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1. Introduction 

We start with several definitions. 
Let E be a real, locally convex Hausdorff vector space (1.c.s.) and (f2; ~', R) 

a probability space. Denote by ~ '  the least a-algebra of subsets of the topological 
dual E '  of E, which makes every weakly continuous linear functional on E '  meas- 
urable. A measurable mapping X of (f2, ~ )  into (E', ~ ' )  will be called a random 
continuous linear functional (r.c.l,f.) over E. The distribution law of X is written 
P x o r  P X ' L  It seems convenient to write 

<X(~o), 99) = X,(~o), ~ E a ,  99EE. 

The characteristic function .oCax of  X is defined by 

.~x(~O) = g(eiX*), 99E E. 

Here 8 denotes expectation, that is integration with respect to P. 
Two r.c.l.f.'s over E are said to be equivalent (abbr. -=) if they have the same 

characteristic function (or distribution law). 
Suppose E and F are l.c.s.'s and A: E ~ F  a linear continuous mapping. Then 

for every r.c.l.f. Y over F we get an r.c.l.f. X over E by setting X =  tA o Y. For short, 
we shall write X =  tAY. 

The class of all (centred) Gaussian r.e.l.f.'s over E is denoted by f#(E)(fg0(E)). 
An r.c.l.f. Xover Eis  said to belong to the class d./s(E), i f  for every 99, . . . . .  99n EE, 

and every nEZ+, the distribution law Pr, Y=(x~l ,  .... xr  fulfils the inequality 

(1.1) Pr(2A + (1 -- 2)B) _--> (2P~ (A) + (1 - 2)P~,(B)) 1/" 

for every 0 < 2 < 1 ,  and all Borel sets A and B in R,. Here sE[--o o, 0 ] .An  r.c.l.f. 
belonging to the class ~ _ ~ ( E )  is called a convexr.c.l.f, over E. Note that f f ( E ) ~  
~J/40(E ) [4, Th. 1.1]. 
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Now let E be an 1.c.s. such that the weak dual E" of E is a Souslin space [1, p. 
114]. Under this assumption it is known that ~ ' = ~ ( E , ' ) ,  the Borel a-algebra gen- 
erated by the weakly open subsets of E" [1, p. 139]. Furthermore, let X be an r.c.l.f. 
over E. We are interested in two, in general different, classes of affine subspaces 
of E'. We denote by I(X) the family of all universally ~(E,')-measurable affine 
subspaces of E" of Px-probability one, and by IL (X) the subfamily of all Px-Lusin 
measurable elements of I(X). Thus GEIL(X) if and only if GEl(X) and sup {Px(K)IK 
weakly compact and convex ~ G } = I .  The Lusin affine kernel alL(X) of X is 
defined by 

~L ( JO = f'l [GIG E IL(X)]. 

I f  XE~o(E), the Lusin affine kernel is equal to the reproducing kernel Hilbert space 
of X and is thus an extremely important object [2, Chap. 9]. It is also known that the 
Lusin affine kernel plays an important r61e when E=li__i_n a R n and Px reduces to a 
product measure on E ' = R  *~ [8]. In Section 2 we will give a simple characterization 
of ~r when X6JI,(E) and s > - 1 .  We also show that ~r ) is of probability 
zero when XEdC,(E), s >- -1 ,  and dim (supp Px)= +oo. On the other hand, the 
Lusin affine kernel is a large set in a topological sense. In fact, we prove that the 
closure of Slz(X ) is equal to E '  if supp Px =E" and XEJI,(E), s > -- 1. All the results 
are known in the Gaussian case [2, Chap. 9]. Actually, we here all the time need a 
mild extra condition on E, condition C(E) below. 

Our next task will be to pick out elements of l(Y0. Suppose G is a subspace 
of  E'.  It  seems convenient to have the following representation of G; let F be another 
1.e.s. and A: E-~ F a linear continuous mapping. We can, of course, choose F and 
A so that G=tA(F'). The problem then is to give necessary and sufficient condi- 
tions so that tA(F)EI(X). In Section 3 we point out that this question is closely 
related to the solvability of a certain stochastic linear equation. In Section 4, we 
give necessary and sufficient conditions so that tA(F)s when F is a separable 
prehilbert space, and, in Section 5, when F is a nuclear LM space. 

We include three simple examples. 

2. The affme kernel o f  an r.c.l.f. 

Let E be an 1.c.s. and X an r.e.l.f, over E. We define the vector subspace ,~(X)  
of E" as the set of all aEE" such that 

(2.1) lim (a, ~p~) = 0 
j~oo 

for every denumerable sequence {~pj} in E such that 

(2.2) lim (u, (p j) = 0 a.s. [Px]. 
j.*oo 
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The purpose of this section is to find relations among the affine subspaces 
~L(X), ~f(X),  and supp I x .  To this end we must assume that E fulfils the following 
condition; 

C(E): there exists a locally convex topology J-" on E', compatible with the duality 
(E', E) such that E'(9-") is a complete Souslin space. 

This condition is, in particular, satisfied i fE  is the strict inductive limit of an increasing 
denumerable sequence of separable Fr6chet subspaces [7, Th. 1.5.1]. 

We shall first prove 

Theorem 2.1. Let E be an l.c.s, which fulfils the condition C(E). Suppose that 
X is an r .c .Lf  over E such that OEs4L(X ). Then 

alL(X) = ~ ( J ; ) .  

Remark 2.1. There exists an r.c.l.f. X over C([0, 1]), the vector space of all 
continuous functions on the unit interval, equipped with the sup-norm topology 
such that ~r (An example due to E. Alfsen; private communication.) Below 
we will see that this pathology cannot occur when XEJC/s(E), s > -  1, and E fulfils 
the condition C(E). 

Recently, J. Hoffmann-Jorgensen has given a better characterization of ~r 
in the special case when 0E~CL(X), E = l i m  R", and Px is a product measure with 
non-degenerated factors [8, Th. 4.4]. Our method of proof is similar to that in [8]. 

Proof Suppose GE~L(X) and a~ G. Since G is a Px-Lusin affine space and 
0EG, there are weakly compact, convex, and symmetric sets Kj, jEN, such that 

(2.3) Kj ~ G, 2Kj ~ Kj+I, Px(Kj) > 1- -2-L 

Now choose qg~EE such that (a, ~oj.)=l and [(u, ~oj)[<~l when uEKj. It is readily 
seen that (u, ~oj)~O, as j ~ o ,  for every uEUKj. In particular, (2.2) is true. Since 
(2.1) is not fulfilled, we have ar ~ ( X ) .  ttence dL (X) c= o~f (X). 

Conversely, assume that a ~ ~ ( X ) .  Then there is a sequence {~oj} in E so that 
(a, q@ = 1 for all j ,  and (2.2) is valid. We can thus find a subsequence {Ok}= {~oj~} 
such that 

e[lxoJ > 2 -k] < 2 -k. 
Set 

N(u) = Z [(u, 0k)t, uEE' ,  

and let G =  {N< + co}. Clearly, GEl(X). We shall prove that GEIL(X ). Therefore, 
let e>0  be given and choose 2ER+ such that 

P x [ N ~  2] > 1--e 
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Now observe that M(E ' (~ - - ' ) )=~(E ' )  [1, p. 121]. Since, by assumption, E'(~--') 
is a Souslin space there is a Y"-compact subset K of ~N<=2} such that 

Px(K) > 1--e. 

(See e.g. [1, p. 132].) Let /~ be the Y'-closed, convex hull of K. Then/~  is J - ' -compact  
and, of  course, also weakly compact. We also have that K _  C/s {N<=2}~ G. Hence 
GEIL(X) and the theorem is proved. 

The definition of the space ~(((X) can be simplified if XEJg~(E), s > - ~ o .  

Theorem 2.2. Suppose XE d/s(E), s > - 0% and let pE]0, -- 1/s[. 
Then a E W ( X )  i f  and only i f  there is a constant C=C(a)>O such that 

(2.4) Ka, cp)]p <__ Cg(IX~l,), ~oEE. 

Here - 1/0 = + ~o. 

Proof Suppose a ~ W (X). Then there is a sequence {r in E such that I(a, ~oi) l --> l 
and (2.2) is valid. 

Set 

(2.5) N(u) = sup I<u, ~)1. 
J 

Then N is an l~+-valued seminorm which is finite a.s. [Px]. Hence NPELI(Px) [4, 
Th. 3.1]. From the Lebesgue dominated convergence theorem we now deduce that 
the inequality (2.4) cannot be valid for any C>0.  

Conversely, if the inequality (2.4) cannot be valid for any C, it is trivial to show 
that a ~[ W (X). This proves the theorem. 

We shall now try to give a better description of the affine kernel d L ( X  ) when 
XE ~g~ (E) and s > - I. 

We first need a preliminary result. 

Theorem 2.3. Suppose XEJ/g~(E), s > - - l ,  and assume that E fulfils the con- 
dition C(E). 

Then for any hEL=(Y2, ~ ,  P) the linear mapping 

~bx(h) :E3~o -+ E(hX~o) E R 
belongs to E'. 

Proof. First note that every sequentially continuous linear functional on E is 
continuous. In fact, E ' (~" ' )  is both complete and separable and the statement 
follows from [13, p. 150]. Using [4, Th. 3.1] again it is readily seen that ~x(h ) i s  
sequentially continuous, which proves the theorem. 
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Under the same assumptions as in Theorem 2.3, let us write ~x(1)=g(X)  
and define 

Note that XEJgs(E). Theorem 2.2 also gives that 

(2.6) 4~(L-(~2, ~,, P)) = ~r 

We now have 

Theorem 2.4. Suppose XE Jgs(E), s > - l ,  and assume that E fulfils the con- 
dition C(E). 

Then 

a) alL(X) = e ( X ) + ~ ( Y ) .  

b) alL(X) = supp Px, if  suppPxo = singleton set or R for all r E. 

c) P x ( a Z L ( x ) )  = o or  1 a c c o r d i n g  as  dim ( ~ 0 7 ) )  = +co or  < ~-~o. 

Theorem 2.4 is well known in the Gaussian case. (See e.g. [10], [11], and [2, 
Chap. 9].) Our methods of proof seem to be rather different from those in the quoted 
papers. 

Proof of a). First note that ~L(~iz)~-~L(J~)~-~o(J~). In view of Theorem 2.1, 
we thus only have to prove that 0EaCL(JT). Now choose HEagL(~) arbitrarily, and 
write H=a+G, where G is a Pj?_,-Lusin linear space. Suppose a~G, and let us 
choose the K s. as in (2.3) with X replaced by JF-a .  Furthermore, we choose the 
~os. exactly as in the proof of Theorem 2.1. Defining N as in (2.5), we have NE L 1 (P2-,). 
Hence 

lim f l ( . ,  eydex_o(u) = 0 
On the other hand 

f I(u, pyaP~_o(u) = fl<u, es.)-<a, es.>l dP~(u) >= f(<u, q@,(a ,  ~@)dP2(u) = 1. 

This contradiction shows that aEG. Hence 0EH and part a) is proved. 

Proof of  b). We know that supp Px is equal to the intersection of all closed 
affine subspaces of E~' of probability one [4, Th. 5.1]. In particular, 

sOL(X) G supp Ix.  

To prove the opposite inclusion choose a ff ~r arbitrarily. By part a) we have 

that a -  g(X) ~ ~r Now choose q)o E E such that ( a -  g(X), ~00) = 1 and (u, (Po) = 0 
for all u~ ~gr 
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Using (2.6), we get 

f l<u, ~0>1 dPyc(u) = @~(sign X%), (#o) = 0. 

From this it follows that <u-g (X) ,  q @ = 0  for every uEsupp Px. In particular, we 
have that a ~ supp I x ,  which concludes the proof  of part b). 

Proof of  c). Suppose first that dim (W()~) )=  +~,.  It is then obvious that the 
vector subspace {J~,k0EE} of LI(~?, o~, p)  is of infinite dimension. From the Dvo- 
retsky--Rogers theorem [6, Th, 3] we now deduce that there exists a sequence {~oj} 
in E such that 

and 

for every h E L ~176 (f2, f ,  P). 
Set 

Z ]e(h~,j)l  < + oo 

N(u) = Z I<u, ~oj>l, u~ E'. 

From the definition of ogf (J~) we have 

(2.7) Yf(J~) ~ {uE E'IN(u) -< + oo}. 

The function N is an R+-valued seminorm and 

fNdP~ = Z ~ I =  + ~ .  

We know from the zero-one law [4, Th. 4,1] that P2[N< + oo]=0 or 1, and this 
probability is  equal to one only if NELl(P2) [4, Th. 3.1]. The inclusion (2.7) 
and part a) of  Theorem 2.4 thus prove that PX(S4L(X))=O. On the other hand, 
if dim ( J r  ( ) ~ ) ) < +  0% then o~f ()~) is closed. The proof of part b) above then shows 
that dL(JOD=suppPx . Hence Px(d (X) )= l .  This proves part c) and concludes 
the proof of Theorem 2.4. 

Corollary 2.1. Let E be an l.c.s, satisfying the condition C(E) and let X, YE~/s(E), 
s > - l .  

Then Px and Pr are singular if  

e(x)+ ~(s ~ ~ ( Y ) + ~ ( ? ) .  

Corollary 2.1 follows at once from Theorem 2.4, a) and the zero-one law. 
We shall conclude this section by giving a few examples. 

Example2.1. Let XEsgs(Ro), s > - l ,  where Ro=li_mmR", and suppose that 
8(X) =0. In view of the Kolmogorov zero-one law it can be interesting to know 
when 

(2.8) R; ~ <= d ~ ( x ) .  
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Note that a set G ~ R = = (Ro) '  is a tail event if and only if R o + G ~ G. Let us write 

where the X~ are real-valued random variables. Denote by M k the closure in 
L1(~2, ~-, P) of  the vector space spanned by the Xj, j r  Let e~=(1, 0, 0 . . . .  ) f i r  ~176 
From Theorems 2.2 and 2.4 we now deduce that e l ~ c L ( X  ) if and only if there is a 
constant C > 0  such that 

1 <= Ce(IXI+ Z ~  r 

for all {gj}CR o. Equivalently, 'this means that XI~ 3'/1. Hence (2.8) is valid if and 
only if Xj ~_ Mj for all j. Note that this condition is fulfilled if the Xj are independent 
and non-zero. 

Example 2.2. Let E be a separable Hilbert space and suppose that XEJ//s(E), 
s > - 1 / 2 .  Then, since the norm in E belongs to L2(P~) [4, Th. 3.1], there is a sym- 
metric non-negative Hilber t--Schmidt  operator S on E such that  

Hence 
IIs 11 = e(Yg),  CE. 

d z ( X )  = g(X)  + range (S). 

3. A connection between I(X) and a certain linear stochastic equation 

We now turn to the problem of picking out e.lements of  I(X).  The following 
theorem, which is an immediate consequence of a measurable selection theorem, will 
play an important  r61e later on. 

Theorem 3.1. Let E and F be l.c.s.' s and A: E-~ F a linear continuous mapping. 
Furthermore, assume that the weak duals of  E and F, respectively, are Souslin spaces. 

Then, 
a) i f  X is an r.c.l .f  over E, it is true that tA(F)EI(X) i f  and only i f  there exists 

an r.c.l.f Y over F such that 

(3.1) X = rAY. 

b) the equation (3.1) has an r.c.l.f, solution Y over F for every r.c.l.f. X over E 
if  and only i f  tA is surjective. 

Before the proof  we introduce a new notation. I f  (f2, @) is a measurable space, 
we denote by ~ the a-algebra of all ~-universal ly  measurable subsets of  f2. 
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Proof a). Note first that (3.1) is equivalent to the identity 

/'x =/'Y('A) -1. 

Note also that 51(F'), under the given assumptions, is universally measurable 
[1, p. 123, p. 129, p. 132]. Therefore, if (3.1) is valid it follows at once that 
tA(F')EI(X). We now prove the "only i f "  part of part a). There is no loss of gen- 
erality to assume that X is the identity mapping on E'.  Note that the transpose 
mapping 51 is a continuous mapping of  F~" onto :G=5t (F ' )  equipped with the 
relative a(E' ,  E)-topology, here denoted by f ' .  In particular, the surjective mapping 

tA : (F', ~ (F;)) -+ (G, ~ (G (J-'))) 

is measurable. We also know that the a-algebra M(G(Y'))  is countably generated 
since G(J- ' )  is a Souslin space [1; p. 138, p. 124]. We recall that F~' is a Souslin 
space. Under these circumstances it is known that there exists a measurable mapping 

so that 
y : (G, N(G(J-'))) -~ (F', N(F~)) 

u = ~ y ( u ) ,  u~ G.  

(See [12, Cor. 2, p. 121] or [9, Cor. 7, p. 150].) Let us now define Y(u)=y(u), uEG, 
and Y(u)=0, uEE'\G. This gives us an r.c.l.f. 

Y: (e', ~(e~-'-~), ex) -~ (e', ~(e;))  

so that (3.1) is valid. This proves part a) of Theorem 3.1. 
It only remains to be proved the "only i f"  part of part b). To this end choose 

uEE" arbitrarily. Suppose X is an r.c.l.f, over E which equals u with probability 
one and choose Y so that (3.1) is valid. It is obvious that there exists a vEF so that 
u=51v. The mapping 5t is thus surjective. This proves part b) and concludes the 
proof of Theorem 3.1. 

In applications it is, of course, in general, very hard to decide whether the 
equation (3.1) has a solution Y or not. In the following sections we shall see that 
this question is closely related to continuity of the characteristic function ~x  with 
respect to a suitable topology. In general, however, it is easier to decide whether a 
certain moment 

mfd~o ) = ~(IX~IP), ,p~E, (p > 0) 

is continuous or not. Before proceeding the following result can therefore be worth 
pointing out. 
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Theorem 3.2. Let  XE~'s(E) ,  s > -- % and let ~-  be a locally convex topology 
on E. 

Then the following assertions are equivalent; 

a) s is J-continuous. 
b) there exists a pE]0, - 1 / s [  so that rn~ is :--continuous. 

c) m~ is ~--eontinuous f o r  all p E ] O , - l / s [ .  

Proof, a)=*c). Choose e>0 .  I t  can be assumed that - ~ < s < 0 .  LetpE]0,  - 1 / s [  
be fixed. Since X is continuous in probability [7, Th, II. 2.3, p. 37] there is a convex 
F-neighborhood V of the origin so that 

Pglx~,] > 1/41 < 1/4, q~EV. 

Set O = I - P [ 1 X ~ ] > I / 4  ]. From [4, Lemma 3.1] we then have, for all ~oEV, 

PfIX+[ > t/41 -<= 1 -- O) s -  Oq + 0 ~ , t =:> I, 

where the right-hand side decreases in 0. Hence, for all ~o E V, 

m~(q~) = p fs t'-lP[lX~o[ >= t] at <= 

w ,  
<_- 4-p+p4-pf~ t p-~ [(1/4)~.(3/4)~1+(1/4)s~ dt = C, 

where C < + oo. From this it follows that 

rn}(ep) < e if  q~E(e/(I+C))I/~V. 

Since rn} is continuous at the origin, it is easy to show the continuity at each point 
of  E. 

The implications c)=*b) and b)==~a) are both trivial. 

4. F a separable prehilbert space 

Let F be a separable prehilbert space. A posxtive semldefinite quadratic form 
B on F is said to be of  finite trace class if there exists a CER+ so that 

Z B(O , --< C 

for every orthonormal sequence {Ok} in F. The seminorms F 3 0 ~ I / B - ( 0 ,  0)ER,  
where B varies over all positive semidefinite quadratic forms on F of finite trace 
class, determine a locally convex topology ;r on F. By Sazonov's theorem 
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[7, Th. II. 3.4, p. 46], a positive semi-definite function f on F is the characteristic 
function of an r.c.l.f, over F if and only if f (0)  = 1 and f is o"r 
Observe here that F~ is a Souslin space. 

Theorem 4.1. Let E be an Le.s. such that E2 is a Souslin space and let F be a 
separable prehilbert space. Furthermore, assume that A : E ~  F is a linear continuous 
mapping and denote by Y the weakest topology on E which makes the mapping 
A: E ~  F(~C'Sf(F)) continuous. 

Then, 
a) i f  X is an r.c.l, f over E, it is true that tA(F')EI(X) if  and only if 5Y x is Y--con- 

tinuous. 
b) if  XEJ//s(E), s >=-0% it is true that tA(F')EI(X) if  and only if the equation 

(3.1) has a solution YE JCls(F ). 
c) i f  XEfg(E), it is true that tA(F')EI(X) i f  and only i f  the equation (3.1) has a 

solution YE~ (F). 

Proof of a). Suppose first that tA(F')EI(X). By Theorem 3.1, a) there is an 
r.c.l.f. Y over F such that (3.1) holds. Hence s and Sazonov's theorem 
implies that 2 '  x is J--continuous. Conversely, let us assume that s is ~--con- 
tinuous. Since ~c~~ x is a positive semi-definite function and 5r we have the 
inequality 

(4.1) I2~x (C?o) - 2'x (~pl)[ ~ _<-- 2 [l - Re ~e x (~o 0 - Cpl) [, 

valid for all COo, ~oxEE. It is therefore possible to define a positive semi-definite func- 
t i o n f  on the vector space A(E) by setting f(0)=s when 0=Acp and ~oEE. 
Since the topology HSP(F) induces a weaker topology on A (E) than the JfS~(A (E))- 
topology (these topologies are in fact identical) we deduce that f is 2/fS~(A(E))- 
continuous.  By Sazonov's theorem there is an r.c.l.f. Z over A(E) so that f=5 ~  . 
Le t /~  be the completion of  F and denote by A (E) the closure of  A (E) in F. It is 
obvious that Z can be considered an r.c.l.f, over A(E). Let p: P ~ A ( E )  be the can- 
onical projection. By setting Y= tpZ we have an r.c.l.f, over/~ such that s = s162 o A, 
that is X=-tAy. Since Y can be regarded as an r.c.l.f, over F, part a) is proved. 

Proof of b). The " i f"  part is clear. To prove the other direction assume that 
tA(F')EI(X). By part a) s176 x is J--continuous. We can thus define Z as in the proof 
of part a) above and observe that X -  ~IZ. Since the map A : E ~  A (E) is surjective, 
it follows that Z E ~ ( A ( E ) )  [4, Sect. 2]. Using the same convention as above we 
also have Z E J/Is (A--~). Defining u as above and using [4, Th. 2.1] again, it is readily 
seen that YE Ms (F), thus proving part c). 

Proof of c). The proof  is "exactly" the same as the proof  of part b). 
This concludes the proof  of Theorem 4.1. 
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5. F a  nuclear L M  space 

An 1.c.s. Fis  said to be an L M  space if F is  the strict inductive limit of an increas- 
ing denumerable sequence of metrizable subspaces. If, in addition, F is nuclear it 
follows that F is separable and the weak dual of F is a Souslin space ([13, Cor. 2, 
p. 101], [7, Section 5]). 

The main tool in this section is Minlos' theorem. The following variant seems 
convenient to us. 

Theorem 5.1. ([7, Th. 11. 3.3, p. 43].) Let F be a separable nuclear space. 

Then 

O) every continuous positive semi, definite function f on F such that f(O) = 1 is the 
characteristic function o f  an r.c.L f over F. 

(ii) /f, in addition, F is an L M  space, the characteristic function o f  every r.c.L f 
over F is continuous. 

Theorem 3.1 now gives us the following extension theorem for positive semi- 
definite functionsl Actually, we have no need for it here, but it can be worth pointing 
out since it seems to be of independent interest. 

Theorem 5.2. Let F be a nuclear L M  space and E a subspace o f  F. 
Then every continuous positive semi-definite function on E can be extended to a 

continuous positive semi-definite function on F. 

Proof  Supposef  is a continuous positive semi-definite function on E and f(0)--- 1. 
Then, by Theorem 5.1(i), there is an r.c.l.f. X over E such that Lex= f Here it shall 
be observed that E, equipped with the relative topology, is separable. In fact, there 
is an obvious stronger inductive limit topology on E, which makes E into a nuclear 
L M  space. Let A: E ~  F be the canonical injection and note that ~ I ( F ' ) = E ' .  Hence 
tA(F')EI(~Y) and Theorem 3.1 implies that there exists an r.c.l.f. Y over F su ch  that 
Lex=L~' r o A. In virtue of Theorem 5. l(ii), &o r is a continuous positive semi-definite 
function on F, which extends f 

We shall now prove. 

Theorem 5.3. Let E be an l.c.s, such that E~ is a Souslin space and let F be a 
nuclear L M  space. Suppose A: E ~  F is a continuous linear mapping and denote by J" 
the weakest topology on E which makes A continuous. 

Then, 

a) i f  X is an r.c.L f over E, it is true that tA(F ' )EI(X)  i f  and only i f  ~ x  is ~--con- 
tinuous. 

b) i f  XE~o(E),  it is true that 71(F')EI(X) if  and only i f  the equation (3.1) has 
a solution YEf~o(F). 
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Proof of a). Suppose first that tA(F')EI(X). Then Theorem 3.1 gives us an 
r.c.l.f. Y over F so that ~ x  = ~ r  o A. By Minlos' theorem (ii), 5r r is continuous. This 
proves the "only i f"  part. Conversely, assume that ~ x  is Y-continuous. The inequality 
(4.1) then makes it possible to define a continuous positive semi-definite function f 
on A(E) such that f o  A = ~  x. By Minlos' theorem (i) there is an r.c.l.f. Y over 
A(E) (or F)  so that ~~163176 x. Hence Px=Pr(tA) -1 and it follows that 
tA(F')E I(X). 

Proof of b). The "' if" part  is clear. Conversely, assume that  tA(F')EI(X). From 
Theorem 3.1 we have that there exists an r.c.l.f. Y over F such that (3.1) is valid. 
In particular, 

f <u, dex(U) -- f <v, E. 

Since XE~0(E), we also have 

~ x ( P )  = exp ( - 1 / 2 f ( u ,  +}~dPx(u)), pC E. 

Part a) of  Theorem 5.3 implies that ~ x  is J ' -continuous.  We can therefore find a 
continuous seminorm q on F such that 

(5.1) f (v, ~}~ae,(v) <- q"(O), O~ A(E). 

Since F is nuclear, the positive semi-definite continuous quadratic form on the left- 
hand side of  (5.1) can be extended to a positive semi-definite continuous quadratic 
form B on F [13, Cot. 2, p. 102]. Using the Minlos theorem (i) again, we conclude 
that there exists a I106 ~0 (F) such that 

&~ @) --- exp ( -  1/2B (tp, 0)), O ~ F. 

Hence X-~4Y0, which was to be proved. This concludes the proof  of Theorem 5.3. 
In connection with Theorem 5.3 we have not been able to prove a complete 

analogue to Theorem 4.1, b) but the following can be said; assume E is a nuclear 
is con- LM space and let XEJCI~(E), s > -  1/2. Since the second order moment  m x 

tinuous there is a linear functional H on E| E, equipped with the projective topology 
~p(E),  so that 

~(x+0. x ~ )  = <H, 9o + ~d,  ~Oo, ~1~ E. 

A s  we see H is symmetric and positive semi-definite. A continuous linear func- 
tional on (E| with these properties is said to be a covariance. 

We now have 

Theorem 5.4. Suppose E and F are nuclear LM spaces and let A: E ~  F be a 
continuous linear mapping. Assume XE oN, (E), s > - 1/2, and denote by H the eovariance 
of X. 
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Then tA(F')s i f  and only i f  there exists a eovariance K on (F,F)(~Tp(F)) 
such that H=(~I| 

Proof. From Theorems 3.2 and 5.3, a) we have that tA(F')EI(X) if and only 
if H is continuous on E| equipped with that projective topology ~# as we get 
by giving E the ~-topology defined in Theorem 5.3. Let us now define X'Effo(E) 
by setting 

~x,((p) = exp (--1/2 (H, (p| ~oEE, 

which is possible in view of Minlos' theorem (i). From Theorem 5.3 we deduce 
that H is ~-continuous if and only if there exists a YEfr such that X'-~tAY. 
Hence H is ~-continuous if and only if there exists a covariance K on (F.F)(Y'p(F)) 
such that (H, q3| A~o| (pEE. This proves the theorem. 

Example 5.1. Let M be an open subset of R" and Q(x, D) a linear partial dif- 
ferential operator in M with real C a (M)-coefficients. Furthermore, assume that g 
is a given Borel probability measure on (N'(M))~ and denote by/2 the Fourier trans- 
form of #, that is 

= f 

Then, in particular, Theorem 5.3, a) gives a necessary and sufficient condition so 
that the equation 

(5.2) u = O (x, D) v 

has a distribution solution v E t ' ( M )  for g-almost all uEN'(M).  The condition is 
as follows; 

for every e >0 there exists a continuous seminorm p on ~ ( M )  such that 

p(tQ(x, D)cp) -< 1 ~- l l  - f i (~o) l  < e. 

In view of Theorem 5.4 this condition can be much simplified if gE///s((~'(M))~), 
that is if the identity mapping 

j :  (~ ' (M) ,  ~((@'(M)) , ) ,  g) ~ (N' (M),  N'((@'(M)),)) 

belongs to dg,(~(M)),  and s > - 1/2. In fact, let H be the covariance o f j  and note 
that H ~ ' ( M X M )  by the kernel theorem [14, Th. 51.7]. We thus have that the 
equation (5.2) has a distribution solution vE@'(M) for g-almost all u E ~ ' ( M )  if 
and only if there exists a covariance K E ~ ' ( M X M )  such that 

H = Q(x, D)Q(y, D)K. 

Furtbermore, i f  this condition violates, the set of all u E ~ ' ( M )  such that the equation 
(5.2) has a solution v C@'(M), is, of  g-measure zero: 
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