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1. Introduction 
Let 

(1) f ( x ,  y) = ax 2 + bxy +cy 2 

be an indefinite binary quadratic form with real coefficients. We shall be concerned 
with the set of  possible values of 

(2) m + ( f )  = inf f(x~dY) 
l 

the infimum being taken over integers x, y for which f ( x ,  y)>0.  Here d=b*-4ae  
is the discriminant of f.  This is an analogue of the ordinary Markov spectrum, which 
is the set of possible values of 1~re(f), where m ( f ) - - i n f  If(x,  y)[/l/d. 

It is sometimes convenient to consider 

(3) 2+ ( f )  = m+ (f ) -* .  

We always have 2§  (see Cassels [1], Ch. II). Dumir [4] proved that we have 
no 2+ in the open interval (96/25, 4). This is a special case of the following theorem: 

Theorem 1. There is no 2+ in the open interval 

- -  k2(k2 + 2k + 2)2, , k = 1, 2, 3 . . . . .  

The next theorem implies that in a certain sense Theorem 1 cannot be improved. 

Theorem 2. Let 
k 2 + k + 2  k 2 + k + 2  

uk(x, y) = x~-~ k 2 + 2 k +  2 xy -k(k~.+ 2k + 2)y  2 
and 

k - 1  1 y~. 
vk (x ,  y )  = x ~ + ~ x y  - ~- 
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Then 

and 

2+ (Uk) = k____~l 2 4 
k s (kS+ 2k + 2) 2 

Remarks. In this work we have studied the one-sided Markov spectrum. It 
is defined as the set of possible values of 1/m+(f) and will be denoted by B. It is not 
difficult to prove that B is a closed subset of [1, oo] and in [6] it is proved that B 
contains all real numbers x satisfying 

x-> 1/5+1 
2 

Hence B is completely described by the complementary open set 

which is a union of pairwise disjoint open intervals {/1, Is, Iz . . . .  }. Each interval 
I~ is called a gap in the one-sided Markov spectrum. 

Theorem 1 and 2 prove together that there exist infinitely many gaps. How- 
ever, the gaps listed in Theorem 1 are not all. For example, the interval (241/~23, 31/21) 
constitutes a gap not listed in Theorem 1. 

The problem to give a complete list of gaps seems to be very difficult. In Theo- 
rem 3 below we give a general characterization of the one-sided Markov spectrum 
in terms of sequences of positive integers. 

2. Basic lemmata 

Hightower [5] dealt with the similar symmetric problem of m ( f ) ,  and I shall 
need a few lemmata, which he used. Cf. [5] for the proofs; 

Lemma 1. Let f ( x , y ) = a x 2 + b x y + c y  2 be an indefinite form with m + ( f ) > 0 .  
Then there is a form g(x, y)=x2 +pxy--qy  s such that 

a) 2 + ( f )  = 2+(g) =p2+4q,  

b) 0 ~ _ p ~ _ l ,  

c) ~>n~o g(x, y) = 1. 
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L e m m a  2. 1f for every (b, c) in ~<b2+4c<[3, 0=<b<-l, we have 
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_ i n f .  ~ (x ~ + b x v -  cv 2) < 1 (x and y are integers), 
xZ+bxy--cy~>u 

then there is no 2+ in the open interval (~, [3). 

Lemma 2 follows immediately from Lemma 1. 

Definition. We denote by T(x, y) the points in the (b, c)-plane for which 0<x2+  
+ b x y -  cy z < 1. (Equivalently expressed 

x z - -  1 x 2 x . . y~ t-Xb < c 
Y <---~-+yb.) 

With this notation we get immediately from Lemma 2: 

L e m m a  3. There is no 2 + in (~, [3) i f  and only i f  the 2-dimensional region ~ < b ~ + 
+4c<[3, 0 -<b~l  in the (b, c)-plane can be covered by finitely or infinitely many 
strips T(x, y)i 

Definition. D = D ( b ,  c)=b2+4c. 

3 .  A d i a g r a m  

The diagram of Figure 1 with a few strips T(x, y) will be of great help in under- 
standing the proof of Theorem 1. 

By looking at the diagram and performing a few simple calculations we note 
the following facts: 

a) (b, c ) = ( 1 - 1 / k ,  l /k) is on the border of T ( - 1 ,  1), T(1, k- - l )  and T(1, k) 
if k=2 ,  3, 4, . . . .  

b) D(1 " l / k ,  l/k) = (1 + 1/k) ~, 

c) The region 96/25<D<4 is covered by T(1, 1), T ( - 3 ,  2) and (not necessary) 
T(1, 2). That part which lies between T(1, i) and T(1, 2) is in T ( - 3 ,  2). 

d) The region 56/25<D<9/4  is covered by T ( ,  1, 1), T(1,2), T ( - 7 ,  6), T(1, 3) 
and T ( -  5, 4). That part which lies between T(1, 2) and T(1, 3) is covered by T(-- 7, 6) 
and the part between T(1, 3) and T(1, 4) by T(--5, 4). 
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T ( I , I  

i T ( - ~  
D=~4 

D=-96/25 

~-9/~ 

>:56/25 T(-7,6) 
T(-5,~. 

\ 
\ 

/ T(l ,2) 
T{ I ,3 

Figure 1 

4. Main lemma 

What we have expressed in c) and d) above can be generalized. In fact we have 
the following lemma, which is the essential part of  the proof of Theorem 1. 

Lemma 4. That part of the region 

[kkl]~__ . 4 ( ; } s, 
k2(k2+2k+2)z < D = b 2 + 4 c < :  k 1 0_<-b< 1, 

which lies between T(1, m) and T(1, m + 1) (i.e. below T(1, m) and above T(1, m + 1)) 
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is covered by T ( - ( I + I ) ,  1), where 
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(4) l = [ m + l _ k ] ,  k=~l'  k _ ~ m _ ~ 2 k - l .  

([ ] denotes the integral part.) 

Proof of Lemma 4. Let the points A and B have coordinates (ba, ca) and 
ba, ca) respectively as defined in Figure 2. It is easy to see that the proof will be 
complete if we can show that 

(5) 

and 

(6) 
k ~ (k ~ + 2k + 2) z ' 

_7 T(l~m) 

B 
1,m,l)  

-Z_ ~ "  "~  T( 1 1 1) 

Figure 2 

By the definition of  T(x, y) we easily get 

( 1 )~ 1 . 1+1 2 1 + 1 .  
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Thus we have 

t+ ,  , ~ f t + , ] ' f  1 ] '  
T + ~--~]-J ba [ T J  - [-m--+-]-j, 

which gives 

(8) ba - l+1  1 
l m + l  

And so by (7) 

l+1  
(9) cA= l (m+l )"  

:By: (4) 
k ( m + l )  (10) l x  
r e + l - k "  

Hence by (8), (9) and (i0) 

[1 1 1 'l S i 
= [ +7+-~---~-J > tI-~ 

Thus we have (5). 
In the same way 

1 ~ f l + l +  1 / ~ m~_i)  + 4 1+1 
l ( m  + ! )  - ( - 7 -  -~-Tr) = 

~qzr~  +~-+-rJ = L~J-- 

1 (I+I) 3 - 1  I+1 
(11) cB = m b a  ~ 1 bB, 

and so lbs=m( l+2) -m( l+  1)bn, which gives 

(12) 

By (4) 

(13) 

Using this we get from (12) 

b n -  m( l+2 )  _ re ( l+2)  
m ( l + l ) + l  l (m+l)+m" 

(14) bB = - -  

l >  = k(m+ l ) - : m + k  
m + l - k  

m ( m + l ) ( l + 2 )  m [ m + 2  ] 
m + l  l ( m + l ) + m  = m+'---~[l+l(m+l)+mJ=< 

Hence by (11) 

(15) 

m ll _~ m--I-2 I km$ -Jc m2 -t- 2m 
m + l  k ( m + l ) - m + k .  . .  = km~+2km+2k " 

m+ l_k~ tm+ l ) + m  ) 

on= I~b~'< km+mq-2  
k ~ k  " m 
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By (14) and (15) 

D(B)  = b~ + 4cB <-= 

Thus 

(16) 

(kin s + m S + 2m) s + 4 (km + m + 2) (km 2 + 2km + 2k) 

(km 2 + 2km + 2k) "~ 

=> [ k k l ) S  (kmS+mS+2m)2+4(km+m+2)(km2+2km+2k)(km s + 2km + 2 k )  s 

2 2 =( (re+l-k) ] 
k (m s + 2m + 2)) " 

Consider the function h ( x ) = ( x +  1 - k ) / ( x 2 + 2 x + 2 )  in the closed interval 
[k, 2 k -  1], where k>0 .  We easily ~et 

h' (x)  = ( x 2 + 2 x + 2 ) - ( x + l - k ) ( 2 x + 2 )  2 k ( x + l ) - ( x + l ) 2 + l  
(x 2 + 2x + 2) 3 = (x ~ + 2x + 2) s 

Thus h(x)  >- h (k )  = 1 / ( k s + 2 k + 2 )  if k ~_ x =  < 2 k - 1 .  
Hence from (16) 

1 3 
(17) fk + 11 - - D ( B )  >= [ 2(m+ l - k )  / z >  4 

l, k ) [ k ( m ~ + 2 m + 2 ) )  - k 2 ( k ~ + 2 k + 2 )  2' 

so we get (6) as well and the proof is complete. 

> 0 .  

5. An admissible point 

As we could see from the proof there is equality in the second step of (17) 
if and only i f m = k .  In this case there is equality in (13), (14), (15) and (16) too, i.e. 

[ k S + k + 2  k 2 + k + 2  ) 
(bB, cB) = [k s + 2k + 2'  k (k s + 2k + 2) " 

By Theorem 2 this is an admissible point, i.e. it is not contained in any strip T(x ,  y). 

6. A remark 

It is easy to see that we need consider m only between k and 2 k -  1 in Lemma 4. 
If  for instance (b, c) is situated below T(1, 2k), then we have 

D(b, c) = b2--r-4c ~_ [2+4"~r"ztc = 1 + ~  < 
k2(k2 + 2k  + 2) s 
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I f  on the other hand, (b, c) lies above T(1, k) and T ( - 1 ,  1) we have 

D(b, c) -> 1 - ~ - J  + 4 . ~  = 

With this remark we might regard Theorem 1 as having been fully proved. 

7. Proof  of  the second part of  Theorem 2 

We have 

vk(x,y)  = x'~+ x y - - ~  = ( x + y )  x - - ~  . 

We may suppose that x g 0 .  
a) x = 0 .  Then we have 

1 
Vk (0, y) = - - ~  y~ ~_ O. 

b) x > 0 .  Then Vk(X, y) is a function of y of  the second degree, that vanishes 
for y = - - x  and y=kx.  Ok is positive if and only if - - x<y<kx .  Thus Ok takes its 
smallest positive value for integral y when y = - - x + l  and y=kx--1.  Hence if 
Vk(x,y)>O we also have 

x - -1  
_ > x ~ l .  vk(x,y) ~ v~(x, - - x + l )  = v~(x, k x - 1 )  = x +  k = 

Thus we see that 
inf vk (x, y) = 1. 

Vk>O 

So by (2) m+ (vk) = k/(k+ 1) and by (3) 2+ (Vk) = (1 + 1/k) ~. 

8. A lattice corresponding to f(x,  3,) 

To be able to prove the first part of  Theorem 2, we need to point out a few 
things. The indefinite binary quadratic form f (x,  y)=ax2+bxy+cy ~ is equivalent 
to a so called reduced form 

(18) fo(x, y) = ao(x--qgoy)(x--Ooy), 

where q%>0 and - 1 < 0 o < 0 .  We suppose that q~o and 00 are irrational, and have the 

regular continued fraction expansions ~o 0 = [go, &,  g3 . . . .  ] and - 0 0  = [0, g_ 1, g-z  . . . .  ]. 
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Every reduced form equivalent to f is of the form 

f~ (x, y) = ai ( x -  q~iY) ( x -  Oiy), 
where 

(19) 

and 

(20 )  

r = [gi, gi+:, g~+2,"-"] 

-0, = [0, gi-1, g,-2, .--]. 

We may say that to f corresponds a unique doubly infinite sequence 

{..., g-2, g - i ,  go, gl, g2, .-.} 

of positive integers, f and f~, being equivalent, have the same discriminant. Thus 

d = b 2 - 4 a c  = a~(q~i- Oi) 2 
or 

(21) raij = r ?~ 

where ?~ = [gi, gi+l, . . . ]+[0,  gi-1, gi-2, ...]. 
These are all well-known facts, see e.g. Dickson [3], Ch. 7. 
Further, the absolute infimum of the numbers representable by f is equal to 

infi la~l. But we can say more than this, namely 

inf f ( x ,  y) = inf at 
f>O ai>O 

sup ai. 
al-<O 

The numbers as are alternately positive and negative. Thus if we suppose a0>0, 
(22) is equivalent to 

I in f f (x ,  y) = infa2~ 
f > O  i 

(23) / supf(x ,  y) = sup a2i+:. 
f-<O i 

We can see this by considering the fact that to every binary quadratic form 
corresponds a 2-dimensional lattice, see e.g. Delone--Faddeev [2], Suppl. 1. To 
the form f~(x, y )=a i ( x -~o iy ) ( x -O~y)  corresponds the lattice A, with lattice points 
(r t/), where 

{ ~ = e ( x - -  Oiy) 
(24) 

o~fl=a~ and x and y take all integral values. The pair of vectors, (~, t )  and 
(-o:0i , -[3q~),  constitutes a basis of the lattice. Performing the transformation 

{y ,x+: = g ,  
(25) 

X, 
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we get by using (19) and (20) 

]] (x, y) = J~ + 1 (x', y'). 

Since (by ordinary matrix representation) 

/y] X N - -  0"~'+1 X '  [; '01[ i} ;1[ 11, /.} 
the transformation (25) means passing over to the new basis (-(~/0i+1),  -(/~/~Pi+l)) 
and (~,/~). According to the general theory ([3], Ch. 7), the lattice points ( -~01 ,  
-/~oi),  (~,/~) and (-(~/0i+1),  -(/~/~0i+1)) lie on the hyperbolas ~t/=ai_~, ~r/=a~ 
and ~r/=a~+l respectively. This process can be continued in both directions to 
yield a doubly infinite sequence of  so called relative minima ...A, B, C, ... (see 
Figure 3 and cf. [2], Suppl. 1). As there is no lattice point inside the triangle OAC, 
there is no such point in the infinite sector between the lines OA and OC, that yields 
a better (smaller) value of  ~q, than the points A and C. An infinity of  such sectors 
fill the first quadrant. 

- A 

A 

/ 7 - - .  

/ I  

B 

i 
i 

u 

Figure 3 

- ~ I O i +  ] 

So in order to find infr162 Cq it is sufficient to consider only the positive a~. 
By (24)f~(x, y)--~q and so we have the first part of  (23). The second part is completely 
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similar. Finally (21) and (23) give 

(26) 

i n f f (  x, y) = 1/d/sup y~, 
f > O  t 

sup f ( x ,  y) = -- l /d/sup ?~i+1. 
f<:O 1 r 

(This is almost equivalent to what Robinson [8], w has shown.) 
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9. A lemma 

If f ~ - a x ~ + b x y + c y  2 has rational coefficients, we can formulate the above in a 
lemma, which is of some interest in itself. 

Lemma 5. Let  e be an irrational root o f  the equation a x 2 + b x + c = O ,  where a, 

b and c are rational Let ~ =[al  . . . . .  am, bl . . . .  , b2n] be the periodic regular continued 
fraction expansion ofe .  (The length of the period can always be made even by taking 
the primitive period twice if necessary.) Then there are two integers i and j ,  
l <-i, j<-2n, such that i f  

Sk- = [ a l  . . . . .  am, bl . . . . .  bk] 
tk 

are the convergents o f  e, then 

and 

Furthermore, 

and 

where 

ifnf f ( x ,  y )  = f ( s , ,  t,) 

sup f ( x ,  y)  = f ( s j ,  t~). 
f < o  

yi+l=  max( . . . ,  Yi-t, ?i+t, Yi+z, ..-) i f  1 -<_ i <  2n 

Yl ----- m a x  ( 7 1 ,  ~ 3 ,  . - . ,  ~ )2n-1)  / f  i : 2n, 

Tk = [bk . . . . .  b2n, b l  . . . .  , b t ~ - l ] - [ - [ O ,  bk_l . . . . .  bl, bz . . . . . .  bk] 

i f  l < k ~ 2 n  and similarly f o r  Yl. Analogously y~+l=max(  .... ~j--1, ~/jq-1 . . . .  ) etc.; 
i and. j  are not both even or both odd. 

We only have to note that there is an equivalent reduced form, whose root (i.e. 
go o in (18)) has a purely periodic continued fraction expansion. The corresponding 
doubly infinite sequence is also purely periodic (cf. Perron [7], w 23). 

Hightower [5] used the symmetric version of this lemma, however accidently 
erroneously stated. 
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10. Concluding the proof of Theorem 2 

We are now able to prove the first part of  Theorem 2, by proving that 
inf,,~>ouk(x,y)=I, uk(e, 1)=0 has the root 

1/(k 8 + 3k 2 + 4k + 2) 8 - 4 - (k s + k s + 2k) 
e = 2 k ( k 2 + 2 k + 2  ) = [0, k, 1, k ( k §  1), 1]. 

By. Lemma 5 infu~>0 Uk(X, y)=Uk(S, t), where s/t=[O, k]= 1/k. (We understand of  
course that (s, t )= 1.) Thus 

inf Uk(X, y) = Uk(1, k) = 1 
Uk>O 

and the proof  of  Theorem 2 is complete. 

11. Lattice points on the axises 

From (2), (3) and (26) we get 

~r2-+ ( f )  = sup ~ 
i 

and 

1/2+ ( - f )  = sup ~ + 1 .  
i 

This was the case when q~o and 00 in (18) were irrational. What if we have 

(27) f ( x ,  y) = a ( x - t p y ) ( x - O y ) ,  

where ~p or 0 or both are rational ? 
Let us suppose that ~p=r[s is rational, where (r, s )= l .  If  a=O in (1) there is 

always an equivalent form g with a r  so we can assume that we have f i n  the form 
(27). There are integers t and u such that 

(28) rt + su = 1. 

From (27) and (28) we get 

a 
f(rx" + uy', sx" -- ty') = s (srx" + suy'-- rsx" + rty') (rx" + uy" -- sOx" + toy') = 

a ( r -  sO) [ tO + u ,~ 
= ~ - y ' . x "  s--~_ry ) = a'y'(x'--O'y').  

r - -sOlO because 0 ~ p  by d=a2(~p-O)~>O, since f is indefinite. Hence if we write 

(29) h(x, y) = y ( x - O ' y )  
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we have 2 + ( f ) = 2 +  (h) or 2 + ( f ) = 2 + ( - h )  according to a" being positive or negative. 
Let the regular continued fraction expansion of  0' be 

(30) 0 ' =  [go, gl ,  g2, ""]. 

The lattice corresponding to (29) has the basis (0, 1), (1, - 0 " )  (cf. (24) and Figure 4). 

~g, (-O'+gol 

-O'+g ~ --4A 

h 
I 

I 
I 

-e" "~ 

Figure 4 

We have 

(31) 

and 

(32) 

h(g o, 1) = 1 " (go-O ' )  = - [ 0 ,  g~, g2 . . . .  ] = 
1 - 1  

[gl, g~ . . . .  ] 71 

l 1 
h(gogl + l, gl) = gl (gogl + 1 -O"  gl) = l ?~ 

[g~, g~, ...]+ 
gl 

(see e.g. Perron [7], w 14). 
(31) and (32) correspond to the points A and B of Figure 4. Let the coordinates 

be (~a, ~/a) and (~B, ~/B) respectively. From the construction of A and B we have 
~A=I, - - l < ~ a < 0 ,  ~B=gl and 0<~/8<-~/A (if gl is not the last partial quotient 
of 0'). We easily see (by elementary geometry) that there are no points of the lattice 
that give smaller positive values of  ~/ than B, or larger negative values than A, 
with smaller ~ =y.  
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I f  0' is irrational we can form an infinite chain of  relative minima, in this case 
as in .~ 8. Thus in the same way we get 

(33) 

[ inf h (x, y) = 

| sup h (x, y) = 
t h-<O 

sup 72i 
i 

sup ?~+1 
i 

where ?k = [gk, gk+x, . . . ]+[0,  gk-1,  " " ,  gl]. (Note that h has discriminant d = t.) 
(We also see that  limx, y . ~  h>0h(x, y) = 1/1-~t .~ 72i etc., cf. [8], w 3.) 
The relations (33) are true also if 0'  is rational but not integral. Then the lattice 

corresponding to (29) has points on the f-axis. (30) now takes the form 

0" = [go, gl . . . . .  gk-1, gJ" 

We can always achieve g k :  1. 
The chain of  successive relative minima runs a s  above up to the last but one, 

i.e. we get a basis A, B of the lattice such that A + g k B = A + B = J  is on the i-axis. 
Since A and B are relative minima, the rectangles C A G H  and C D B H  (see Figure 5) 
are void of lattice points (cf. [2], Suppl. 1). By the symmetry and periodicity of  the 
lattice, C E F H  has not any lattice points in its interior either. 

A D E 

OF--7,,KT---r---, 
[ / !  !,, 
I /  I \ \  ! 

o } /  I 1 \ l J  

' \ I I i I L \ , , , ,  
I ".4 I / -  I 
I N I/ i 

Figure 5 

So there are no lattice points between the lines AG and EF, or between the lines 
D B  and EF, that give smaller absolute values of  h than A or B respectively. There 
are no such points to the right of  E F  either, since if we extend the lines CE and H F  

to the right there are only points on the i-axis between these lines. So we have (33) 
in this case too. 

Finally if  0' is integral we easily see that infh >~ h(x, y) = 1 and suph <o h(x, y) = - 1, 

so we have in this case 2+(h )=2+( -h ) - - -1 .  
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We make  a s u m m a r y  in the following theorem.  

Theorem 3. The set B o f  possible values of  ~2+ ( f )  is the set o f  possible values o f  
sup/T2/, where yk=[gk,  gk+x . . . .  ]+ [0 ,  gk-1 . . . .  ]. The sequence 

G---- { .... go, g-x,  gl, g~ . . . .  } 

o f  positive integers may be finite, singly infinite or doubly infinite. 

We easily see that  to every sequence G, there corresponds a quadrat ic  fo rm h, 

such that  (33) holds in the same way as above.  

Examples. a ) G = { k ,  1}. Then T ~ = k + l  and  y 2 = l + l / k .  This gives 2 + =  
=(1  + l / k )  2 as a possible value. So we have a different p roo f  o f  the second pa r t  o f  

Theo rem 2. 
b) G =  { . . . .  1, k,  1, k ( k +  1), 1, k, 1 . . . .  }. Suitable placing o f  indices yields 

sup ,2 /=[1 ,  k , l , k ( k + l ) ] + [ O , k ( k + i ) , l , k , l ] = r  2_ 4 
f k 2 (k2+ 2k + 2) 2. 

12. One-sided diophantine approximation 

Let A be the set o f  possible values o f  

m a x  (sup rzi, a sup ~2i+1) 

and  A" the set o f  possible values of  

where a is an arbi t rary  positive number  and  7, is defined as before f rom the doubly  
infinite sequence G =  { . . . .  g - l ,  go, g l ,  g2, -..} o f  positive integers. 

To rnhe im [9] has shown tha t  A D A'. 
Let  B be the set o f  Theorem 3 and  B" the set o f  values o f  f i - ~ t ~  Y,/. 

Theorem 4. B=B' .  

Proof. We use the notat ions  G = { . . . ,  g - l ,  go, g l ,  g2, ...}, 

G ' =  {...,g'--1, g;,g~,g~ . . . .  }, Yk = [gk, gk+x, . . . ]+ [0 ,  gk-1 . . . .  ] 
and 

p �9 �9 �9 

rk = [g~,, gk+l . . . .  ] + [ 0 ,  gk-~ . . . .  ]. 
a) B ~ B ' .  
Suppose sup~ Y~/=Tk for  some k. I f  G is doubly  infinite we choose 

G'= { .... gk, I, gk-2, gk-1, gk, gk+l, gk+2, 2, gk-4,  " " ,  gk+4, 3, gk-e ,  " " ,  gk+e, 4 . . . .  }. 
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I f  G is finite, i.e. ~ k = [ g k  . . . .  , gk+n]-'~-[ O, g k - 1 ,  " " ,  gk -n] ,  we can always make n and 
m even since [.. . ,  h, 1 ]=[  .. . .  h + l ] .  Then we choose 

G" = { . . . ,  gt, - r, , . . . ,  gk  + , , 1, gk  - m , " " ,  gk  + , , 2,  g k -  m . . . . .  gk  + , , 3 . . . .  }.  

I f  G is singly infinite we mix these two procedures in the obvious way. I t  is easy to 
see that  in all three cases 

I f  on the other hand  sups 72i= 1IlI~_= ~2~, then there is nothing to prove. 
b) B ' C = B .  

Let b = l ' ~ =  ~2i. Thus there is a subsequence ~ lo~b .  Then there is a sub- 
sequence such that  all g~q are equal, say to go- I f  g o r  we cannot  have g2~l_x~o 
and g2f1+x~oo. Thus there is a subsequence, such that, say all g2q+x are equal. 

Denote  this number  by g~. Then there is also a subsequence such that  all g~l~+~ 
f are equal, say to g2- I f  this process can be continued in both directions, we will have 

sup~ ~ = b .  I f  at  some place in the process o f  finding subsequences we have 

' , g2m}" the g2t, + 2m =g2m and g21 + ~m + 1 ~ ~o, then we choose G'  = {..., g-x, '  go," .. . ,  ' With 
same situation at the left tail we choose for  G" the corresponding finite sequence. In  

all cases we get sups ~2i=b. 
The p r o o f  will now be complete by not ing that  we can have llq-~_~. ~2~= ~o, 

and hence also sup~ ~z~= ~.  
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