An extension of Nachbin's theorem to differentiable functions on Banach spaces with the approximation property

João B. Prolla* and Claudia S. Guerreiro**

§ 1. Introduction

Let E and F be two real Banach spaces, with $F \neq\{0\}$. When $U \subset E$ is an open subset, we shall denote by $C^{m}(U ; F)$ the vector space of all maps $f: U \rightarrow F$ which are of class C^{m} in U. This space will be endowed with the topology τ_{c}^{m} defined by the family of seminorms of the form

$$
p_{K, L}(f)=\max _{0 \leqq k \cong m}\left\{\sup \left\{\left\|D^{k} f(x) v^{k}\right\| ; x \in K, v \in L\right\}\right\}
$$

where $K \subset U$ and $L \subset E$ are compact subsets and $T v^{k}=T(v, \ldots, v)$, when T is a k-linear map. When E is finite-dimensional, $\tau_{c}^{m}=\tau_{u}^{m}$, the compact-open topology of order m.

When $F=\mathbf{R}$, the space $C^{m}(U ; F)$ is an algebra, denoted simply by $C^{m}(U)$.
When $E=\mathbf{R}^{n}$ and $F=\mathbf{R}$, Nachbin proved in [3] necessary and sufficient conditions for a subalgebra $A \subset C^{m}(U)$ to be dense in the topology $\tau_{u}^{m}(m \geqq 1)$, extending the Stone-Weierstrass theorem to the differentiable case. In fact, he proved that the following are necessary and sufficient conditions for A to be dense in $\left(C^{m}(U), \tau_{u}^{m}\right)$:
(1) for every $x \in U$, there exists $f \in A$ such that $f(x) \neq 0$;
(2) for every pair $x, y \in U$, with $x \neq y$, there exists $f \in A$ such that $f(x) \neq f(y)$;
(3) for every $x \in U$ and $v \in E$, with $v \neq 0$, there exists $f \in A$ such that $D f(x) v \neq 0$.

In [1], Lesmes gave sufficient conditions for a subalgebra $A \subset C^{m}(E)$ to be dense in $\left(C^{m}(E), \tau_{u}^{m}\right)$, when $m=1$, and E is a real separable Hilbert space. In fact, he proved that (1), (2), (3) (with $U=E$) and

[^0](4) there is an $M \in \mathbf{N}$ such that, for every integer $n \geqq M$, if $f \in A$ then $f \circ P_{n} \in A$; are sufficient for A to be τ_{u}^{1}-dense, where P_{n} is the orthogonal projection of E onto the span of $\left\{e_{1}, \ldots, e_{n}\right\}$, if $\left\{e_{i} ; i \in \mathbf{N}\right\}$ is some orthonormal basis of E.

In [4], Prolla studied Nachbin's result for $m \geqq 1$ and the topology τ_{c}^{m}. He extended Nachbin's theorem for polynomial algebras $A \subset C^{m}\left(\mathbf{R}^{n} ; F\right)$ and applied this extension to prove the analogue of Lesmes' result for polynomial algebras $A \subset C^{m}(E ; F)$ in the τ_{c}^{m} topology, and E a real separable Hilbert space.

In [2], Llavona announced the following result. If E is a real Banach space with the approximation property, and $A \subset C^{m}(E ; F)$ is a polynomial algebra satisfying (1), (2), (3) (with $U=E$) and
(4') $A \circ G \subset A$
where $G \subset E^{*} \otimes E$ is some subset such that $i_{E} \in \bar{G}$, then A is dense in $\left(C^{m}(E ; F), \tau_{c}^{m}\right)$. Here i_{E} is the identity map on E and \bar{G} denotes the closure of G in $\left(L(E ; E), \tau_{u}^{0}\right)$.

In this paper, we extend the results of [4] to cover the case of open subsets $U \subset E$, when E is a real Banach space with the approximation property, and polynomial algebras $A \subset C^{m}(U ; F)$. For each integer $n \geqq 1, P_{f}^{n}(E ; F)$ denotes the vector subspace of $C^{\infty}(E ; F)$ generated by the set of all maps of the form $x \rightarrow[\varphi(x)]^{n} v$, where $\varphi \in E^{*}$, the topological dual of E, and $v \in F$. The elements of $P_{f}^{n}(E ; F)$ are called n-homogeneous continuous polynomials of finite type from E into F. A vector subspace $A \subset C^{0}(E ; F)$ is called a polynomial algebra if, for every integer $n \geqq 1$, $p \circ g \in A$ for all $g \in A$ and all $p \in P_{f}^{n}(F ; F)$.

§ 2. Finite-dimensional case

In this section E is a finite-dimensional real Banach space and F is any reai Banach space, with $F \neq\{0\}$. We may assume that $E=\mathbf{R}^{n}$.

Lemma 2.1. $C^{m}(U) \otimes F$ is τ_{u}^{m}-dense in $C^{m}(U ; F)$.
Proof. Let $f \in C^{m}(U ; F), K \subset U$ a compact subset and $\varepsilon>0$. Since $D^{m}(U ; F)$ is τ_{u}^{m}-dense in $C^{m}(U ; F)$, we may assume $f \in D^{m}(U ; F)$. (We recall that $D^{m}(U ; F)$ is the vector subspace of all $f \in C^{m}(U ; F)$ which have compact support in U.) Let L be the support of f. Let M be a compact neighborhood of $K \cup L$ in U. Let $\varphi \in D\left(\mathbf{R}^{n}\right)$ be such that $\varphi(x)=1$ for all $x \in M$. Define $g \in D^{m}\left(\mathbf{R}^{n} ; F\right)$ by $g(x)=\varphi(x) f(x)$ for all $x \in M$ and $g(x)=0$ for all $x \notin M$. Since $D\left(\mathbf{R}^{m}\right) \otimes F$ is τ_{u}^{m}-dense in $D^{m}\left(\mathbf{R}^{n} ; F\right)$ (see Schwartz [6]), there exists $h \in D\left(\mathbf{R}^{n}\right) \otimes F$ such that $p_{K}(g-h)<\varepsilon$. Since $g=f$ in a neighborhood of K, and $k=h \mid U \in C^{m}(U) \otimes F$, we see that $p_{K}(f-k)<\varepsilon$. Hence $C^{m}(U) \otimes F$ is τ_{u}^{m}-dense in $C^{m}(U ; F)$.

Theorem 2.2. Let $A \subset C^{m}(U ; F)$ be a polynomial algebra. Then A is τ_{u}^{m}-dense in $C^{m}(U ; F)$ if, and only if, conditions (1)-(3) of § 1 are verified.

Proof. The necessity of the conditions is easily verified. Conversely, assume that the polynomial algebra A satisfies (1)-(3) of $\S 1$.

Let $M=\left\{\varphi \circ f ; \varphi \in F^{*}, f \in A\right\}$. By Lemma 2.2 of [5], M is a subalgebra of $C^{m}(U)$ such that $M \otimes F \subset A$. By Nachbin's theorem (see [3], page 1550), M is τ_{u}^{m}-dense in $C^{m}(U)$. Hence $M \otimes F$ is τ_{u}^{m}-dense in $C^{m}(U) \otimes F$. By Lemma 2.1, $M \otimes F$ is τ_{u}^{m}-dense in $C^{m}(U ; F)$, and since $M \otimes F \subset A$, this ends the proof.

§ 3. Infinite-dimensional case

In this section E and F are real Banach spaces and E has the approximation property, i.e. given $K \subset E$ compact and $\varepsilon>0$ there exists $u \in E^{*} \otimes E$ such that $\|u(x)-x\|<\varepsilon$ for all $x \in K$.

Lemma 3.1. Let $f \in C^{m}(U ; F)$; let $K \subset U$ and $L \subset E$ be compact subsets and let $\varepsilon>0$. There exists a map $u \in E^{*} \otimes E$ and an open subset $V \subset U$ such that $K \subset V, u(V) \subset U$ and $p_{K, L}(f \mid V-f \circ(u \mid V))<\varepsilon$.

Proof. Since $(x, v) \mapsto D^{k} f(x) v^{k}$ is continuous for all $0 \leqq k \leqq m$, and $K \times L$ is compact, we can find a real number $\delta>0$ such that $0<\delta<\operatorname{dist}(K, E \backslash U)$ and
(i) $\|f(x)-f(y)\|<\varepsilon$, and
(ii) $\left\|D^{k} f(x) v^{k}-D^{k} f(y) w^{k}\right\|<\varepsilon, \quad 1 \leqq k \leqq m$,
for all $(x, v) \in K \times L,(y, w) \in U \times E$ such that $\|x-y\|<\delta$ and $\|v-w\|<\delta$.
By the approximation property, we can find $u \in E^{*} \otimes E$ such that
(iii) $\|u(x)-x\|<\delta / 2$, for all $x \in K$, and
(iv) $\|u(v)-v\|<\delta$, for all $v \in L$.

Let $r=\delta /(2(\|u\|+1))$. For each $x \in K$, let $B(x ; r)=\{t \in E ;\|t-x\|<r\}$. By compactness of K we can find $x_{1}, \ldots, x_{n} \in K$ such that $K \subset V=B\left(x_{1} ; r\right) \cup \ldots \cup B\left(x_{n} ; r\right)$. Since $r<\operatorname{dist}(K, E \backslash U)$ it follows that $V \subset U$. Let $t \in V$. There exists some index i, with $1 \leqq i \leqq n$, such that $t \in B\left(x_{i} ; r\right)$. Hence $\left\|t-x_{i}\right\|<r$. Therefore $\left\|u(t)-x_{i}\right\| \leqq$ $\leqq\left\|u(t)-u\left(x_{i}\right)\right\|+\left\|u\left(x_{i}\right)-x_{i}\right\|<\delta / 2+\delta / 2=\delta<\operatorname{dist}(K, E \backslash U)$. This shows that $u(t) \in U$, i.e. $u(V) \subset U$. Therefore the composition $f \circ(u \mid V)$ is defined and (i) and (iii) imply
(v) $\|f(x)-f \circ(u \mid V)(x)\|<\varepsilon$
for all $x \in K$. Similarly, (ii), (iii) and (iv) imply
(vi) $\left\|D^{k} f(x) v^{k}-D^{k} f(u(x)) u(v)^{k}\right\|<\varepsilon$
for all $x \in K$ and $v \in L$. By the chain rule, $D^{k} f(u(x)) u(v)^{k}=D^{k}(f \circ(u \mid V))(x) v^{k}$, and therefore (v) and (vi) show that $p_{K, L}(f \mid V-f \circ(u \mid V))<\varepsilon$.

Lemma 3.2. Let E_{n} be a finite-dimensional subspace of E, and $U_{n} \subset E_{n} \cap U$ a non-empty open subset. Let $T_{n}: C^{m}(U ; F) \rightarrow C^{m}\left(U_{n} ; F\right)$ be the map $f \mapsto f \mid U_{n}$. If $A \subset C^{m}(U ; F)$ is a polynomial algebra satisfying conditions (1)-(3) of § 1, then $T_{n}(A)$ is τ_{u}^{m}-dense in $C^{m}\left(U_{n} ; F\right)$.

Proof. $T_{n}(A)$ is polynomial algebra contained in $C^{m}\left(U_{n} ; F\right)$ and satisfying conditions (1)-(3) of $\S 1$. By Theorem 2.2, $T_{n}(A)$ is τ_{u}^{m}-dense in $C^{m}\left(U_{n} ; F\right)$.

Theorem 3.3. Let $A \subset C^{m}(U ; F)$ be a polynomial algebra such that, for any $u \in E^{*} \otimes E$ and any open subset $V \subset U$ with $u(V) \subset U$,

$$
\begin{equation*}
g \in A \Rightarrow g \circ(u \mid V) \in A \mid V \tag{5}
\end{equation*}
$$

Then A is τ_{c}^{m}-dense in $C^{m}(U ; F)$ if, and only if, conditions (1)-(3) of $\S 1$ are verified.
Proof. The necessity of the conditions is easily verified. For sufficiency, let $f \in C^{m}(U ; F)$; let $K \subset U$ and $L \subset E$ be compact subsets; and let $\varepsilon>0$ be given. By Lemma 3.1, there exists $u \in E^{*} \otimes E$ and $V \subset U$ an open subset such that $K \subset V, u(V) \subset U$ and $p_{K, L}(f \mid V-f \circ(u \mid V))<\varepsilon / 2$. Let E_{n} be the finite-dimensional subspace $u(E) \subset E$. Let $U_{n}=E_{n} \cap U$. Since $u(K) \subset U_{n}$ is a compact subset, by Lemma 3.2 there exists $g \in A$ such that $P_{u(K)}\left(T_{n} g-T_{n} f\right)<\delta$, for a given $\delta>0$. Choose $\delta>0$ such that $\delta<\varepsilon /\left(2(r+1)^{k}\right)$, for all $0 \leqq k \leqq m$, where $r=\sup \{\|u(v)\| ; v \in L\}$. Then, the following is true:
(i) $\|g(u(x))-f(u(x))\|<\varepsilon / 2$
(ii) $\left\|D^{k}\left(T_{n} g\right)(u(x))-D^{k}\left(T_{n} f\right)(u(x))\right\|<\delta$
for all $x \in K$. Since
and

$$
D^{k}\left(T_{n} g\right)(u(x))=D^{k} g(u(x)) \mid E_{n}^{k}
$$

$$
D^{k}\left(T_{n} f\right)(u(x))=D^{k} f(u(x)) \mid E_{n}^{k}
$$

for all $x \in K$, it follows from (ii) that
(iii) $\left\|D^{k} g(u(x)) u(v)^{k}-D^{k} f(u(x)) u(v)^{k}\right\| \leqq \delta r^{k}<\varepsilon / 2$
for all $x \in K$ and $v \in L$. By the chain rule,
and

$$
D^{k} g(u(x)) u(v)^{k}=D^{k}(g \circ(u \mid V))(x) v^{k}
$$

$$
D^{k} f(u(x)) u(v)^{k}=D^{k}(f \circ(u \mid V))(x) v^{k}
$$

Hence (i) and (iii) show that

$$
p_{K, L}(f \circ(u \mid V)-g \circ(u \mid V))<\varepsilon / 2
$$

By condition (5), there exists $h \in A$ such that $g \circ(u \mid V)=h \mid V$. Therefore $p_{K, L}(f|V-h| V)<\varepsilon$.

Since V is an open neighborhood of K, the last inequality is equivalent to $p_{K, L}(f-h)<\varepsilon$.

Hence A is dense in $C^{m}(U ; F)$.
Corollary 3.4. The polynomial algebra $P_{f}(U ; F)$ is τ_{c}^{m}-dense in $C^{m}(U ; F)$.
Proof. $P_{f}(U ; F)$ is the set $P_{f}(E ; F) \mid U$, where $P_{f}(E ; F)$ is the vector space generated by the union of $P_{f}^{n}(E ; F)$ for all $n \geqq 1$ and the constant maps. One easily verifies that $P_{f}(U ; F)$ satisfies conditions (1)-(3), (5).

Corollary 3.5. The following polynomial algebras are τ_{c}^{m}-dense in $C^{n}(U ; F)$:
(a) $P(U ; F)$
(b) $C^{\infty}(U ; F)$
(c) $C^{r}(U ; F), r \geqq m$.

Proof. Just notice that

$$
P_{f}(U ; F) \subset P(U ; F) \subset C^{\infty}(U ; F) \subset C^{r}(U ; F)
$$

Corollary 3.6. The following polynomial algebras are τ_{c}^{m}-dense in $C^{m}(U ; F)$:
(a) $P_{f}(U) \otimes F$,
(b) $P(U) \otimes F$,
(c) $C^{\infty}(U) \otimes F$,
(d) $C^{r}(U) \otimes F, r \geqq m$.

Proof. Just notice that $P_{f}(U) \otimes F=P_{f}(U ; F)$.
Remark 3.7. The proof of Lemma 3.1 shows that we can choose there $u \in E^{*} \otimes E$ in any subset $G \subset E^{*} \otimes E$, such that $i_{E} \in \bar{G}$, the τ_{u}^{0}-closure of G in $L(E ; E)$. Hence Theorem 3.3 remains true if $A \subset C^{m}(U ; F)$ is a polynomial algebra such that, there exists $G \subset E^{*} \otimes E$ as above, and for any $u \in G$ and any open subset $V \subset U$ with $u(V) \subset U$, then (5) is true. When $U=E$, this condition becomes $A \circ G \subset A$, i.e. the following result is true and generalizes Llavona's result [2].

Theorem 3.8. Let $A \subset C^{m}(U ; F)$ be a polynomial algebra. Suppose that there exists $G \subset E^{*} \otimes E$ whose τ_{u}^{0}-closure in $L(E ; E)$ contains i_{E}, and for any $u \in G$ and for any open subset $V \subset U$ with $u(V) \subset U$,

$$
\begin{equation*}
g \in A \Rightarrow g \circ(u \mid V) \in A \mid V \tag{6}
\end{equation*}
$$

Then A is τ_{c}^{m}-dense in $C^{m}(U ; F)$, if and only if A satisfies conditions (1)-(3) of $\S 1$.

Example 3.9. Suppose that E satisfies the metric approximation property and that A satisfies (6) with $G=\left\{u \in E^{*} \otimes E ;\|u\| \leqq 1\right\}$.

Example 3.10. Suppose that E is a real separable Banach space with a Schauder basis $\left\{x_{n}, x_{n}^{*} ; n \in \mathbf{N}\right\}$, and that A satisfies (6) with $G=\left\{P_{k} ; k \in \mathbf{N}\right\}$, where P_{k} is the map

$$
x \mapsto \sum_{i \leqq n_{k}} x_{i}^{*}(x) x_{i}
$$

for each $k \in \mathbf{N}$, and $\left\{n_{k}\right\}$ is a subsequence of \mathbf{N}, i.e. $n_{1}<n_{2}<\ldots<n_{k}<\ldots$.
In particular, suppose that E is a real separable Hilbert space and $\left\{x_{n} ; n \in \mathbb{N}\right\}$ is an orthonormal basis for E and P_{k} is the orthogonal projection of E onto the span of $\left\{x_{1}, \ldots, x_{n_{k}}\right\}$.

§ 4. The role of the approximation property

In this section we study the converse of Corollary 3.6. More generally, we study the relation between the approximation property for real Banach spaces E and the spaces $\left(C^{m}(U ; F), \tau_{c}^{m}\right)$, for $U \subset E$ open and $m \geqq 1$.

For the case of complex Banach spaces, $C^{m}(U ; F)=\mathscr{H}(U ; F)$, if $m \geqq 1$. The relationship between the approximation property for E and several spaces of holomorphic mappings and topologies on them, has been studied by Aron and Schottenloher. (See [0], in particular Theorems 2.2, 4.1 and 4.3 of [0].)

Theorem 4.1. Let E be a real Banach space; then the following properties are equivalent:
(1) E has the approximation property.
(2) For every $m \geqq 1$, for every non-void open subset $U \subset E$, and for every Banach space $F, C^{m}(U) \otimes F$ is τ_{c}^{m}-dense in $C^{m}(U ; F)$.
(3) For every $m \geqq 1$, for every real Banach space F, and for every non-void open subset $V \subset F, C^{m}(V) \otimes E$ is τ_{c}^{m}-dense in $C^{m}(V ; E)$.
(4) For every $m \geqq 1, C^{m}(E) \otimes E$ is τ_{c}^{m}-dense in $C^{m}(E ; E)$.
(5) For every $m \geqq 1$, the identity map on E belongs to the τ_{c}^{m}-closure of $C^{m}(E) \otimes E$ in $C^{m}(E ; E)$.
(6) The identity map on E belongs to the τ_{c}^{1}-closure of $C^{1}(E) \otimes E$ in $C^{1}(E ; E)$.

Proof. Part (d) of Corollary 3.6 states that $(1) \Rightarrow(2)$.
(1) \Rightarrow (3). Let $K \subset V$ and $L \subset F$ be compact subsets, let $\varepsilon>0$, and let $f \in C^{m}(V ; E)$, $m \geqq 1$. Since the mappings $(x, v) \mapsto D^{k} f(x) v^{k}$ are continuous, for all $0 \leqq k \leqq m$, and $K \times L$ is compact, the sets

$$
A_{k}=\left\{D^{k} f(x) v^{k},(x, v) \in K \times L\right\} \subset E
$$

are compact. Let $A=A_{0} \cup A_{1} \cup \ldots \cup A_{m}$. Since E has the approximation property,
we can find $u_{i} \in E^{*}$ and $e_{i} \in E, 1 \leqq i \leqq n$, such that

$$
\left\|y-\sum_{i=1}^{n} u_{i}(y) e_{i}\right\|<\varepsilon
$$

for all $y \in A$. Hence, for all $(x, v) \in K \times L$,

$$
\left\|D^{k} f(x) v^{k}-\sum_{i=1}^{n} u_{i}\left(D^{k} f(x) v^{k}\right) e_{i}\right\|<\varepsilon
$$

for all $0 \leqq k \leqq m$. By the chain rule,

$$
u_{i}\left(D^{k} f(x) v^{k}\right)=D^{k}\left(u_{i} \circ f\right)(x) v^{k}
$$

since u_{i} is linear. Therefore

$$
\left\|D^{k} f(x) v^{k}-D^{k}\left(\sum_{i=1}^{n}\left(u_{i} \circ f\right) \otimes e_{i}\right)(x) v^{k}\right\|<\varepsilon
$$

for all $0 \leqq k \leqq m$ and $(x, v) \in K \times L$. It remains to notice that $\left(u_{i} \circ f\right) \otimes e_{i} \in C^{m}(V) \otimes E$, $1 \leqq i \leqq n$.

By setting $U=E=F$ and $V=F=E$, we see that (2) \Rightarrow (4), and (3) $\Rightarrow(4)$, respectively.
$(4) \Rightarrow(5) \Rightarrow(6)$. Obvious.
$(6) \Rightarrow(1)$. Let $K \subset E$ be compact and $\varepsilon>0$. Since $\{0\} \subset E$ is compact, the seminorm

$$
f \mapsto \sup \{\|D f(0) x\|, x \in K\}
$$

is τ_{c}^{1}-continuous. By (6), there is a function f belonging to $C^{1}(E) \otimes E$ such that

$$
\|x-D f(0) x\|<\varepsilon
$$

for all $x \in K$. Assume

$$
f=\sum_{i=1}^{n} f_{i} \otimes e_{i}, \quad f_{i} \in C^{1}(E), \quad e_{i} \in E, \quad 1 \leqq i \leqq n
$$

Let $u_{i}=D f_{i}(0) \in E^{*}, 1 \leqq i \leqq n$. Then

$$
\left\|x-\sum_{i=1}^{n} u_{i}(x) e_{i}\right\|<\varepsilon
$$

for all $x \in K$, and (1) obtains.
Remarks 4.2. (a) The above Theorem 4.1 generalizes the results announced in [2] by Llavona: $(1) \Leftrightarrow\left(2^{\prime}\right) \Leftrightarrow(5)$, where
(2') F or every $m \geqq 1$, and for every Banach space $F, C^{m}(E) \otimes F$ is τ_{c}^{m}-dense in $C^{m}(E ; F)$.

Indeed, $(2) \Rightarrow\left(2^{\prime}\right)$ by setting $U=E$, and $\left(2^{\prime}\right) \Rightarrow(4)$ by setting $F=E$.
(b) The condition (6) cannot be changed to $m=0$. Indeed, by Corollary 4.3 of [5], the identity map on E belongs to the τ_{c}^{0}-closure $=$ compact-open closure of $C^{0}(E) \otimes E$ in $C^{0}(E, E)$, for any real Banach space E. However (6) could be weakened to
(6') The identity map on E belongs to the τ_{c}^{0}-closure of $C^{1}(E) \otimes E$ in $C^{1}(E ; E)$.
We do not know if $\left(6^{\prime}\right) \Rightarrow(1)$. (See also the remark after proof of Theorem 4.1 of [0].)

Bibliography

0. Aron, R. M. \& Schottenloher, M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Functional Analysis 21 (1976), 7-30.
1. Lesmes, J., On the approximation of continuously differentiable functions in Hilbert spaces, Rev. Colombiana Mat. 8 (1974), 217-223.
2. Llavona, J. G., Notices Amer. Math. Soc., to appear.
3. Nachbin, L., Sur les algèbres denses de fonctions différentiables sur une variété, C. R. Acad. Sci. Paris 288 (1949), 1549-1551.
4. Prolla, J. B., (a) On polynomial algebras of continuously differentiable functions, Rendiconti dell' Accademia dei Lincei, Ser. 8, 57 (1974), 481-486.
(b) Dense approximation for polynomial algebras, Bonner Mathematische Schriften, 81 (1975), 115-123.
5. Prolla, J. B., \& Machado, S., Weighted Grothendieck subspaces, Trans. Amer. Math. Soc. 186 (1973), 247-258.
6. Schwartz, L., Espaces de fonctions différentiables à valeurs vectorielles, J. Analyse Math. 4 (1954-56), 88-148.

João B. Prolla
Universidade Estadual de Campinas Instituto de Matemática
Caixa Postal 1170
13100 Campinas, SP, Brazil;
Claudia S. Guerreiro
Universidade Federal do Rio de Janeiro Instituto de Matemática Caixa Postal 1835
20000 Rio de Janeiro, RJ. Brazil

[^0]: * On leave from the Instituto de Matemática da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
 ** Partially supported by FINEP (SPPR-Brasil) through a grant to the Instituto de Matemática - UFRJ.

