assume that $\lim_{n \to \infty} y_n = y$, $y \in K$. Then $\lim_{n \to \infty} x_n = y$, and

$$|g_1(y) - g_2(y)| \le |g_1(y) - g_1(x_n)| + |g_1(x_n) - g_2(x_n)| + |g_2(x_n) - g_2(y)|, \quad n = 1, 2, \dots$$
(3.1)

The middle term in the right-hand member of (3.1) equals zero. The remaining terms tend to zero when *n* tends to infinity, by continuity. We conclude that $g_1(y) = =g_2(y)$, which is a contradiction.

Some obvious modifications are necessary when $C_{k,p}(E) = \infty$. The lemma is proved.

The following lemma is analogous to [18, Lemma 3].

Lemma 4. Let p be a real number, 1 , and k a kernel satisfying

$$\int k(|y|)^q \, dy = \infty. \tag{3.2}$$

Suppose that K is a compact set having positive $C_{k,p}$ -capacity. Further, suppose that

 t^* is a non-negative and non-decreasing function defined for $r \ge 0$ such that $t^*(r) > 0$ whenever r > 0 and $\lim_{r\to 0} t^*(r) = t^*(0) = 0$.

Then there exists a function $f_0 \in C(K)$ having the following property: If the positive number ε is chosen small enough there exist, for every Borel set E satisfying $C_{k,p}(E) < \varepsilon$, points x_1 and x_2 in $K \setminus E$ such that $x_1 \neq x_2$ and $|x_1 - x_2|$ is arbitrarily small and

$$|f_0(x_1) - f_0(x_2)| \ge t^* (|x_1 - x_2|). \tag{3.3}$$

H. Wallin proved this for the classical α -capacity [18, Lemma 3]. Since (3.2) implies that all finite sets have $C_{k,p}$ -capacity zero, Lemma 4 can be proved analogously. The proof is therefore omitted.

4. Proof of Theorem 1

As remarked in section 3 we only prove the necessity of the condition $C_{k,p}(K)=0$ in Theorem 1.

Let k be a kernel satisfying the conditions (i)—(iv) of section 2 and let 1 . $Recall that, assuming <math>C_{k,p}(K) > 0$, we must prove that there exists a function $f_0 \in C(K)$ which is not the restriction to K of a continuous potential $f = k * v, v \in L^p$.

The idea of the proof is analogous to the proof of [18, Theorem 4].

We are going to prove that there exists a strictly positive kernel k_1 satisfying the conditions (i)—(iv) of section 2, such that

$$C_{k_1, p}(K) > 0,$$
 (4.1)

and

$$\lim_{r \to 0} k(r) \cdot (k_1(r))^{-1} = 0.$$
(4.2)

The $c_{k,p}$ -capacitary distribution μ for K satisfies $\|\mu\|_1 = (C_{k,p}(K))^{1/p} > 0$. N. G. Meyers [11, Lemma 9] proved that there exists a kernel k_1 such that (4.2) holds and $k_1 * \mu \in L^q$. It is easy to see that this kernel k_1 can be modified to satisfy the conditions (i)—(iv) of section 2. Then μ is a test measure for $c_{k_1,p}(K)$ since $k_1 * \mu \in L^q$ and $\mu \not\equiv 0$, which implies that (4.1) holds. Compare [4, Theorem 2] for the case of classical α -capacity.

Next we find a modulus of continuity for the potentials k * v, $v \in L^p$.

This modulus of continuity is independent of v. More precisely: There exists a non-negative function t(r), defined for $r \ge 0$, satisfying $\lim_{r\to 0} t(r) = t(0) = 0$ and a positive number M, such that

$$|(k*v)(x_1) - (k*v)(x_2)| \le M \cdot t(|x_1 - x_2|), \tag{4.3}$$

for all points x_1 and x_2 with $|x_i| \leq R$, and $(k_1 * |v|)(x_i) \leq a$, i=1, 2. The function t depends on m, p, k, and k_1 . The number M depends on m, p, a, R and v [17, p. 47].

A basic fact is that

$$C_{k,p}(\{x \in \mathbb{R}^m; (k * |v|)(x) \ge a\}) \le \left(\frac{\|v\|_p}{a}\right)^p,$$
(4.4)

for any $v \in L^p$ and a > 0 [11, Theorem 2].

The proof of the necessity part of Theorem 1 is now easily completed in the following way:

Let K satisfy $C_{k,p}(K) > 0$ and choose a kernel k_1 such that (4.1) and (4.2) hold. Then we construct the function t in (4.3) and choose a function t^* satisfying the assumptions of Lemma 4 and

$$\lim_{r \to 0} t^*(r) \cdot (t(r))^{-1} = \infty.$$
(4.5)

The function constructed in Lemma 4 is denoted by f_0 . Now suppose that there exists a continuous potential k * v, $v \in L^p$, such that

$$f_0(x) = (k * v)(x)$$
, for every $x \in K$.

Combining (4.3), (4.4), and (4.5) with (3.3) leads to a contradiction. Thereby Theorem 1 is proved.

5. Further results

We define two capacities introduced by V. G. Maz'ja [12] and studied by many others [2, 10, 16, 17, 19, 20].

Let B=B(0, R) be a fixed open ball. For any positive integer l and a real number $p, 1 \le p < \infty$, we define the $\Gamma_{l, p}$ -capacity of $K \subset B$ by

$$\Gamma_{l,p}(K) = \inf |f|_{l,p},$$

where the infimum is taken over all $f \in C_0^{\infty}(B)$ which satisfy $f(x) \ge 1$, for every $x \in K$. Similarly we define

$$N_{l,p}(K) = \inf |f|_{l,p},$$

where the infimum is taken over all $f \in C_0^{\infty}(B)$ such that $0 \leq f(x) \leq 1$ for every $x \in \mathbb{R}^m$ and f(x)=1, for every $x \in K$.

The following important result follows from the properties of the capacitary distributions for the Bessel capacity and a method used by W. Littman [10, p. 865]:

Let *l* be a positive integer and let $1 , and <math>p \cdot l \le m$. Then the capacities $N_{l,p}$, $\Gamma_{l,p}$, and $B_{l,p}$ are equivalent for compact sets.

An even more general result was proved by D. R. Adams, John C. Polking [2, Theorem A].

Remark. H. Wallin proved the equivalence between $\Gamma_{l,p}$ and $B_{l,p}$ in [20, Theorem 1] and studied the connection between $\Gamma_{l,p}$ -capacity and classical α -capacity in [19].

Now we consider the case p=1 with the extended function belonging to $W_l^1(\mathbb{R}^m)$, where l is a positive integer. This case is not completely solved.

A sufficient condition for every $f_0 \in C(K)$ to be extendable to a continuous function f having arbitrarily small norm in $W_l^1(\mathbb{R}^m)$ is that $N_{l,1}(K)=0$. A necessary condition is given by $\Gamma_{l,1}(K)=0$ [17, Theorem 8 and Proposition 4]. We know that $N_{l,1}$ and $\Gamma_{l,1}$ are equivalent for compact sets when l=1 [10, p. 861]. It is an open question if this holds also when l is an integer greater than one.

There exists a compact set $K \subset \mathbb{R}^2$ such that every $f_0 \in C(K)$ has an extension in $W_1^1(\mathbb{R}^2) \cap C(\mathbb{R}^2)$ but it is in general not possible to make the norm in $W_1^1(\mathbb{R}^2)$ of the extended function arbitrarily small [18, p. 58]. This contrasts to Theorem 1 where the two properties:

(a) Every $f_0 \in C(K)$ is the restriction to K of a continuous potential $k * v, v \in L^p$,

(b) Property (a) holds and $||v||_p$ can be made arbitrarily small, are equivalent. Finally we state a consequence of the Open Mapping Theorem.

Theorem 2. Suppose that $\alpha > 0$, $1 \le p < \infty$ and that K is such that every $f_0 \in C(K)$ can be extended to a continuous function f belonging to $L^p_{\alpha}(\mathbb{R}^m)(W^p_{\alpha}(\mathbb{R}^m))$. Then there is a positive number M such that every $f_0 \in C(K)$ can be extended to a continuous function f satisfying

$$\|f\|_{\alpha,p} \leq M \cdot \sup_{x \in K} |f(x)|,$$

$$(|f|_{\alpha, p} \leq M \cdot \sup_{x \in K} |f(x)|).$$

The number M is independent of f.

For a proof see [17, Theorem 9]. When p>1, the $L_x^p(\mathbb{R}^m)$ -case of Theorem 2 is contained in Theorem 1.

References

- 1. ADAMS, D. R., MEYERS, N. G., Bessel potentials. Inclusion relations among classes of exceptional sets, Indiana Univ. Math. J., 22 (1973), 873-905.
- 2. ADAMS, D. R., POLKING, J. C., The equivalence of two definitions of capacity, Froc. Amer. Math. Soc., 37 (1973), 529-534.
- ARONSZAJN, N., MULLA, F., SZEPTYCKI, P., On spaces of potentials connected with L^p-classes, Ann. Inst. Fourier (Grenoble), 13 (1963), fasc. 2, 211-306.
- 4. CARLESON, L., On the connection between Hausdorff measures and capacity, Ark. Mat., 3 (1957), No. 36, 403-406.
- 5. DENY, J., Théorie de la capacite dans les espaces fonctionelles, Séminarie de Théorie du Potentiel, Paris, 9ème année, 1964-65, No. 1.

Bessel potentials and extension of continuous functions on compact sets

- 6. DENY, J., LIONS, J. L., Les espaces du type de Beppo-Levi, Ann. Inst. Fourier (Grenoble), 5 (1953/54), 305-370.
- 7. FUGLEDE, B., Extremal length and functional completion, Acta Math., 98 (1957), 171-219.
- HAVINSON, S. YA., On the representation and approximation of functions on thin sets, (Russian), Sovremennye problemy teorii analitičeskih funkcii (Proc. Conf. Erevan 1965), Nauka, Moscow 1966, 314—318.
- 9. KUNUGUI, K., Étude sur la théorie du potentiel généralisé, Osaka Math. J., 2 (1950), 63-103.
- 10. LITTMAN, W., A connection between α -capacity and (m-p)-polarity, Bull. Amer. Math. Soc., 73 (1967), 862-866.
- 11. MEYERS, N. G., A theory of capacities for potentials of functions in the Lebesgue classes, *Math. Scand.*, 26 (1970), 255–292.
- MAZ'JA, V. G., Some p-conductance and theorems of imbedding certain function spaces into the space C, Dokl. Akad. Nauk. SSSR, Tom 140 (1961), 299-302. Soviet Math. Dokl. 2 (1961), 1200-1203.
- MAZ'JA, V. G., HAVIN, V. P., A non-linear analogue of the Newton potential and metric properties of the (p, l)-capacity, Dokl. Akad. Nauk. SSSR, Tom 194 (1970), 770-773, Soviet Math. Dokl., 11 (1970), No. 5., 1294-1298.
- MAZ'JA, V. G., HAVIN, V. P., Non-linear potential theory, Usp. Mat. Nauk. 27:6 (1972), 67– 138. Russian Math. Surveys 27:6 (1972), 71–148.
- DU PLESSIS, N., Some theorems about the Riesz fractional integral, Trans. Amer. Math. Soc., 80 (1955), 124–134.
- REŠETNYAK, YU. G., On the concept of capacity in the theory of functions with generalized derivatives, Sibirskii Matem. Zhur., 10 (1969), No. 5., 1109–1138. Siberian Math. J., 10 (1969), 818–842.
- 17. SJÖDIN, T., Bessel potentials and extension of continuous functions on compact sets, Research Report, Univ. of Umeå Sweden, No. 1 (1973).
- 18. WALLIN, H., Continuous functions and potential theory, Ark. Mat., 5 (1963), 55-84.
- 19. WALLIN, H., A connection between α -capacity and L^p -classes of differentiable functions, Ark. Mat., 5 (1963), 331-341.
- 20. WALLIN, H., Riesz potentials, k, p-capacity and p-modules, Mich. Math. J., 18 (1971), 257-263.

Received July 4, 1974

Tord Sjödin Department of Mathematics University of Umeå S-901 87 Umeå SWEDEN