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Let 
m n �9 S,..f(x) = Zk=-m Z t = - .  c~t e~(kxl § 

denote the partial sums of the Fourier series of a func t ionfEU (T 2) where T =  [0, 2~]. 
It was proved by C. Fefferman [4], P. Sj61in [7] and N. R. Tevzadze [8] that if  p > 1 
and f~LP(T2), then lira,_= S, nf(X) exists almost everywhere. The method of Fef- 
ferman and Tevzadze also shows that if (rnk)ff= 1 and (nk)~=l are non-decreasing sequ- 
ences of integers which tend to infinity and fEL2(T~), then limk~oo S,.k.~f(x) 
exists almost everywhere. 

Fefferman [5] also constructed a counterexample which shows that there exists a 
continuous function f with period 2~ in each variable such that limm,.~= S,..f(x) 
exists nowhere. In [7] Sj61in proved that if 

Zm, n ICmn[ 2 (log (min (lml, In[) § 2)) 5 < co, (t) 

then lira,, . . . .  S,,,,,f(x, y) exists almost everywhere. From (1) convergence conditions 
involving the modulus of continuity o f f  can be obtained. For continuous functions 
f w i t h  period 2n in each variable we set 

co(f; 6) = sup I f (x ) - f (y ) l .  
Ix-yl~_~ 

It is then known that if 

o, ( f ;  6) _- o ( ( l o g ~ - ~ ) - ~ - 9 ,  6 --. o, (2) 

for some e>0,  then (1) holds (see Bahbuh [1]). On the other hand it can be proved 
by use of  Fefferman's counterexample that there exists an f with 09(./; 6)= 
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=O(( log  1/6)- 0, such that lim . . . . .  S. , . f (x)  does not exist almost everywhere (see 
Bahbuh and Nikishin [2]). 

The purpose of  this paper  is to investigate the convergence of Sm. f  for func- 
tions satisfying conditions of  the type o)( f ;a)=O(( logl /6)-~) ,  where 0<c~<l .  

We need the following notation, I f fELZ(T 2) we extend f to a function on R 2 
with period 2~ in each variable and set 

Af(x, t) = f (xx  + t l ,  X 2 + t=) - - f (x l ,  x= + t2) --f(x~ + t 1 , x2) + f (xa,  x~), 

x ET  2, ttl ~- 1, 

og"(f; 6) = sup [[Af(., 0[[L-Cr=) 
Itl_~ 

and 
co~(f; 6) = sup t[Af(', t)tIL,(,~). 

Itl~_a 

We shall prove the following theorem. 

Theorem L Assume 0 < ~ < 1 and let (mk)~" and (nk)~" be non-decreasing sequ- 
ences of  positive integers w#h limk~= mk= limk_= n k = co .  

Set 
Fk = {(m, n) E Z2; max ([m -- mk[, In -- nk]) <= e 0~ mi. (m k,.~))-} 

and F = [-Jk=a Fk. Then the following holds. 

(i) I f  f E  L2 (T 2) and 

fo  ~ co~(f; 6)z6-1(log 6-1)~-1d6 < ~ ,  

then lim . . . . .  , ~,,,,)cr Sin, f (X) exists almost everywhere. 

(fi) There exists an f C C ( T  2) with period 2re in each variable and 

co'(f; 6) = 0(( log6-1)-~),  6 -,- 0, 

such that lim . . . . .  ,(,.,.)r Sr , , f  (x) does not exist almost everywhere. 

(3) 

(4) 

(5) 

The result in (ii) shows that the exponent 2 ~ - 1  in (4) cannot be replaced by a 
smaller number. 

We first prove the following lemma. 

Lemma. / f  0<~_<- 1 andfCL2(T2), then 

e 2 Z . , .  [ ,..[ (log (min (Im[, In[) + 2)) s= < ~ (6) 
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f i,,~_l ( fT '  ]Af(x, 012 dx) [,]"2 (log It]-1) 2~-1 dt < oo. (7) 

Proof. I t  follows from Parseval's relation that the inner integral in (7) equals 
4re Z ICm. ]2 [ei.~,l_ 1 ]9' ]d nt,-  1 [2 and to prove the 1emma it is sufficient to prove that 

G( log  m) ='-<_- f]t] _l [d=' l  - l]9'leinq - ll2[tl-2(log [tl-1)9"-ldt <= C s ( l o g m )  2" (8 )  

for 3<=m<=n, where (71 and C9' are positive constants. The integral in (8) is larger than 

) _->crY/9' ) cJal~- ell= taf fx/9',, ltl_9'(logltl_l)2._Xdt, dtl d l i r a  gt;1)~-ldtg' dq _ 

=> c ti-l(log tgl)a~-ldtl => c (log m) 2", 

where c denotes positive constants. Thus the left inequality in (8) is proved. To prove 
the remaining inequality we observe that the integral in (8) is majorized by 

C d['1131[m .] F1/9'0 lt[-2 (l~ It[-x)2~-l dq dtg' + Cmg' f~lm f~/~ t~ It]-9' (log Itl-X)~-~ dtxdt= + 

+ Cm=.= f ( ~/n t~t~itl'9'(log Jtj-1)2~-X dt, dtg'= 11+I=+12 
d o  

We have 

< C 1 a_l)=~_Xda < I1  = C fllta~'ltl~.l ]tl-=(1oglt} "*)2=-*dt = f*lm a-l(1og = C(1ogm)Z=" 

For 1/2 < :r <= 1 we have 

I=<-Cmg' dof l[m g~q(l~ ,l-*)2"-1{f~/9'l]-Sdts)d'1/. t <= CmS f~o#n q (log ti -1 ) 9"-1d*1 <= 

<_ C(logm) 9'~-1, 
and for 0 < e ~ 1/2 

f2 [m t~ [f~{ [ I ] < Crag' fSlm tl  dtl = C. 13 <= Cm = 9 t -=dtg' dq = 
J ~ k d  , /n  ] 

Finally 
2 9, r z l m  f l l n  I8 <= t:m n Jo Jo qtz(l~ ='-~dtxdtS, 

and for ~ > 1/2 we obtain 

I3 < Ctmz fSImtl(lOgt;1)9"-ldtll(ng' fS/'tg'd,2) N C(logm)2'-l .  
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For a ~ 1/2 we get 

~lln t2 dt~) = C, 1,3=< C(m~ f~/m tldql(n~ jo 

which completes the proof of the lemma. 

Proof of Theorem 1. 
(i) I f  D,(u) denotes the Dirichlet kernel then IDk(u)--Dm(u)J<--2X/luJ and also 

tDk(U)--Dm(u)l<=n]k--m[. It follows that 

]Skg(x)-S,.g(x)] <= Clog(]k-m]+ 2)g*(x), xET, (9) 

where Skg and Stag are partial sums of the Fourier series of a function gCLI(T) 
and g* denotes the Hardy--Litt lewood maximal function of g. For f~LI (T  ~) we 
define 

M l f ( x  ) = sup 1 fo I f (q ,x2) laq ,  x~T 2, 
xlE~o" ~ -  

where ~ denotes subintervals of T, 

= If ,  l, S~f(x) xET ~, 
n 

and Ms and S~' in the same way with the variables interchanged. 
I f  (m,n)EF k we write 

Sin.f (x) - S.,~.~f(x) = S,..f(x) - Sm.~f(x) + S,..~f(x) - S,.~.~f(x), 

and invoking (9) we obtain 

ISm, f (x) - Sm~nkf (x)l <= C log (In - nk[ + 2) 312 S~ f (x) + C log (Ira-- mkl + 2) mlS*f(x) ,  

From the definition of F k it follows that the right hand side in the above inequality 
is majorized by 

C(log (min (ink, rig) + 2))'(M2S* f(x) + Mi S~ f(x)). 

We therefore have 

]S,..f(x)l <- ISmk.kf (x)l + C(log (min (m, n) + 2))'(MeS~ f (x) + Mi S~ f (x)). 

Defining 

we obtain 

Trf(X) = sup ]Sm.f(x)l 
(,.,.) ~ r (log (min (m, n) + 2))" 

Tr f (X ) <= sup IS.,k.~f (x)[ + C(M2S* f (x) + M1S~ f (x)). 
k 



On the convergence almost everywhere of double Fourier series 

It is proved in Fefferman [4] and Tevzadze [8] that the L ~ ,norm of  the first term on 
the right hand side is majorized by CIIfll~ and it follows from the L 2 inequality 
for the Hardy=-Littlewood maximal function in one variable that Ma and M2 
are bounded on L~(T2). Also S* and S* are bounded on L2(T 2) since the maximal 
partial sum operator in one variable is bounded on L2(T) according to the results 
of L. Carleson [3] and R. A. Hunt [6]. Hence Tr is bounded on L 2(Tz). 

Now let f 6L2(T  2) have Fourier coefficients c,,, and assume that (6) holds. 
We set 

S r f ( X  ) = sup [Smnf(X)] 
(m,n)6F 

and let g denote the function in L2(T ~) which has  Fourier coefficients 
Cm,(1og (min ([ml, In[)+2)) ". Performing a partial summation as in the proof  of  
Theorem 7.2 in Sj61in [7], pp. 85--86, we obtain 

S r f ( x  ) <= C(Pg(x) + Trg(X)), 

where P is a bounded operator  on L ~ (TZ). Hence 

[!St file ~ Cllg[h = C ( X  Ic~,lZ(log (min (Im[, [nl) +2))29 x/z. 

It follows that lim . . . . .  ,(m,,)cr Sm, f (x )  exists almost everywhere for each f with 
Fourier coefficients satisfying (6) and hence by the lemma for each f satisfying (7). 
To complete the proof  of (i) we observe that (7) holds if og~(f; 6) satisfies (4). 

(ii) Choose ~0CC=(R) so that ~o(t)=l for 1/20<=t<-2n-1/20, and q)( t )=0 for 
t close to 0 and 2n, and set hz(x)=eiZ~l~ep(xOq)(x2) for x ~T  2 and 2_->10. Set 
Q =  {xET2; 1/10L:x~, x2<_-2n - 1/10}. Fefferman [5] has proved that 

ISc;~,~,txxdha(x)l >= clog2,  xEQ, (1,0) 

where c is a positive constant. The function hz can be used to construct the counter- 
examples mentioned in the introduction. To prove (ii) we shall use a function obtained 
by multiplying ha with a character. We set u~=(rn k, nk), 

and 

/~k = 1-@10 e(l~ (mk'nk))~ 

gk(X) = ei"~'xh~(x), xCT 2, 

k = 1,2, 3, .. . .  
We have 

Zll~_~tl l~m, ~ ,lX eWX _ iz~-u~l<__,gk~,) = elU:XSm.(e-i"'Xgk)(x), 

Also set #k(! ) = (ink, --nk), #(k 2) = (--mk, nk) and #k (3) = (--ink, --rig). 

/.tCZ ~, (11) 
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where ~k(l) denotes the Fourier coefficients of  gk. We now take x ~ Q ,  m=[2sx2] , 
,,~) #~k 2) and /~k 3) in (11) and add the corresponding four n = [2 kxl] and # =/~k, e~S , 

equalities. We then obtain 

Smk+m, nr,+ngs(x ) At- Smr_ra_l, nk_n_agk(X ) -- Smk+m, nk_n_l, gk(X ) -- Smk_m_l, nk+ngk(X ) : 

= e iu~'x Smnhak (x) + ~ = 1  eig~J"x Sin. (eiO'~-~'~J')'~h~) (x). (12) 

We have 

I#k--ptkJ)[ >-- min (ink, nk) = e 0~176 j = 1, 2, 3, 

and it follows from a partial integration in the integral defining Fourier coeffi- 
cients that 

[(d~163 < C,~ke -~176176 ]lil -< 1121 = _ , = m ,  < n .  

Hence 
[S,,,n(eiO"-~'s <- C2~e-~176176 C, j = 1, 2, 3. 

From this estimate and (10) it follows that for k > k o  the right hand side of  (12) 
has absolute value larger than c log 2 k and hence at least one of  the terms on the 
left hand side has absolute value larger than c log 2k, where c denotes positive 
constants. We have chosen m and n so that the indices of the partial sums on the 
left hand side of  (12) belong to Fk and hence we have proved that for x 6 Q  and 
k > k o  there exists Qk:Qk(X)~I'k such that ISo~gs(x) I >-_c log 2s, where c>0 .  

We now choose an increasing sequence of  integers (kj)~= I so that k l > k o  and 

IISm, gkj--gk,ll~ <- 2 -e, j = 1, 2, . . . ,  i - -  1, (m, n)6Yk, 
and 

min (ms,, ns i) >- e (l~ max (mk'' l ' nk'- O)a/~', (13) 

for i--2,  3, 4 . . . . .  This can be done since Sm,,gk tends to gs uniformly for each k. 
We set f :  ~ = 1  cjgkj , where c j = ( l o g 2 s )  -1, and shall prove t h a t f  has the desired 
properties. 

z . It is clear that co (gs, 6) ~_ C min (ms, ns) 6 and choosing i as the least integer 
such that 

e (l~ 1~ ~ 1/6, 
we obtain 

co' ( f ;  6) <- ~ j =  ~ c i co" (gsj; 6) <= C ~ j = l  cj min (ms j, nsj) 6 + C .Z~.=~ cj <= 

C6 , ~  '~sj le(lOg lO~k~W + ,< < i-1 (log ) -  ~ Cci j = l  

-- Ct~ (lOg Akl_ l ) -  le(l~ l~ O1/"+ C (log 2k,)--1. 
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F rom  the choice o f  i it follows that  the last term on the right hand side is less than 
C (log 1/6) -~ and it also follows that  

eOOg 10~,_ 1)11- <= 1/6. 

Using this inequality it is easy to prove that  the first term can be majorized in the 
same way and hence og"(f; 6)<_-C (log 1/6) -~. 

We let x 6 Q and Ok~ = Qk, (x) and write 

S i-1 Se,,,f (x) - f ( x )  = c,( ek, gk,(X) -- gk, (X)) + .~  j=l cj(Se,.,gkj(X) -- gk~(X)) + 

+ Z7.o,+1 = A1 +As + A 3 .  

F r o m  the above estimates it follows that  

IAll =~ cci log 2k, = C, e > O, 

IA,t <---- ( i - - 1 ) 2 - ' ,  
a n d w e  also have 

IA3I ~- z~.=,+~ cj ItS~,, gkj-- g~ll~ -<- C(log max (mk,, rig)) 2 ~~ Cj ligkjllo~ <= 

- C 0 o g  max (rnk,, nk,))2Ci+i. 

(13) yields 
log 102k,+1 --> (log max (rag,, nk,)) 3, 

and hence Az tends to zero as i tends to infinity. Also Az tends to zero and we con- 
clude that  

ISQ~,f(x)--f(x)[ _--> c > 0 

for  x 6 Q  and i large. Hence t h e r e  exists a set o f  positive measure on which 
lira . . . . .  ,(m.,)Er S,,,,,f(x) does not  exist. The  p roo f  is complete. 
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