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Abstract 

We obtain an eigenfunction expansion for the operator " A  + V under assump- 
tions (1.2)---(1.5) given below. 

1. Introduction 

The purpose of  this note is to obtain an eigenfunction expansion for the operator 

(1.1) H" = - - A + Z ( x )  

under conditions on V which are weaker than previously allowed (A is the Laplacian 
in E" and V(x) is a real valued function). Before stating our assumptions we introduce 
some notation. Put  

o~p(x) -- Ixf -", 0 </~ < .  

=- - log [x [ ,  f l = n  

= l, f l > n ,  

M p , ,  ~ x ( g )  = f , x y,<~ tV(Y)I'~ 

M S,p,6(V) : supMp,  p,~,x(W), Mp.p(g) : Mp, p,l(V), ~r(x) : M.+l,l , l .x(W). 

Let Mg, p be the set of  those g such that Mp, p(g)<oo, and let M~,p be the set of  
those g such that zs~gE Ms, p, where ga is the characteristic function of the set ~2 c E", 
Our assumptions are 

(1.2) M~,I,e(V) --,- 0 as 6 ~ 0. 

0 . 3 )  V(x) ~ 0 as Ix l  - ~  oo. 
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(1.4) For  each bounded  f2 there is a f l < 4  such that  V E M ~ , .  

(1.5) O~I"ELP = LP(E"), p(x) = 1 +Ixl, 

for  some a ~ 0 ,  l<=p_<-oo such that  

(1.6) a > 1-(n /2p) .  

I f  2n](n+I)<:p<={n, we require ~ > 0 .  

Theorem 1.1. Assume that V(x)  satisfies (1.2)--(1.5). Then there are a sel f  
adjoint realization 111 of  H" , a closed set e = E 1 o f  measure 0 and two famtTies ~ • (x, s, w) 
defined on E " X ( E I \ e ) •  where ~ is the unit sphere [~[ = 1 in E n, with the follOwing 
properties: 

(a) q~ +_EL~oc(E"•215 ). 
(b) For f ixed x, s, ~ + E Cg=L~(S). 
(c) For f ixed s, co, ~ ~ is locally H61der continuous in x and has derivatives up 

to order 2 in L~o e. It  is a solution o f  

( s -  n ' )u(x)  = o. 

is locally H61der continuous in x, s, co together. 

(1.7) 

(d) I f  VEL ~, then ~• 
(e) I f  hECg and 

(1.8) # •  = f h(co)#• s, co) do, 

then #•  is locally HSlder continuous in x, s and is a solution o f  (1.7). 
(f) I f  {El0.)} is the spectral family o f  111, then the limits 

(1.9) F• co) = lim f < u ( x ) # •  co)dx, 
R ~  d i m  R 

exist for  each uE L ~ and 

(1.10) []F+ultg2(t,,) = [JEl(I)ull 

for  each closed Borel set I which does not intersect e. Moreover, for  each such L F+ 
maps EI(I)L 9" onto L~(I, ~). 

(g) Let Pae be the projection onto L~a,, the subspace o f  absolute continuity o f  H 1 
(cf. [17] p. 516). Then 

(1.11) P, cu(x) = l i r a  ft,t-<R F• u(s, co)*• (x, s, co) ds dco 

and 

(1.12) [IPacul[ = liE• ullL2~, ~3, 

where e ' = E t \ e .  The F+_ are surjective. 
(h) I f  W+ are the wave operators given by 

IV+_ u : lim eitHle-itHu~ 
t - - •  
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where H is the self adjoint realization of  - A  (the wave operators are known to exist 
[18]), then 

(1.13) F• W• = F, 

where F is the Fourier transform. 
(i) I f  f ( s )  is any Borel funetion on E 1, then 

(1.14) f (s)F• = F• f(H1). 

(j) I f  ~, p satisfy 
(1.15) a > 1 --[2n/(n+ 1)p], 

then e is a discrete set having no accumulation point except possibly 0 or ~o. 

The proof of Theorem 1.1 will be given in Section 3 using several lemmas 
proved in the next section, The methods of this paper can be used to obtain the 
same results for operators of the form 

(1.16) H" = P(D) + V(x), 

where P(D) is a constant coefficient elliptic operator of order m. In this case (1.2) 
can be weakened to 

(1.17) Mm, a,o(V) -~ 0 a s  6 -~ 0, 

and (1.4) need only be assumed for fl<2m. In the case when (1.15) holds there may 
be a finite number of points which are accumulation points of eigenvalues of H'.  
These are the points 2 for which there exist ~ E "  such that grad P(~)=0 and P(~)=2. 
The proof of these results follow mutatis mutandis the proof of Theorem 1.1. Sim- 
ilar results can be obtained for operators of the form 

(1.18) 1 1 " =  P(D)+Q(x ,D) ,  

where Q(x, D) is an operator of order <-m with variable coefficients. 
Eigenfunction expansions applied to Schr6dinger operators seem to have 

originated with the work of Povzner [2] and Ikebe [1] and have been applied to 
various aspects of scattering theory by many authors (cf. [1--16, 22, 23] and the 
references quoted in them). The approach we have taken is that of Agmon [10] 
with several changes. Rather than working with the L 2' s spaces as he does, we prefer 
to factor the perturbation (in fact, Agmon's use of these spaces constitutes a partic- 
ular type of factorization which we show is not optimal). Our assumptions are too 
weak for essential self adjointness, and we are forced to use a forms extension 
([21,221): 

Another feature of our approach is that the existence of the eigenfunctions is 
established via the scattering theory techniques of [19] together with straightforward 
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local estimates o f  elliptic partial differential operators. To obtain the refined smooth- 
ness of  the eigenfunctions we use Agmon's method. 

Agmon's results [10] were obtained under the assumption 

(1;19) Q (x)~ Ma,~,~,x(V)E L ~ 

for some ~ > 2  and fl<4. Although (1.19) is significantly stronger than (!.2)--(1.5), 
it is much weaker than the assumptions of  previous authors. This indicates the 
strength of his approach. We would like to thank S. Agmon for making his results 
available to us before publication and for some very useful conversations. 

In Theorem 1.1, assumption (1.2) was used to guarantee the existence o f a  
forms extension. It can be weakened.as was shown in [21]. Assumptions (1.3) and 
(1.5) can be replaced by any one of five other sets of  conditions used in [18]. 
March 10, 1975. 

Notation. [A], A*, D(A), R(A)  will denote the closure, adjoint, domain and 
range of  an operator .4. I2 c c t2~ means that the closure O o f  f2 i s  compact and 
contained in f2~. C O is the set of test functions (infinitely differentiable with compact 
supports). Ilfl[~ is the L'(f2) norm of f and Ilf[I is its norm in L2=L~(E"). L2(I, cg) 
is the set of  cg valued functions which are square integrable over L B(C~) denotes the 
set of  bounded operators on c~. H k (O) denotes the set of  functions having all deriva- 
tives up to order k in L 2 (O). 

2, Some lemmas 

We let H be the closure in L 2 of  - A  on C o,  and we put  R(z ) - - - ( z -H)  "1. We 
let {E(s)} be the spectral family of  H. 

Lemma 2.1. Suppose the functions `4 (x), B(x)  satisfy 

(2.1) M2,u,~(IAI+IBI)-~ 0 as ~ - ~  o 

and there are constants ~, p satisfying(1.6) such that 

X ~ (2.2) ~( ) ftx-y <1 ([A(Y)I =+ [ "(y)[~) r iyaL' ,  

then the operators Q(z)=[AR(z)B] and G ( z ) = I - Q ( z )  are in B(L  =) for nonreal z 
and G(s+__ia)~G + (s) in norm as 0 < a + 0 .  The limits are H61der continuous functions 
of  s. I f  in addition 

(2.3) f lx-r t<l  ([A (y)l= + [B(y)l z) dy ~ 0 as Ixl -~ ~ ,  

then there is a closed set e c E  ~ of  measure 0 such that G+(s) has a bounded inverse 
Gl+(s) for s~ e. I f  ~, p satisfy (1.15) then the set e is discrete having onlv O or ~ as 
possible accumulation points. 
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Lemma:2.2. I f .4 ,  • satisfy (2,t), (2.2), there is a H61der continuous map N(s)  
from the positive reals to B(L ~) such that  

(2.4) d(E(s).4u, Bv)/ds = (N(s)u,v) a . e . ,  u, vEC~'. 

In particular, there is such a map M(s) satisfying 

(2.5) d(E(s)Au, Av) /ds=(M(s)u,v) ,  a.e., u, vEC~. 

Let Z, denote the sphere [~l=l in E", put r and 

(2.6) Ts(u)o9 = 2-X/2s("-2)14 F(Au)(sl/2(o), coE Z,, 

where F is the Fourier transform. Then 

(2.7) (M(s)u, v) = (T~u, T,v)~e a.e., u, rECk'. 

Lemma 2.3. I f  V(x) satisfies (1.2), then there is a self adjoint operator H1 or: 
L 2 such that D(IHIllZ2)=D(IZ411Z~)=D and 

(2.8) (Hlu, v) = (Hu, v)-(Vu,  v), u, vE D. 

I f  V=AB, where .4, B satisfy (2.1)--(2.3), then 

(2.9) id(Ea(s)Au, Av)/ds = (T+,u, V+~v),, 

where T+s=T, Gl+(s)* and {El(s)}. denotes the spectral family of  H1. 

The proofs of Lemmas 2.1--2.3 can be found in [18--20]. 
Put Q+(s)=limo<a-,o Q(s+ia). We have 

Lemma 2.4. I f  -4-a is locally bounded and f=A-1Q+(2)g,  then f is a weak 
solution of  
(2.10) ( ~ -  H ) f  = Bg. 

Proof I f  vE C~ and z = 2 § ia, 

(f,  (2- / - / )v)  = lim([R(z)Blg, ( z - H ) v )  = ( g ,  By). [] 

Lemma 2.5. Let f2 be a bounded domain, and suppose gELP(f2) for some p ~ 2  
and BEM~.~ for some fl<4. l f  f is a weak solution of  (2.10), then fELq(I20 for each 
f21c cg2 and each q such that 1/p-1/q<(4-~)/2n.  Moreover 

(2.11) [Ifll~ ~ ~ C(tlfll~ § M~,~(B) 1/2 tlgll~), 

where tl~e constant depends only on p, q, fl, g2, (2~. 

The proof of Lemma 2.5 can be found in [10, Appendix C]. If  a function u is 
H61der continuous in O with exponent 0, put 

Ilullcs(~) -- Ilulls + sup I x -  y l -~  u(y)[. 
x,  yEI'~ 

The following Iemma is also given in [10]. 
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Lemma 2.6. I f  BEM~, 2 for  some ]3<4 and f is a weak solution o f  (2 - -H) f=B,  
then f is locally H61der continuous in f2 with exponent 0>0,  and for  t2 ic  c l 2  

(2.12) Ilfllco<~ a ~_ C(llfl[ a + Mt~a,2(B)a/2), 

where the constant depends only on ]3, f2, 01. 

Lemma 2.7. Assume A, A -1, v are bounded in [2, BEM~,2for some fl<4, uEL 2 
and that 

(113) G+ (2)u = v 

in f2. Then u is locally bounded in f~ and for f]i C c O  

(2.14) llul[~ 1 -~ C(llull + llvlls 

where the constant depends only on A, B, ]3, f2, O i. 

Proof. Let 03 be such that f21c c f 2 2 c  c O ,  and p u t f = A - l ( v - u ) .  By Lemma 
2.4, f is a weak solution of (2,10) with g=u.  By Lemma 2.5, fELq(t2a) for any q 
such that 1/2-1/q<(4-]3) /2n.  Thus 

Ilull~ ~ <- C(llull + Ilvll~). 

Insert a domain f23 between f21 and f22 and reapply Lemma 2.5. This gives 

llull~ 3 <- C(llull + Ilvll~), 

where 1/q--1/r<(4--]3)/2n. In a finite number of steps we obtain (2.14). I 

Lemma 2.8. Under the same hypotheses, i f  A ' i v  is H6lder continuous in f2, 
then the same is true o f  A -1 u. 

Proof. By Lemma 2.7, u is locally bounded in I2. In view of Lemmas 2.4 and 
2.6, f = A - l ( v - u )  is H61der continuous in /2. �9 

Lemma 2.9. Assume A, A -1, vEL~176 and that fEL2(t2) is a weak solution o f  

(2.15) (2 -- H ' ) f  = v 

in f2. I f  BEM~,2for  some ]3<4, then for  each f 2 i c c ~  

(2.16) [Ifllcor ~-- C ( l I / [ ] ~ +  Ilvll~). 

Proof. Since vEL'(I2), there is an fxEC~ such that (2 - -H)f l=v  and for 
each f2~c c t2 

(2.17) ilAIIco<~,) <= cIIvll~. 
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Put u=f-- f~ .  Then u is a weak solution of (2.10) with g=AfEL2(f2). Applying 
Lemma2.5, we obtain 

(2.18) Ilull~ ~ < C ( l l / l l  ~ + Ilvll~) 

for q as given there. Thus a similar estimate holds for Ilfllq ~.  Reapplying Lemma 2.5 
as many times as necessary, we finally get such an estimate for Ilfll~ ~. Now we go 
back to (2.15) and apply Lemma 2.6. [] 

3. The proof 

Our proof  of Theorem 1.1 is based upon the lemmas of Section 2. Put 

z(x) z = e21Xl~( sup Mp,2,1,r(V) + 1), 
Ix--yl<l 

where fl, depending on x, is given in (1.4). We define 

A (x) = z (x), 

= IV(x)l~/~, 

= l / z ( x ) ,  

~(x)~ < IV(x)[ 

�9 (x )  -~ < lV (x ) l  ~ z ( x )  ~ 

IV(x)[ <= Z(x) -~, 

and B (x ) =  V(x)/A(x). From these definitions it follows that A, A -1 are in L~o c and 
that A, B satisfy (2.1)--(2.3) with c~, p the same as for V. L e t / / 1  be the operator 
described in Lemma 2.3 and let T• =T•  be the operators defined there. Let Z 
be the set of those ~EEn such that I~[~Ee, the closed set of measure 0 described 
in Lemma 2.1, and let e" denote the complement o fe  in E 1. For  s E I c  ce ' ,  Lemmas 2.1 
and 2.2 show that there is a constant depending only on I such that 

(3.1) IIT+ ull~ <= CIIlull. 

For herd, put U• Consequently we have 

(3.2) [[U+ h[I <= C~ ][h[[~. 

Moreover we have for ~0 E Co 

(3.3) (G+ (s) U• rp) = (h, T~o)~ = C~(w h, A~o), 

where Cs= 2-1/~s( "-~)/4 and 

(3.4) w h (x, s) = f ,  h (co) eiX'~ 

Note that w h is a bounded solution of ( s - H ) u = O .  By (3.3) we have 

(3.5) G• (s) U• h = C~Aw h, 
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and if we put cP• we have 

(3.6) ~+h  = Cswh-A-1Q•177 

Applying Lemma 2.7 to (3.5), we see that for each bounded f2 

(3.7) Ilf+hll~ <= Cr,~llhll~e 
Thus for each x, s, U• is a bounded linear functional on c~. Consequently there is 
a function U• s, co) such that 

(3.8) U• h(x, s) = f (x, s, ooao, 
and 
(3.9) IIU+ (x, s, �9 )ll~ = sup ]U+ h(x, s)[/llhll~. 

We shall show that Ui(x, s, (a)EL~oc(En• for each s>0.  Assuming this for the 
moment, we note that for ~p E Co 

(h, T• ~o)~ = (U+_h, ~) = f f ~h(co)V~(x, s, o)e(x) &o dy. 
Hence 
(3.10) T• e = f o(x)U• s, o,)ax. 
Put 
(3.11) F• = T• = f ,p(x)~• oOdx. 
By (2.9) 
(3.12) ( F ~ f  F+ g)z2a,~) = (Ex(I)f, g). 

By (3.6) and Lemma 2.4, �9 ~h is a weak solution of (2.10) with g =  U~h. Consequently 
it is a weak solution of (1.7). 

N o w w e  turn to the regularity properties of the U• s, o). We suppress the 
symbol • (in U only). Assume gEL2c~L=(s satisfies the hypotheses of A. Put 

X(x, r = Cs{Gx(s)(g(.)e-qr Y(x, ~) = A-~(x)X(x, ~) 

where s = I~1~ I c  c e ' .  Thus 

(3.13) /IX(., r -<- Cz lIgll- 

By Lemma 2.7 we have 

(3.14) fIX(., ~)11~ ~ <- C(llgll + IIgIIg). 

Since G(s) is H61der continuous in s (Lemma 2.1), 

(3.15) [IX(., ~) -- X( . ,  r/)[[ <= CI~ - t/I~ [[g[i, 

for some 0>0. Assume that A-~g is constant in f2. Then by Lemma 2.4, Y(x, O -  
- Y ( x ,  rl) is a weak solution of (2.15) with v=(s-lrl]2)q~(x, rl). By Lemma2.9, 
(3.14) and (3.15) 

(3.16) [[Y(', ~ ) - Y ( . ,  tt)llcor <= C[~-ql~ + Ilgll~) 
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for 121c ~O~ This shows that Y(x, 4) is H61der continuous in x and ff in OX2r ,  
where XI={~[[~[2CI}. Put 

x h  = f ,h (o~)X(x ,  ~)do~, Yh = A-1Xh, co = ~/1r 

Then one checks easily that 

(3.17) 

Thus 

(3.18) 

By Lemma 2,2 

a (s)Xh = c, gw ~. 

(Xh, (p) ~- (h, F[gG1 (s) (p]). 

[IF[gvll[~ = (MI (s)v, v), 

where Ml(s)  is a H61der continuous map from the positive reals to B(L2). Thus by 
Lemma 2.2 (cf. [19]) 

(3.19) ][Xh/I <= c~]lhlle, l]g~, ][g~ = Ilo~g2ll 1/2. 

In view of Lemma 2.7, (3.17) and (3.19) imply 

(3.20) 

This gives 

(3.21) 

For n ~ 0  put 

IlXhl/% ~ ~ C Ilhll~ (llg~ + l]gll~). 

IIX(x, .)11, ~= c(llg~ + IIgll~=), x c  01. 

g . = A  in ]x]~=n, and let it vanish outside. Put X , ( x , O =  
=cs{Gl(s)(g,(.)d(e"))](x) with X~h defined similarly. For s bounded and n 
sufficiently large, A-lgn is constant in s Thus by (3.21) 

(3.22) IIX,(x, " ) - X m ( x ,  .)ll~ ~= Ilg,--gmff ~ 0 

uniformly in ill. Thus 

(3.23) f ~l f ~ [X.(x, r  X . ( x ,  r ax -~ o. 

By (3.5), (3.17), (3.19) and Lemma 2.7 

f iX .h -  Uhll~l -,- 0, h~ ~e, 
which implies 

(Ix.  (x, �9 ) - U(x, .)1, h)~ -~ 0, x C ~1. 

Thus X,(x ,  { )+U(x ,  w, co), Y,(x, { )+~(x ,  s, o)) in L2(f21• In particular for a.e. 
these converge in L2(O1). Since Y, is a weak solution of (2.15) with v=0,  we 

have by Lemma 2.7 
IIY.(', ~)[]co(~) ~= CIIY.(-, ~)[I ~1 <- Cr 

for each 0 2 c  ~ 01, with C~< co for a.e. {. This shows that there is a subsequence 
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converging in a H61der norm to �9 (x, s, co). Interior L ~ estimates for elliptic equa- 
tions yield 

IIY.(', r162 <- CIIY.( . ,  r 1, 

again with the right hand side bounded for a.e. r Thus a subsequence converges 
weakly in H~(Q~). Thus we have that for a.e. r ~ (x ,  s, co) is in C~ 
for each bounded Q. Since each Y, is a weak solution of  (1.7), the same is true of  ~. 
We have verified (a)--(e) and part of  (f). The remainder of  (f) follows from Lemma 
3.16 of  [19]. To prove (1.11) note that P,,c=El(e'). Thus 

(eocu, v) = (F+ u, F+ v)L,~, ~ .  

Let v have compact support and substitute for F+v using (1.9). Interchanging the 
order of  integration gives (1.11). (1.12) follows from (1,10). (h) was proved in [19]. 
To prove (1.14) note that 

F+_f(HOW+ = F+ W+f(Ho)= Ff(Ho)= f(s)F 

by (1.13) and the intertwining relations (cf. [19]). Thus (1.14) holds on LZa~=R(W+) 
by (1.13). Moreover, both sides of  (1.14) vanish on (L]~) . This proves (i). (j) was 
proved in [20]. �9 
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