The range of vector-valued analytic functions

J. Globevnik*

Introduction

Throughout, Δ (resp. $\overline{\Delta}$) is the open (resp. closed) unit disc in C. If X is a complex Banach space we denote by X' its dual, by \overline{S} the closure of a set $S \subset X$ and by $B_r(X)$ the open ball in X of radius r centered at the origin. The image of $x \in X$ under $u \in X'$ is denoted by $\langle x | u \rangle$. By N we denote the set of all positive integers. As usual, we denote by A the Banach algebra of all complex-valued continuous functions on $\overline{\Delta}$, analytic on Δ , with sup norm, and by H^{∞} the Banach space of all bounded complexvalued analytic functions on Δ , with sup norm. We denote by K(r, z) the open disc in C centered at z and having radius r. Suppose that X is a complex Banach space and $f: \Delta \to X$ an analytic function. Let $|z_0|=1$ and denote $T_r=f(K(r, z_0) \cap \Delta)$. According to [3, p. 2] we call $T=\bigcap_{r>0}\overline{T}_r$ the cluster set of f at z_0 . It is easy to see that $x \in T$ if and only if there exists a sequence $\{z_n\} \subset \Delta$ converging to z_0 and such that $x = \lim f(z_n)$ (see [3], p. 1).

In [2] it was proved that given a separable complex Banach space X and an $\varepsilon > 0$ there exists an analytic function $f: \Delta \to X$ satisfying

$$B_1(X) \subset \overline{f(\Delta)} \subset B_{1+\varepsilon}(X).$$

Later [1, 4] this result was strenghtened by proving that there exists an analytic function $f: \Delta \to X$ satisfying $\overline{f(\Delta)} = \overline{B_1(X)}$. It is natural to consider these results as partial solutions to more general problems about the range of vector-valued analytic functions.

Definition. We say that Δ is analytically dense (resp. approximately analytically dense) in a subset F of a separable complex Banach space X if there exists an analytic

^{*} This work was supported in part by the Boris Kidrič Fund, Ljubljana, Yugoslavia.

function $f: \Delta \to X$ satisfying $\overline{f(\Delta)} = \overline{F}$ (resp. if given any open set O in X containing F there exists an analytic function $f: \Delta \to X$ such that $F \subset \overline{f(\Delta)}$ and $f(\Delta) \subset O$).

As the main result of the present paper we prove that Δ is approximately analytically dense in every balanced subset of a separable complex Banach space.

Theorem. Let F be a balanced set in a separable complex Banach space X and let $O \subset X$ be an open set containing F. There exists a continuous function $f: \overline{A} - \{1\} \rightarrow X$, analytic on Δ and such that

(i)
$$f(\overline{A} - \{1\}) \subset O$$

(ii) the cluster set of f at 1 is \overline{F} .

Proof. We prove the theorem in several steps.

Step 1. Let $\{\alpha_k\}$, $0 < \alpha_k < \pi/2$ be a decreasing sequence converging to zero. Put $z_k = \exp(i\alpha_k)$ $(k \in N)$. By the Rudin—Carleson theorem (see [6], p. 81) there exists a sequence of functions $\{\varphi_k\} \subset A$, bounded by 1 and satisfying $\varphi_k(z_j) = \delta_{kj}$ $(k, j \in N)$ and $\varphi_k(1) = 0$ $(k \in N)$. Further (see [6], p. 81) for each $k \in N$ there exists in A a peaking function for z_k , i.e. a function $\psi_k \in A$ satisfying $\psi_k(z_k) = 1$, $|\psi_k(z)| < 1$ $(z \in \overline{A}, z \notin z_k)$.

Step 2. By the separability of X there exists a sequence $\{y_k\} \subset F$ dense in F and it is easy to construct a sequence $\{x_k\} \subset F$ such that

$$\{y_k; k \in N\} \subset \{x_j; j \in N, j \ge n\} \quad (n \in N).$$

Further, if $x \in F$ then $\overline{\Delta}x = \{\alpha x; \alpha \in \overline{\Delta}\} \subset F$ since F is balanced. By the compactness of $\overline{\Delta}x$ there exists an $\varepsilon > 0$ such that $\overline{\Delta}x + B_{\varepsilon}(X) \subset O$. Consequently we may assume that there exists a decreasing sequence $\{\varepsilon_n\}$ of positive numbers converging to zero such that

$$\bar{\Delta}x_n + B_{\varepsilon_n}(X) \subset O \quad (n \in N).$$
⁽²⁾

(3)

Step 3. We define inductively a disjoint sequence $\{D_i\}$ of sets of the form $D_i = \overline{K(r_i, z_i)} \cap \overline{A}$ with $r_i > 0$ and a sequence $\{\Phi_i\}$ of functions from \overline{A} to X with the following properties

(a)
$$\Phi_i$$
 is continuous on \overline{A} and analytic on A for $i \in N^{-1}$

(b)
$$\Phi_i(\Delta) \subset \Delta x_i \quad (i \in N)$$

(c)
$$\Phi_i(z_j) = \delta_{ij} x_i \quad (i, j \in N)$$

(d) $\Phi_i(1) = 0 \quad (i \in N)$

(e)
$$\|\Phi_i(z)\| < \varepsilon_i/2^i \quad (i \in N, z \in \overline{\Delta} - D_i)$$

(f) $||\sum_{j=1}^{i} \Phi_j(z)|| < \varepsilon_{i+1}/2$ $(i \in N, z \in D_{i+1}).$

If n=1 let $r_1 > 0$ be such that $\overline{K(r_1, z_1)}$ does not contain z_2 (and consequently does not contain any z_k , k>2) and put $D_1 = \overline{K(r_1, z_1)} \cap \overline{A}$. By the properties of φ_1 and ψ_1 a positive integer p_1 exists such that

$$\|\psi_1(z)^{p_1}\varphi_1(z)x_1\| < \varepsilon_1/2 \quad (z\in\widehat{\varDelta}-D_1).$$

Define $\Phi_1(z) = \psi_1(z)^{p_1} \varphi_1(z) x_1$ ($z \in \overline{A}$) and observe that by the properties of ψ_1 and $\varphi_1 \Phi_1$ satisfies (3) (a-e).

Let $n \in N$ be arbitrary and assume that we have constructed a disjoint family $\{D_i, 1 \leq i \leq n\}$ of the form $D_i = \overline{K(r_i, z_i)} \cap \overline{A}$ with $r_i > 0$ such that D_n does not contain z_{n+1} , and a family $\{\Phi_i, 1 \leq i \leq n\}$ of functions satisfying (3) (a-e). Since $\Phi_1 + \Phi_2 + \ldots + \Phi_n$ is continuous on \overline{A} and equals 0 at z_{n+1} there exists an $r_{n+1} > 0$ such that $D_{n+1} = \overline{K(r_{n+1}, z_{n+1})} \cap \overline{A}$ is disjoint from D_n and also from D_k , k < n and does not contain z_{n+2} and such that (3) (f) holds for i=n. Further, let $p_{n+1} \in N$ be sufficiently large, so that

$$\|\psi_{n+1}(z)^{p_{n+1}}\varphi_{n+1}(z)x_{n+1}\| < \varepsilon_{n+1}/2^{n+1} \quad (z \in \overline{A} - D_{n+1})$$

$$\Phi_{n+1}(z) = \psi_{n+1}(z)^{p_{n+1}}\varphi_{n+1}(z)x_{n+1} \quad (z \in \overline{A}).$$

and define

By the properties of
$$\psi_{n+1}$$
 and φ_{n+1} it is easy to see that (3) (a—e) is satisfied if $i=n+1$, and that (3) (f) holds for $i=n$.

Step 4. Define

$$f(z) = \sum_{i=1}^{\infty} \Phi_i(z) \quad (z \in \overline{\Delta}).$$
(4)

Denote $D = \overline{A} - \bigcup_{j=1}^{\infty} D_j$. We prove first that the series (4) converges uniformly on D and that $f(D) \subset O$. To see this, let $z \in D$. By (3) (e) we have $||\Phi_i(z)|| < \varepsilon_i/2^i \le \varepsilon_1/2^i$ hence the series converges uniformly on D. We have

 $\sum_{i=1}^{\infty} \|\Phi_i(z)\| < \varepsilon_1$

and since by (2) $B_{e_1}(X) \subset O$ it follows that $f(D) \subset O$.

Next we prove that given $j \in N$ the series (4) converges uniformly on D_j and that $f(D_j) \subset O$. Let $j \in N$ and let $z \in D_j$. Then by (3) (f)

$$\left\|\sum_{i=1}^{j-1} \Phi_i(z)\right\| < \varepsilon_j/2 \tag{5}$$

and since by (3) (e) $\|\Phi_i(z)\| < \varepsilon_i/2^i$ $(i \ge j+1)$, the series (4) converges uniformly on D_i and

$$\sum_{i=j+1}^{\infty} \|\Phi_i(z)\| < \sum_{i=j+1}^{\infty} \varepsilon_i/2^i \leq \varepsilon_j/2.$$
(6)

From (5) and (6) it follows that

$$\left\|\sum_{i=1,\,i\neq j}^{\infty} \Phi_i(z)\right\| < \varepsilon_j$$

which, by (3) (b) and by (2) implies that $f(D_i) \subset O$.

Since each compact subset of $\overline{\Delta} - \{1\}$ misses all but a finite number of the sets D_j $(j \in N)$ it follows that the series (4) converges uniformly on compact subsets of $\overline{\Delta} - \{1\}$. Consequently f is continuous on $\overline{\Delta} - \{1\}$, analytic on Δ and, as shown above, satisfies $f(\overline{\Delta} - \{1\}) \subset O$.

Step 5. It remains to prove that the cluster set T of f at 1 is \overline{F} .

First we prove that $T \subset \overline{F}$ by proving that $T \subset F + B_{\varepsilon}(X)$ for every $\varepsilon > 0$. So let $\varepsilon > 0$ be arbitrary. Choose $n \in N$ so large that $\varepsilon_n < \varepsilon/4$. Since by (3) the function $z \mapsto \sum_{i=1}^{n} \| \Phi_i(z) \|$ is continuous on $\overline{\Delta}$ and equal 0 at z = 1 there exists r > 0 such that, if $D = \overline{K(r, 1)} \cap \overline{\Delta}$ we have

$$\sum_{i=1}^{n} \|\Phi_i(z)\| < \varepsilon/4 \quad (z \in D). \tag{7}$$

Passing to a smaller r > 0 if necessary we may assume that $D_j \cap D = \emptyset$ $(j \le n)$. Now we show that $f(D) \subset F + B_{\epsilon/2}(X)$. If $z \in D$ and $z \notin \bigcup_{j=n+1}^{\infty} D_j$ then by (3) (e)

$$\sum_{i=n+1}^{\infty} \|\Phi_i(z)\| \leq \sum_{i=n+1}^{\infty} \varepsilon_i/2^i \leq \varepsilon_n < \varepsilon/4.$$

This together with (7) implies that $|| f(z) || < \varepsilon/2$. Since $0 \in F$ it follows that $f(z) \in F + B_{\varepsilon/2}(X)$. If $z \in D \cap D_j$ for some j > n then again by (7) and by (3) (e)

$$\sum_{i=1,\,i\neq j}^{\infty} \|\Phi_i(z)\| < \varepsilon/2.$$

By (3) (b) we have $\Phi_j(z) \in F$ hence it follows that $f(z) \in F + B_{\epsilon/2}(X)$. So we have proved that for any $\epsilon > 0$ an r > 0 exists such that $T_r = f(K(r, 1) \cap A) \subset F + B_{\epsilon/2}(X)$ and consequently $\overline{T}_r \subset F + B_{\epsilon}(X)$. It follows that

$$T = \bigcap_{r>0} \overline{T}_r \subset F + B_{\varepsilon}(X)$$

for every $\varepsilon > 0$ which proves that $T \subset \bigcap_{\varepsilon > 0} [F + B_{\varepsilon}(X)] = \overline{F}$.

Finally we prove that $\overline{F} \subset T$. Let $x \in \overline{F}$. Then there exists a sequence $\{w_j\} \subset \{y_k\}$ satisfying $\lim w_j = x$. By (1) it follows that there exists a subsequence $\{x_{nj}\}$ of the sequence $\{x_n\}$, converging to x. By the definition of f we have $f(z_k) = x_k$ $(k \in N)$ hence it follows that $x = \lim f(z_{nj})$. By the continuity of f on $\overline{A} - \{1\}$ it is trivial to find a sequence $\{\zeta_j\} \subset A$ converging to 1 and satisfying $x = \lim f(\zeta_j)$ which proves that $x \in T$. Q.E.D.

Corollary 1. Δ is approximately analytically dense in every balanced set in a separable complex Banach space.

Corollary 2. Δ is analytically dense in every open balanced set in a separable complex Banach space.

Proof. Apply Theorem with O = F. Q.E.D.

Corollary 3 (see [1, 4]). Let X be a separable complex Banach space. There exists an analytic function $f: \Delta \rightarrow X$ such that $f(\Delta)$ is contained and dense in the unit ball of X.

Next we present an application of Corollary 3. By a result of A. Pelczynski [7] the space A is isometrically universal for all separable complex Banach spaces, i.e. every separable complex Banach space is isometrically isomorphic to a subspace of A. We ask whether the space H^{∞} has a similar universal property. Recall that given a Banach space X a determining set for X is any subset $S \subset X'$ such that

$$||x|| = \sup_{u \in S} |\langle x|u \rangle|$$
 for all $x \in X$.

Corollary 4. The space H^{∞} is isometrically universal for all complex Banach spaces possing countable determining sets.

Proof. Let X be a complex Banach space such that there exists a countable determining set $\{u_n\} \subset X'$. Obviously $||u_n|| \leq 1$ $(n \in N)$. Denote by Y the separable closed subspace of X' generated by $\{u_n\}$. By Corollary 3 there exists an analytic function $f: \Delta \to Y$ such that $f(\Delta)$ is contained and dense in $B_1(Y)$. Clearly f is analytic as a function into X'. Now associate with each $x \in X$ the function $\varphi_x: \Delta \to C$ where

$$\varphi_{\mathbf{x}}(z) = \langle x | f(z) \rangle \quad (z \in \Delta).$$

It is clear that $x \mapsto \varphi_x$ is a linear map from X to H^{∞} . Further, by

$$|\varphi_x(z)| \leq ||x|| \cdot ||f(z)|| \leq ||x|| \quad (z \in \Delta)$$

and by

$$\sup_{z \in \varDelta} |\varphi_x(z)| = \sup_{z \in \varDelta} |\langle x|f(z)\rangle| \ge \sup_{n \in N} |\langle x|u_n\rangle| = ||x||$$

this map is also an isometry which proves the assertion.

Remark. Note that l^{∞} is also an isometrically universal space for all Banach spaces possessing countable determining sets. Note also that by Theorem the space H^{∞} in Corollary 4 can be replaced by its closed subspace of all functions which are continuous on $\overline{A} - \{1\}$.

By Corollary 2 Δ is analytically dense in every open balanced set in a separable complex Banach space X. Let $x \in X$, $x \neq 0$. Then $F = \overline{\Delta}x$ is an example of a set whose interior is empty although Δ is analytically dense in F. However, Δ is not analytically dense in every balanced subset of X. An example is $F = \overline{\Delta}x_1 \cup \overline{\Delta}x_2$ where $x_1, x_2 \in X$ are linearly independent.

Q.E.D.

References

- 1. ARON, R. M., The range of vector-valued holomorphic mappings. Proc. Conf. on Anal. Funct., Krakow 1974, to appear in Ann. Polon Math.
- 2. ARON, R. M., GLOBEVNIK, J., SCHOTTENLOHER, M., Interpolation by vector-valued analytic functions. *To appear*.
- 3. COLLINGWOOD, E. F., LOHWATER, A. J., The theory of cluster sets. Cambridge University Press 1966.
- 4. GLOBEVNIK, J., Analytic functions whose range is dense in a ball. To appear.
- 5. HILLE, E., PHILLIPS, R. S., Functional analysis and semigroups. Amer. Math. Soc. Colloq. Publ, 31 (1957).
- 6. HOFFMAN, K., Banach spaces of analytic functions. Prentice-Hall 1962.
- 7. PELCZYNSKI, A., A simultaneous extension of continuous functions. Studia Math. 24 (1964), 285-304.

Received, April 9, 1975

J. Globevnik Institute of Mathematics, Physics and Mechanics University of Ljubljana Ljubljana, Yugoslavia