On temperate fundamental solutions supported by a convex cone

Arne Enquist

Let $P(D)$ be a partial differential operator in \mathbf{R}^{n} with constant coefficients and Γ a closed convex cone in \mathbf{R}^{n}. Thus we assume that $x, y \in \Gamma$ and $s, t \geqq 0$ implies that $s x+t y \in \Gamma$. The problem discussed here is to decide when $P(D)$ has a temperate fundamental solution with support in Γ.

An arbitrary differential operator with constant coefficients has a temperate fundamental solution. This was first proved by Hörmander [5] and Lojasiewicz [6]. Later Atiyah [1] has given a shorter proof using results of Hironaka [3].

In [7] and [8] Melrose has given necessary and sufficient conditions for the existence of a temperate fundamental solution with support in a half space. In this paper we give necessary and sufficient conditions in the case of an arbitrary closed convex cone Γ. The existence of a temperate fundamental solution does not immediately imply the existence of a temperate solution to the equation $P(D) U=F$, where F is temperate. Therefore, we prefer to discuss this more general problem directly.

The intersection $\Gamma \cap(-\Gamma)=W$ is a linear subspace and $x \in \Gamma$ implies $x+y \in \Gamma$ for every $y \in W$. This shows that Γ is the inverse image in \mathbf{R}^{n} of the image V of Γ in \mathbf{R}^{n} / W under the quotient map. It is clear that V is a proper cone. It follows from Theorem 2.11 in [2] that there is no restriction in assuming that Γ (and V) has interior points. Thus we shall assume this later on. We shall use the notations $n^{\prime}=\operatorname{dim} W$, $n^{\prime \prime}=n-n^{\prime}$ and coordinates $x=\left(x^{\prime}, x^{\prime \prime}\right)$ such that W is defined by $x^{\prime \prime}=0$. We will also need the following norms on $\mathscr{S}\left(\mathbf{R}^{n}\right)$,

$$
\begin{gathered}
\|u\|_{s}=\left(\int\left(1+|x|^{2}\right)^{s} \sum_{|\alpha| \leqq s}\left|D^{\alpha} u\right|^{2} d x\right)^{1 / 2}, \quad u \in \mathscr{P}\left(\mathbf{R}^{n}\right), \\
\|u\|_{s}^{\Gamma_{-}}= \\
\inf \left\{\|\varphi\|_{s} ; \mathscr{S} \ni \varphi=u \text { on } \Gamma_{-}=-\Gamma\right\}, \quad u \in \mathscr{P}\left(\mathbf{R}^{n}\right) .
\end{gathered}
$$

Theorem 1. The following conditions on $\Gamma=\mathbf{R}^{n^{n}} \times V$ and the differential operator $P(D)$ are equivalent.
(i) $P(D)$ has a temperate fundamental solution with support in Γ.
(ii) $P(D) U=F$ has a solution $U \in \mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right)$ with supp $U \subset \Gamma$ for every $F \in \mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right)$ with $\operatorname{supp} F \subset \Gamma$.
(iii) For every $\xi^{\prime} \in \mathbf{R}^{n^{\prime}}$ either $P\left(\xi^{\prime}, \zeta^{\prime \prime}\right) \neq 0$ if $\operatorname{Im} \zeta^{\prime \prime} \in$-int V^{*}, where $V^{*}=\left\{\eta^{\prime \prime} \in \mathbf{R}^{n^{\prime}}\right.$; $\left\langle\eta^{\prime \prime}, x^{\prime \prime}\right\rangle \equiv 0$ for all $\left.x^{\prime \prime} \in V\right\}$, or $P\left(\xi^{\prime}, \zeta^{\prime \prime}\right)=0$ for all $\zeta^{\prime \prime} \in \mathbf{C}^{n^{\prime \prime}}$.

Proof. It is trivial that (i) follows from (ii). We will now use Theorem 3 below to prove that (iii) implies (ii). Since $F \in \mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right)$ and $\operatorname{supp} F \subset \Gamma$, there are constants C and s such that $|\check{F}(u)|=|\check{F}(\varphi)| \leqq C\|\varphi\|_{s}$ for all $u \in \mathscr{S}\left(\mathbf{R}^{n}\right)$ and all $\varphi \in \mathscr{S}\left(\mathbf{R}^{n}\right), \varphi=u$ on Γ_{-}. This implies that $|\check{F}(u)| \equiv C\|u\|_{s}^{I_{-}}$for all $u \in \mathscr{S}\left(\mathbf{R}^{n}\right)$. From Theorem 3 we obtain that there are constants C_{0} and s_{0} such that

$$
|\check{F}(u)| \leqq C_{0}\|P(D) u\|_{s_{0}}^{\Gamma_{-}}, \quad \text { for all } \quad u \in \mathscr{S}\left(\mathbf{R}^{n}\right)
$$

Thus it follows from the Hahn-Banach theorem that the linear form

$$
P(D) \mathscr{S}\left(\mathbf{R}^{n}\right) \ni P(D) u \mapsto \check{F}(u)
$$

can be extended to a continuous linear form \check{U} on $\mathscr{S}\left(\mathbf{R}^{n}\right)$ with supp $\check{U} \subset \Gamma_{-}=-\Gamma$. Thus $U \in \mathscr{S}\left(\mathbf{R}^{n}\right), P(D) U=F$ and $\operatorname{supp} U \subset \Gamma$.

Now, assume that (iii) is false. Thus there are $\xi_{0}^{\prime} \in \mathbf{R}^{n^{\prime}}$ and $\zeta_{0}^{\prime \prime} \in \mathbf{C}^{n^{n}}$ such that $P\left(\xi_{0}^{\prime}, \zeta_{0}^{\prime \prime}\right)=0, \operatorname{Im} \zeta_{0}^{\prime \prime} \in-$ int V^{*} but $P\left(\xi_{0}^{\prime}, \zeta^{\prime \prime}\right) \neq 0$ for some $\zeta^{\prime \prime} \in \mathbf{C}^{n^{\prime \prime}}$. Take $N^{\prime \prime}$ such that $P\left(\xi_{0}^{\prime}, \zeta_{0}^{\prime \prime}+t N^{\prime \prime}\right) \neq 0$ for some $t \in \mathbf{C}$ and write $q\left(\xi^{\prime}, t\right)=P\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}+t N^{\prime \prime}\right)$ as a product of irreducible factors $q\left(\xi^{\prime}, t\right)=\Pi q_{i}\left(\xi^{\prime}, t\right)$. Let $b\left(\xi^{\prime}\right)$ be the coefficient of the term of highest degree with respect to t of the polynomial q. Denote by $\Delta\left(\xi^{\prime}\right)$ the product of b and the discriminants of the factors q_{i} considered as polynomials of t. Since the zeros of a polynomial depend continuously on the coefficients and $q\left(\xi_{0}^{\prime}, 0\right)=0$ we can choose a closed ball $B \subset \mathbf{R}^{n^{\prime}}$ with positive radius and centre near ξ_{0}^{\prime} and a function $B \ni \xi^{\prime} \mapsto t\left(\xi^{\prime}\right) \in \mathbf{C}$, such that $q\left(\xi^{\prime}, t\left(\xi^{\prime}\right)\right)=0$ and $\operatorname{Im}\left(\zeta_{0}^{\prime \prime}+t\left(\xi^{\prime}\right) N^{\prime \prime}\right) \in-$ int V^{*} if $\xi^{\prime} \in B$. Moreover, we can assume that $\Delta\left(\xi^{\prime}\right) \neq 0$ in B so that $t\left(\xi^{\prime}\right)$ can be chosen analytic in B. Thus we have an analytic function $B \ni \xi^{\prime} \mapsto \zeta^{\prime \prime}\left(\xi^{\prime}\right)=\left(\zeta_{0}^{\prime \prime}+t\left(\xi^{\prime}\right) N^{\prime \prime}\right) \in \mathbf{C}^{n^{\prime \prime}}$ such that $P\left(\xi^{\prime}, \zeta^{\prime \prime}\left(\xi^{\prime}\right)\right)=0$ and $\operatorname{Im} \zeta^{\prime \prime}\left(\xi^{\prime}\right) \in$-int V^{*} for all $\xi^{\prime} \in B$. Let $w \in C_{0}^{\infty}(B)$, $0 \neq w \geqq 0$ and let $\varphi \in C^{\infty}\left(\mathbf{R}^{n^{\prime \prime}}\right)$ be 1 in a neighbourhood of $V_{-}=-V, \varphi\left(x^{\prime \prime}\right)=0$ if $d\left(x^{\prime \prime}, V_{-}\right) \geqq 1$ and assume that φ has bounded derivatives. Set

$$
v(x)=\varphi\left(x^{\prime \prime}\right) \int_{B} e^{i\left\langle x^{\prime}, \xi^{\prime}\right\rangle+i\left\langle x^{\prime \prime}, \xi^{\prime \prime}\left(\xi^{\prime}\right)\right\rangle} w\left(\xi^{\prime}\right) d \xi^{\prime}
$$

There are constants C and $\delta>0$ such that $\left|\left(D^{\alpha} \varphi\right)\left(x^{\prime \prime}\right) e^{i\left\langle x^{\prime \prime}, \zeta^{\prime \prime}\left(\xi^{\prime}\right)\right\rangle}\right| \leqq C_{\alpha} e^{-\delta\left|x^{\prime \prime}\right|}$ if $\xi^{\prime} \in \operatorname{supp} w$. From this we obtain by means of partial integration that $D^{\beta} x^{\gamma} v(x)$ is bounded so that $v \in \mathscr{S}\left(\mathbf{R}^{n}\right)$. Further, $P(D) v=0$ on $\Gamma_{-}=\mathbf{R}^{n^{\prime}} \times V_{-}$. If $E \in \mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right)$ is a fundamental solution of $P(D)$ with supp $E \subset \Gamma$, then $v(0)=\breve{E}(P(D) v)=0$. However, $v(0)=\int w\left(\xi^{\prime}\right) d \xi^{\prime} \neq 0$ and this contradiction proves that (i) implies (iii). \#

We will now state a theorem which shows that condition (iii) implies a condition "stronger" than (i).

Theorem 2. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then there are constants C and s^{\prime} and temperate distributions $E=E(t, P)$ such that $P(D) E=\delta_{t}$ and $|\check{E}(u)| \equiv C\|u\|_{s^{-}}^{T^{-}}$for all $u \in \mathscr{S}\left(\mathbf{R}^{n}\right)$ and all $t \in \Gamma_{-}$.

For the proof of this theorem we need some preliminaries, so we postpone it. Instead we will prove now that Theorem 2 implies the required estimate.

Theorem 3. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then for every s there are constants C and s_{0} such that

$$
\|u\|_{s}^{T_{-}} \leqq C\|P(D) u\|_{s_{0}}^{T_{-}} \quad \text { for all } \quad u \in \mathscr{S}\left(\mathbf{R}^{n}\right) .
$$

Proof. First we observe that for some s_{1}

$$
\begin{gathered}
\|\psi\|_{s} \leqq C_{1}\|\hat{\psi}\|_{s}=C_{1}\left(\int\left(1+|\xi|^{2}\right)^{s} \sum_{|\alpha| \leqq s}\left|D^{\alpha} \hat{\psi}(\xi)\right|^{2} d \xi\right)^{1 / 2} \leqq \\
\leqq C_{2} \sup \left(\left(1+\left|x^{2}\right|\right)^{s_{1} / 2} \sum_{|\alpha| \leqq s_{1}}\left|D^{\alpha} \psi(x)\right|\right)
\end{gathered}
$$

which implies that

$$
\|u\|_{s}^{\Gamma}-\leqq C \inf \left\{\sup \left(\left(1+|x|^{2}\right)^{s_{1} / 2} \sum_{j \alpha j^{3} s_{1}}\left|D^{\alpha} \psi(x)\right|\right) ; \mathscr{S} \ni \psi=u \text { on } \Gamma_{-}\right\}
$$

However, since Γ_{-}is regular in the sence of Whitney (see e.g., [5]) we obtain from this that there is an integer s_{2} such that

$$
\begin{equation*}
\|u\|_{s}^{\Gamma_{-}} \leqq C \sup _{r_{-}}\left(\left(1+|x|^{2}\right)^{s_{2} / 2} \sum_{|\alpha| \leqq s_{2}}\left|D^{\alpha} u(x)\right|\right) \tag{1}
\end{equation*}
$$

If β is a multi-index and $P(\xi) \neq 0$ then $D_{\xi}^{\beta} \hat{u}(\xi)=D_{\xi}^{\beta}(P(\xi) \hat{u}(\xi) / P(\xi))=$ $=\left(L\left(\xi, D_{\xi}\right) P(\xi) \hat{u}(\xi)\right) /(P(\xi))^{|\beta|+1}$, which shows that we have an identity of the form $(P(D))^{|\beta|+1} x^{\beta} u(x)=L(D, x) P(D) u(x)$, where $L(D, x)$ is a differential operator with polynomial coefficients. We observe that $P^{|\beta|+1}$ also satisfies condition (iii) of Theorem 1. Let $t \in \Gamma_{-}$and let $E=E\left(t, P^{|\beta|+1}\right)$ be the distribution we obtain from Theorem 2 applied to $P^{\mid \beta 1+1}$. Then $t^{\beta} u(t)=\check{E}\left((P(D))^{|\beta|+1} x^{\beta} u\right)=\check{E}(L(D, x) P(D) u)$, which implies that

$$
\sup _{r_{-}}\left|t^{\beta} u(t)\right| \leqq C_{1}\|L(D, x) P(D) u\|_{s^{\prime}}^{\Gamma_{-}} \leqq C_{2}\|P(D) u\|_{s^{s^{-}}}^{\Gamma^{-}}
$$

If we apply this to $D^{\alpha} u$ for all α and β with $|\alpha| \leqq s_{2}$ and $|\beta| \leqq s_{2}$ then we obtain that there are constants C_{0} and s_{0} such that

$$
\sup _{r_{-}}\left(\left(1+|t|^{2}\right)^{s_{2} / 2} \sum_{|\alpha| \leqq s_{2}}\left|D^{\alpha} u(t)\right|\right) \leqq C_{0}\|P(D) u\|_{s_{0}}^{\Gamma_{-}}
$$

which proves the theorem by means of (1).

For the hard part of the proof of Theorem 2 we need the following theorem due to Hironaka.

Theorem 4. Let F be a real analytic function $(\not \equiv 0)$, defined in a neighbourhood of $0 \in \mathbf{R}^{n}$. Then there exists an open set $U \ni 0$, a real analytic manifold \tilde{U} and a proper analytic map $\varphi: \widetilde{U} \rightarrow U$ such that
(i) $\varphi: \tilde{U} \backslash \tilde{A} \rightarrow U \backslash A$ is an isomorphism, where $A=F^{-1}(0)$ and $\tilde{A}=\varphi^{-1}(A)=$ $=(F \circ \varphi)^{-1}(0)$,
(ii) for each $P \in \tilde{U}$ there are local analytic coordinates $\left(y_{1}, \ldots, y_{n}\right)$ centred at P so that, locally near P, we have

$$
F \circ \varphi=\varepsilon(y) \prod_{1}^{n} y_{i}^{k_{i}},
$$

where ε is an invertible analytic function and $k_{i} \geqq 0$.
Proof. See Atiyah [1]. \#

We will now use Theorem 4 to prove the following lemma. The proof is a slight modification of the proof Melrose gave in [7].

Lemma 5. If Q is a polynomial in k variables and $A=\left\{\xi \in \mathbf{R}^{k} ; Q(\xi)=0\right\}$, then there is a constant C and an integer s such that, if $\psi \in \mathscr{S}\left(\mathbf{R}^{k}\right)$ and ψ / Q is bounded on $\mathbf{R}^{k} \backslash A$ then

$$
\sup _{\mathbf{R}^{k} \backslash A}|\psi(\xi) / Q(\xi)| \leqq C\|\psi\|_{s}
$$

Proof. If $\operatorname{supp} \psi \subset B=\left\{\xi \in \mathbf{R}^{k} ;|\xi| \leqq 2\right\}$ and $q(\xi)=\prod_{1}^{k} \eta_{i}^{k_{i}}$ then it is trivial that $\sup |\psi(\xi) / q(\xi)| \leqq C \sup \sum_{|\alpha| \leqq s}\left|D^{\alpha} \psi(\xi)\right|$ for some constants C and s. Now, let U be a small neighbourhood of a point in \mathbf{R}^{n}, so that Theorem 4 can be applied with $F=Q$ and assume that supp $\psi \subset U$. If φ is the map we obtain from Theorem 4 then $\psi \circ \varphi$ has compact support. Thus we obtain from condition (ii) of Theorem 4 that we can choose a finite partition of unity on $\tilde{U}, 1=\sum \chi_{i}$, so that for suitable coordinates $Q \circ \varphi=\varepsilon(\eta) \Pi_{1}^{k} \eta_{j}^{k}$ in supp χ_{i}. Then the simple case above implies that

$$
\begin{aligned}
& \sup _{\xi}|\psi(\xi) / Q(\xi)|=\sup |\psi \circ \varphi / Q \circ \varphi| \leqq \sum \sup _{\eta}\left|\chi_{i}(\eta)(\psi \circ \varphi)(\eta) / Q \circ \varphi(\eta)\right| \leqq \\
& \leqq C_{0} \sup _{i, \eta} \sum_{|\alpha| \leqq s}\left|D_{\eta}^{\alpha}\left(\chi_{i}(\psi \circ \varphi)\right)(\eta)\right| \leqq C_{1} \sup _{\xi} \sum_{|\alpha| \leqq s}\left|D^{\alpha} \psi(\xi)\right| \leqq C\|\psi\|_{s_{1}}
\end{aligned}
$$

where the last estimate follows from the Sobolev inequality. From this we obtain the lemma for all ψ with supp $\psi \subset B$ by means of a finite partition of unity. Now, let $\chi \in C_{0}^{\infty}(B)$ be 1 in a neighbourhood of $\left\{\xi \in \mathbf{R}^{k} ;|\xi| \leqq 1\right\}$. If $\psi \in \mathscr{S}\left(\mathbf{R}^{k}\right)$ we set $\psi_{1}=\chi \psi$ and $\psi_{2}=\psi-\psi_{1}$. Then there are constants C_{1} and s_{1} such that

$$
\sup _{\mathbf{R}^{k} \backslash A}\left|\psi_{1}(\xi) / Q(\xi)\right| \leqq C_{0}\left\|\psi_{1}\right\|_{s_{1}} \leqq C_{1}\|\psi\|_{s_{1}}
$$

Further, set $\varphi(\eta)=\psi_{2}\left(\eta /|\eta|^{2}\right)|\eta|^{2 m}$ and $q(\eta)=Q\left(\eta /|\eta|^{2}\right)|\eta|^{2 m}$, where $m=\operatorname{deg} Q$. Then $\varphi \in C_{0}^{\infty}(B), q$ is a polynomial in η and φ / q is bounded. Thus, there are constants C_{2} and s_{2} such that

$$
\sup _{\mathbf{R}^{k} \backslash A}\left|\psi_{2}(\xi) / Q(\xi)\right|=\sup _{\mathbf{R}^{k} \backslash q^{-1}(0)}|\varphi(\eta) / q(\eta)| \leqq C_{2}^{\prime}\|\varphi\|_{s_{2}} \leqq C_{2}^{\prime \prime}\left\|\psi_{2}\right\|_{s_{2}+k} \leqq C_{2}\|\psi\|_{s_{2}+k}
$$

This proves the lemma with $C=C_{1}+C_{2}$ and $s=\max \left(s_{1}, s_{2}+k\right)$.
\#
Let P be a polynomial satisfying condition (iii) of Theorem 1 and let $\zeta_{0}^{\prime \prime} \in \mathbf{C}^{n^{*}}$ with $\operatorname{Im} \zeta_{0}^{\prime \prime} \in-\operatorname{int} V^{*}$. Set $s=s^{\prime}+2 n^{\prime}$ where s^{\prime} is the integer we obtain from Lemma 5 with $Q\left(\xi^{\prime}\right)=P\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right)$. If we complete $\mathscr{P}\left(\mathbf{R}^{n^{\prime}}\right)$ with respect to the norm $\|\cdot\|_{s}$, then we obtain a Hilbert space $\mathscr{S}_{(s)}\left(\mathbf{R}^{n^{\prime}}\right)$. Let Π denote the orthogonal projection of $\mathscr{S}_{(s)}\left(\mathbf{R}^{n^{\prime}}\right)$ on the subspace that is the closure of those $\psi \in \mathscr{S}\left(\mathbf{R}^{n^{\prime}}\right)$ for which $\left(1+\left|\xi^{\prime}\right|\right)^{n^{\prime}} \psi\left(\xi^{\prime}\right) / Q\left(\xi^{\prime}\right)$ is bounded.

Take $0<\varepsilon<1, t \in \mathbf{R}^{n}$ and define $E_{\varepsilon}=E_{\varepsilon}(t, P)$ by

$$
\breve{E}_{\varepsilon}(u)=(2 \pi)^{-n} \int e^{i\langle t, \xi\rangle}(\Pi \hat{u})(\xi) / P(\xi-i \varepsilon N) d \xi, \quad u \in \mathscr{P}\left(\mathbf{R}^{n}\right)
$$

where $N=\left(0, N^{\prime \prime}\right)$ and $N^{\prime \prime} \in \operatorname{int} V^{*}$. From Lemma 4.1.1 in Hörmander [4] we obtain that

$$
\begin{gathered}
|P(\xi-i \varepsilon N)| \leqq \widetilde{P}(\xi-i \varepsilon N) \leqq C_{1}\left(1+\left|\xi^{\prime \prime}\right|\right)^{m} \tilde{P}\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right) \leqq \\
\leqq C_{2}\left(1+\left|\xi^{\prime \prime}\right|\right)^{m}\left|P\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right)\right| \leqq C_{2}\left(1+\left|\xi^{\prime \prime}\right|\right)^{m} \tilde{P}\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right) \leqq \\
\leqq C_{3}\left(1+\left|\xi^{\prime \prime}\right|\right)^{2 m} \widetilde{P}(\xi-i \varepsilon N) \leqq C_{4} \varepsilon^{-m}\left(1+\left|\xi^{\prime \prime}\right|\right)^{2 m}|P(\xi-i \varepsilon N)|,
\end{gathered}
$$

where \sim (see page 35 in Hörmander [4]) is taken with respect to the $\xi^{\prime \prime}$ variables, $m=\operatorname{deg}_{\xi^{\prime \prime}} P(\xi)$ and the constants are independent of ξ^{\prime}. Thus, there is a constant $C>0$ such that

$$
\begin{equation*}
C^{-1}\left(1+\left|\xi^{\prime \prime}\right|\right)^{-m} \leqq\left|P\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right) / P(\xi-i \varepsilon N)\right| \leqq C\left(\left(1+\left|\xi^{\prime \prime}\right|\right) / \varepsilon\right)^{m} \tag{2}
\end{equation*}
$$

for all $\xi \in \mathbf{R}^{n}$. Further, we obtain from Lemma 5 that there is a constant C_{0} such that

$$
\begin{gathered}
\sup _{\zeta^{\prime}}\left|\left(1+\left|\xi^{\prime}\right|^{2}\right)^{n^{\prime}}(\Pi \hat{u})(\xi) / P\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right)\right| \leqq C_{0}\left\|(\Pi \hat{u})\left(\cdot, \xi^{\prime \prime}\right)\right\|_{s} \leqq \\
\leqq C_{0}\left\|\hat{u}\left(\cdot, \xi^{\prime \prime}\right)\right\|_{s}=C_{0}\left(\int\left(1+\left|\xi^{\prime}\right|^{2}\right)^{s} \sum_{|\alpha| \leqq s, \alpha^{\prime \prime}=0}\left|D^{\alpha} \hat{u}(\xi)\right|^{2} d \xi^{\prime}\right)^{1 / 2}
\end{gathered}
$$

where the norm is taken with respect to the ξ^{\prime} variables only. This implies that there are constants C and s_{1} such that

$$
\sup _{\xi}\left|\left(1+\left|\xi^{\prime \prime}\right|^{2}\right)^{n^{\prime \prime}+m / 2}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{n^{\prime}}(\Pi \hat{u})(\xi) / P\left(\xi^{\prime}, \zeta_{0}^{\prime \prime}\right)\right| \leqq C\|u\|_{s_{1}}
$$

Thus E_{ε} is well-defined and $\left|\breve{E}_{\varepsilon}(u)\right| \leqq C \varepsilon^{-m}\|u\|_{s_{1}}$. It also follows from (2) and the definition of E_{ε} that $\breve{E}_{\varepsilon}(P(D-i \varepsilon N) u)=u(t)$ if $u \in \mathscr{S}\left(\mathbf{R}^{n}\right)$. We finally want to prove
that $\operatorname{supp} E_{\varepsilon} \subset \Gamma-\{t\}$. Let $\theta=\left(0, \theta^{\prime \prime}\right) \in \mathbf{R}^{n}$, where $\theta^{\prime \prime} \in$ int V^{*}. Take $v \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ with supp $v \subset\left\{x \in \mathbf{R}^{n} ;\langle x, \theta\rangle>0\right\}+\{t\}$. Then

$$
\begin{gathered}
\check{E}_{\varepsilon}(v)=(2 \pi)^{-n} \int e^{i\langle t, \xi\rangle}(\Pi \hat{v})(\xi) / P(\xi-i \varepsilon N) d \xi= \\
=(2 \pi)^{-n} \int e^{i\left\langle t^{\prime}, \xi^{\prime}\right\rangle}\left(\int e^{i\left\langle t^{*}, \xi^{\prime \prime}\right\rangle}(\Pi \hat{v})(\xi) / P(\xi-i \varepsilon N) d \xi^{\prime \prime}\right) d \xi^{\prime} .
\end{gathered}
$$

However, since $P\left(\xi^{\prime}, D^{\prime \prime}-i \varepsilon N^{\prime \prime}\right)$ is hyperbolic with respect to V for almost every $\xi^{\prime} \in \mathbf{R}^{n^{\prime}}$ we obtain by changing the integration contour that the inner integral is 0 a.e. (Cf. The proof of Theorem 5.6.1 in Hörmander [4].) Thus $\check{E}_{\varepsilon}(v)=0$, which proves that $\operatorname{supp} E_{\varepsilon} \subset \Gamma-\{t\}$.

Proof of Theorem 2. Set $E=E(t, P)=e^{\langle x+t, \varepsilon N\rangle} E_{\varepsilon}$, where E_{ε} is the distribution defined above. Then

$$
\check{E}(u)=(2 \pi)^{-n} \int e^{i\langle t, \xi-i \epsilon N\rangle}(\Pi \hat{u})(\xi-i \varepsilon N) / P(\xi-i \varepsilon N) d \xi, \quad u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)
$$

and since $(\Pi \hat{u})(\xi)$ is analytic with respect to $\xi^{\prime \prime}$ we obtain that E is independent of $\varepsilon>0$. It is also clear that supp $E \subset \Gamma-\{t\}$ and $\breve{E}(P(D) u)=u(t)$ if $u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$. Let $0 \leqq \lambda \in C_{0}^{\infty}((-2,2))$ with $\lambda(y)=1$ for $|y| \leqq 1$ and set

$$
\chi_{j}(x)=\lambda(\langle x, N\rangle+j-1) / \sum_{1}^{\infty} \lambda(\langle x, N\rangle+k-1)
$$

Then

$$
\check{E}(u)=\sum_{1}^{\infty} \check{E}\left(\chi_{j} u\right)=\sum_{1}^{\infty} e^{\langle t, N / j\rangle} \check{E}_{1 / j}\left(e^{-\langle x, N / j\rangle} \chi_{j} u\right) \quad \text { if } \quad u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)
$$

However,

$$
\begin{gathered}
\left|e^{\langle t, N / j\rangle} \check{E}_{1 / j}\left(e^{-\langle x, N / j\rangle} \chi_{j} u\right)\right| \leqq C e^{\langle t, N / j\rangle} j^{m}\left\|e^{-\langle x, N / j\rangle} \chi_{j} u\right\|_{s_{1}} \leqq \\
\leqq C_{1}\left(e^{\langle t, N\rangle}+1\right) j^{m}\left\|\chi_{j} u\right\|_{s_{1}} \leqq C_{2}\left(1+e^{\langle t, N\rangle}\right) j^{-2}\|u\|_{s^{\prime}}
\end{gathered}
$$

where $s^{\prime}=s_{1}+m+2$. This proves that
so that

$$
|\check{E}(u)| \leqq C\left(1+e^{\langle t, N\rangle}\right)\|u\|_{s^{\prime}}, \quad u \in \mathscr{S}\left(\mathbf{R}^{n}\right)
$$

$$
|\check{E}(u)| \leqq 2 C\|u\|_{s^{\prime}} \quad \text { for all } \quad u \in \mathscr{P}\left(\mathbf{R}^{n}\right) \quad \text { and all } t \in \Gamma_{-} .
$$

Thus if $t \in \Gamma_{-}$and $\mathscr{P}\left(\mathbf{R}^{n}\right) \ni \psi=u$ on Γ_{-}, then

$$
|\check{E}(u)|=|\check{E}(\psi)| \leqq 2 C\|\psi\|_{s^{\prime}}
$$

which implies that

$$
|\check{E}(u)| \leqq 2 C\|u\|_{s^{-}}^{T^{-}}, \quad u \in \mathscr{S}\left(\mathbf{R}^{n}\right), \quad t \in \Gamma_{-} .
$$

This proves Theorem 2.

Acknowledgement

I am very grateful to Professor Lars Hörmander for his advice.

References

1. Atiyah, M. F., Resolution of Singularities and Division of Distributions, Comm. Pure Appl. Math. 23 (1970), 145-150.
2. Enqvist, A., On fundamental solutions supported by a convex cone, Ark. Mat. 12 (1974), 1-40.
3. Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326.
4. Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, Berlin (1963).
5. Hörmander, L., On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568.
6. Lojasiewicz, S., Sur le problème de division. Studia Mat. 18 (1959), 87-136.
7. Melrose, R. B., Initial and Initial-Boundary Value Problems, Thesis, Cambridge University (1973).
8. Melrose, R. B., The Cauchy problem with polynomial growth conditions for partial differential operators with constant coefficients. (Unpublished.)

Received February 24, 1975
Arne Enqvist
Lunds universitet Matematiska Inst.
Box 725
S-220 07 Lund
Sweden

