On temperate fundamental solutions supported
by a convex cone

Arne Engvist

Let P(D) be a partial differential operator in R® with constant coefficients and
I' a closed convex cone in R”. Thus we assume that x, y€I' and s, =0 implies that
sx+ty€rl. The problem discussed here is to decide when P(D) has a temperate
fundamental solution with support in I'.

An arbitrary differential operator with constant coefficients has a temperate
fundamental sJolution. This was first proved by Hérmander [5] and Lojasiewicz [6].
Later Atiyah {1] has given a shorter proof using results of Hironaka [3].

In [7] and [8] Melrose has given necessary and sufficient conditions for the
existence of a temperate fundamental solution with support in a half space. In this
paper we give necessary and sufficient conditions in the case of an arbitrary closed
convex cone I'. The existence of a temperate fundamental solution does not immedi-
ately imply the existence of a temperate solution to the equation P(D) U= F, where
F is temperate. Therefore, we prefer to discuss this more general problem directly.

The intersection I'(—I)=W is a linear subspace and x€I' implies x-4-y€I’
for every yc W. This shows that I' is the inverse image in R” of the image V of I
in R"/W under the quotient map. It is clear that ¥ is a proper cone. It follows from
Theorem 2.11 in [2] that there is no restriction in assuming that I (and ¥) has interior
points. Thus we shall assume this later on. We shall use the notations »"=dim W,
n”=n—n" and coordinates x=(x’, x”) such that W is defined by x”=0. We will
also need the following norms on & (R"),

lalls = (f (1 + 5P 3y, 1D dx)'", ue @),
lulf- = inf{|lpls; 3¢ =uwon I'_=~T}, ucPR".

Theorem 1. The following conditions on I' =R" X V and the differential operator
P(D) are equivalent.
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(1) P(D) has a temperate fundamental solution with support in I.
(ii) P(DYU=F has a solution Uc ¥’ (R") with supp UCT for every FES'(R")
with supp FcrI.
(iii) For every & €R™ either P(¢',{")#0if Im ("€ —int V*, where V*={y” €R™;
", x"y=0 for all x”€V}, or P(&,L”)=0 for all {"¢C".

Proof. 1t is trivial that (i) follows from (if). We will now use Theorem 3 below
to prove that (iii) implies (ii). Since F€&'(R") and supp Fc I, there are constants
C and s such that |[F(u)|=|F(¢)|=C|¢l, for all ucZ(R") and all p€LR"), ¢p=u
on I'_. This implies that |F )| =Clu|I- for all uc #(R"). From Theorem 3 we
obtain that there are constants C, and s, such that

|F@)| = CollP(D)u)l%-, for all ucSF(R").
Thus it follows from the Hahn—Banach theorem that the linear form
P(D)¥R")>P(D)u — F(u)

can be extended to a continuous linear form U on &(R") with supp Ucl'_=—T.
Thus Uc#(R"), P(D)U=F and supp UcT.

Now, assume that (iii) is false. Thus there are &€ R" and & €C" such that
P(&,{)=0, Im{; € —int ¥* but P(£),{”)=0 for some {”€C”. Take N” such
that P(&;, (g +¢N ") =0 for some 7€ C and write g (¢, 1)=P(&’, (g +tN”) as a product
of irreducible factors g(&’, t)=1IIq;(¢’,¢). Let b(&’) be the coefficient of the term
of highest degree with respect to ¢ of the polynomial g. Denote by 4(£”) the product
of b and the discriminants of the factors ¢; considered as polynomials of ¢. Since
the zeros of a polynomial depend continuously on the coefficients and g(&;, 0)=0
we can choose a closed ball BCR” with positive radius and centre near &; and a
function B>¢&—1(¢')€C, such that (&, ¢(&”))=0 and Im ({§ +#(¢)N”)€ —int V*
if &€ B. Moreover, we can assume that 4(&')>0 in B so that #(£’) can be chosen
analytic in B. Thus we have an analytic function B>&—{"(¢")=({; +t(&)N")eC”
such that P(&,(”(¢’))=0 and Im {”(¢’)€—int ¥* for all &€B. Let weCy(B),
0Zw=0 and let p€C=R™) be 1 in a neighbourhood of V_=-—V, ¢(x”)=0if
d(x”, V_)=1 and assume that ¢ has bounded derivatives. Set

v(x) = o (x") fB @ E OV TEN W () dE'.

There are constants C and 6=0 such that [(D?@)(x")e*" Y EV|=C,e %" if
& ¢ supp w. From this we obtain by means of partial integration that Dfx"v(x) is
bounded so that v€#(R"). Further, P(D)v=0 on I'_=R*XV_. If EE¥’'R") is
a fundamental solution of P(D) with supp ECT, then v(0)= E(P(D)v)=0. How-
ever, v(0) f w(&)dEé 0 and this contradiction proves that (i) implies (iii). Eid
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We will now state a theorem which shows that condition (iii) implies a con-
dition “stronger” than (i).

Theorem 2. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then
there are constants C and s” and temperate distributions E=E(t, P) such that P(D) E=$,
and |[EW)|=Cl|lu|F- for all uc¢#R") and all t€I _.

For the proof of this theorem we need some preliminaries, so we postpone
it. Instead we will prove now that Theorem 2 implies the required estimate.

Theorem 3. Let P be a polynomial satisfying condition (iii) of Theorem 1. Then
for every s there are constants C and s, such that

lull- = CIPD)u|L- for all uc FSRY).

Proof. First we observe that for some s,

Wl = Culdlls = G (f A+ 6P 3y DT ©P ) =
= Cz sup ((l + [le)sllz Zlalésl iDal/’ (x)]),
which implies that
lulf- = Cinf {sup (1 + x5/ 3, DY D)); S3¢ =uon T}

However, since I'_ is regular in the sence of Whitney (see e.g., [S]) we obtain from
this that there is an integer s, such that

M luls-=C sup A+ 212, ID* 0 (X)]).

If B is a multi-index and P(§)#0 then D{a(&)=D{(P(O)@()/P(&))=
=(L(&, D)P(&)a(®)/(P(£))#*, which shows that we have an identity of the form
(P(D))#*+1xPu(x)=L(D, x) P(D)u(x), where L(D, x) is a differential operator with
polynomial coefficients. We observe that P#1+1 also satisfies condition (iii) of Theo-
rem 1. Let t€I'_ and let E=E(t, P''*') be the distribution we obtain from Theo-
rem 2 applied to P#*1. Then f#u(t)=E((P(D))#**x*u)=E(L(D, x) P(D)u), which
implies that

sup [#u(®)] = G LD, x) P(D)uls- = G| P(D)ulls.
r.

If we apply this to D*u for all « and § with |¢|=s, and || =s, then we obtain that
there are constants C, and s, such that

sup ((1+ 4 1, IDu (@) = Col POl

which proves the theorem by means of (1). 4
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For the hard part of the proof of Theorem 2 we need the following theorem due
to Hironaka.

Theorem 4. Let F be a real analytic function (#0), defined in a neighbourhood
of OCR". Then there exists an open set U>0, areal analytic manifold U and a proper
analytic map @: U~ U such that

(@) @: ON\A~UN\A is an isomorphism, where A=F~1(0) and A=¢~1(4)=
=(Fop)™(0),

(i) for each Pl there are local analytic coordinates (yy,...,y,) centred at P so
that, locally near P, we have

Fog = e(y) [7 y¥,
where ¢ is an invertible analytic function and k;=0.
Proof. See Atiyah [1]. 4

We will now use Theorem 4 to prove the following lemma. The proof is a slight
modification of the proof Melrose gave in [7].

Lemma 5. If Q is a polynomial in k variables and A={£€R*; Q(£)=0), then
there is a constant C and an integer s such that, if W€ RY) and /Q is bounded on
R¥\4 then

sup [ (&)/Q ()] = Clyl;.
R¥N A4

Proof. If supp Yy ©B={£€R¥; [¢|=2} and q(&)=J]¥ n% then it is trivial that
sup [ (©)/q(©)|=C sup 3|, =, ID™"Y (£)] for some constants C and s. Now, let U
be a small neighbourhood of a point in R”, so that Theorem 4 can be applied with
F=Q and assume that suppyCU. If ¢ is the map we obtain from Theorem 4
then ¥ o ¢ has compact support. Thus we obtain from condition (ii) of Theorem 4
that we can choose a finite partition of unity on U, 1=>y;, so that for suitable
coordinates Qogp=¢c()]] ’1‘ 17’}‘.1 in supp x;. Then the simple case above implies that

sup W (/] = sup [Yop/Qog| = 3 sup [x: () o@) M/Qop ()] =
=G sup Zai=s [ Di(ao@) ()| = G sup Dai=s DO = Clylls,

where the last estimate follows from the Sobolev inequality. From this we obtain
the lemma for all ¢ with supp < B by means of a finite partition of unity. Now,
let x€Cy(B) be 1 in a neighbourhood of {£€R¥; |¢]=1}. If Y € & (RY) we set y, =y
and Y=y —y;. Then there are constants C; and s; such that

sup [ (/0 (O] = G lYills, = CiIY s, -
RN A
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Further, set ¢ (m)=y,(1/ln®n|*" and q()=Q@/In|»n*", where m=deg Q. Then
@€Cy(B), q is a polynomial in # and @/g is bounded. Thus, there are constants
C, and s, such that

sup 2 (/QOl =_sup lem/gm| = Cillols, = C Welsrr = Col¥llsyer-
R\ A4 RiNg~1(0)

This proves the lemma with C=C;+C, and s=max (s;, Sz +k). #

Let P be a polynomial satisfying condition (iii) of Theorem 1 and let ¢ ¢C™
with Im {5 € —int V*. Set s=s"+2n" where 5’ is the integer we obtain from Lemma 5
with Q(¢)=P (&, (3). If we complete & (R") with respect to the norm | + |5, then we
obtain a Hilbert space %, (R™). Let IT denote the orthogonal projection of ¥, (R™)
on the subspace that is the closure of those Y € & ﬂl”) for which (14 |[&[2 ¢ (£)/Q (&)
is bounded.

Take O0<g<1, teR” and define E,=E,(z, P) by

E,@u) = Qn)~" [ 2 (IIa) (§)/P(E~isN) dé, uc SR,

where N=(0, N”) and N”€int V*. From Lemma 4.1.1 in Hérmander [4] we obtain
that

\P(E —ieN)| = B(e—ieN) = C,A+1E'N"PE, &) =
= GU+EYIPE, ) = CGA+IEDPE, ) =
= C(L+ € )" P(¢—ieN) = Cue " (1 + & D™ |P(¢ — ieN)),

where ~ (see page 35 in Hérmander [4]) is taken with respect to the &” variables,
m=deg,, P(¢) and the constants are independent of £’. Thus, there is a constant
C=0 such that

@ CHA+[E D™ = [P, /P(E—ieN)| = C((1+1E")/e)"
for all £€R". Further, we obtain from Lemma 5 that there is a constant Cy such that

sup |(1+[&') (I Q) PE E)| = Col AT -, &l =
= Collia (e &y = Co( f L+ 1EPY 3z armo I D) dE)

where the norm is taken with respect to the &’ variables only. This implies that
there are constants C and s; such that

sup (L 17+ mi2 (1 + |& 12 (ITa) (&)/PE, LG

”u”sl'

Thus E, is well-defined and |E, (u)|<Ce""l|ul| It also follows from (2) and the
definition of E, that E,(P(D—icN)u)=u(t) if uQSf(R”) We finally want to prove
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that supp E,CI'—{t}. Let 6=(0, ”)€R", where 6”¢int V'*. Take ve€ C7(R") with
supp vC {x€R”; (x, ) >0}+{r}. Then

E,) = @r)~ [ 9 (10) (9)/P(E ~ieN) d =
= @n)~ [ &€ O [ 6 OID) (§)/PE —ieN) dE”) .

However, since P(¢’, D”"—ieN”) is hyperbolic with respect to ¥ for almost every
&€R" we obtain by changing the integration contour that the inner integral is 0
a.e. (Cf. The proof of Theorem 5.6.1 in Hérmander [4]) Thus E,()=0, which
proves that supp E,CI'—{t}.

Proof of Theorem 2. Set E=E(t, P)=&*+%*V)E, , where E, is the distribution
defined above. Then

E@W) = @n)~ [ & &M (1) (E—isN)/PE —sN) dE,  u€Cy (R?),

and since (IT4) () is analytic with respect to ¢” we obtain that E is independent of
e>0. It is also clear that supp ECI'—{t} and E(P(D)u)=u(z) if ucCy R". Let
0=2€Cy((—2, 2)) with 1(p)=1 for |y|=1 and set

% (%) = A{x, Ny +j—1)/ 35 A({x, Ny +k—1).
Then

E@w) =T E(u = 37 e<’rN/f>E1,j(e‘(x’N/f>xju) if ueCy(RY).
However,
[e(t’ NI7) El/j(e—<x’N/j>Xju)' = Ce N/j)jm ”e“(x» NI Xju”sl =
= G M+ 1) jmysully, = Co(14-€4M)j =2 ully,
where s =s,+m+2. This proves that
|E@)] = C(1+e&M) ul,, ue SR,
so that
[E@)| = 2Clju]ly for all ucP(R") andall rel_.
Thus if t€l'_ and (R3¢ = u on I, then
A |E@w)| = [EQ)]| = 2C|¥].
which implies that
|E@)| = 2C|lulE-, ue SR, tel_.

This proves Theorem 2.
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