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1. Introduction 

Let K be a compact  subset of  R m. H. Wallin [18] proved that if K has classical 
e-capacity zero for a certain e, then everyf0E C(K) can be extended to a continuous 
function f~ WP(R"), where l < p < o o ,  and l is a positive integer. The number 
depends on m, p and I. He also proved a converse statement. However, his results 
give a complete solution to this extension problem only when p = 2  [18, Theorem 3, 
Theorem 4]. We are going to give a solution to this problem by considering L~ (Rm), 
l < p < o ~ ,  e > 0 ,  c~ not necessarily an integer. The case studied by H. Wallin is then 
included since L~ (R " )=  W~(R"), when l < p < ~ o  and ~ is a positive integer. 

We state our main result in an even more general form by considering potentials 
relative to general kernels k(r), of LP-functions. For  notations and statement of  the 
theorem, see section 2, See [9] for classical potential theory. 

2. Preliminaries and statement of the theorem 

We consider R m with Euclidean norm. All sets are sets of  points in R". Compact  
and open sets are denoted by K and V respectively. 

The spaces C(K), C=(V), and Co~,V ) are defined in the usual way. 
The Lebesgue measure of  a set E is deneted by mE and integration with respect 

to Lebesgue measure is written fE dx. The spaces LP(E), l_-<p<oo, with norm 

[I ~ IILp(~) are defined in the usual way. When E=R" we write L p and II �9 II~- The class 
of positive elements in LP(E) is denoted by L~(E). As a general rule, a sub in- 
dex 7- denotes positive elements. The conjugate of  p is q=p/p-1. 

The class A t consists of  all sets which are measurable for all non-negative 

* The author is indepted to Professor H. Wallin for many valuable discussions. 
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R a d o n  measures in R m. When  EEA1, ~ + ( E )  denotes the class of  complete,  non- 
negative R a d o n  measures  p, which are concentra ted on E and  satisfy 

IL~II1 = total  var ia t ion of  # < ~o. 

Fo r  cz > 0  and 1 <=p < ~, L p (R m) with n o r m  If "II~, p is the space of  Bessel potent ials  
o f  order  e of  LP-functions. The space Wf(Rm), with no rm ]. [~, p, is the usual Sobolev 

space. See [3] for  details. 
A kernel k(r) is a non-negative,  non-increasing, and  lower semi-continuous 

funct ion k:  (0, ~ ) ~ [ 0 ,  o~). In order  to exclude trivialities we assume that,  

(i) kilyl) dy < oo, 

(ii) f Lrl~-I (k(lYl)) q dy < ~ ,  

(iii) k(r) ~ O. 

Also in all cases considered by  us we have 

(iv) flyl-~l (k(lyl)) ~ dy = ~.  

See [17, L e m m a  2]. 
The  k-potent ia l  o f  a non-negat ive function f or measure  /~ is defined by con- 

volution and writ ten k . f  and  k . / t  respectively. 
We now define two capacities, cf. N.  G. Meyers [11]. Let  k be a kernel and 

let 1 -<p<  ~ .  The  Ck,p-capacity of  an arbi t rary  set E is defined by 

Ck, p(E) = infllfl lp p, 

where the inf imum is taken over  all f ~ L ~  satisfying (k * f ) ( x ) - f k ( x - y ] )  "flY)dy >-1 
for  every xEE. We call such functions f test functions for Ck, p(E). 

F o r  EEA~, we define 
Ck, p(E) = sup ]Pit/, 

where the sup r emum is t aken  over  all #E~e~_(E) for  which k./~llq<=l. Such a 

measure  # is called a test measure for  Ck, p(E ). 
The ck, p-capacity,  which is a k i n d  o f  dt, al capacity,  satisfies Ck. p ( A ) =  (Ck,, (A)) p 

for  every analytic set A [11, Theorem !4/. All analytic sets are Ck.p-capacitable 

[ 11, Theo rem 8]. 
Capacit ies of  this type have been studied by m a n y  authors  [1, 2, 7, 11, 13, 14, 

16, 17, 20]. 
We are now in a posi t ion to state our  main result. 

Theorem 1. Suppcse that 1 < p <  ~ and that k is a kernel satisfying the condi- 
tions (i) (iv) of section 2. Then Ck, p(K)=O is a necessary and sufficient condition 
for every function foEC(K) to be the restriction to K of a continuous k-potential 
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f :  k �9 v, where v E L p. Furthermore, the above statement remains true iJ" we also require 
the norm [v]! p to be arbitrarily small. 

Theorem 1 remains true for p = 1 if we replace the Ck, v'capacity by the classical 
k-capacity [18, p. 56] and if the conditions (i)--(iv) of  section 2 are replaced by the 
conditions (a) (c) in [18, pp. 56 57]. Thiswas proved byH.  Wallin [18, Theorem 1 
and Theorem 2]. See also S. Ya. Havinson [8]. 

The solution of the extension problem described in the introduction is contained 
in Theorem 1. To prove this, we note that for l < p < ~ ,  e > 0 ,  and c~ .p~m,  the 
Bessel kernel G, (r) [3, p. 220] satisfies the conditions (i) (iv) of  section 2 [3, p. 224], 
and that the space of potentials G~-~ v, where v C L p, is precisely the space L~ (Rm). 
When k ( r )=G, ( r ) ,  c~>0, the capacities Ck, p and e k ,  p a r e  denoted by Be, p and b~,p 
and are called Bessel capacities. I f  e is an integer we have L~(R" )=  W f ( R  m) [3, 
Theorem 11 : 1] and Theorem 1 gives a complete solution of the extension problem 
studied by H. Wallin [18, Theorem 3 and Theorem 4]. The case when k ( r ) = G , ( r )  
and c~-p > m  was excluded from Theorem 1. However, this case is trivial since every 
function in L p (R m) satisfies (when redefined on a set of  Lebesgue measure zero) a 
H61der condition. See [17, Proposition 3]. 

A relation which holds except for a set of Ck.p-capacity or % p-capacity zero 
is said to hold Ck, p-a.e, and Ck, p-a.e, respectively. 

Now we define the concepts of  capacitary distributions and potentials. 
P A function f C L ~  such that ( k , f ) ( x ) > = t  Ck, p-a.e, on E, and [.f l lp-Ck, p(E) 

is called a Ck,~-capacitary distribution for E. The potential k . f  is called a Ck,~- 
capacitary potential for E. Let E ~ A I ,  then any test measure # for Ck, r (E) satisfying 
II~l l=Ck, p(E), is called a %v-capaci tary distribution for E and k . #  is called a 
Ck, p-capacitary potential for E.  

Existence and properties of capacitary distributions and potentials was proved 
by N. G. Meyers [11]. See also V. G. Maz ' ja  and V. P. Havin [13, 14] and Yu. G. Re- 
getnyak [16, Theorem 3.1]. Every compact set K satisfying Ck, v ( K ) < o o  has capac- 
itary distributions. In particular this holds for the Bessel capacity B~, p, ~ >0.  

3. Some iemmas 

We begin with a generalization of the classical bouncledness principle tor poten- 
tials of  measures. (See for example [9, p. 72]). 

Lemma 1. (D. R. Adams and N. G. Meyers [1]). Let k 1 and ks be two kernels 
and let # be a non-negative Radon measure. Let  u (x) = k l  * (k2 * #)l/p-1 (x) , for  1 < p  < ~.  
Then 

sup u ( x ) - - M ,  sup u(x) 
x E R  m x f. s u p p  # 
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where M depends on m and p only. 

See also [13, Theorem 1]. 
The distance between a point x and a set E is denoted by dist (x, E). 

Lemma 2. Let k be a kernel satisfying the conditions (i)--(iv) of  section 2. Let 
1 < p <  co and let K be a compact set such that Cg,v(K)=0. For any positive numbers 

and ~, there is a function vEC~(R '~) such that the continuous potential f = k * v  

satisfies 
f ( x )  >= 1, for all x belonging to some neighbourhood o f  K, 
O<=f(x)<-M, for every x E R  m, where M depends on m and p only. 

f(x)<=e.M(a),  for all points x such that dist (x, K)>a,  for  all a>=n, 

[[vllp < ~. 

Here M (a) is a positive number depending on m, p, k and a. 

Lemma 2 was proved with k(r)=G~(r), including differentiability properties, 
in [17, Lemma 3]. We sketch the proof  given there. For  any 6 > 0 ,  Ka is the set of 
points x such that dist (x, K)<=6. The set K~ has capacitary distributions va and 
#a such that 

1 

v~(x) = ck.p(Ko).(k*l~o)P-l(x), a.e. [11]. 

The Ck. p-capacitary potential f~ = k  �9 va satisfies 

fo (x) -> 1, Ck, : a .e .  on K~, 

J~(X) ~ 1, everywhere on supp pa, 

Ilvollp = (C~,p(go))  lip = ck, v(K~) : IIt~o[ll. 

Now Lemma 1 gives that 

J ~ ( x ) ~ M ,  for every x r R  m, 

where M depends on m and p only. We finish the proof  of  Lemma 2 by regularizing 
f~ and choosing 6 small enough. 

A proof  of  the sufficiency part of Theorem 1 using Lemma 2 and a method 
used by H. Wallin [18, Theorem 1] was given in [17] and is omitted here. 

The following lemma is known in the linear case, J. Deny and J. L. Lions [6, 
p. 353] (see H. Wallin [18, Lemma 6] and J. Deny [5, Theorem 5] for a proof),  and 
in the non-linear case, V. G. Maz'ja, V. P. Havin [14, Lemma 5.8]. Our proof  differs 
from [14] and uses an idea of  H. Wallin [18]. 

Lemma 3. Let k be a kernel and let p be a real number, 1 < p <  co. Let gi, i= 1, 2, 
be .functions with the following property: For every e > 0  there is a Borel set E such 
that the restrictions o f  gl and g~ to R m \ E  are continuous and Ck, p(E)<~. Assume 
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that the set of  those points where gl(X)~g2(X) is a Borel set. I f  furthermore g l ( x ) =  
=g2fx) a.e. then ga(x)=g2(x), Cg, p-a.e. 

Remark. The lemma is trivial if k does not satisfy the conditions (i) (iv) of  
section 2. 

Proof ofLemma 3. Let E be the Borel set consisting of  those points where 
gl(x) r and assume that Ck,p(E)---a>O. We first assume that a is finite. Choose 
El,  for 0 <  5< a, such that the restrictions of  gl and g2 to R'~\E1 are continuous and 
Cg, p(E1)<e. By the subadditivity of  Ck,p we have Ck,p(E\EO>a--e. Since Ck,p 
is an inner capacity, there is a compact set K such that K c E \ E ~  and Ck,p(K)> 
>a- -~ .  The set K has Ck,p-capacitary distribution p satisfying 

II~llf = Ck, g(K). 

We can find a non-negative function r ~ Co(R ~) which is supported by the unit ball 
and has L~-norm equal to one. Put 9,(x)=nr".q~(nx), and #,=/~*q~n, n = l ,  2 . . . . .  
Then #, is a test measure for the set 

{xERm; dist (x, K) <= n -~} \E ,  

since/~, is absolutely continuous with respect to the Lebesgue measure and mE=O, 
n = l ,  2, . . . .  This yields, with K.={xERm; dist (x, K)<=n-~}, 

(Ck, p(K,~E)) lip : ck, p ( K , \ E )  >= I1~.111---I1~ill = (Ck, p(K)) lip > (a--8) lip 

and thus 
Ck, , ( ( K , \ E ) \ E 1 )  > ( a -  5) - 8 > O, 

if  e is small enough. Then ( K , \ E ) \ E x ~ O ,  for every n----l, 2, . . . .  Choose points 
Xn~ ( K n \ E ) \ E  1 and y.EK satisfying 'Xn--Y.] <=n -x, n : l ,  2, . . . .  Since K is compact 
we may assume that l i m , . ~  y . : y ,  yEK. Then l im._~ x~=y, and 

[g~(Y)-g2(Y)] <-- [g~(Y) --gl(Xn)] q-[g~(x,)--g2(Xn)'+ ]gz(Xn)--g2(Y)l, n = 1, 2 . . . . .  
(3A) 

The middle term in the right-hand member  of  (3.1) equals zero. The remaining 
terms tend to zero when n tends to infinity, by continuity. We conclude that gl(Y)-- 
=g2(Y), which is a contradiction. 

Some obvious modifications are necessary when Ck, p(E)=~.  The lemma is 
proved. 

The following lemma is analogous to [18, Lemma 3]. 

Lemma 4. Let p be a real number, 1 < p <  ~, and k a kernel satisfying 

f k(lyl)q dy = oo. (3.2) 

Suppose that K is a compact set having positive Ck, p-capacity. Further, suppose that 
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t* is a non-negative and non-decreasing function defined for r>-O such that t*(r)>0 
whenever r > 0  and limr.~ 0 t*(r)=t*(O)=O. 

Then there exists a function fo6 C(K) having the following property: I f  the posi- 
tive number e is chosen small enough there exist, for every Borel set E satisfying 
Ck.v(E)<c, points xa and Xz in K \ E  such that x ~ x 2  and x 1 x21 is arbitrarily 
small and 

fo (xl) - J o  (x2)] ~ t* ([x~ - x~]). (3.3) 

H. Wallin proved this for the classical a-capacity [18, Lemma 3]. Since (3.2) 
implies that all finite sets have Ck,p-capacity zero, Lemma 4 can be proved analo- 
gously. The proof  is therefore omitted. 

4. Proof  o f  Theorem 1. 

As remarked in section 3 we only prove the necessity of the condition Ck.p (K)--0 
in Theorem 1. 

Let k be a kernel satlstymg the conditions (i) (iv) of  section 2 and let 1 < p  < oo. 
Recall that, assuming Ck,p (K)>0, we must prove that there exists a function f0 ~ C(K) 
which is not the restriction to K of  a continuous potential f = k .  v, v ~L p. 

The idea of the proof  is analogous to the proof  of  [18, Theorem 4]. 
We are going to prove that there exists a strictly positive kernel kl satisfying the 

conditions (i) (iv) of  section 2, such that 

G~,AK) > o, (4.1) 
and 

lim k(r) .  (kx (r)) -~ = 0. (4.2) 
r ~ 0  

The Ck,p-capacitary distribution ~t for K satisfies II #111 = (C~,, (K) )  1/~ > 0. N. G. Meyers 
[1 l, Lemma 9] proved that there exists a kernel kx such that (4.2) holds and kl �9 ~L q. 
It is easy to see that this kernel k~ can be modified to satisfy the conditions (i) (iv) 
of  section 2. Then # is a test measure for Ckl, p (K) since kl * # C L q and # ~ 0, which 
implies that (4.1) holds. Compare  [4, Theorem 2] for the case of  classical a-capacity. 

Next we find a modulus of  continuity for the potentials k~v ,  vCL p. 
This modulus of  continuity is independent of  v. More precisely: There exists a 

non-negative function t(r), defined for r->-0, satisfying limr-~o t(r)=t(O)=O and a 

positive number M, such that 

(k * V) (X1) - -  ( k *  v) (x2)j ~- M .  t([xl -- x2 ), (4.3) 

for all points xl and x2 with xi <=R, and (k~.  vl)(xi)<-a, i=1 ,  2. The function 
t depends on m, p, k, and kl.  The number M depends on m, p, a, R and v [17, p. 47]. 
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A basic fact is that 

Ck.v({xERm; (k~,vl)(x) ~= a}) <= f l[-~[-]as , (4.4) 

for any vELp and a > 0  [11, Theorem 2]. 
The proof  of  the necessity part  of  Theorem 1 is now easily completed in the 

following way: 
Let K satisfy Ck.p(K)>O and choose a kernel k 1 such that (4.1) and (4.2) hold. 

Then we construct the function t m (4.3) and choose a function t* satisfying the 
assumptions of  Lemma 4 and 

lim t ~ (r) . (t(r)) -~ = co. (4.5) 

The function constructed in Lemma 4 is denoted by J0. Now suppose that there 
exists a continuous potential k . v ,  vEL p, such that 

f0 (x) = ( k .  v) (x), for every x E K 

Combining (4.3), (4.4), and (4.5) with (3.3) leads to a contradiction. ' lhereby Theo- 
rem 1 is proved. 

5. Further results 

We define two capacities introduced by V. G. Maz' ja  [12] and studied by many 
others [2, 10, 16, 17, 19, 20]. 

Let B=B(O, R) be a fixed open ball. For  any positive integer l and a real num- 
ber p, 1 -<_p< 0% we define the Ft, v-capacity of  K c B  by 

Fl. v (K) = inf [fl~,v, 

where the infimum is taken over a l l fECo(B  ) which satisfy f (x )  -> l, for every xEK. 
Similarly we define 

Ni, v(K ) = inflflz,v, 

where the infirnum is taken over all fECo(B)  such that O<=f(x) <- 1 for every xER"  
and f ( x ) = l ,  for every xEK. 

The following important  result follows from the properties of  the capacitary 
distributions for the Bessel capacity and a method used by W. Lit tman [10, p. 865] : 

Let l be a positive integer and let 1-<p< 0% and p .  l<m. Then the capacities 
Art, v, Ft.v, and Bt, p are equivalent for  compact sets. 

An even more general result was proved by D. R. Adams, John C. Polking 
[2, Theorem A]. 



270 T. SjSdin 

Remark. H. Wallin proved the equivalence between Fx, p and Bt. p in [20, Theo- 
rem 1] and studied the connection between F~,p-capacity and classical a-capacity 

in [19]. 
Now we consider the case p = 1 with the extended function belonging to W] (Rm), 

where 1 is a positive integer. This case is not completely solved. 
A sufficient condition for every foEC(K) to be extendable to a continuous 

function f having arbitrarily small norm in W] (R m) is that Nl,1 ( K ) =  0. A necessary 
condition is given by F t , I (K)=0  [17, Theorem 8 and Proposition 4]. We know that 
Nt,1 and Ft, 1 are equivalent for compact  se ts  when l=1  [10, p. 861]. I t  is an open 
question if this holds also when 1 is an integer greater than one. 

There exists a compact set K c R  2 such that every foEC(K) has an extension 
in W~(R~)AC(R ~) but it is in general not possible to make the norm in W~(R ~) 
of  the extended function arbitrarily small [18, p. 58]. This contrasts to Theorem 1 

where the two properties: 
(a) Every foe C(K) is the restriction to K of a continuous potential k .  v, v C L p, 
(b) Property (a) holds and Ilvllp can be made arbitrarily small, are equivalent. 

Finally we state a consequence of  the Open Mapping Theorem. 

Theorem 2. Suppose that ~>0 ,  I_<-p<o~ and that K is such that every foEC(K) 
can be extended to a continuous function f belonging to L~ (R m) ( W f  (Rm)). Then there 
is a positive number M such that every fu E C(K) can be extended to a continuous func- 

tion f satisfying 
[1 f[[~,p -< M .  sup If(x)[, 

xrK 

(Ifl~,p =< M .  sup lAx)I). 
xrK 

The number M is independent o f f .  

For  a proof  see [17, Theorem 9]. When p > l ,  the L~(Rm)-case of  Theorem 2 

is contained in Theorem 1. 
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