An extension of Nachbin's theorem to differentiable functions on Banach spaces with the approximation property

João B. Prolla* and Claudia S. Guerreiro**

§ 1. Introduction

Let E and F be two real Banach spaces, with $F \neq \{0\}$. When $U \subset E$ is an open subset, we shall denote by $C^m(U; F)$ the vector space of all maps $f: U \to F$ which are of class C^m in U. This space will be endowed with the topology τ_c^m defined by the family of seminorms of the form

$$p_{K,L}(f) = \max_{0 \le k \le w} \left\{ \sup \left\{ \|D^k f(x) v^k\|; \ x \in K, v \in L \right\} \right\}$$

where $K \subset U$ and $L \subset E$ are compact subsets and $Tv^k = T(v, ..., v)$, when T is a k-linear map. When E is finite-dimensional, $\tau_c^m = \tau_u^m$, the compact-open topology of order m.

When $F = \mathbf{R}$, the space $C^{m}(U; F)$ is an algebra, denoted simply by $C^{m}(U)$.

When $E=\mathbb{R}^n$ and $F=\mathbb{R}$, Nachbin proved in [3] necessary and sufficient conditions for a subalgebra $A \subset C^m(U)$ to be dense in the topology τ_u^m $(m \ge 1)$, extending the Stone—Weierstrass theorem to the differentiable case. In fact, he proved that the following are necessary and sufficient conditions for A to be dense in $(C^m(U), \tau_u^m)$:

(1) for every $x \in U$, there exists $f \in A$ such that $f(x) \neq 0$;

- (2) for every pair x, $y \in U$, with $x \neq y$, there exists $f \in A$ such that $f(x) \neq f(y)$;
- (3) for every $x \in U$ and $v \in E$, with $v \neq 0$, there exists $f \in A$ such that $Df(x)v \neq 0$.

In [1], Lesmes gave sufficient conditions for a subalgebra $A \subset C^{m}(E)$ to be dense in $(C^{m}(E), \tau_{u}^{m})$, when m=1, and E is a real separable Hilbert space. In fact, he proved that (1), (2), (3) (with U=E) and

^{*} On leave from the Instituto de Matemática da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

^{**} Partially supported by FINEP (SPPR-Brasil) through a grant to the Instituto de Matemática — UFRJ.

(4) there is an $M \in \mathbb{N}$ such that, for every integer $n \ge M$, if $f \in A$ then $f \circ P_n \in A$; are sufficient for A to be τ_u^1 -dense, where P_n is the orthogonal projection of E onto the span of $\{e_1, \ldots, e_n\}$, if $\{e_i; i \in \mathbb{N}\}$ is some orthonormal basis of E.

In [4], Prolla studied Nachbin's result for $m \ge 1$ and the topology τ_c^m . He extended Nachbin's theorem for polynomial algebras $A \subset C^m(\mathbb{R}^n; F)$ and applied this extension to prove the analogue of Lesmes' result for polynomial algebras $A \subset C^m(E; F)$ in the τ_c^m topology, and E a real separable Hilbert space.

In [2], Llavona announced the following result. If E is a real Banach space with the approximation property, and $A \subset C^{m}(E; F)$ is a polynomial algebra satisfying (1), (2), (3) (with U=E) and

 $(4') A \circ G \subset A$

where $G \subset E^* \otimes E$ is some subset such that $i_E \in \overline{G}$, then A is dense in $(C^m(E; F), \tau_c^m)$. Here i_E is the identity map on E and \overline{G} denotes the closure of G in $(L(E; E), \tau_u^0)$.

In this paper, we extend the results of [4] to cover the case of open subsets $U \subset E$, when E is a real Banach space with the approximation property, and polynomial algebras $A \subset C^m(U; F)$. For each integer $n \ge 1$, $P_f^n(E; F)$ denotes the vector subspace of $C^{\infty}(E; F)$ generated by the set of all maps of the form $x \to [\varphi(x)]^n v$, where $\varphi \in E^*$, the topological dual of E, and $v \in F$. The elements of $P_f^n(E; F)$ are called *n*-homogeneous continuous polynomials of finite type from E into F. A vector subspace $A \subset C^0(E; F)$ is called a *polynomial algebra* if, for every integer $n \ge 1$, $p \circ g \in A$ for all $g \in A$ and all $p \in P_f^n(F; F)$.

§ 2. Finite-dimensional case

In this section E is a finite-dimensional real Banach space and F is any real Banach space, with $F \neq \{0\}$. We may assume that $E = \mathbb{R}^n$.

Lemma 2.1. $C^m(U) \otimes F$ is τ_u^m -dense in $C^m(U; F)$.

Proof. Let $f \in C^m(U; F)$, $K \subset U$ a compact subset and $\varepsilon > 0$. Since $D^m(U; F)$ is τ_u^m -dense in $C^m(U; F)$, we may assume $f \in D^m(U; F)$. (We recall that $D^m(U; F)$ is the vector subspace of all $f \in C^m(U; F)$ which have compact support in U.) Let L be the support of f. Let M be a compact neighborhood of $K \cup L$ in U. Let $\varphi \in D(\mathbb{R}^n)$ be such that $\varphi(x)=1$ for all $x \in M$. Define $g \in D^m(\mathbb{R}^n; F)$ by $g(x)=\varphi(x)f(x)$ for all $x \in M$ and g(x)=0 for all $x \notin M$. Since $D(\mathbb{R}^n) \otimes F$ is τ_u^m -dense in $D^m(\mathbb{R}^n; F)$ (see Schwartz [6]), there exists $h \in D(\mathbb{R}^n) \otimes F$ such that $p_K(g-h) < \varepsilon$. Since g=f in a neighborhood of K, and $k=h|U \in C^m(U) \otimes F$, we see that $p_K(f-k) < \varepsilon$. Hence $C^m(U) \otimes F$ is τ_u^m -dense in $C^m(U; F)$. **Theorem 2.2.** Let $A \subset C^m(U; F)$ be a polynomial algebra. Then A is τ_u^m -dense in $C^m(U; F)$ if, and only if, conditions (1)—(3) of § 1 are verified.

Proof. The necessity of the conditions is easily verified. Conversely, assume that the polynomial algebra A satisfies (1)—(3) of § 1.

Let $M = \{\varphi \circ f; \varphi \in F^*, f \in A\}$. By Lemma 2.2 of [5], M is a subalgebra of $C^m(U)$ such that $M \otimes F \subset A$. By Nachbin's theorem (see [3], page 1550), M is τ_u^m -dense in $C^m(U)$. Hence $M \otimes F$ is τ_u^m -dense in $C^m(U) \otimes F$. By Lemma 2.1, $M \otimes F$ is τ_u^m -dense in $C^m(U; F)$, and since $M \otimes F \subset A$, this ends the proof.

§ 3. Infinite-dimensional case

In this section E and F are real Banach spaces and E has the approximation property, i.e. given $K \subset E$ compact and $\varepsilon > 0$ there exists $u \in E^* \otimes E$ such that $||u(x) - x|| < \varepsilon$ for all $x \in K$.

Lemma 3.1. Let $f \in C^m(U; F)$; let $K \subset U$ and $L \subset E$ be compact subsets and let $\varepsilon > 0$. There exists a map $u \in E^* \otimes E$ and an open subset $V \subset U$ such that $K \subset V$, $u(V) \subset U$ and $p_{K,L}(f|V-f \circ (u|V)) < \varepsilon$.

Proof. Since $(x, v) \mapsto D^k f(x) v^k$ is continuous for all $0 \le k \le m$, and $K \times L$ is compact, we can find a real number $\delta > 0$ such that $0 < \delta < \text{dist}(K, E \setminus U)$ and

- (i) $||f(x) f(y)|| < \varepsilon$, and
- (ii) $||D^k f(x)v^k D^k f(y)w^k|| < \varepsilon, \quad 1 \le k \le m,$

for all $(x, v) \in K \times L$, $(y, w) \in U \times E$ such that $||x-y|| < \delta$ and $||v-w|| < \delta$. By the approximation property, we can find $u \in E^* \otimes E$ such that

- (iii) $||u(x) x|| < \delta/2$, for all $x \in K$, and
- (iv) $||u(v)-v|| < \delta$, for all $v \in L$.

Let $r = \delta/(2(||u||+1))$. For each $x \in K$, let $B(x; r) = \{t \in E; ||t-x|| < r\}$. By compactness of K we can find $x_1, \ldots, x_n \in K$ such that $K \subset V = B(x_1; r) \cup \ldots \cup B(x_n; r)$. Since $r < \text{dist}(K, E \setminus U)$ it follows that $V \subset U$. Let $t \in V$. There exists some index i, with $1 \le i \le n$, such that $t \in B(x_i; r)$. Hence $||t-x_i|| < r$. Therefore $||u(t)-x_i|| \le \le ||u(t)-u(x_i)|| + ||u(x_i)-x_i|| < \delta/2 + \delta/2 = \delta < \text{dist}(K, E \setminus U)$. This shows that $u(t) \in U$, i.e. $u(V) \subset U$. Therefore the composition $f \circ (u|V)$ is defined and (i) and (iii) imply

(v)
$$||f(x) - f \circ (u|V)(x)|| < \epsilon$$

for all $x \in K$. Similarly, (ii), (iii) and (iv) imply

(vi) $||D^k f(x)v^k - D^k f(u(x))u(v)^k|| < \varepsilon$

for all $x \in K$ and $v \in L$. By the chain rule, $D^k f(u(x))u(v)^k = D^k (f \circ (u|V))(x)v^k$, and therefore (v) and (vi) show that $p_{K,L}(f|V-f \circ (u|V)) < \varepsilon$.

Lemma 3.2. Let E_n be a finite-dimensional subspace of E, and $U_n \subset E_n \cap U$ a non-empty open subset. Let $T_n: C^m(U; F) \to C^m(U_n; F)$ be the map $f \mapsto f|U_n$. If $A \subset C^m(U; F)$ is a polynomial algebra satisfying conditions (1)—(3) of § 1, then $T_n(A)$ is τ_u^m -dense in $C^m(U_n; F)$.

Proof. $T_n(A)$ is a polynomial algebra contained in $C^m(U_n; F)$ and satisfying conditions (1)--(3) of § 1. By Theorem 2.2, $T_n(A)$ is τ_u^m -dense in $C^m(U_n; F)$.

Theorem 3.3. Let $A \subset C^m(U; F)$ be a polynomial algebra such that, for any $u \in E^* \otimes E$ and any open subset $V \subset U$ with $u(V) \subset U$,

(5)
$$g \in A \Rightarrow g \circ (u|V) \in A|V.$$

Then A is τ_c^m -dense in $C^m(U; F)$ if, and only if, conditions (1)-(3) of §1 are verified.

Proof. The necessity of the conditions is easily verified. For sufficiency, let $f \in C^m(U; F)$; let $K \subset U$ and $L \subset E$ be compact subsets; and let $\varepsilon > 0$ be given. By Lemma 3.1, there exists $u \in E^* \otimes E$ and $V \subset U$ an open subset such that $K \subset V$, $u(V) \subset U$ and $p_{K, L}(f|V-f \circ (u|V)) < \varepsilon/2$. Let E_n be the finite-dimensional subspace $u(E) \subset E$. Let $U_n = E_n \cap U$. Since $u(K) \subset U_n$ is a compact subset, by Lemma 3.2 there exists $g \in A$ such that $P_{u(K)}(T_ng - T_nf) < \delta$, for a given $\delta > 0$. Choose $\delta > 0$ such that $\delta < \varepsilon/(2(r+1)^k)$, for all $0 \le k \le m$, where $r = \sup \{||u(v)||; v \in L\}$. Then, the following is true:

(i)
$$\|g(u(x)) - f(u(x))\| < \varepsilon/2$$

(ii)
$$||D^{k}(T_{n}g)(u(x)) - D^{k}(T_{n}f)(u(x))|| < \delta$$

for all $x \in K$. Since

$$D^{k}(T_{n}g)(u(x)) = D^{k}g(u(x))|E_{n}^{k}$$

and

$$D^{k}(T_{n}f)(u(x)) = D^{k}f(u(x))|E_{n}^{k}$$

for all $x \in K$, it follows from (ii) that

(iii) $\|D^k g(u(x))u(v)^k - D^k f(u(x))u(v)^k\| \le \delta r^k < \varepsilon/2$

for all $x \in K$ and $v \in L$. By the chain rule,

$$D^{k}g(u(x))u(v)^{k} = D^{k}(g\circ(u|V))(x)v^{k}$$

and

$$D^k f(u(x))u(v)^k = D^k (f \circ (u|V))(x)v^k.$$

Hence (i) and (iii) show that

$$p_{K,L}(f \circ (u|V) - g \circ (u|V)) < \varepsilon/2.$$

By condition (5), there exists $h \in A$ such that $g \circ (u|V) = h|V$. Therefore $p_{K,L}(f|V-h|V) < \varepsilon$.

Since V is an open neighborhood of K, the last inequality is equivalent to $p_{K,L}(f-h) < \varepsilon$.

Hence A is dense in $C^m(U; F)$.

Corollary 3.4. The polynomial algebra $P_f(U; F)$ is τ_c^m -dense in $C^m(U; F)$.

Proof. $P_f(U; F)$ is the set $P_f(E; F)|U$, where $P_f(E; F)$ is the vector space generated by the union of $P_f^n(E; F)$ for all $n \ge 1$ and the constant maps. One easily verifies that $P_f(U; F)$ satisfies conditions (1)—(3), (5).

Corollary 3.5. The following polynomial algebras are τ_c^m -dense in $C^m(U; F)$: (a) P(U; F)

- (b) $C^{\infty}(U;F)$
- (c) $C^r(U; F), r \ge m$.

Proof. Just notice that

 $P_f(U; F) \subset P(U; F) \subset C^{\infty}(U; F) \subset C'(U; F).$

Corollary 3.6. The following polynomial algebras are τ_c^m -dense in $C^m(U; F)$: (a) $P_f(U) \otimes F$,

- (b) $P(U) \otimes F$,
- (c) $C^{\infty}(U)\otimes F$,
- (d) $C^r(U) \otimes F$, $r \ge m$.

Proof. Just notice that $P_f(U) \otimes F = P_f(U; F)$.

Remark 3.7. The proof of Lemma 3.1 shows that we can choose there $u \in E^* \otimes E$ in any subset $G \subset E^* \otimes E$, such that $i_E \in \overline{G}$, the τ_u^0 -closure of G in L(E; E). Hence Theorem 3.3 remains true if $A \subset C^m(U; F)$ is a polynomial algebra such that, there exists $G \subset E^* \otimes E$ as above, and for any $u \in G$ and any open subset $V \subset U$ with $u(V) \subset U$, then (5) is true. When U=E, this condition becomes $A \circ G \subset A$, i.e. the following result is true and generalizes Llavona's result [2].

Theorem 3.8. Let $A \subset C^m(U; F)$ be a polynomial algebra. Suppose that there exists $G \subset E^* \otimes E$ whose τ_u^0 -closure in L(E; E) contains i_E , and for any $u \in G$ and for any open subset $V \subset U$ with $u(V) \subset U$,

(6) $g \in A \Rightarrow g \circ (u|V) \in A|V.$

Then A is τ_c^m -dense in $C^m(U; F)$, if and only if A satisfies conditions (1)-(3) of § 1.

Example 3.9. Suppose that E satisfies the metric approximation property and that A satisfies (6) with $G = \{u \in E^* \otimes E; ||u|| \le 1\}$.

Example 3.10. Suppose that E is a real separable Banach space with a Schauder basis $\{x_n, x_n^*; n \in \mathbb{N}\}$, and that A satisfies (6) with $G = \{P_k; k \in \mathbb{N}\}$, where P_k is the map

$$x \mapsto \sum_{i \leq n_k} x_i^*(x) x_i$$

for each $k \in \mathbb{N}$, and $\{n_k\}$ is a subsequence of \mathbb{N} , i.e. $n_1 < n_2 < \ldots < n_k < \ldots$

In particular, suppose that E is a real separable Hilbert space and $\{x_n; n \in \mathbb{N}\}$ is an orthonormal basis for E and P_k is the orthogonal projection of E onto the span of $\{x_1, \ldots, x_{n_k}\}$.

§ 4. The role of the approximation property

In this section we study the converse of Corollary 3.6. More generally, we study the relation between the approximation property for *real* Banach spaces E and the spaces $(C^m(U; F), \tau_c^m)$, for $U \subset E$ open and $m \ge 1$.

For the case of *complex* Banach spaces, $C^m(U; F) = \mathscr{H}(U; F)$, if $m \ge 1$. The relationship between the approximation property for E and several spaces of holomorphic mappings and topologies on them, has been studied by Aron and Schotten-loher. (See [0], in particular Theorems 2.2, 4.1 and 4.3 of [0].)

Theorem 4.1. Let E be a real Banach space; then the following properties are equivalent:

- (1) E has the approximation property.
- (2) For every $m \ge 1$, for every non-void open subset $U \subset E$, and for every Banach space F, $C^{\mathsf{m}}(U) \otimes F$ is τ_c^{m} -dense in $C^{\mathsf{m}}(U; F)$.
- (3) For every m≥1, for every real Banach space F, and for every non-void open subset V⊂F, C^m(V)⊗E is τ^m_c-dense in C^m(V; E).
- (4) For every $m \ge 1$, $C^m(E) \otimes E$ is τ_c^m -dense in $C^m(E; E)$.
- (5) For every m≥1, the identity map on E belongs to the τ^m_c-closure of C^m(E)⊗E in C^m(E; E).
- (6) The identity map on E belongs to the τ_c^1 -closure of $C^1(E) \otimes E$ in $C^1(E; E)$.

Proof. Part (d) of Corollary 3.6 states that $(1) \Rightarrow (2)$.

(1) \Rightarrow (3). Let $K \subset V$ and $L \subset F$ be compact subsets, let $\varepsilon > 0$, and let $f \in C^m(V; E)$, $m \ge 1$. Since the mappings $(x, v) \mapsto D^k f(x) v^k$ are continuous, for all $0 \le k \le m$, and $K \times L$ is compact, the sets

$$A_k = \{ D^k f(x) v^k, (x, v) \in K \times L \} \subset E$$

are compact. Let $A = A_0 \cup A_1 \cup \ldots \cup A_m$. Since E has the approximation property,

we can find $u_i \in E^*$ and $e_i \in E$, $1 \leq i \leq n$, such that

$$\left\|y-\sum_{i=1}^n u_i(y)e_i\right\| < \epsilon$$

for all $y \in A$. Hence, for all $(x, v) \in K \times L$,

$$\left|\left|D^k f(x)v^k - \sum_{i=1}^n u_i \left(D^k f(x)v^k\right)e_i\right|\right| < \varepsilon$$

for all $0 \leq k \leq m$. By the chain rule,

$$u_i(D^k f(x)v^k) = D^k(u_i \circ f)(x)v^k$$

since u_i is linear. Therefore

$$\left|\left|D^{k}f(x)v^{k}-D^{k}\left(\sum_{i=1}^{n}\left(u_{i}\circ f\right)\otimes e_{i}\right)(x)v^{k}\right|\right|<\varepsilon$$

for all $0 \le k \le m$ and $(x, v) \in K \times L$. It remains to notice that $(u_i \circ f) \otimes e_i \in C^m(V) \otimes E$, $1 \le i \le n$.

By setting U=E=F and V=F=E, we see that (2) \Rightarrow (4), and (3) \Rightarrow (4), respectively.

 $(4) \Rightarrow (5) \Rightarrow (6)$. Obvious.

(6) \Rightarrow (1). Let $K \subset E$ be compact and $\varepsilon > 0$. Since $\{0\} \subset E$ is compact, the seminorm

$$f \mapsto \sup \{ \| Df(0)x \|, x \in K \}$$

is τ_c^1 -continuous. By (6), there is a function f belonging to $C^1(E) \otimes E$ such that

$$\|x - Df(0)x\| < \varepsilon$$

for all $x \in K$. Assume

$$f = \sum_{i=1}^{n} f_i \otimes e_i, \quad f_i \in C^1(E), \quad e_i \in E, \quad 1 \le i \le n.$$

Let $u_i = Df_i(0) \in E^*$, $1 \le i \le n$. Then

$$\left|\left|x-\sum_{i=1}^{n}u_{i}(x)e_{i}\right|\right|<\varepsilon$$

for all $x \in K$, and (1) obtains.

Remarks 4.2. (a) The above Theorem 4.1 generalizes the results announced in [2] by Llavona: $(1) \Leftrightarrow (2') \Leftrightarrow (5)$, where

(2') For every $m \ge 1$, and for every Banach space F, $C^m(E) \otimes F$ is τ_c^m -dense in $C^m(E; F)$.

Indeed, $(2) \Rightarrow (2')$ by setting U=E, and $(2') \Rightarrow (4)$ by setting F=E.

(b) The condition (6) cannot be changed to m=0. Indeed, by Corollary 4.3 of [5], the identity map on E belongs to the τ_c^0 -closure=compact-open closure of $C^0(E) \otimes E$ in $C^0(E, E)$, for any real Banach space E. However (6) could be weakened to

(6') The identity map on E belongs to the τ_c^0 -closure of $C^1(E) \otimes E$ in $C^1(E; E)$.

We do not know if $(6') \Rightarrow (1)$. (See also the remark after proof of Theorem 4.1 of [0].)

258 João B. Prolla and Claudia S. Guerreiro: Differentiable functions on Banach spaces

Bibliography

- 0. ARON, R. M. & SCHOTTENLOHER, M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Functional Analysis 21 (1976), 7–30.
- 1. LESMES, J., On the approximation of continuously differentiable functions in Hilbert spaces, *Rev. Colombiana Mat.* 8 (1974), 217–223.
- 2. LLAVONA, J. G., Notices Amer. Math. Soc., to appear.
- 3. NACHBIN, L., Sur les algèbres denses de fonctions différentiables sur une variété, C. R. Acad. Sci. Paris 288 (1949), 1549-1551.
- 4. PROLLA, J. B., (a) On polynomial algebras of continuously differentiable functions, *Rendiconti dell' Accademia dei Lincei*, Ser. 8, 57 (1974), 481–486.

(b) Dense approximation for polynomial algebras, Bonner Mathematische Schriften, 81 (1975), 115-123.

- 5. PROLLA, J. B., & MACHADO, S., Weighted Grothendieck subspaces, Trans. Amer. Math. Soc. 186 (1973), 247-258.
- SCHWARTZ, L., Espaces de fonctions différentiables à valeurs vectorielles, J. Analyse Math. 4 (1954-56), 88-148.

Received August 29, 1975

João B. Prolla Universidade Estadual de Campinas Instituto de Matemática Caixa Postal 1170 13 100 Campinas, SP, Brazil;

Claudia S. Guerreiro Universidade Federal do Rio de Janeiro Instituto de Matemática Caixa Postal 1835 20 000 Rio de Janeiro, RJ. Brazil