On temperate fundamental solutions supported by a convex cone

Arne Enqvist

Let P(D) be a partial differential operator in \mathbb{R}^n with constant coefficients and Γ a closed convex cone in \mathbb{R}^n . Thus we assume that $x, y \in \Gamma$ and $s, t \ge 0$ implies that $sx+ty \in \Gamma$. The problem discussed here is to decide when P(D) has a temperate fundamental solution with support in Γ .

An arbitrary differential operator with constant coefficients has a temperate fundamental solution. This was first proved by Hörmander [5] and Lojasiewicz [6]. Later Atiyah [1] has given a shorter proof using results of Hironaka [3].

In [7] and [8] Melrose has given necessary and sufficient conditions for the existence of a temperate fundamental solution with support in a half space. In this paper we give necessary and sufficient conditions in the case of an arbitrary closed convex cone Γ . The existence of a temperate fundamental solution does not immediately imply the existence of a temperate solution to the equation P(D) U = F, where F is temperate. Therefore, we prefer to discuss this more general problem directly.

The intersection $\Gamma \cap (-\Gamma) = W$ is a linear subspace and $x \in \Gamma$ implies $x + y \in \Gamma$ for every $y \in W$. This shows that Γ is the inverse image in \mathbb{R}^n of the image V of Γ in \mathbb{R}^n/W under the quotient map. It is clear that V is a proper cone. It follows from Theorem 2.11 in [2] that there is no restriction in assuming that Γ (and V) has interior points. Thus we shall assume this later on. We shall use the notations $n' = \dim W$, n'' = n - n' and coordinates x = (x', x'') such that W is defined by x'' = 0. We will also need the following norms on $\mathscr{S}(\mathbb{R}^n)$,

$$\begin{aligned} \|u\|_{s} &= \left(\int (1+|x|^{2})^{s} \sum_{|\alpha| \leq s} |D^{\alpha}u|^{2} dx\right)^{1/2}, \quad u \in \mathscr{S}(\mathbb{R}^{n}), \\ \|u\|_{s}^{\Gamma} &= \inf \left\{ \|\varphi\|_{s}; \ \mathscr{S} \ni \varphi = u \text{ on } \Gamma_{-} = -\Gamma \right\}, \quad u \in \mathscr{S}(\mathbb{R}^{n}) \end{aligned}$$

Theorem 1. The following conditions on $\Gamma = \mathbf{R}^{n'} \times V$ and the differential operator P(D) are equivalent.

Arne Enqvist

(i) P(D) has a temperate fundamental solution with support in Γ .

(ii) P(D)U=F has a solution $U\in\mathscr{G}'(\mathbb{R}^n)$ with supp $U\subset\Gamma$ for every $F\in\mathscr{G}'(\mathbb{R}^n)$ with supp $F\subset\Gamma$.

(iii) For every $\zeta' \in \mathbf{R}^{n'}$ either $P(\zeta', \zeta'') \neq 0$ if $\operatorname{Im} \zeta'' \in -\operatorname{int} V^*$, where $V^* = \{\eta'' \in \mathbf{R}^{n''}; \langle \eta'', x'' \rangle \geq 0$ for all $x'' \in V\}$, or $P(\zeta', \zeta'') = 0$ for all $\zeta'' \in \mathbf{C}^{n''}$.

Proof. It is trivial that (i) follows from (ii). We will now use Theorem 3 below to prove that (iii) implies (ii). Since $F \in \mathscr{S}'(\mathbb{R}^n)$ and $\operatorname{supp} F \subset \Gamma$, there are constants C and s such that $|\check{F}(u)| = |\check{F}(\varphi)| \leq C ||\varphi||_s$ for all $u \in \mathscr{S}(\mathbb{R}^n)$ and all $\varphi \in \mathscr{S}(\mathbb{R}^n)$, $\varphi = u$ on Γ_- . This implies that $|\check{F}(u)| \leq C ||u||_s^{\Gamma_-}$ for all $u \in \mathscr{S}(\mathbb{R}^n)$. From Theorem 3 we obtain that there are constants C_0 and s_0 such that

$$|\check{F}(u)| \leq C_0 \|P(D)u\|_{S_0}^{\Gamma_{-}}, \text{ for all } u \in \mathscr{S}(\mathbb{R}^n).$$

Thus it follows from the Hahn-Banach theorem that the linear form

$$P(D)\mathscr{S}(\mathbf{R}^n) \ni P(D)u \mapsto \check{F}(u)$$

can be extended to a continuous linear form \check{U} on $\mathscr{S}(\mathbb{R}^n)$ with supp $\check{U} \subset \Gamma_- = -\Gamma$. Thus $U \in \mathscr{S}(\mathbb{R}^n)$, P(D) U = F and supp $U \subset \Gamma$.

Now, assume that (iii) is false. Thus there are $\xi'_0 \in \mathbf{R}^{n'}$ and $\zeta''_0 \in \mathbf{C}^{n''}$ such that $P(\xi'_0, \zeta''_0) = 0$, $\operatorname{Im} \zeta''_0 \in -\operatorname{int} V^*$ but $P(\xi'_0, \zeta''_0) \neq 0$ for some $\zeta'' \in \mathbf{C}^{n''}$. Take N'' such that $P(\xi'_0, \zeta''_0 + tN'') \neq 0$ for some $t \in \mathbf{C}$ and write $q(\zeta', t) = P(\zeta', \zeta''_0 + tN'')$ as a product of irreducible factors $q(\zeta', t) = \Pi q_i(\zeta', t)$. Let $b(\zeta')$ be the coefficient of the term of highest degree with respect to t of the polynomial q. Denote by $\Delta(\zeta')$ the product of b and the discriminants of the factors q_i considered as polynomials of t. Since the zeros of a polynomial depend continuously on the coefficients and $q(\xi'_0, 0) = 0$ we can choose a closed ball $B \subset \mathbb{R}^{n'}$ with positive radius and centre near ξ'_0 and a function $B \ni \zeta' \mapsto t(\zeta') \in \mathbb{C}$, such that $q(\zeta', t(\zeta')) = 0$ and $\operatorname{Im} (\zeta''_0 + t(\zeta')N'') \in -\operatorname{int} V^*$ if $\zeta' \in B$. Moreover, we can assume that $\Delta(\zeta') \neq 0$ in B so that $t(\zeta') = (\zeta''_0 + t(\zeta')N'') \in \mathbb{C}^{n''}$ such that $P(\zeta', \zeta''(\zeta')) = 0$ and $\operatorname{Im} \zeta''(\zeta') = (\zeta''_0 + t(\zeta')N'') \in \mathbb{C}^{n''}$ such that $P(\zeta', \zeta''(\zeta')) = 0$ and $\operatorname{Im} \zeta''(\zeta') \in -\operatorname{int} V^*$ for all $\zeta' \in B$. Let $w \in C_0^{\infty}(B)$, $0 \neq w \ge 0$ and let $\varphi \in \mathbb{C}^{\infty}(\mathbb{R}^{n''})$ be 1 in a neighbourhood of $V_- = -V$, $\varphi(x'') = 0$ if $d(x'', V_-) \ge 1$ and assume that φ has bounded derivatives. Set

$$v(x) = \varphi(x'') \int_B e^{i\langle x', \xi'\rangle + i\langle x'', \zeta''(\xi')\rangle} w(\xi') d\xi'.$$

There are constants C and $\delta > 0$ such that $|(D^{\alpha}\varphi)(x'')e^{i\langle x'', \zeta''(\zeta')\rangle}| \leq C_{\alpha}e^{-\delta|x''|}$ if $\xi' \in \text{supp } w$. From this we obtain by means of partial integration that $D^{\beta}x^{\gamma}v(x)$ is bounded so that $v \in \mathscr{S}(\mathbb{R}^n)$. Further, P(D)v=0 on $\Gamma_-=\mathbb{R}^{n'} \times V_-$. If $E \in \mathscr{S}'(\mathbb{R}^n)$ is a fundamental solution of P(D) with $\text{supp } E \subset \Gamma$, then $v(0) = \check{E}(P(D)v) = 0$. However, $v(0) = \int w(\xi') d\xi' \neq 0$ and this contradiction proves that (i) implies (iii). #

36

We will now state a theorem which shows that condition (iii) implies a condition "stronger" than (i).

Theorem 2. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then there are constants C and s' and temperate distributions E = E(t, P) such that $P(D)E = \delta_t$ and $|\check{E}(u)| \leq C ||u||_{s}^{r}$ for all $u \in \mathscr{G}(\mathbb{R}^n)$ and all $t \in \Gamma_-$.

For the proof of this theorem we need some preliminaries, so we postpone it. Instead we will prove now that Theorem 2 implies the required estimate.

Theorem 3. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then for every s there are constants C and s_0 such that

$$\|u\|_{s}^{\Gamma} \leq C \|P(D)u\|_{s_{0}}^{\Gamma} \quad \text{for all} \quad u \in \mathscr{G}(\mathbb{R}^{n}).$$

Proof. First we observe that for some s_1

$$\begin{split} \|\psi\|_{s} &\leq C_{1} \|\hat{\psi}\|_{s} = C_{1} \left(\int (1+|\xi|^{2})^{s} \sum_{|\alpha| \leq s} |D^{\alpha} \hat{\psi}(\xi)|^{2} d\xi \right)^{1/2} \leq \\ &\leq C_{2} \sup \left((1+|x^{2}|)^{s_{1}/2} \sum_{|\alpha| \leq s_{1}} |D^{\alpha} \psi(x)| \right), \end{split}$$

which implies that

$$\|u\|_s^{\Gamma-} \leq C \inf \left\{ \sup \left((1+|x|^2)^{s_1/2} \sum_{|\alpha| \leq s_1} |D^{\alpha}\psi(x)| \right); \ \mathcal{S} \ni \psi = u \text{ on } \Gamma_- \right\}.$$

However, since Γ_{-} is regular in the sence of Whitney (see e.g., [5]) we obtain from this that there is an integer s_2 such that

(1)
$$||u||_{s}^{r} \leq C \sup_{\Gamma_{-}} ((1+|x|^{2})^{s_{2}/2} \sum_{|\alpha| \leq s_{2}} |D^{\alpha}u(x)|).$$

If β is a multi-index and $P(\xi) \neq 0$ then $D_{\xi}^{\beta} \hat{u}(\xi) = D_{\xi}^{\beta} (P(\xi) \hat{u}(\xi)/P(\xi)) = = (L(\xi, D_{\xi}) P(\xi) \hat{u}(\xi))/(P(\xi))^{|\beta|+1}$, which shows that we have an identity of the form $(P(D))^{|\beta|+1} x^{\beta} u(x) = L(D, x) P(D) u(x)$, where L(D, x) is a differential operator with polynomial coefficients. We observe that $P^{|\beta|+1}$ also satisfies condition (iii) of Theorem 1. Let $t \in \Gamma_{-}$ and let $E = E(t, P^{|\beta|+1})$ be the distribution we obtain from Theorem 2 applied to $P^{|\beta|+1}$. Then $t^{\beta} u(t) = \check{E}((P(D))^{|\beta|+1} x^{\beta} u) = \check{E}(L(D, x) P(D) u)$, which implies that

$$\sup_{\Gamma_{-}} |t^{\beta}u(t)| \leq C_{1} ||L(D, x)P(D)u||_{s^{r-}} \leq C_{2} ||P(D)u||_{s^{r-}}.$$

If we apply this to $D^{\alpha}u$ for all α and β with $|\alpha| \leq s_2$ and $|\beta| \leq s_2$ then we obtain that there are constants C_0 and s_0 such that

$$\sup_{\Gamma_{-}} \left((1+|t|^2)^{s_2/2} \sum_{|\alpha| \leq s_2} |D^{\alpha}u(t)| \right) \leq C_0 \|P(D)u\|_{s_0}^{\Gamma_{-}},$$

which proves the theorem by means of (1).

#

For the hard part of the proof of Theorem 2 we need the following theorem due to Hironaka.

Theorem 4. Let F be a real analytic function $(\neq 0)$, defined in a neighbourhood of $0 \in \mathbb{R}^n$. Then there exists an open set $U \ni 0$, a real analytic manifold \tilde{U} and a proper analytic map $\varphi \colon \tilde{U} \to U$ such that

(i) $\varphi: \widetilde{U} \setminus \widetilde{A} \to U \setminus A$ is an isomorphism, where $A = F^{-1}(0)$ and $\widetilde{A} = \varphi^{-1}(A) = = (F \circ \varphi)^{-1}(0)$,

(ii) for each $P \in \tilde{U}$ there are local analytic coordinates (y_1, \ldots, y_n) centred at P so that, locally near P, we have

$$F \circ \varphi = \varepsilon(y) \prod_{i=1}^{n} y_{i}^{k_{i}},$$

where ε is an invertible analytic function and $k_i \ge 0$.

Proof. See Atiyah [1].

We will now use Theorem 4 to prove the following lemma. The proof is a slight modification of the proof Melrose gave in [7].

Lemma 5. If Q is a polynomial in k variables and $A = \{\xi \in \mathbb{R}^k; Q(\xi) = 0\}$, then there is a constant C and an integer s such that, if $\psi \in \mathscr{G}(\mathbb{R}^k)$ and ψ/Q is bounded on $\mathbb{R}^k \setminus A$ then

$$\sup_{\mathbf{R}^{k}\searrow \mathcal{A}}|\psi(\xi)/Q(\xi)|\leq C\|\psi\|_{s}.$$

Proof. If $\operatorname{supp} \psi \subset B = \{\xi \in \mathbb{R}^k; |\xi| \leq 2\}$ and $q(\xi) = \prod_1^k \eta_i^{k_i}$ then it is trivial that $\sup |\psi(\xi)/q(\xi)| \leq C \sup \sum_{|\alpha| \leq s} |D^{\alpha}\psi(\xi)|$ for some constants C and s. Now, let U be a small neighbourhood of a point in \mathbb{R}^n , so that Theorem 4 can be applied with F = Q and assume that $\sup \psi \subset U$. If φ is the map we obtain from Theorem 4 then $\psi \circ \varphi$ has compact support. Thus we obtain from condition (ii) of Theorem 4 that we can choose a finite partition of unity on \tilde{U} , $1 = \sum \chi_i$, so that for suitable coordinates $Q \circ \varphi = \varepsilon(\eta) \prod_{i=1}^k \eta_i^{k_j}$ in $\operatorname{supp} \chi_i$. Then the simple case above implies that

$$\sup_{\xi} |\psi(\xi)/Q(\xi)| = \sup_{\xi} |\psi \circ \varphi/Q \circ \varphi| \leq \sum_{\eta} \sup_{\eta} |\chi_i(\eta)(\psi \circ \varphi)(\eta)/Q \circ \varphi(\eta)| \leq C_0 \sup_{i,\eta} \sum_{|\alpha| \leq s} |D^{\alpha}_{\eta}(\chi_i(\psi \circ \varphi))(\eta)| \leq C_1 \sup_{\xi} \sum_{|\alpha| \leq s} |D^{\alpha}\psi(\xi)| \leq C \|\psi\|_{s_1}$$

where the last estimate follows from the Sobolev inequality. From this we obtain the lemma for all ψ with $\operatorname{supp} \psi \subset B$ by means of a finite partition of unity. Now, let $\chi \in C_0^{\infty}(B)$ be 1 in a neighbourhood of $\{\xi \in \mathbb{R}^k; |\xi| \leq 1\}$. If $\psi \in \mathscr{S}(\mathbb{R}^k)$ we set $\psi_1 = \chi \psi$ and $\psi_2 = \psi - \psi_1$. Then there are constants C_1 and s_1 such that

$$\sup_{\mathbf{R}^k \searrow A} |\psi_1(\xi)/Q(\xi)| \leq C_0 \|\psi_1\|_{s_1} \leq C_1 \|\psi\|_{s_1}.$$

#

Further, set $\varphi(\eta) = \psi_2(\eta/|\eta|^2) |\eta|^{2m}$ and $q(\eta) = Q(\eta/|\eta|^2) |\eta|^{2m}$, where $m = \deg Q$. Then $\varphi \in C_0^{\infty}(B)$, q is a polynomial in η and φ/q is bounded. Thus, there are constants C_2 and s_2 such that

$$\sup_{\mathbf{R}^k \searrow A} |\psi_2(\xi)/Q(\xi)| = \sup_{\mathbf{R}^k \searrow q^{-1}(0)} |\varphi(\eta)/q(\eta)| \leq C_2' \|\varphi\|_{s_2} \leq C_2'' \|\psi_2\|_{s_2+k} \leq C_2 \|\psi\|_{s_2+k}.$$

This proves the lemma with $C = C_1 + C_2$ and $s = \max(s_1, s_2 + k)$.

Let P be a polynomial satisfying condition (iii) of Theorem 1 and let $\zeta_0'' \in \mathbb{C}^{n'}$ with $\operatorname{Im} \zeta_0'' \in -\operatorname{int} V^*$. Set s = s' + 2n' where s' is the integer we obtain from Lemma 5 with $Q(\xi') = P(\xi', \zeta_0'')$. If we complete $\mathscr{S}(\mathbb{R}^{n'})$ with respect to the norm $\|\cdot\|_s$, then we obtain a Hilbert space $\mathscr{S}_{(s)}(\mathbb{R}^{n'})$. Let Π denote the orthogonal projection of $\mathscr{S}_{(s)}(\mathbb{R}^{n'})$ on the subspace that is the closure of those $\psi \in \mathscr{S}(\mathbb{R}^{n'})$ for which $(1 + |\xi'|^2)^{n'} \psi(\xi')/Q(\xi')$ is bounded.

Take $0 < \varepsilon < 1$, $t \in \mathbf{R}^n$ and define $E_{\varepsilon} = E_{\varepsilon}(t, P)$ by

$$\check{E}_{\varepsilon}(u) = (2\pi)^{-n} \int e^{i\langle t, \xi \rangle} (\Pi \hat{u})(\xi) / P(\xi - i\varepsilon N) \, d\xi, \quad u \in \mathscr{S}(\mathbf{R}^n),$$

where N=(0, N'') and $N'' \in int V^*$. From Lemma 4.1.1 in Hörmander [4] we obtain that

$$\begin{split} |P(\xi - i\epsilon N)| &\leq \tilde{P}(\xi - i\epsilon N) \leq C_1 (1 + |\xi''|)^m \tilde{P}(\xi', \, \zeta'_0) \leq \\ &\leq C_2 (1 + |\xi''|)^m |P(\xi', \, \zeta''_0)| \leq C_2 (1 + |\xi''|)^m \tilde{P}(\xi', \, \zeta''_0) \leq \\ &\leq C_3 (1 + |\xi''|)^{2m} \tilde{P}(\xi - i\epsilon N) \leq C_4 \epsilon^{-m} (1 + |\xi''|)^{2m} |P(\xi - i\epsilon N)| \end{split}$$

where \sim (see page 35 in Hörmander [4]) is taken with respect to the ξ'' variables, $m = \deg_{\xi''} P(\xi)$ and the constants are independent of ξ' . Thus, there is a constant C > 0 such that

(2)
$$C^{-1}(1+|\xi''|)^{-m} \leq |P(\xi',\zeta_0'')/P(\xi-i\varepsilon N)| \leq C((1+|\xi''|)/\varepsilon)^m$$

for all $\xi \in \mathbf{R}^n$. Further, we obtain from Lemma 5 that there is a constant C_0 such that

$$\begin{split} \sup_{\xi'} \left| (1+|\xi'|^2)^{n'} (\Pi \hat{u})(\xi) / P(\xi',\zeta_0'') \right| &\leq C_0 \left\| (\Pi \hat{u})(\cdot,\xi'') \right\|_s \leq \\ &\leq C_0 \left\| \hat{u}(\cdot,\xi'') \right\|_s = C_0 \Big(\int (1+|\xi'|^2)^s \sum_{|\alpha| \leq s, \, \alpha'' = 0} |D^{\alpha} \hat{u}(\xi)|^2 \, d\xi' \Big)^{1/2} \end{split}$$

where the norm is taken with respect to the ξ' variables only. This implies that there are constants C and s_1 such that

$$\sup_{\xi} \left| (1+|\xi''|^2)^{n''+m/2} (1+|\xi'|^2)^{n'} (\Pi \hat{u}) (\xi) / P(\xi',\zeta_0'') \right| \leq C \|u\|_{s_1}.$$

Thus E_{ε} is well-defined and $|\check{E}_{\varepsilon}(u)| \leq C\varepsilon^{-m} ||u||_{s_1}$. It also follows from (2) and the definition of E_{ε} that $\check{E}_{\varepsilon}(P(D-i\varepsilon N)u) = u(t)$ if $u \in \mathscr{S}(\mathbb{R}^n)$. We finally want to prove

#

that supp $E_{\varepsilon} \subset \Gamma - \{t\}$. Let $\theta = (0, \theta'') \in \mathbb{R}^n$, where $\theta'' \in \operatorname{int} V^*$. Take $v \in C_0^{\infty}(\mathbb{R}^n)$ with supp $v \subset \{x \in \mathbb{R}^n; \langle x, \theta \rangle > 0\} + \{t\}$. Then

$$\begin{split} \check{E}_{\varepsilon}(v) &= (2\pi)^{-n} \int e^{i\langle t, \xi \rangle} (\Pi \hat{v}) (\xi) / P(\xi - i\varepsilon N) \, d\xi = \\ &= (2\pi)^{-n} \int e^{i\langle t', \xi' \rangle} \Big(\int e^{i\langle t'', \xi'' \rangle} (\Pi \hat{v}) (\xi) / P(\xi - i\varepsilon N) \, d\xi'' \Big) \, d\xi'. \end{split}$$

However, since $P(\xi', D'' - i\epsilon N'')$ is hyperbolic with respect to V for almost every $\xi' \in \mathbb{R}^{n'}$ we obtain by changing the integration contour that the inner integral is 0 a.e. (Cf. The proof of Theorem 5.6.1 in Hörmander [4].) Thus $\check{E}_{\epsilon}(v) = 0$, which proves that supp $E_{\epsilon} \subset \Gamma - \{t\}$.

Proof of Theorem 2. Set $E = E(t, P) = e^{\langle x+t, \varepsilon N \rangle} E_{\varepsilon}$, where E_{ε} is the distribution defined above. Then

$$\check{E}(u) = (2\pi)^{-n} \int e^{i\langle t, \xi - i\varepsilon N \rangle} (\Pi \hat{u}) (\xi - i\varepsilon N) / P(\xi - i\varepsilon N) \, d\xi, \quad u \in C_0^{\infty}(\mathbf{R}^n),$$

and since $(\Pi \hat{u})(\xi)$ is analytic with respect to ξ'' we obtain that E is independent of $\varepsilon > 0$. It is also clear that $\sup E \subset \Gamma - \{t\}$ and $\check{E}(P(D)u) = u(t)$ if $u \in C_0^{\infty}(\mathbb{R}^n)$. Let $0 \leq \lambda \in C_0^{\infty}((-2, 2))$ with $\lambda(y) = 1$ for $|y| \leq 1$ and set

$$\chi_j(x) = \lambda(\langle x, N \rangle + j - 1) / \sum_{1}^{\infty} \lambda(\langle x, N \rangle + k - 1).$$

Then

$$\check{E}(u) = \sum_{1}^{\infty} \check{E}(\chi_{j}u) = \sum_{1}^{\infty} e^{\langle t, N/j \rangle} \check{E}_{1/j}(e^{-\langle x, N/j \rangle} \chi_{j}u) \quad \text{if} \quad u \in C_{0}^{\infty}(\mathbb{R}^{n}).$$

However,

$$\begin{split} |e^{\langle t, N|j\rangle} \check{E}_{1/j}(e^{-\langle x, N|j\rangle}\chi_j u)| &\leq C e^{\langle t, N|j\rangle} j^m \|e^{-\langle x, N|j\rangle}\chi_j u\|_{s_1} \leq \\ &\leq C_1(e^{\langle t, N\rangle}+1) j^m \|\chi_j u\|_{s_1} \leq C_2(1+e^{\langle t, N\rangle}) j^{-2} \|u\|_{s'}, \end{split}$$

where $s' = s_1 + m + 2$. This proves that

$$|\check{E}(u)| \leq C(1+e^{\langle t,N\rangle}) ||u||_{s'}, \quad u \in \mathscr{S}(\mathbf{R}^n),$$

so that

$$|\check{E}(u)| \leq 2C ||u||_{s'}$$
 for all $u \in \mathscr{S}(\mathbb{R}^n)$ and all $t \in \Gamma_-$.

Thus if $t \in \Gamma_{-}$ and $\mathscr{S}(\mathbb{R}^{n}) \ni \psi = u$ on Γ_{-} , then

which implies that
$$|\check{E}(u)| = |\check{E}(\psi)| \le 2C \|\psi\|_{s'}$$

$$|E(u)| \leq 2C ||u||_{s'}^{\Gamma_{-}}, \quad u \in \mathscr{S}(\mathbf{R}^{n}), \quad t \in \Gamma_{-}$$

This proves Theorem 2.

Acknowledgement

I am very grateful to Professor Lars Hörmander for his advice.

References

- 1. ATIYAH, M. F., Resolution of Singularities and Division of Distributions, Comm. Pure Appl. Math. 23 (1970), 145-150.
- 2. ENQVIST, A., On fundamental solutions supported by a convex cone, Ark. Mat. 12 (1974), 1-40.
- 3. HIRONAKA, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326.
- 4. HÖRMANDER, L., Linear Partial Differential Operators, Springer-Verlag, Berlin (1963).
- 5. HÖRMANDER, L., On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568.
- 6. LOJASIEWICZ, S., Sur le problème de division. Studia Mat. 18 (1959), 87-136.
- 7. MELROSE, R. B., Initial and Initial-Boundary Value Problems, Thesis, Cambridge University (1973).
- 8. MELROSE, R. B., The Cauchy problem with polynomial growth conditions for partial differential operators with constant coefficients. (Unpublished.)

Received February 24, 1975

Arne Enqvist Lunds universitet Matematiska Inst. Box 725 S-220 07 Lund Sweden