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1. Introduction 

One approach to approximation theory is the following (see [15, Chapter 10]). 
I f  (f2, Q) is a metric space, A is a subset of f2, and e>0  one asks whether there exist 
points zl, zz . . . . .  z, in fl such tha t A ~U?=I  S(z,, e). If  N.~(A) is the smallest integer for 
which the answer is positive the points z~, z~ . . . . .  zAr ~ approximate the set A in the 
sense that knowing them we can reproduce the set A to within an accuracy e. The 
quantity H~(A)=logzN,O(A) is called the e-entropy of A relative to f2, and one is 
then interested in its asymptotic growth as e tends to zero. This approach has been 
the subject of much activity (see [13], [14] and [19]). 

Since the covering of sets by spheres of equal radii can be quite inefficient, it is, 
for some purposes, preferable to consider covers by spheres of varying radii. Suppose 
that (r,) is a sequence Of positive real numbers which are decreasing with limit zero. 
We say that (r,) is majorizingfor A in f2 if there exists a sequence (zi) of points in 
I2 such that 

A c= 0 S(zi, rl) for each n, 
i = .  

and we are interested in which sequences are majorizing for A. Again the sequence 
(z,) is regarded as approximating A. 

The following example illustrates some of the advantages of the second method 
of  approximation. Let f2 be the real line with the usual metric and A the union of the 
Cantor ternary set and the rationals in [1, 2]. I f  ~ -" e=-~.3 one can show that N~(A)= 
=2"+3"  and that 3" of the approximating points lie in [1, 2] whereas only 2 n lie in 
[0, 1] which contains most of the set A. One can also show that (q) is majorizing for 
A in f2 if and only if  ~ =  a r~ converges when ~ = log 2/log 3. If  we recall that log 2/log 3 
is the Hausdorff dimension of A we realise that this method of approximation is 
more pertinent to the structure of A. 

In [3] it was shown that if #~((2)< oo then (n-~] 0 is majorizing for f2 in f2. 
On the other hand if (n-l /0 is majorizing for f2 in f2 and f~h(t)t-~ is finite, 
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~n=l  h(2n-1/') is finite so that #h(O)=0. It follows that the Hausdorff dimension of 
(2 is given by 

dim f2 = inf {a: (n -1/') is majorizing for g2 in [2}. 

The reader familiar with Frostman's work on potential theory [2] will realise that the 
above statements remain true if we replace the phrase "(n -1/') is majorizing f o r  
f2 in f2" by "f2 has zero a-capacity". One of the objects of this paper is to examine 
the connexion between majorizing sequences and capacities, and to explain such 
connexions by means of the concept of a random approximating sequence which 
we introduce in section 4. Majorizing sequences were introduced by Hyllengren in [7]. 
In an unpublished note he (independently of us) noticed some similarities between 
the theory of these sequences and potential theory, but all the results presented here 
are new. We would like to thank Dr. J. M. Anderson for drawing our attention to 
Hyllengren's work. 

The arrangement of the paper is as follows. In section 2 we consider basic 
definitions. In section 3 we look at potential theory and establish a relationship 
between capacities and Hausdorff measures which seems finer than those previously 
known. The concept of a random approximating sequence is introduced in section 4, 
where we also consider the problem of covering a metric space by randomly placed 
balls. The existence and non existence of approximating sequences is discussed 
in section 5, whilst sections 6 and 7 are devoted to the discussion of examples and 
counter examples. Finally in section 8 we discuss some examples of the application 
of  this circle of ideas in probability, complex variable theory and in the theory of 
diophantine approximations. 

2. Preliminaries 

Let ~ be the class of all functions h of a non negative real variable such that (i) 
h is right continuous monotone increasing and (ii) h ( t ) = 0  i f  and only if t=0:  
On Yf we can define a partial ordering -< byf-<g if and only i fg( t )=o(1) f ( t )  as t 
tends to zero. The members of ~ are called measure functions. 

If  (O, ~) is a metric space the diameter of a subset C of f2 is  defined by d(C)= 
=sup {~(x,y):x,  yEC}. If  6>0,  hEo~f and A is a subset of t2 we define #~(A)= 
=inf~h[d(C~)] where the infimum is taken over all covers of A by sets C i of dia- 
meter less than 6. Then #h (A) = lima~ 0 p] (A) is called the Hausdorff h measure. When 
h(t)=t  ~ we write #'(A) so that the Hausdorff dimension of A is given by dim A--- 
= in f  {a: #~(A)=0}. 

If  f~  J f  we define a sequence (r~) of positive real numbers by 

r, = f - l ( 1 / i )  = inf{t :f(t) => 1/i}. (2.1) 
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Thus we always have f(r, )=l/t<=f(ri). Whenever we speak of  a sequence (ri) and 
f in the same context we shall assume they are related by (2.1). 

Let (A, ~) be a metric space and (f2, Q) a metric extension of  A. We say that 
(ri) is rnajorizing for A in f2 if there exists a sequence (zi) of  points in 12 such that 

A ~ lira sup S(zi, r~). (2.2) 

(We let S(x, r) denote the open ball and S(x, r) the closed ball, with centre x and 
radius r.) The sequence (z~) is called an approximating sequence of order f for A in f2. 
It  follows from the definition that, for each z in A, there exists a subsequence (zn,) 
o f  (zi) such that ~ (z, zn,)~0 and 

f(~(z,  z~,)) < 1/ni for each i. 

Thus not only is A contained in the closure of (z~) but also we have an estimate of the 
maximum rate at which subsequences can converge to arty given point of A. 

If  (ri) is strictly decreasing (in which case we may assume th a t f i s  continuous and 
strictly monotone) it makes no difference whether we choose open or closed balls 
in (2.2). The same is true for general (ri) if f2 is d-dimensional euclidean space. (A proof  
of  this fact is easily constructed using the fact that the boundaries of d +  1 generally 
placed spheres in R a can have common intersection consisting of at most one point). 
For  general spaces the choice does make a difference as we show by examples in 
section 6. Our results indicate that the "correctness" of the definition is related to the 
convention that the members of o~ are right continuous. I f  we had made them left 
continuous we should have had to use closed balls in (2.2). 

3. Potential theory 

In this section we introduce for later reference some of the concepts of potential 
theory. We also prove a new result relating the polarity of a set to its Hausdorff 
measure. 

Let (f2, Q) be a metric space. I f fE o~ ~ we let ~ :f2 • f2 ~ R  be the function defined by 

#)(x, y) = 1/f(p(x, y)). (3.1) 

The function ~ is called the kernel corresponding to f .  A subset A of  f2 is said to be 
~-polar relative to f2 if there is a probability measure m, supported by f2, such that 
f ~ ( x , y ) d m ( y ) = ~  whenever xEA. A set A is said to have zero ~ capacity if  
f ~)(X, y)dm(y) is unbounded for every measure m supported by A, but otherwise it 
is said to have positive �9 capacity. In this case the �9 capacity of  A is defined by 

C~(A) = s u p { m ( A ) : f ~ ( x , y ) d m ( y )  <= 1 for all x}. 



200 R. J. Gardner and J. Hawkes 

W h e n f ( t ) = t  ~ the corresponding capacity is denoted by C~(A). I t i s  easily seen that 
every C-polar set has zero �9 capacity, but the converse is not always true. 

Kametani [11] showed that if #I  (A) < ~o then A is ~-polar. In [18] Taylor showed 
that this result was best possible in the sense that if  f2 is a euclidean space a n d f l - < f  
there exists a set A with J ( A ) <  co, but A is not r  Thus there is no uniform 
improvement of  Kametani's result. However, for a fixed set A, we can improve the 
result as the following theorem shows. 

Theorem 3.1. Let ( f2, 4) be a metric space, h E ~ ,  and A c= (2 be such that 1s (,4) < co. 
Then there exists fE  ~ such that f -<h and A is ~-polar where �9 is given by (3.1). 

Proof If  #h(A)-----0 a result of  Besicovitch ([1]) ensures that there exists fE~eg' 
such that f -<h  and #Y(A)=O. In this case the result follows by applying Kametani's 
result. 

I f  0 < # h ( A ) < ~  we first need the following lemma. 

Lemma 3.1. I f  0<#h(A)<  ~o and 6 > 0  there exist a subset A* of  A and f E ~  a 
such that 

(i) #h(A*) <= 6; 
(ii) f - <  h; 

(iii) ~ = 1  #4[ A n S(x,  rj)] = oo whenever x E A \ A * .  

Proof  Kametani shows that lira sup,~01s n S(x, e)]/h (2~)~ 1 for #4 almost all 
points of f2. Thus we can define a sequence (at), decreasing with limit zero, such that 

(i) h(at+l ) ~ �89 
(ii) if  At = {x : 1s n S(x,  a)] =>�89 for some aE(a3t+a, a3t+2]} then 1s > 

-> 1s 4 (.4) - 6/2 t. 
Next define f by f /h  = i on [a3t+3, a3t+d and jTh linear on [a3t+l, ant], and let 

A*=An(f ' )~=~At)  ~ so that 1s It  remains to show that A* and f have the 
required properties. 

If  x E A \ A  ~ we choose a = a ( x ) = a ( x , i )  such that aE(ast+3, ast§ and 
1s 4[ArtS(x,  > ~ a)] =-~ h (2a), and define 

n(a) = max {j: f (a)  <= l/j} = max { j : ih(a)  <= l/j}. 

Thus 1 / [ l+n (a ) ]< ih (a )  and 2/[l+n(a)]<2ih(a)<=2ih(a3t+~)<=ih(a3t+l)=f(a3t+l). 
Thus a<=f-l(1/j)<-az~+l i f  n(a) /2<j~n(a) .  Now 

ZT=l 1s A t~ S(x,  f -l(1/j))] >= Z~~ Z%,+3<=f_,(a/j)<_%,+ 1 Is 4 [A I% S(X,  f -l(1/j))] >" 

{ n(a) }h(2a)  > ~,~ n ( a ) - 2  1 
>= Z~=I n(a) 2 1 2 = ~-~t=l g 2 { n ( a ) +  I}i" 
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As a-~O, n(a)~o  and the summand is asymptotically 1/4i. Thus if xEA\A* ,  
~T=l#h [ A n  S(x,f-l(1/j))]= ~o. Sincef-<h the lemma is proved. 

We now return to the proof  of  the theorem. Let (6,) be a sequence decreasing 
with limit zero. Using Lemma 3.1 and induction we can find a sequence (At) of 
subsets of A and a sequence (f~) of members of o~ such that 

(i) A l t A r + l ;  
(ii) #h (A\At) <= fit; 

(iii) f~ -< h; 
(iv) ~'f=~ #h [ A n  S(x, fi -~ (l/j))] = co if xEAi; 
(v) f~+~(t) <= f~(t). 

(The last inequality is arranged by choosing appropriate subsequences of (a~) at each 
stage of the argument.) 

Next we choose gE~gg such that g-<h and f ~ ( g  for each i. It follows that 

Z;:~ p~[a n S(x, g-l(1/j))] = co (3.2)~ 

for #h almost all x in A. Let .~ be the set of  points in A where this fails to hold. As  
already remarked at the start of the proof  there exists f~(h such that .~ is ~-polar. 
Let f ( t ) = m i n  [f(t),g(t)]. Then f~(h and X is ~-polar. On the other hand (3.2) 
implies that 

fa#)(x,y)d#h(y)=oo if xEA\_~, 

so that A \ . ~  is ~-polar. Since the union of two ~-polar sets is again ~-polar the 
proof  of the theorem is complete. 

4. Random approximating sequences 

Let (O, O) be a metric space, P a Borel probability measure on 12, and (Z,)  
a sequence of independent (O valued) random variables, each distributed according 
to the law P(ZEB)=P(B). We say that I2 admits a random f-sequence for A if for  
some P 

P{xElim sup S(Zt, rt)} = 1 
i~oo  

whenever xE A. We say that f2 admits a random uniform f-sequence for A if there is  
a measure P such that 

P{A c= l imsup S(Zt,  rt)} = 1. 

Whilst the existence of a random f-sequence may (or may not) imply the existence o f  
a random uniform f-sequence, the same random sequence will not always work for 
both cases, as the following example shows. Let O----R, the real line, A---I, the unit. 
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interval, and P be the uniform distribution on I. Then P {xElim s u p / ~  S(Z,, r/)}= 1 
for each x in ! if and only if ~ = 1  r, is infinite. On the other hand Shepp has shown 
([17]) that P{IC=limsup,~ooS(Z,,ri)}=l if  and only if ~.=lj-Zexp(2~[=ir,) 
is infinite. 

In this section we obtain a necessary and sufficient condition for the existence 
o f  a random f-sequence, and also a sufficient condition for the existence of a random 
uniform f-sequence. 

Theorem 4.1. Let f2, A and f be as above. Then f2 admits a random f-sequence 
.for A if and only if A is ~-polar for A in f2, when q~(x,y)=l/f[e(x,y)]. 

Proof. Let A(x, i) be the annulus {z: ri+l<=O(x, z)<r,}. Then 

�9 (x, y) de  (y) = Z?=lfA(~. 0 (x, y) de  (y) -k f{,: 0(x.,)~r~} ~ (x, y) dP (y). 

Now since f(r,_~) <= 1/i~=f(ri), 

iP{A(x,i)} <= fA(~.OC)(x,y)dP(y) ~ (i+l)P{A(x,i)}. (4.1) 
"Thus 

f~\(~i~(x,y)dP(y),  ~,~=~iP{A(x, i)}, and ~,]=~P{S(x, rb\{x}} 

converge or diverge together, so that 

f ~ r  ~o i f a n d o n l y i f  .~~ P{S(x,r,)}-= oo. (4.2) 

Now suppose that there is a probability measure P with f ~(x,y)dP(y)=oo 
if  xEA, and let Z~ be a sequence of independent (t2-valued) random variables each 
distributed according to P. We will then have ~ P{ONo(x, Z~)<r,}=oo when- 
ever xEA, and so by the Borel--Cantelli lemma P {0 <- O (x, Zi) < r i infinitely often} = 1 
and P{xElim sup, .~ S(Z,, r3}= 1 whenever xEA. Thus there exists a random 
approximating sequence. To complete the proof of the theorem we just reverse the 
argument. 

Let ~, A, f and (r~) be as above and let P be a probability measure on ~2 such 
that f ~(x,y)dP(y)=oo if xEA. Define O(x,b)=fmin{~(x,y) ,  1/f(b)}dP(y), 
~(b)=inf~c  A ~(x, b), and h(b)=exp [-~k(b)], so that heart'. 

Theorem 4.2. I f  #h(A)=0 we have P {A c= lim s u p , ~  S(Zi, 2r,)}= 1. 

Proof. Given b > 0  we define n(b) by r,+l<bNr~. If  

7rm(b ) = inf Z~(~P{S(x,  rj)} and hm(b) = e x p [ - ~ ( b ) ]  
x E A  

,an application of (4.1) shows that hm(b)=O(1)h(b ) as b~0 .  
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Now suppose xEA. Then 

P S(x, b) $ s ( z j ,  2rj) ~= s x, b) ~ U s ( z j ,  2rj) <= 
j=m j=m 

203 

<: = rt "(b> [1 - P { Z j ~  S(x, rj)}] < P{Zj~S(x ,  rj),j  = m . . . . .  n(b)} 11j=m = 

n (b) <: e x p  [ - - ~ j = m  P { Z j ~  S(x, rj)}] ~ hm(b), 

where the equality follows by independence. When kth(A)=0 we can, given e>0 ,  
cover A by spheres Si=Si(xi, bl) such that ~h[d(Si)]<e.  Hence 

j=m j=m 

Letting e tend to zero we have P{A(~U~.=m S(Zj,2ri)}=O for each m. Thus 
P { A ~ l i m  suPi ,~ S(Zj,  2rj)}=0 and the theorem is proved. 

In [6] Hoffmann-Jorgensen obtains results related to those presented above. 
Although his objectives are different to ours his methods could be applied to our 
situation. 

5. Existence of approximating sequences 

Our main result on the existence of  approximating sequences is the following: 

Theorem 5.1. Let (0, ~) be a metric space, and A ~ (2 be compact and ~-polar. 
Then (2r,) is majorizing for A in A. 

Proof Since A is ~-polar there exists a probability measure P such that 

Z ; : I  P [ S ( x ,  rj)] = o% x~A.  

Since A is compact we can use the lower semicontinuity of the summand to define 
an increasing sequence (M~) of integers such that M I = 0  and 

{x" ~,vt,+l P[S(x, rj)] > 2} D n.  �9 ~ M i + l  ~- 

We will show that there exist points xj, j=M~+I ,  ..., Mi+ 1 such that xjEA and 

Mi+l 
(*) U s (x j, 2r j) 2 A. 

Mi+l 

To this end it can be assumed that A ~0.  We consider the typical case i=1 .  First 
choose x~EA so that the inequality 

( ~ , )  2P[S(xj, rj)] ~ P[S(x, rj)] 
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is valid for j = l  and every xCA. Define Sa=S(xl ,  2ra). I f  A ~ S I # O  choose xs so 
that ( . . )  is valid for j = 2  and every x ~ A ~ S 1 .  Set S,.=S(xs, 2rs) and repeat the 
process. The process stops if at some stage A c U f S  j, p<M2. In this case ( . ) i s  
clear. On the other hand if A ~ U f  Sj#O, p = l  . . . .  , M s - 1 ,  then 

S(xk, rk) c~S(xi ,r j )=O,  l < = j < k < = M s - - 1 ,  

and ( . . )  is valid with X=XM. Hence 

2 >= 2 P [ ~  S(xj ,r j ) l  = ~ 2 2 P [ S ( x j ,  ri)] >= ~2P[S(XM~,rj)]  

which is a contradiction. This proves the result. 

The theorem can be applied to give existence theorems when only the Hausdorff 
measure properties of a set are known. We have 

Corollary 5.1. Let (~2, ~) be a metric space, hE~,  and A c= ~ be compact with 
#h(A)< oo. Then there exists f~  ~ such that f-<h and (2rn) is majorizing for A in A. 

This follows by applying Theorem 3.1 to the above theorem. The need for 
compactness can be avoided by modifying the proof. (See [3] for another proof of 
this corollary.) 

When 0<#h(A)<~o and liminf~0#h[A n S(x, ~)]/h(2e)>O we say that A has 
positive lower h density. In this case we obtain a necessary and sufficient condition 
for (r,) to be majorizing. 

Corollary 5.2. Let (s Q) be a metric space, hE ~ with h(2t)=O(1)h(t) as t-+O, 
and A c= D be compact and have positive lower h density. Then 

X2=~ h(2r . )  = oo (5.1) 

is a necessary and sufficient condition for (r,) to be majorizing. 

Proof. If  ~f=1 h (2r,)< 0% (r,) is not majorizing since otherwise we would have 
#h(A)=0. If  ~7~~ h(2r,) = ~,  ~T/=th(r,)= o~ and A has positive lower h(t/2) density. 
In the present situation Taylor's result ([18]) implies that A is ~(2t)-polar and, 
by Theorem 5.1, (r,) is majorizing for A in A. 

Note. The corollary remains true without the assumption that A be compact. 
This can be seen by modifying the proof of Theorem 5.1. 

Under the hypotheses of the corollary, (5.1) is a necessary and sufficient condition 
for A to be ~b-polar. Thus in this situation majorizing and polarity are equivalent 
concepts. It seems that where the space admits a simple test for polarity this equi- 
valence always holds (see w 6 for further examples). Unfortunately it does not hold 
in all cases (see w 7). 
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6. Ohtsuka's theorem in Cantor spaces 

In this section we consider a class of Cantor like spaces, and by establishing an 
Ohtsuka type test for polarity show that the concepts of majorizing, polarity and 
capacity zero coincide in these spaces. We also show that it is vital to take open 
spheres in the definition of majorizing. 

Let (ns), j = l ,  2 . . . .  be a sequence of integers such that nj=>2 for each j. The 
Cantor space corresponding to (n j) is the metric space (X, ~) defined by taking 
sequences i---(ij), j = l , 2 , . . ,  of integers and letting X= {i: O<=ij<nj}. Define 
i[k=(il ,  i2 . . . . .  ik, 0 . . . .  ) and let 0(i, j ) = 2 - "  where n = m a x  {k: i[k=j[k}. It is easy 
to check that (X, ~) is a compact metric space. 

The space (X, ~) can be described by X =  07=1Fj where F s consists of nine.., nj 
closed spheres of radius 2 - j -1  (these spheres also have diameter 2-J-1), whose 
mutual distances are greater than or equal to 2 -j .  Each of these closed spheres 
contains nj+l closed spheres of radius 2 -j-*' whose mutual distances are 2 - j -1.  
It follows that the ordinary Cantor type sets, when suitably metrized, are Cantor 
spaces. In what follows m is the probability measure on X induced by the set func- 
tion m(S)=(nln2...nj) -~ when S is a closed sphere in Fj. 

Theorem 6.1. Let (X, Q) be as above. Then the following are equivalent: 
(i) X has zero ~ capacity; 

(ii) X is ~-polar; 
(iii) (r j) is majorizing for X; 

1 I 1 1 } 
(iv) ~ j=x  nln2 ... nj ) f (2  - j+l)  f ( 2 - J ) ,  = o~. 

Proof. We define M~= ~ {n: 2-J-~<q<_-2 -j} and Nj=nln2...nj so that N i 
is the number of spheres ixa Fj, We shall show that (i)--(iv) are all equivalent to 

~ . ~  MflUs = co. (6.1) 

We may suppose, without loss of generality, that r~<{ so that for x ~ X  
Y~7=~m{S(x, r,)}=~T=IMjlN s. It follows from (4.2) that (i) and (ii) are equi- 
valent to (6.1). 

To show that (iv) is equivalent to (6.1) we have to estimate M s . Clearly 
Ms=  # {n: r ,>2-s -~}  - 4~ {n: rn>2-J}. Now r . > 2  -s implies that f ( r , - )>- f (2  -j) 
which implies that n<= I/f(2-s).  On the other hand n <  l / f(2 -j)  implies t h a t f ( 2 - J ) <  
< 1/n<-f(r,) and that 2 - J < r , .  Thus we have 

{n: r, :> 2 -j} = l/f(2-s) + O(1). 

It follows that (iv) is also equivalent to (6.1). 
It remains to show that (iii) is equivalent to (6.1). First suppose that 



206 R. J. Gardner and J. Hawkes 

Z ~ = s M / N j < ~ .  Then we let (zi) be any 2 ; = I M j / N j <  c~ and choose J such that = 1 
sequence of points in X and estimate m{Ur~<2_jS(zi, ri) }. If  2-(p+a)<ri<=2-P 
and zEX, m{S(zi ,  r i )}=l /N p and so m { U r <  2 j S ( z i ,  < ~ 1 , _ r , )}=Z~=sMj/Nj< ~. Since 
m ( X ) = l  we can never have X=[,Jri<2_jS(zi, rz)with the result that (ri) is not 
majorizing, and (iii) implies (6.0. 

<zl  Now suppose that ~ . = I M j / N j =  co, that rl=-~, and that J is the least integer 
such that ~S=lMflNj>=l. We first cover M1 of the spheres of s by open spheres 
with radii in (-~, -~]. Then Nz--ArN~IM1 of the spheres of/72 will be uncovered. Next 
we cover 3//2 of these by open spheres with radii in (~,1 -i]-1 Then N3--N3N~IMa - 
-N3N~aM~ of the spheres of F3 will be uncovered. Proceed in this way until after 
the J - l t h  choice when Nj { 1 -  Y S - ~ M  ~ - ~  -~-,i= 1 j'-. j a of the spheres of Fj  will be uncovered. 
This integer is at most M s , so we can cover these by open spheres whose radii belong 
to the interval (2 -s+l ,2-s ] .  Now let Ja be the least integer such that 

J1 ~j=S+l  M j N ;  1>= 1 and repeat the above process. In this way we obtain a sequence 
of  spheres S(zi, r3 such that X=l imsupi+~  S(Zi, ri) which completes the proof. 

Now define M j =  # {n: 2-J-~-<-r,<2-J},  f ( t ) = s u p  {f(s) :  s < t }  and ~(x,  y ) =  
= l / f [Q(x ,  y)]. The methods of the above theorem also yield the following: 

Theorem 6.2. I f (X ,  ~) is as above, the following statements are equivalent." 
(i) X has zero �9 capacity; 

(ii) X is ~-polar; 
(iii) there exists a sequence (z 0 oJ points o f  X such that X =  lira supi~ = S (zi, ri) ; 
(iv) ZT=x MjNf ~ = oo. 

Remark 1. The last two results enable us to construct a class of examples for  
which covering by closed spheres is possible, but covering by open spheres is not 
possible. All one has to do is to arrange that 

z ~ = l / ~ r j N f l  = 00 but  ~7=1 Mj Nj -1 < oo. 

To do this we let nj=2  ~ and r~=2 -(k+l) when 

k - 1  k N 2 j = , N j  < i ~ : Z ~ = l  j. 

In this way M j = N a  and M j = N i _ I = N j 2 - J .  

Remark 2. The methods of these theorems apply to generalized Cantor sets in 
euclidean spaces but the conclusions must sometimes be modified. 

Remark 3. If we know that lim inf,~ 0 f(2t)/f(z) > 1 then each of the statements 
o f  Theorem 6.1 is equivalent to 

27=1 [ N j  f ( 2 -  J)] -a = oo. 

This provides a generalization of Ohtsuka's result ([16]). 
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7. A counterexample 

In this section we construct a random subset A of [1, 2] such that A has 
positive q~ capacity for ~(x,y)-=-]x y]-~ (i.e. has positive ~-capacity) with prob- 
ability one, whilst (j-~/ ') is always majorizing for A in A. Thus the converse to 
Theorem 5.1 does not hold. 

The proof relies on the potential theory of the stable subordinator (see [4] for 
full details). 

Suppose 0 < a < l ,  let Tt(co ) be a stable subordinator of index 1 - a  and R(og) 
be its range. Then if B c  [1, 2], P {R (09) c~ B ~ 0} = 0 if and only if B has zero a-capacity 
(Theorem 3 of [4]). Let 

Np(co) -- +~ {j: R(o~)c~ [j2 -p, ( j +  1)2 -p] ~ 0, 2 p <--j < 2p+1}. 

Then we prove the following: 

Lemma 7.1. Let 
k ( x )  = x ~ / r ( 1 - a )  i f  x > 0 

= 0  i f  x<=O. 

Then for a certain positive constant c 

and 
E N  v ~ c2 p(1-~) f ~  k(x)  dx (7.1) 

EN~ ~ c 222pO-~) f ~  f ~  k (x) k (y - x) dx dy. (7.2) 

Proof. For some positive constant d the capacity of an interval of length I 
is dU. Since 

ENp ~ ~p + 1_ 1 = 2~j=2, P{R(o~)c~[J 2-p, ( J + l )  2-p] r 0}, 

(7.1) follows from the formula for the hitting probability for an interval ([4, Lemma 
1]). A similar idea gives (7.2). 

We now describe the construction of the set. Let ki=[2 p'~] where (p~) is an 
increasing sequence of integers such that k l + k 2 + . . . + k , ~ k , .  At the ith stage 
we choose independently and at random k~ integers J(k; i), l<=k<=k~ in such a 
way that P{J(k;  i ) = / } = 2  -p, for 2P'_</<2 p'+I, and let I(k; i )={x:  J(k; i)2-P,~: 
< x < [ J ( k ;  i )+ 1] 2-P'}. 

k~ Define Ai=Uk=~I(k;  i) and A---=-limsup~+~A i. We show that with prob- 
ability one A has positive a-capacity. First we let R be the range of a stable sub- 
ordinator of index 1 - a ,  which is independent of the above construction. Then we 
define Mi= ~ {k: Rc~I(k;  i)r Now 

gMi  = Zk'=lk" ~-~t=2 p,S'2p'+I-I P { R ~ S ( I ' p i )  ;~ 0lj(k;  i) = l}P{J(k;  i) = I}. 
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(Here S( l ,p)  = {x:12-P< x < ( l+  1)2-9}.) Now by the independence of  R 
the {J} 

P { R n S ( I ,  pi) ~ 01Y(k; i) = l} = P{Rc~S(l ,p , )  ~ 0} 
so that 

and 

S'2P'+a-I p { R ~ S ( I ,  pi) ~ 0} EMi = ki 2-~, ~-~t=~ 

EMi -, 2v'~'l) ENw. 

and 

Similarly EM~ ~ 22p,<'-x)EN~, and so by Lemma 7.1 there is a positive constant C such 
that (EM,)2/EM~ ~ C as  i ~ oo. Now if 0 < )L < 1, P {Y~ 2E(X)} => (1 - 2) 2 [E(X)]2/EX 2, 
see [10, p. 6]. Thus for some positive constant c, independent of i, P{Mi>2EMi}~= 
~ c > 0 ,  P{Mi>=I infinitely often}=>c>0, and P{Rc~U~=~Ak~O}>=c>O for all i. 

Letting i tend to infinity we have P {R c~ A r 0} => c > 0  and hence, by the property 
of  the stable subordinator we have already quoted, P {A has positive ~-capacity} >0.  
Now by a zero one law P{A has positive ~-capacity}= 1. 

It remains to show that A admits an ~-sequence. Let r j=2  -(v'+l) if ..(..t.=l'~i--i "~.k < 
<j-<_z~=lk,.  Then, by construction, (rj) is majorizing for A. Since 2rj<=j -~1~ for 
all j ,  (j-al~) is majorizing for A in A. Thus with probability one A has the property 
asserted. 

8. Examples 

In this section we consider a number of examples related to the circle of ideas 
we have been discussing. 

First we observe that if (xi) is any sequence of  points in a metric space 12 and 
if we define 

A = lim sup S(xi ,  ri) 

then (rl) is majorizing for A in f2. Kaufman ([12]) considers the problem of making 
A as large as possible by making a suitable random choice of (xi). In our notation 
his result reads as follows. 

Theorem 8.1. Let (rl) be a sequence o f  positive real numbers, decreasing with 
limit zero, such that ~ l  ri< ~o. Suppose that hE ~ is concave with ~'~=~h(2r,)= oo. 
Then, by choosing a suitable sequence o f  independent identically distributed real random 
variables (xi), we can obtain a random set A such that 

(i) (r,) is majorizing for  A; 
(ii) A is ~-polar; 

(iii) #h(A) > O, 
each statement holding with probability one. 
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Remark. Part (ii) is not stated in [12] but it is implicit in the proof. It is inserted 
here to give a further example of the connexion with potential theory. 

L e t f  be a meromorphic function, a be a complex number, and A ( a , f )  be the 
Valiron deficiency (see [8]) of f at a. Hyllengren shows [8] that for a function of 
finite order and any set U we have 

U c  {a : A (a , f )  > 0} for some f 

if and only if, for some e>0,  r ,=exp  { - e x p  (on)} is majorizing for U. The following 
(an unpublished result of Hyllengren) is an immediate consequence of this result 
and the above theorem. 

Theorem 8.2. Let hEJ/f be concave. Then there exists a plane set U and a mero- 
morphic function f of  finite order such that 

#h(U) > 0 and Uc= { a : A ( a , f )  > 0} 
i f  and only i f  

e l  h(t) dt 
3o t log 1/t - 0o. 

Proof. The last equation is equivalent to 

~ = l  h[2 exp (_exp  cn)] = ~o 
for some c>0.  

It is interesting to note that, whilst Hyllengren's solution of this problem for 
functions of finite order involves majorizing sequences, for functions of infinite 
order the solution involves logarithmic capacity. Recently Hayman has shown ([5]) 
that for any F,-set U 

U ~ { a : A ( a , f )  > 0} 

for some f of infinite order if and only if U has zero logarithmic capacity. 

Our final example involves some problems in diophantine approximation. We 
give the simplest case. I f  x is a real number and q a positive integer II qx]l denotes the 
fractional part of qx. Let co(t) be a positive function of t which decreases to zero 
as t tends to infinity. Define 

A = {xE [0, 1] : Ilqxll < qco(q) infinitely often}. 

In [9] Jarnik shows that (provided co and h satisfy certain natural conditions of 
monotonicity) A has zero or non a-finite/~h measure depending on whether or not 
f '~ th[co(t)]dt<~. We now show how this result can be reinterpreted in terms of 
approximating sequences. 

Let (Xn) be an enumeration of the rationals in [0, 1) (with possible repetitions) 
which is such that the vulgar fraction p/q always occurs in unreduced form and 
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tha t  ra t ionals  with smaller  denomina to r s  always precede those with larger  denomina-  

tors.  N o w  choose  any f E ~  and  ask  what  is the size o f  the set for  which the ra t ionals  

wi th  this enumera t ion  fo rm an  app rox ima t ing  sequence o f  o rder  f ,  t ha t  is wha t  is the  

size o f  the set B = l i m s u p , , =  (x , - - rn ,  Xn+r,)? Ja rn ik ' s  resul t  a l lows us to answer  

this  ques t ion for  sufficiently regular  f Let  

and  
Ai = {x~[0, 1) :llqxl] < qcoi(q) infinitely often}. 

Then  A 2 c B c A x  and  i f  f and  h are  smooth  enough f ~  th[co~(t)ldt and  f ~  th[co~(t)]dt 

converge or  diverge together.  In  these ci rcumstances the convergence o f  ei ther  integral  

is equivalent  to  the  convergence o f  ~ = ~ h ( 2 r n ) .  Thus  we see tha t  B has  zero or  

non  a-finite #h measure  depending  on whether  or  no t  ~ : ~  h (2r,) converges. 

These observat ions  give us an  a l ternat ive  m e t h o d  o f  const ruct ing  sets o f  posi t ive  

#~ measure  which admi t  app rox ima t ing  sequences o f  o rder  f .  
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