An extension of Nachbin’s theorem to
differentiable functions on Banach spaces with
the approximation property

Joio B. Prolla* and Claudia S. Guerreiro**

§ 1. Introduction

Let £ and F be two real Banach spaces, with F3«{0}. When UcE is an open
subset, we shall denote by C™(U; F) the vector space of all maps f: U~ F which are
of class C™ in U. This space will be endowed with the topology t7 defined by the
family of seminorms of the form

pr,L(f) = max {sup {|D*f(x)"; x€K, veL}}

where KU and LCE are compact subsets and Tv*=T(v,...,v), when T is a
k-linear map. When E is finite-dimensional, t2*=1/, the compact-open topology
of order m.

When F=R, the space C™(U; F) is an algebra, denoted simply by C™(U).

When E=R" and F=R, Nachbin proved in [3] necessary and sufficient con-
ditions for a subalgebra 4 C™(U) to be dense in the topology ) (m=1), extending
the Stone—Weierstrass theorem to the differentiable case. In fact, he proved that
the following are necessary and sufficient conditions for 4 to be dense in (C"‘(U ), 1)

(1) for every xc U, there exists f€ 4 such that f(x)=0;

(2) for every pair x, ycU, with x>y, there exists f€4 such that f(x)=f(»);

(3) for every x€U and v€E, with v><0, there exists /€4 such that Df{x)v=0.

In [1], Lesmes gave sufficient conditions for a subalgebra 4cC™(E) to be
dense in (C™(E), =), when m=1, and E is a real separable Hilbert space. In fact,
he proved that (1), (2), (3) (with U=E) and
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(4) there is an MEN such that, for every integer n=M, if f€ A then foP,€A4;

are sufficient for 4 to be t.-dense, where P, is the orthogonal projection of E onto
the span of {e,, ..., e,}, if {e; i€N} is some orthonormal basis of E.

In [4], Prolla studied Nachbin’s result for m=1 and the topology . He extended
Nachbin’s theorem for polynomial algebras 4 C™(R"; F) and applied this extension
to prove the analogue of Lesmes’ result for polynomial algebras 4 C™(E; F) in
the 77 topology, and E a real separable Hilbert space.

In 2], Llavona announced the following result. If E is a real Banach space with
the approximation property, and ACC™(E; F) is a polynomial algebra satisfying
1), (2), (3) (with U=E) and

@) AoGc A

where GCE*QE is some subset such that iz€G, then 4 is dense in (C"(E; F), ).
Here iy is the identity map on E and G denotes the closure of G in (L(E; E), t0).

In this paper, we extend the results of [4] to cover the case of open subsets
UcE, when E is a real Banach space with the approximation property, and
polynomial algebras 4cC™(U; F). For each integer n=1, P{(E; F) denotes the
vector subspace of C*(E; F) generated by the set of all maps of the form x —[¢ (xX)I*v,
where @€ E™, the topological dual of E, and v¢€F. The elements of PHE; F) are
called n-homogeneous continuous polynomials of finite type from E into F. A vector
subspace ACC®(E; F) is called a polynomial algebra if, for every integer n=1,
pog€A for all g€ A and all pe P{(F; F).

§ 2. Finite-dimensional case

In this section E is a finite-dimensional real Banach space and F is any reai
Banach space, with F>{0}. We may assume that E=R".

Lemma 2.1. C*(U)QF is ©}j-dense in C™(U; F).

Proof. Let feC™(U; F), KcU a compact subset and ¢=0. Since D™ (U; F)
is t™-dense in C™(U; F), we may assume f€D™(U; F). (We recall that D™(U; F)
is the vector subspace of all f¢ C™(U; F) which have compact support in U.) Let L
be the support of f. Let M be a compact neighborhood of KU L in U. Let o€ D(R"Y
be such that @(x)=1 for all xc¢ M. Define gc D"(R"; F) by g(x)=0¢(x)f(x) for all
x€ M and g(x)=0for all x¢ M. Since D(R")® Fis 7;-densein D™ (R”; F) (see Schwartz
[6]), there exists A€ D(R)® F such that px(g—h)<e. Since g=f in a neighborhood
of K, and k=h|UcC™(U)® F, we see that px(f—k)<e. Hence C™(U)® F is t'-dense
in C™(U; F).
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Theorem 2.2. Let ACC™(U; F) be a polynomial algebra. Then A is t'-dense in
C"(U; F) if, and only if, conditions (1}—(3) of § 1 are verified.

Proof. The necessity of the conditions is easily verified. Conversely, assume
that the polynomial algebra 4 satisfies (1)—(3) of § 1.

Let M={po f; pc F*, feA}. By Lemma 2.2 of [5], M is a subalgebra of C™(U)
such that M® FC 4. By Nachbin’s theorem (see [3], page 1550), M is t/'-dense in
C™(U). Hence M® F is t'-dense in C"(U)® F. By Lemma 2.1, M® F is t[’-dense in
C™(U; F), and since M® FC A, this ends the proof.

§ 3. Infinite-dimensional case

In this section £ and F are real Banach spaces and E has the approximation
property, i.e. given KCE compact and &>0 there exists u€E*®E such that
lu(x)—x|| <e¢ for all x¢K.

Lemma 3.1. Let feC™(U; F); let KcU and LCE be compact subsets and let
£>0. There exists a map u€ E*QE and an open subset VU such that KV, u(V)c U

and py, i (fIV—fo @]V))<s.

Proof. Since (x, v)—D*f(x)v* is continuous for all 0=k=m, and KXL is
compact, we can find a real number 6 =0 such that 0<d<dist (K, EN\ U) and

@ /) —fO) <e, and

() D —D f(wH| <e, 1=k=m,
for all (x,v)eKXL, (y, w)e UXE such that |x—y|l<d and Jv—wl<S$.

By the approximation property, we can find u¢ E*®E such that

(iii) [u(x)—x| < /2, forall xcK, and

@iv) [u(w)—v| <9d, for all veL.

Let r=3/(2(lul +1)). For each x€K, let B(x; r)={tcE; |t—x|<r}. By com-
pactness of K we can find x,, ..., x,€K such that KcV=B(x;; r)u...UB(x,; r).
Since r<dist (K, EN\ U) it follows that V' U. Let t¢ V. There exists some index i,
with 1=i=n, such that r€B(x;;r). Hence [t—x;|<r. Therefore |u(t)—x]|=
=ut) —u (x| +lulx) —x;)|<06/2+ /2= <dist (K, EN\ U). This shows that u(z)€ U,
ie. u(V)c U. Therefore the composition fo (u|V) is defined and (i) and (iii) imply

W) /&) —fo@V)X)| <&
for all x¢ K. Similarly, (ii), (iii) and (iv) imply

(i) |D*f(x)o* — D* f(u(x)u@) < &
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for all x€K and veL. By the chain rule, D*f(u(x))u(v)*=D*( fo(u|V))(x)v*, and
therefore (v) and (vi) show that py ;(f|V—fou|V))<e.

Lemma 3.2. Let E, be a finite-dimensional subspace of E, and U,CE,nU a
non-empty open subset. Let T,. C™(U; F)y>~C™(U,; F) be the map f—~f\U,. If
Ac C™U; F) is a polynomial algebra satisfying conditions (1)—(3) of § 1, then T,(A4)
is t-dense in C™(U,; F).

Proof. T,(A) is g polynomial algebra contained in C™(U,; F) and satisfying
conditions (1)—(3) of § 1. By Theorem 2.2, T, (A4) is t7-dense in C™(U,; F).
Theorem 3.3. Let ACC™(U; F) be a polynomial algebra such that, for any
u€E*QE and any open subset VU with u(V)c U,
(% g€ A = go(u|V)eAlV.
Then A is t2-dense in C™(U; F) if, and only if, conditions (1)—(3) of § 1 are verified.

Proof. The necessity of the conditions is easily verified. For sufficiency, let
JEC™(U; F); let KU and LCE be compact subsets; and let ¢=0 be given. By
Lemma 3.1, there exists € E*® E and V' U an open subset such that K V, u(V)c U
and pg (f[V—fo (u|V))<e/2. Let E, be the finite-dimensional subspace u(E)CE.
Let U,=E,nU. Since u(K)c U, is a compact subset, by Lemma 3.2 there exists
g€A such that P, (T,g—7T,f)<d, for a given 6=0. Choose 6>0 such that
d<¢/(2(r+1)%), for all 0=k=m, where r=sup {|lu(v)|; vEL}. Then, the following
is true:

) 1g(@)—fu@)l < &2

(i) 1D(T,8)(u(x))~ DT, ) u))| < o
for all x€K. Since

DX(T, ) (u(x)) = D*g(u(x))| E¥
DM(T, ) (u(x)) = D*f (u(x)) | EX
for all x€K, it follows from (ii) that

(i) D" g(w(x)u (0 — D (w(x))u()¥] = 6r* < /2
for all x€K and v€L. By the chain rule,

DFg(u(x))u(v)* = D*(gou|V))(x)v*
DF f(u(x))u(@)f = D*(fo(u|V))(x)v~.
Hence (i) and (iii) show that
P, (folV)—go|V)) < &/2.

and

and
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By condition. (5), there ‘exists -h€A4 such that. go(u|V)=h|V. Therefore
L (fIV—hV)<e.
Since V is an open neighborhood of K, the last inequality is equivalent to

i, (f—h)=<e.
Hence A4 is dense in C*(U; F).

Corollary 3.4. The polynomial algebra P;(U; F) is x}'-dense in C™(U; F).

Proof. P,(U; F) is the set P,(E; F)|U, where P (E; F) is the vector space
generated by the union of P;(E; F) for all n=1 and the constant maps. One easily
verifies that P,(U; F) satisfies conditions (1)—(3), (5).

Corollary 3.5, The following polynomial algebras are t7-dense in C™(U; F):
(@) P(U; F)

(b) C=(U; F)

() C(U; F), r=m,

Proof. Just notice that
P.,(U; F)yc P(U; F) c C=(U; Fy < C"(U; F).

Corollary 3.6. The following polynomial algebras are tl'-dense in C™(U; F):
(@ P,(U)®F,

(b) P(U)®F,

(0 CT(U)®F,

(d) C(U)QF, r=m.

Proof. Just notice that P (U)® F=P;(U; F).

Remark 3.7. The proof of Lemma 3.1 shows that we can choose there uc E*QFE
in any subset GC E*® E, such that ig€ G, the 7))~closure of G in L(E; E). Hence Theo-
rem 3.3 remains true if ACC™(U; F) is a polynomial algebra such that, there exists
GC E*®E as above, and for any #€G and any open subset V< U with u(V)c U,
then (5) is true. When U=E, this condition becomes 4o GC A, i.e. the following
result is true and generalizes Llavona’s result [2].

Theorem 3.8, Let ACC™(U; F) be a polynomial algebra. Suppose that there
exists GCE*QE whose t2-closure in L(E; E) contains iy, and for any u€G and for
any open subset VU with u(V)Yc U,

(6) ged = go(ulV)eAlV.

Then A is t-dense in C™(U; F), if and only if A satisfies conditions (1)—(3)

of §1.

Example 3.9. Suppose that E satisfies the metric approximation property and
that A satisfies (6) with G={ucE*®F; |ul=1}.
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Example 3.10. Suppose that E is a real separable Banach space with a Schauder
basis {x,, x}; n€N}, and that 4 satisfies (6) with G={P,; k€N}, where P, is the map

X Ziénk X? (x)xi

for each k€N, and {n} is a subsequence of N, ie. m<ny<..<m<....

In particular, suppose that E is a real separable Hilbert space and {x,; n€N}
is an orthonormal basis for E and P, is the orthogonal projection of E onto the
span of {x;, ..., x, }.

§ 4. The role of the approximation property

In this section we study the converse of Corollary 3.6. More generally, we
study the relation between the approximation property for real Banach spaces E
and the spaces (C"(U; F), t7), for UCE open and m=1.

For the case of complex Banach spaces, C"(U; F)y=3¢(U; F), if m=1. The
relationship between the approximation property for E and several spaces of holo-
morphic mappings and topologies on them, has been studied by Aron and Schotten-
loher. (See [0], in particular Theorems 2.2, 4.1 and 4.3 of [0].)

Theorem 4.1. Let E be a real Banach space; then the following properties are
equivalent:

(1) E has the approximation property.

(2) For every m=1, for every non-void open subset UCE, and for every Banach
space F, C"(U)YQF is t-dense in C™(U; F).

(3) For every m=1, for every real Banach space F, and for every non-void open
subset VCF, C*(V)®E is 1'-dense in C™(V; E).

(4) For every-m=1, C"(E)QE is tr-dense in C"(E; E).

(5) For every m=1, the identity map on E belongs to the t7'-closure of C"(E)®E
in C™"(E; E).

(6) The identity map on E belongs to the tl-closure of C'(E)QE in C'(E; E).

Proof. Part (d) of Corollary 3.6 states that (1)=(2).

(1)=>(3). Let KV and LcC F be compact subsets, let 60, and let fcC™(V; E),
m=1. Since the mappings (x, v)—D*f(x)v* are continuous, for all 0=k=m, and
KX L is compact, the sets

Ay = {D*f(x) ", (x, )€ KX L} E

are compact. Let A=4,04,U...U4,. Since E has the approximation property,
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we can find 4, E* and ¢,€E, 1=i=n, such that

|y—Ziu(el <&
for all yc 4. Hence, for all (x, v)EKXL,
HD"f(x) =2 w(DEf(x) v")e,-] | <e
for all 0=k=m. By the chain rule,
ui(D*f(x)v*) = D*(uiof ) (x) %,
since u; is linear. Therefore
||D* ) v — DX(ST7_, (wiof)@e) () vH|| < &
for all 0=k=m and (x, v)¢ KX L. It remains to notice that (y;0 f)Re;c C"(V)QE,

1=i=n.

By setting U=E=F and V=F=E, we see that (2)=(4), and (3)=(4), respec-
tively.

(49)=(5)=(6). Obvious.

(6)=(1). Let KCFE be compact and ¢=0. Since {0} E is compact, the semi-
norm

S sup {|DAQO) x|, x€ K}
is 71-continuous. By (6), there is a function f belonging to C*(E)® E such that

[x—DfO)x] < ¢
for all x€ K. Assume

f=25_1/i®e, ficCE), e€E, l=i=n
Let u; = Df;{(0)€ E*, 1=i=n. Then

Hx—'z'Llui(x)eiH < g
for all x€K, and (1) obtains.

Remarks 4.2. (a) The above Theorem 4.1 generalizes the results announced in
[2] by Llavona: (1)« (2')«<(5), where

(2") For every m=1, and for every Banach space F, C"(E)® F is t7-dense in
C™(E; F).

Indeed, (2)=(2") by setting U=E, and (2")=(4) by setting F=E.

(b) The condition (6) cannot be changed to m=0. Indeed, by Corollary 4.3
of [5], the identity map on E belongs to the t2-closure=compact-open closure of
C°(E)Y®Ein C°(E, E), for any real Banach space E. However (6) could be weakened to

(6”) The identity map on E belongs to the t%-closure of C*(E)®E in C1(E; E).

We do not know if (6")=(1). (See also the remark after proof of Theorem 4.1
of [0].)
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