
On temperate fundamental solutions supported 
by a convex cone 

Arne Enqvist 

Let P(D) be a partial differential operator in R" with constant coefficients and 
F a closed convex cone in R". Thus we assume that x, yEF and s, t->0 implies that 
sx+tyEF. The problem discussed here is to decide when P(D) has a temperate 
fundamental solution with support in F. 

An arbitrary differential operator with constant coefficients has a temperate 
fundamental solution. This was first proved by Ht rmander  [5] and Lojasiewicz [6]. 
Later Atiyah [1] has given a shorter proof  using results of Hironaka [3]. 

In [7] and [8] Melrose has given necessary and sufficient conditions for the 
existence of  a temperate fundamental solution with support in a half  space. In this 
paper we give necessary and sufficient cOnditions in the Case of  an arbitrary closed 
convex cone F. The existence of a temperate fundamental solution does not immedi- 
ately imply the existence of  a temperate solution to the equation P(D)U=F, where 
F is temperate. Therefore, we prefer to discuss this more general problem directly. 

The intersection F N  ( - F ) =  W is a linear subspace and xEF implies x+yEF 
for every yE IV. This shows that F is the inverse image in R" of  the image V of F 
in R"/W under the quotient map. It  is clear that V is a proper cone. It follows from 
Theorem 2.11 in [2] that there is no restriction in assuming that F (and V) has interior 
points. Thus we shall assume this later on. We shall use the notations n ' = d i m  W, 
n"=n-n" and coordinates x=(x', x") such that W is defined by x " = 0 .  We will 
also need the following norms on 6a(R"), 

If,If. = (f(l + ID.,l dx) .E:fR"). 

]1ull r -  = inf{JlplJ,; 6a)~o = u on F_ = - F } ,  uESe(R"). 

Theorem 1. The following conditions on F = R " ' X  V and the differential operator 
P(D) are equivalent. 
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O) P(D) has a temperate fundamental solution with support in F. 
(ii) P(D) U=F has a solution UE SP'(R") with supp U c F  for every FESg'(R") 

with supp F c F .  
(iii) For every ~'ER n" either P(4' ,  ~ " ) # 0 / f  Im ~"E - i n t  V*, where V * = {q"ER""; 

(~1", x") >-0 for all x"E V}, or P(4', ~" )=0  for all ~"EC". 

Proof. It is trivial that (i) follows from (ii). We will now use Theorem 3 below 
to prove that (iii) implies (ii). Since FESa'(R ") and supp F ~ F ,  there are constants 
C and s such that lP(u)l=lir(~o)l<-_Cll~oL for all u ~ ( R " )  and all q~ESe(R"), 9 = u  
on F_.  This implies that lP(u)lz~ClIul] r- for all uESe(Rn). From Theorem 3 we 
obtain that there are constants Co and So such that 

[P(u)[ <- Colle(D)ullffo-, for  all uESe(R"). 

Thus it follows from the Hahn Banach theorem that the linear form 

P(D)~(R") ~ P(D) u ~ P(u) 

can be extended to a continuous linear form O on ~(R")  with supp O c F _  =--F.  
Thus UE~(R"),  P(D)U=F and supp UcF.  

Now, assume that (iii) is false. Thus there are 40E R"  and ~o E C "  such that 
P(4o,~o)=0,  I m ~ o E - i n t  V* but P ( 4 0 , ~ " ) # 0  for some ~"ECn". Take N" such 
that P(4o, ~o +tN")#O for some tEC and write q(4", t) =P(4 ' ,  ~o +tN") as a product 
of  irreducible factors q(4', t)=Flqi(~', t). Let b(~') be the coefficient of  the term 
of  highest degree with respect to t of  the polynomial q. Denote by A (4') the product 
of b and the discriminants of  the factors qi considered as polynomials of  t. Since 
the zeros of  a polynomial depend continuously on the coefficients and q(~0, 0 ) = 0  
we can choose a dosed ball B c R "  with positive radius and centre near 40 and a 
function B ) 4"~-~ t (4') E C, such that q (4 ", t (4')) = 0 and Im (~o + t (4") N" ) E - int V* 
if UEB. Moreover, we can assume that A ( 4 ' ) # 0  in B so that t(4')  can be chosen 
analytic in B. Thus we have an analytic function B ) 4"~ ~"(~') = (~o + t (4") N") E (2" 
such that P(4",~"(~'))=O and Im ~"(~')E-int V* for all ~'EB. Let wECo(B ), 
0 ~ w ~ 0  and let 9EC~(R ") be 1 in a neighbourhood of  V _ = - V ,  q~(x")=0if  
d(x", V_)~  1 and assume that ~o has bounded derivatives. Set 

v(x) = (p (x") f ei( ~', r ~"(r w(4") d~'. j B  

There are constants C and 6 > 0  such that [(D~(p)(x")ei(~'r162 -~l~"l if 
4"E supp w. From this we obtain by means of  partial integration that D~x~v(x) is 
bounded so that vESQR"). Further, P(D)v=O on F_=R' fXV_ .  I f  EE~~ ") is 
a fundamental solution of  P(D) with s u p p E c F ,  then v(O)=E(P(D)v)=O. How- 
ever, v(O)=fw(~')d4"~O and this contradiction proves that (i) implies (iii). 
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We will now state a theorem which shows that condition (iii) implies a con- 
dition "stronger" than (i). 

Theorem 2. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then 
there are constants C and s" and temperate distributions E= E(t, P) such that P(D) E = f t  
and [~(u){<=C][u[]~ - for all uESa(R ") and all tEE_. 

For the proof  of  this theorem we need some preliminaries, so we postpone 
it. Instead we will prove now that Theorem 2 implies the required estimate. 

Theorem 3. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then 
for every s there are constants C and So such that 

I[u[]f- ~ C[[P(D)uIIr," for all uES~(R"). 

Proof. First we observe that for some sl 

-<- C2 sup ((1 + [x~l)'d ~ Zt,x~,,  ID'q/(x)l), 
which implies that 

1lull r -  _~ Cinf{sup((1 + [xlZ)sJz Z t ~ t ~  1 ID*~(x)l); 5~3~ = u on F_}. 

However, since F_ is regular in the sence of Whitney (see e.g., [5]) we obtain from 
this that there is an integer s2 such that 

x ~)s,/2 "s" ~ ID 'u(x ) l ) .  (1) Ilug- ~ C sup ((1 + z . , ,  _,~ 
s 

I f  /~ is a multi-index and P(~)r then D ~ a ( ~ ) = D ~ ( P ( ~ ) a ( ~ ) / P ( ~ ) ) =  
=(L(~, D~)P(~) a(~))/(P(~)ye~+l, which shows that we have an identity of the form 
(P(D))IaI+lxau(x)=L(D, x)P(D)u(x), where L(D, x) is a differential operator with 
polynomial coefficients. We observe that pi~l+l also satisfies condition (iii) of  Theo- 
rem 1. Let  tel"_ and let E=E(t,  plal+l) be the distribution we obtain from Theo- 
rem 2 applied to p~at+a. Then t~u(t)=~((P(D))laI+~xau)=~(L(D, x)P(D)u), which 
implies that 

sup Itau(t)l <= GIIL(D, x)e(O)ullf ,-  ~ C~llP(O)ullf.-. 
F_ 

If  we apply this to D~u for all e and fl with I~l<-s~ and Ifl[<=s~ then we obtain that 
there are constants Co and So such that 

t ~)s~12 N" sup ((1 + ~1~ ~ ,  ID'u(t)l) ~ Co I[P(D)ulf;, 

which proves the theorem by means of (1). 
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For the hard part of the proof of Theorem 2 we need the following theorem due 
to Hironaka. 

Theorem 4. Let F be a real analytic function (~0) ,  defined in a neighbourhood 
of  OER". Then there exists an open set U 30, areal analytic manifoM ~ and a proper 
analytic map q~ : ~-~ U such that 

(i) qg: ~ 7 \ X ~  U \ A  is an isomorphism, where A=F-X(0)  and X=~o-I(A)= 
= ( r o  q9)-1 (0), 

(ii) for each P E O  there are local analytic coordinates (Yl, ... ,Y,) centred at P so 
that, locally near P, we have 

= 1I"  g ' ,  

where e is an invertible analytic function and ki>-O. 

Proof. See Atiyah [1]. 

We will now use Theorem 4 to prove the following lemma. The proof is a slight 
modification of the proof Melrose gave in [7]. 

Lemma 5. I f  Q is a polynomial in k variables and A={~ERk; Q(ff)=0}, then 
there is a constant C and an integer s such that, / f  @ESO(R k) and t///Q is bounded on 
R k \ A  then 

sup I@(r162 <= CIl~lls. 
R~A 

Proof. If  s u p p ~ c B = { ~ E W ;  1r and q (~)= / /k  1 qk,i then it is trivial that 
sup [@(~)/q(~)]<=Csup ~l~l~_s [D~@(~)] for some constants C and s. Now, let U 
be a small neighbourhood of a point in R", so that Theorem 4 can be applied with 
F = Q  and assume that supp @c U. If  ~o is the map we obtain from Theorem 4 
then ~k o q~ has compact support. Thus we obtain from condition (ii) of Theorem 4 
that we can choose a finite partition of unity on 0,  1 = ~ Z , ,  so that for suitable 
coordinates Q o (p=e(~/)/-/k r/kJ in supp Z,. Then the simple case above implies that 

sup [@(r = sup I@o~o/Oo~01 <= ,~  sup Iz,(n)(r I <= 
n 

-<= Co sup Sl,l=~ ]O~(gi(@o~o)) (r/)[ ~ G sup ZI,I~_~ [O'@(~)] ~ CIlr 

where the last estimate follows from the Sobolev inequality. From this we obtain 
the lemma for all @ with supp @cB by means of a finite partition of unity. Now, 
let ZECo(B ) be 1 in a neighbourhood of {~ERk; ]~I<=l}. If  @ESe(R k) we set ~O~=Zff 
and Ip~=@-@l. Then there are constants C~ and s~ such that 

sup Ir162 C0llr <= G IIr 
Rk~A 
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Further, set ~(q)~-r  ~ and q(q)=Q(rdlnl~)lnl ~', where m=deg  Q. Then 
qJECo(B), q is a polynomial in r/ and qJiq is bounded. Thus, there are constants 
C2 and s2 such that 

sup IO~(~)IQ(~)! = sup k0(~)/q(~)l <= C;ll~oll~, ~ C~'ll0~ll~+k -<- C~ll011~,+k. 
R."\a R k \ q  - 1(o) 

This proves the lemma with C=C1+C2 and s = m a x  (s~, s~+k). r 

# l  C nu Let P be a polynomial satisfying condition (iii) of Theorem 1 and let Co E 
with Im C~ E - int V*. Set s = s" + 2n" where s" is the integer we obtain from Lemma 5 
with Q (~ ' )= e (~', Co). I f  we complete Se(R ~') with respect to the norm I}" ]1~, then we 
obtain a Hilbert space ~ )  (R'). Let H denote the orthogonal projection of ~ )  (R") 
on the subspace that is the closure of those ~ E 5e(R,') for which (1 +WIz) 'O (~')[Q (~') 
is bounded. 

Take O<e-<l,  tER" and define E~=E,(t, P) by 

~(.) = (2=)-. f ~,<,, r162162 izN) de, uE 5P(R"), 

where N=(0,  N" )  and N"E int V*. From Lemma 4.1.1 in H6rmander [4]we obtain 
that 

N)I P(~ N) e"l)~P(~ ' C~) I P ( e -  is _-< - i~ =< c~(1 + , <= 

c~(1 + I~"I) ' IP(r Co)l ~ c2(1 + I~"I)"P(~', C;') -< 

<_- c.(1 + I ( ' I )~P(~ -  ieN) <= C,~-m(1 + le"l)~ IP(~-- ieN)l, 

where ~ (see page 35 in H6rmander [4]) is taken with respect to the ~" variables, 
m=degr P(~) and the constants are independent of 3'. Thus, there is a constant 
C >0  such that 

(2) c-1(1 + I~"I) -~ <= IP(U, C;')/P(~- ieN)[ <_- C((1 + IU'l)/e)" 

for all {ER". Further, we obtain from Lemma 5 that there is a constant Co such that 

sup i(1 + Ir Cg)l ~ Co ii(/-/a)(., e")lt: <-- r 

Co Ila(., r = Co ( f  (1 + Ir , Z~,<~_:,,<.=o ID<<a(r if= 

where the norm is taken with respect to the ~' variables only. This implies that 
there are constants C and sl such that 

sup I(1 + IU'l~)""+m/2(1 + IUI2)'(S/a) (~)/P(U, Cg) I <= Cilull:,. 
r 

Thus E~ is well-defined and IE~(u)l<=Cg-'llu[l,. It also follows from (2) and the 
definition of E, that [2~(P(D--ieN)u)=u(t) if uES~(R"). We finally want to prove 



40 Arne Enqvist 

that suppE, c F - { t } .  Let 0=(0,  0")ER", where 0"Eint V*. Take VECo(R" ) with 
supp v c  {xER"; (x, 0) > 0 } +  {t}. Then 

t~.(v) = (2.)-. f ei(', r (rio) (~)/P(~ - ieU) d~ = 

= (2=)-. f d( e , ' ' ( f  e'", ")(IIO)(r162162 

However, since P(~', D"--ieN") is hyperbolic with respect to V for almost every 
~ 'ER" we obtain by changing the integration contour that the inner integral is 0 
a.e. (Cf. The proof  of  Theorem 5.6.1 in H6rmander [4].) Thus ~ , (v)=0,  which 
proves that s u p p E ~ c F - -  {t}. 

Proof of Theorem 2. Set E=E(t ,  u~_o(~+t,~N)~ . j - - ~  ~, ,  where E, is the distribution 
defined above. Then 

/~(u) = (2~)-" f d (t, r (Ha) ({ -- isN)/P({ - ieN) d~, u E Cg (R"), 

and since ( / /a ) (O is analytic with respect to {" we obtain that E is independent of 
e>0.  It is also clear that s u p p E c F - { t }  and E(P(D)u)=u(t) if uECoCR"). Let 
0-<--2ECo((--2, 2)) with 2 ( y ) = l  for [y]<=l and set 

Zj(x) = 2((x, U ) + j - 1 ) / ~  2((x, N } + k - 1 ) .  
Then 

l~(u) = ~ ff.(Zju) = z ~  e<t'nlJ)t~ll~(e-<x'~rlJ))~i u) if uE Cg~(R"). 

However, 

[e(', ~v/y) t~l/j(e-(x, 2v/i~Z ~ u) I <= Cegt, ~v/y~ j,,, ile-<~, N/j) )~j ull,~ <= 

Cl(e(t, N) + 1)jm IIzwL~ <-- c~ (1 4- e (t' N))j-2 l[uL,, 

where s'=s~+m4-2. This proves that 

[~(U)[ ~ C(1 4-e(t,N)) Ilulls,, uE,-9~ 
so that 

[/~(u)] =< 2CIiuIl ~, for all uESC(R ") and all t E F _ .  

Thus if tEF_ and 5 P ( R " ) ~  = u on F _ ,  then 

[~(u)[ = ]/~(O)l <-- 2CII~L, 
which implies that 

Ii~(u)l<-2e[lul[ r-, u E ~ ( R " ) ,  t E r _ .  

This proves Theorem 2. 
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