Injectors in certain classes of locally π -soluble groups

A. A. Klimowicz

0. Introduction

In [2], Fischer, Gaschütz, and Hartley showed that any finite soluble group possesses a unique conjugacy class of F-injectors for any Fitting class F of finite soluble groups. The results of [2] have been extended to certain classes of periodic locally soluble groups by Tomkinson [5] and the author [4].

The purpose of this note is to show that the restriction of local solubility, imposed in the above papers, is not necessary in order to obtain well-behaved classes of \mathfrak{F} -injectors. In section 2 we consider finite π -soluble groups and prove that such a group possesses a unique conjugacy class of F-injectors, where F is any Fitting class of finite π -soluble groups such that $O^{\pi'}(G) \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$. Section 3 indicates an extension of the results of section 2 to a class of locally finite locally π -soluble groups; the injectors obtained here form a unique local conjugacy class of subgroups.

1. Notation and Terminology

Throughout this paper π will denote a fixed but arbitrary set of primes. If \mathfrak{X} is a class of groups we denote by \mathfrak{X}^* the class of finite \mathfrak{X} -groups and by \mathfrak{X}_{π} the class of π -groups in \mathfrak{X} . \mathfrak{N} denotes the class of finite nilpotent groups. A finite group G is said to be *π*-soluble if every chief factor of G is either a *π*-group or a π' -group, and those which are π -groups are soluble.

Let H be a subgroup of an arbitrary group G, and let Ω be a totally ordered set. By a series of type Ω from H to G we mean a set $\{U_{\sigma}, V_{\sigma}; \sigma \in \Omega\}$ of pairs of subgroups of G containing H and satisfying

(i)
$$V_{\sigma} \leq U_{\sigma}$$
, for all $\sigma \in \Omega$,

- (ii) $U_{\alpha} \leq V_{\sigma}$, if $\alpha < \sigma$, (iii) $G H = \bigcup_{\sigma \in \Omega} (U_{\sigma} V_{\sigma})$,

where G-H denotes the set of elements of G which do not belong to H. In such a situation we say that H is *serial* in G, and write H ser G.

We define a group $G \in \mathfrak{M}$ if and only if G possesses a local system $\Sigma = \{F_{\lambda} : \lambda \in \Lambda\}$ consisting of finite π -soluble groups such that $R \leq N_G(\Sigma) = \bigcap_{F \in \Sigma} N_G(F)$, where R is the locally nilpotent residual of G, i.e. R is the unique normal subgroup of G minimal with respect to the factor group G/R being locally nilpotent. Clearly R is an FC-group and F ser G, for all $F \in \Sigma$. Throughout when considering an \mathfrak{M} -group G we shall assume that Σ denotes a local system which defines G as an \mathfrak{M} -group, i.e. satisfies the above definition. \mathfrak{M}^* is then the class of finite π -soluble groups.

An automorphism α of a group G is called a *locally inner automorphism* of G if, given any finite set of elements g_1, \ldots, g_n of G, there exists $g \in G$, depending in general on the set in question, such that $g_i^{\alpha} = g^{-1}g_ig$, for $i=1, \ldots, n$. Two subgroups X and Y of G are said to be *locally conjugate* in G if there exists a locally inner automorphism of G mapping X onto Y.

We shall use the notation of group classes and closure operations developed by P. Hall and set out for example in [3].

2. Finite π -soluble groups

A Fitting class of finite π -soluble groups is a subclass \mathfrak{F} of \mathfrak{M}^* such that

- (i) if $G \in \mathfrak{F}$ and $N \leq G$, then $N \in \mathfrak{F}$,
- (ii) if $N_1, N_2 \leq G \in \mathfrak{M}^*$ and $N_1, N_2 \in \mathfrak{F}$, then $N_1 N_2 \in \mathfrak{F}$.

Lemma 2.1. Let \mathfrak{F} be a Fitting class of finite π -soluble groups, then the following are equivalent:

- (i) if $O^{\pi'}(G) \in \mathfrak{F}$, then $G \in \mathfrak{F}$,
- (ii) $\mathfrak{F} = \mathfrak{FM}^*_{\pi'}$.

Proof. Suppose that \mathfrak{F} satisfies (i). Clearly $\mathfrak{F} \cong \mathfrak{FM}_{\pi'}^*$, so assume that $G \in \mathfrak{FM}_{\pi'}^*$. Then there exists a normal subgroup N of G such that $N \in \mathfrak{F}$ and $G/N \in \mathfrak{M}_{\pi'}^*$. But $O^{\pi'}(G) \subseteq N$ and, since \mathfrak{F} is a Fitting class, $O^{\pi'}(G) \in \mathfrak{F}$. Hence $G \in \mathfrak{F}$.

On the other hand, if \mathfrak{F} satisfies (ii) and $O^{\pi'}(G) \in \mathfrak{F}$, then $G \in \mathfrak{FM}_{\pi'}^* = \mathfrak{F}$.

We therefore define a Fitting class \mathfrak{F} of finite π -soluble groups to be *extendable* if \mathfrak{F} satisfies the conditions of Lemma 2.1.

Our next result shows that extendable Fitting classes are plentiful.

Lemma 2.2. If \mathfrak{F} is a Fitting class of finite π -soluble groups, then $\mathfrak{FM}^*_{\pi'}$ is an extendable Fitting class of finite π -soluble groups.

Proof. (i) Let N be a normal subgroup of $G \in \mathfrak{FM}^*_{\pi'}$, and let $K \leq G$ such that $K \in \mathfrak{F}$ and $G/K \in \mathfrak{M}^*_{\pi'}$. Then $N/N \cap K \cong NK/K \in \mathfrak{M}^*_{\pi'}$ and $N \cap K \leq K \in \mathfrak{F}$. Hence $N \cap K \in \mathfrak{F}$.

(ii) Let N_1 , N_2 be normal subgroups of a finite π -soluble group G such that $N_1, N_2 \in \mathfrak{FM}^*_{\pi'}$. Let K_i be the \mathfrak{F} -radical of N_i , i=1, 2. Then $K_i \leq G$ and $N_i/K_i \in \mathfrak{M}^*_{\pi'}$, i=1, 2. Hence $K_1K_2 \in \mathfrak{F}$ and $N_1N_2/K_1K_2 = N_1K_2/K_1K_2 \cdot K_1N_2/K_1K_2 \in \mathfrak{M}^*_{\pi'}$.

Therefore $\mathfrak{FM}_{\pi'}^*$ is a Fitting class of finite π -soluble groups. Clearly $\mathfrak{FM}_{\pi'}^*$ is extendable.

Lemma 2.3. Let N be a normal subgroup of a finite π -soluble group G such that either $G/N \in \mathfrak{M}_{\pi}^*$, or $G/N \in \mathfrak{N}_{\pi}$. Let \mathfrak{F} be an extendable Fitting class of finite π -soluble groups, let W be an \mathfrak{F} -maximal subgroup of N, and let V_1 , V_2 be \mathfrak{F} -maximal subgroups of G with $W \cong V_1 \cap V_2$. Then there exists an element g belonging to the nilpotent residual of G such that $V_1^q = V_2$.

Proof. Clearly we may assume that $W = V_1 \cap N = V_2 \cap N$ is a normal subgroup of G. Let R be the nilpotent residual of G.

Case (a). $G/N \in \mathfrak{M}_{\pi'}^*$. If X is any Sylow π' -subgroup of G, then, since \mathfrak{F} is extendable, WX is an \mathfrak{F} -subgroup of G. Let S, T_1 be respectively Sylow π -, π' -subgroups of G such that $S \cap V_1$, $T_1 \cap V_1$ are respectively Sylow π -, π' -subgroups of V_1 . Then $V_1 = (S \cap V_1)(T_1 \cap V_1)$. But $S \leq N$ and so $S \cap V_1 \leq N \cap V_1 = W$. Therefore $V_1 \leq WT_1$ which, by the \mathfrak{F} -maximality of V_1 , implies that $V_1 = WT_1$. Similarly there exists a Sylow π' -subgroup T_2 of G such that $V_2 = WT_2$. Since, by [1], the Sylow π' -subgroups of G are all conjugate and $T_1R = T_2R$, we have that there exists $g \in R$ such that $T_1^g = T_2$.

Case (b). $G/N \in \mathfrak{N}_{\pi}$. If X is a Sylow π' -subgroup of G, then $X \leq N$ and so, by the \mathfrak{F} -maximality of W in N, $X \leq W$. Therefore $G/W \in \mathfrak{M}_{\pi}^*$ and hence G/W is a finite soluble group. Let E_i/W be a Carter subgroup of $M_i/W = N_{G/W}(V_i/W)$. Then $M_i/M_i \cap N$ is nilpotent and so, for large enough r, we have that

$$[V, \underbrace{M_i, \ldots, M_i}_{r}] \leq V_i \cap N = W.$$

Hence V_i/W is hypercentral in M_i/W . Therefore V_i/W is a normal subgroup of E_i/W , for i=1, 2.

Claim. E_i/W is a Carter subgroup of G/W. For, suppose that for some $x \in G$, $E_i^x = E_i$. Then $V_i^x \trianglelefteq E_i$ and so $V_i V_i^x \in \mathfrak{F}$. Therefore, by the \mathfrak{F} -maximality of V_i , $V_i = V_i^x$ i.e. $x \in M_i$. Hence $x \in E_i$ and so E_i/W is a Carter subgroup of G/W.

Therefore, since $E_1R = E_2R$, there exists $g \in R$ such that $E_1^g = E_2$. Therefore V_1^g , V_2 are normal \mathfrak{F} -subgroups of E_2 . Hence $V_1^g = V_2$.

If \mathfrak{F} is a Fitting class of finite π -soluble groups and $G \in \mathfrak{M}^*$, then an \mathfrak{F} -injector of G is a subgroup V of G such that

(i) $V \in \mathfrak{F}$,

(ii) $V \cap N$ is a maximal \mathfrak{F} -subgroup of N, for all normal subgroups N of G.

Theorem 2.4. Let G be a finite π -soluble group, and let \mathfrak{F} be an extendable Fitting class of finite π -soluble groups. Then G possesses \mathfrak{F} -injectors, and if V_1 , V_2 are \mathfrak{F} -injectors of G then there exists an element g of the nilpotent residual of G such that $V_1^g = V_2$.

Proof. We prove the existence of \mathfrak{F} -injectors by induction on |G|, the case |G|=1 being trivial. So, suppose that $|G|\neq 1$ and that the theorem has been proved for all groups of order less than |G|. Then there exists a proper normal subgroup K of G such that either $G/K \in \mathfrak{M}_{\pi'}^*$ or $G/K \in \mathfrak{N}_{\pi}$. By induction K possesses an \mathfrak{F} -injector U, say. Let V be an \mathfrak{F} -maximal subgroup of G such that $U \leq V$.

Claim. V is an F-injector of G. For, let M be a maximal normal subgroup of G, then we shall show that $M \cap V$ is an F-injector of M. Let $N = M \cap K$, then either $M/N \in \mathfrak{M}_{\pi}^*$ or $M/N \in \mathfrak{N}_{\pi}$. By induction M possesses an F-injector V^* , say. Then $W = N \cap V = N \cap U$ and $N \cap V^*$ are F-injectors of N. But, by induction, there exists an element g of the nilpotent residual of N such that $W^g = N \cap V^*$. Clearly $g \in R$, the nilpotent residual of G, and so we may assume that $W = N \cap V^*$. Now, let \overline{V} be an F-maximal subgroup of G such that $V^* \cong \overline{V}$. Then, by Lemma 2.3, there exists $x \in R$ such that $V^* = \overline{V}$. Then we have

$$(V \cap M)^{x} = V^{x} \cap M = V \cap M = V^{*}.$$

Hence $V \cap M$ is an F-injector of M. Since this is true for all maximal normal subgroups M of G, V is an F-injector of G.

To prove conjugacy let M again be a maximal normal subgroup of G. Then either $G/M \in \mathfrak{M}_{\pi'}^*$ or $G/M \in \mathfrak{N}_{\pi}$. By induction we may assume that $M \cap V_1 = M \cap V_2$. Then the result follows immediately by Lemma 2.3.

Corollary 2.5. Let $1 = G_0 \trianglelefteq G_1 \trianglelefteq \dots \oiint G_n = G$ be a series of a finite π -soluble group G such that either $G_{i+1}/G_i \in \mathfrak{M}_{\pi'}^*$ or $G_{i+1}/G_i \in \mathfrak{N}_{\pi}$, for all $1 \le i \le n-1$, and let \mathfrak{F} be an extendable Fitting class of finite π -soluble groups. Then V is an \mathfrak{F} -injector of G if and only if $V \cap G_i$ is an \mathfrak{F} -maximal subgroup of G_i , for all $1 \le i \le n$.

Proof. Follows from the proof of Theorem 2.4.

Corollary 2.6. Let \mathfrak{F} be an extendable Fitting class of finite π -soluble groups, and let V be an \mathfrak{F} -injector of a finite π -soluble group G such that $V \leq H \leq G$. Then V is an \mathfrak{F} -injector of H.

122

Proof. Let $1 = G_0 \trianglelefteq G_1 \trianglelefteq \dots \oiint G_n = G$ be a series of G such that either $G_{i+1}/G_i \in \mathfrak{M}_{\pi'}^*$ or $G_{i+1}/G_i \in \mathfrak{N}_{\pi}$, for all $1 \le i \le n-1$. Then, if $H_i = H \cap G_i$ for all $1 \le i \le n, 1 = H_0 \oiint H_1 \oiint$ $\trianglelefteq \dots \oiint H_n = H$ is a series of H of the same type. Then $H_i \cap V = G_i \cap H \cap V = G_i \cap V$ is an \mathfrak{F} -maximal subgroup of H_i , for all $1 \le i \le n$. The result now follows by Corollary 2.5.

3. A class of locally π -soluble groups

A Fitting class of M-groups is a subclass F of M such that

(i) if $G \in \mathfrak{F}$ and H ser G, then $H \in \mathfrak{F}$,

(ii) if $\{S_{\lambda}; \lambda \in \Lambda\}$ is a family of serial F-subgroups of an M-group G such that $G = \langle S_{\lambda}; \lambda \in \Lambda \rangle$, then $G \in \mathcal{F}$.

A Fitting class \mathfrak{F} of \mathfrak{M} -groups is said to be *extendable* if $\mathfrak{F} = \mathfrak{F}\mathfrak{M}_{\pi'} \cap M$. The following is immediate from the definition of \mathfrak{F} .

Lemma 3.1. If \mathfrak{F} is an extendable Fitting class of \mathfrak{M} -groups, then \mathfrak{F}^* is an extendable Fitting class of finite π -soluble groups.

Theorem 3.2. If \mathfrak{G} is an extendable Fitting class of finite π -soluble groups, then $\mathfrak{G} \cap \mathfrak{M}$ is an extendable Fitting class of \mathfrak{M} -groups.

Proof. (i) Let $H \sec G \in L\mathfrak{G} \cap \mathfrak{M}$, and let $h_1, \ldots, h_n \in H$. Then there exists a subgroup E of G such that $h_1, \ldots, h_n \in E \in \mathfrak{G}$. Now $H \cap E$ ser E which implies that $H \cap E$ is subnormal in E. Therefore $h_1, \ldots, h_n \in H \cap E \in \mathfrak{G}$, since \mathfrak{G} is closed under taking subnormal subgroups. Hence $H \in L\mathfrak{G} \cap \mathfrak{M}$.

(ii) Suppose that the \mathfrak{M} -group G is generated by $\{S_{\lambda}; \lambda \in \Lambda\}$ a family of serial \mathfrak{G} -subgroups of G, and let $g_1, \ldots, g_n \in G$. Then there exists $F \in \Sigma$ such that $g_1, \ldots, g_n \in F$, and there exists $\lambda_1, \ldots, \lambda_r \in \Lambda$ such that $F \leq \langle S_{\lambda_1}, \ldots, S_{\lambda_r} \rangle$.

We now need only show that if an \mathfrak{M} -group G is generated by a finite number of serial \mathfrak{G} -subgroups then it is itself a \mathfrak{G} -group. So, let H_1, \ldots, H_m be serial L \mathfrak{G} -subgroups of an \mathfrak{M} -group G such that $G = \langle H_1, \ldots, H_m \rangle$, and let $g_1, \ldots, g_n \in G$. Then there exists $F \in \Sigma$ such that $g_1, \ldots, g_n \in \langle H_1 \cap F, \ldots, H_m \cap F \rangle$ and $H_i \cap F$ is a serial subgroup of H_i , and so is a \mathfrak{G} -group, $1 \leq i \leq n$. Therefore $\langle H_1 \cap F, \ldots, H_m \cap F \rangle \in \mathfrak{G}$, since it is generated by subnormal \mathfrak{G} -subgroups. Hence $G \in L \mathfrak{G} \cap \mathfrak{M}$, as required.

Now let $\mathfrak{F} = \mathfrak{L}\mathfrak{G} \cap \mathfrak{M}$, and suppose that $G \in \mathfrak{F}\mathfrak{M}_{\pi'} \cap \mathfrak{M}$. Then, if $F \in \Sigma$, $F \in \mathfrak{G}\mathfrak{M}_{\pi'}^* = \mathfrak{G}$. Hence $G \in \mathfrak{L}\mathfrak{G} \cap \mathfrak{M} = \mathfrak{F}$ and \mathfrak{F} is extendable.

Corollary 3.3. The extendable Fitting classes of \mathfrak{M} -groups are precisely the $L\mathfrak{G} \cap \mathfrak{M}$, where \mathfrak{G} is an extendable Fitting class of finite π -soluble groups.

Proof. Let \mathfrak{F} be an extendable Fitting class of \mathfrak{M} -groups and let $g_1, \ldots, g_n \in G \in \mathfrak{F}$. Then there exists $F \in \mathfrak{L}$ such that $g_1, \ldots, g_n \in F$. But F ser G, and so $F \in \mathfrak{F}^*$. Therefore $G \in \mathfrak{LF}^* \cap \mathfrak{M}$. Now, suppose that G is an $\mathfrak{LF}^* \cap \mathfrak{M}$ -group. Then G possesses a local system Σ of finite serial \mathfrak{F} -subgroups and $G = \langle F; F \in \Sigma \rangle$. Hence $G \in \mathfrak{F}$. Therefore $\mathfrak{F} = \mathfrak{F}^* \cap \mathfrak{M}$.

The converse follows immediately from the previous theorem.

The proof of the following is straightforward and is therefore omitted.

Lemma 3.4. If \mathfrak{F} is an extendable Fitting class of \mathfrak{M} -groups, then $\mathfrak{F}=\mathfrak{LF}\cap\mathfrak{M}$. If \mathfrak{F} is an extendable Fitting class of \mathfrak{M} -groups and $G\in\mathfrak{M}$, then an \mathfrak{F} -injector of G is a subgroup V of G such that

(i) $V \in \mathfrak{F}$,

(ii) $V \cap S$ is a maximal F-subgroup of S, for all serial subgroups S of G.

We are now in a position to show, using inverse limits and the results obtained in section 2, that any \mathfrak{M} -group possesses a local conjugacy class of \mathfrak{F} -injectors. The proofs of the following results are similar to those used in the analogous results obtained in [4]. Consequently, proofs will not be given here.

Theorem 3.5. Let \mathfrak{F} be an extendable Fitting class of \mathfrak{M} -groups and suppose that $G \in \mathfrak{M}$. Then G possesses \mathfrak{F} -injectors and any two are locally conjugate in G. (Cf. [4] Theorems 2.6 and 2.9.)

Theorem 3.6. Let \mathfrak{F} be an extendable Fitting class of \mathfrak{M} -groups, and let V be an \mathfrak{F} -injector of an \mathfrak{M} -group G. Then, if $V \leq H \leq G$, V is an \mathfrak{F} -injector of H. (Cf. [4] Theorem 2.7.)

References

- 1. CUNIHIN, S. A., O teoremach tipa silova. Dokl. Akad. Nauk. SSSR 66 (1949), 165-168.
- FISCHER, B., HARTLEY, B. and GASCHÜTZ, W., Injektoren der endlichen auflösbaren Gruppen. Math. Z. 102 (1967), 337–339.
- 3. HALL, P., On non-strictly simple groups. Proc. Cambridge Philos. Soc. 59 (1963), 531-553.
- 4. KLIMOVICZ, A. A., Fitting theory in a class of locally finite groups. (to appear)
- 5. Томкілson, M. J., F-injectors of locally soluble FC-groups. Glasgow Math. J. (2) 10 (1969), 130—136.

Received April 28, 1975

A. A. Klimovicz Department of Pure Mathematics The University of Sheffield S 3 7 RH, England

124