
Some remarks concerning points of finite order 
on elliptic curves over global fields 

Gerhard Frey 

Introduction 

Using the reduction theory of Nrron  we give necessary conditions for the 
existence of  points of  order q on elliptic curves E rational over global fields. An 
application is the determination of all elliptic cu rves /Q with integer j and torsion 
points, generalizing Olson [8]. Another application is a theorem about semistable 
reduction whose consequences generalize a theorem of  Olson [9] ( K =  Q) and give 
divisibility conditions for  the discriminant and the coefficients of  E related with 
the paper of  Zimmer [13] as well as "diophantine" equations related with Fermat's 
equation that are discussed for K - - Q  and K a function field. 

We are interested in elliptic curves over global fields K (i.e. : K is a finite num- 
ber field or K is a function field of one variable over a finite field) and especially 
in the torsion group of  E(K), where E(K) is the group of K-rational points of E. 

It  is well known that E(K) is finitely generated, it is conjectured that if K is 
a number field then the order of  the torsion group of  E(K) is bounded by some 
number depending only on K (cf. Demjanenko [1]). In any case in order to handle 
with E(K) the first step is to determine the torsion group. In principle this is not so 
difficult; if  one uses the results of  Lutz [6] and Zimmer [13], one sees immediately 
that for every E there exist points of q-power-order only for a finite number of 
primes q, as the equations for points of order q are known (in principle) one has 
only t ~ test what orders really occur. But as the computational work grows very 
rapidly with q it is usefull to look for sharper necessary conditions, and this shall 
be done in this paper. 

The method is to use the classification of reduction types given by Nrron  [7]. 
Then the local result is that for nearly all primes p (the exception set is in the case 
of  a number field only depending on the ramification of  K/Q) E has to have semi- 
stable reduction in p if E(K~) has a point of order q. (Lemma 1 and lemma 2). 
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In the global situation the reduction theory is used at f r s t  to determine all 
elliptic curves defined of  Q with integer j and torsion points, this generalizes a 
result of Olson [8] who deals with curves with complex multiplication (Theorem 1). 
Then we use the global version (Theorem 2) of  the local reduction lemmas to prove 
another result that for K = Q  is found in Olson [9]: For  given j there are only 
finitely many elliptic curves with points of  an order greater than 2. I f  q is great 
enough and E(K) contains a point of  order q then E has to have semistable reduc- 
tion in all primes of  K, and this implies a "diophantine" divisor equation for the 
discriminant of  E together with some divisibility conditions (proposition 1 and corol- 
laries) from which results as contained in Zimmer [13] can be concluded. The results 
are more manageable if we treat the special case K =  Q (Theorem 3), for instance: 
I f  E(Q)  contains a point of  order qi (q>=5, qi=>ll) then E has semistable reduc- 
tion in all primes, and for all primes p with vp(j)<O and p~+__l m o d q  ~ we 
have: 

pq'lA (A the discriminant of E). If  i=21 then the equation: 
U z -  V~-=-123Z q' has an integer relatively prime solution, and if E has a point 

of  order 2q 2z rational over Q then the equation: A~-TqZ~-'~Tq~ -~0-~1 r ~  ~2 has such a solu- 
tion (Theorem 4). These equations are related with Fermat 's equation; this is not 
too astonishing in view of the results of Hellegouarche [4] and Demjanenko [1]. 1) 

A natural question is the converse problem: If  one has a solution of  the equa- 
tions above. Does this imply the existence of an elliptic curve over Q with a torsion 
point of  order q~. This question leads to diffcult realization problems over Q: I f  
the answer is negative then there exists an extension K/Q with Galoisgroup GI (2, q) 
unramified over Q((~). 

In the last paragraph we assume that K is a function field and give a short 
discussion of the results one has to expect in this case. 

The methods used in this paper are elementary except the reduction theory of  
N6ron and the theory of  Tate curves that enable us to avoid nearly all computations 
occuring in the papers of  Olson and Zimmer. So we never use explicitely the addi- 
tion formulas and the coordinates of  the points of order q, we only need the Tate 
parametrization of  these points in the places with bad reduction. The price we must 
pay for this is a loss of  information about the points of order q (cf. Hellegouarche 
[4]), we only get information about the coefficients and the discriminant of the equa- 
tion. But in practice this disadvantage is perhaps not  so bad: Given an elliptic curve 
the only accessible things are just the coefficients, and the necessary criterions for 
the existence of torsion points given in this paper may help to exclude a lot of primes 
from the concurrence. 

1) Added in proof: Recently B. Mazur proved that there are no torsion points of order greater 
than 12 rational over Q and hence the assumptions of Theorem 3 and 4 can never be satisfied. 
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1. Local theory 

Let K be a field complete with respect to a discrete valution v with residue 
field k, k being perfect, and of characteristic p_->0. Let E be an elliptic curve 
defined over K with absolute invariant j and Hasse-Invariant 5. For  simplicity 
we assume: p # 2 ,  3, and then we can find a WeierstraB normal form for E: 

Y~ = Xa--g2X--ga, j = 1 2 s . 4 . g ~  -1, A = 4g~--27g~, 

if j # 0 ,  12a: 6 - - 1 / 2 g 2 . g a  m o d K  .2. 
Without any loss of  generality we may always assume: v(g~)>-O, v(ga)>-O. 

I f  L is an overfield of  K, then E(L) is the group of  L-rational points of  E. 
N6ron [7] proves the existence of  a minima/model  E* of  E lying in some 

(possibly) high dimensional projective space and defining a group scheme over the 
ring of  integers of  K. We will use the following properties of  E*:  Let  E~(L) be 
the kernel of  the reduction map mod v, and E *~ the group scheme over k corre- 
sponding to the special fiber of E* (the "reduction" of  E*), then we have the 
exact sequence 

0 -* E*(K) ~ E*(K) -~ E*~ ~ 0 

Eo* (K) has a natural filtration ... E~ (K) D EL,  (K) ~ . . .  with E~ (K)/E*+I (K) ~-- k+. 
I f  C o is the connected component of  E *~ then C o is isomorphic as algebraic 
group either to an elliptic curve, or to the multiplicative group G,, (possibly after a 
quadratic extension of k) or to the additive group G a. In the first case it follows 
that E *~ is connected, we say: E has good reduction. In the second case: E*~ ~ 

Z/m with m =  - v ( j ) ,  E has reduction of  multiplicafive type, which is said to be 
split iff C o _~ Gin. 

In the third case the table in N6ron [7] shows that if v ( j ) < 0 ,  then 
IE*~176 and if v(j)>=O then 

Z/3 
E*~ (k)/C o (k) c Z/2 >(Z/2. 

We can use j ,  A and 6 to characterize the reduction types if char (k) # 2, 3 : 

I f  v ( j ) < 0  then we have reduction of multiplicative type iff K(I/6)/K is un- 

ramified. It  is split iff K(V6)=K. 
If  v(j)~=O then we have good reduction iff v(A)-O rood 12. So after a finite 

totally ramified extension of  K of  degree dividing 12 we get an elliptic curve with 
either good reduction or with reduction of multiplicative type. 
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Definition. E has semistable reduction with respect to o iff E has good reduc- 
tion or E has reduction of multiplicative type. E has potentially good reduction 
iff v(j)~O. 

I f  v ( j ) < 0  one has a very explicit description of E(K) due to Tate (cf. Roquette 

[12], Frey [2]): If  Kx=K(1/~) then there is a canonical isomorphism 

go: E(K1) 
1 

where QvEK and " -  - i (So v(Qv)=-v( j ) ) .  j--~+Zi>=oa~Qv with aiEZ. 

I f  G (K1/K) = <a> # 1, then 

(q~oa)(P) = ((aogo)(P)) -~ for all PEE(Kx). (I) 

We want to use these informations to determine the torsion points E(K)t of E(K)r 

Lemma 1. I f  v(j)<O and E has not semistable reduction then ]E(K)t/WI~4, 
where W is the p-primary part of  the group of roots of  unity in 1s in the kernel of  
the norm map from K1 to K. 

Proof. (1) implies: E(K)={aEK~/Qo, NKllica--1 mod O~}, and so: 

E(K)t = {aEK1, ~n: a" = Q~, Nx~lKa = Qt}/(Q~) = 

= {~EKa, NKa/~:( = 1}u{aEK1, a 2 = (.Q~, Nx~tKa = Q~} 

((  a root  of  unity). 

So E(K),/go -1 {(EKx, NK~/~(()= 1}cZ/2 ,  and so the assertion follows. 

Corollary. I f  v ( j ) < 0 ,  E not semistable and char (K) = p > 0  or char ( K ) = 0  and 
p - 1  

v(p)=e is not divisible by ~- , then ]E(K)tI<=4. 

Now let us look at an elliptic curve E with potential good reduction. For  
simplicity assume: p r  3. Let be v(A)=l with 0 < l<1 2 .1 )  After a ramified ex- 
tension L/K with [L:K]=n<=6 we find an elliptic curve E'/L isomorphic to E 
over L with good reduction: I f  we give E '  again in WeierstraB normal  form 

y , 2 =  X,3_g~X_g~ 

then an isomorphism go': E E" E '  is given by 

(x,Y) (t x, t y) 
,,. l 

with vL(t ) - (vL=normed valuation of L). 
12 

Now let P =  (x, y) be a point of  order m of  E(K) with (m, 6) =- 1. 
Let E* be the minimal model of E with respect to v, and p*o the reduc- 

tion of P rood v. 

1) 1 may be equal to 2, 3, 4, 6, 8; 9, 10 (Neron [7]). 
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As the order of p,*o is prime to 6, P*~176 and so the order of p*0 is a 
power of p. By Hensel's Lemma the order of  P is a power of p, say: pl. 

Now by looking at the proof  of  N6ron [7] for the existence of minimal models 
(pp. 106--120) one easily verifies that the fact that p*o lies in C~ implies: 
v(x)_-<0. Hence: <p(P) : (x ' ,  y ' )  lies in the kernel of  the reduction map with respect 
to vL. But this has consequences: Let be c h a r ( K ) = 0 .  Then pi-1]v(p)=e, and 
p i - l ( p _  1)<=vL(p)=n. e<=6e. (See Lutz [6] or Serre [11], the reason for the inequali- 
ties is the fact that the kernel of the reduction of E '  is a formal group of  height 
I or 2). 

Let be char (K) =p  >0.  Let be (X', Y') a generic point of E' ,  (X~, Y~)----- 
=p.,(X', g'),  a n d  

f-'/" x ;  = c. + Z / : .  +1 e, 
Y; l ,Y 'J  I ,Y'J  

the expansion of  Xp/Yp. The coefficients c i are integral with respect to v. cp is 
called the Hasse-Invariant (not to confuse with 6) of  E ' .  cp=0 iff E is super- 
singular. 

The existence of  the point of  order pl in the kernel now implies pi(p_ 1) <= 
vL(ep) and piivL(ep). (cf. Frey [3].) 

So we proved 

Lemma 2. Assume: p # 2 ,  3, and E has potential good reduction but not good 
reduction. Let L be an overfield of  K, totally ramified, of  degree n<-6, such that 
E is isomorphic to E" over L and E" has good reduction. I f  c h a r ( K ) = p > 0  let 
cp be the Hasse-Invariant concerning the points of  order p of  E'. Assume: 

I f  c h a r ( K ) : 0  then pi-lXv(p) or (p- l )p~-I>6v(p) .  
I f  c h a r ( K ) : p  then piJ(vL(cp) or (p-1)pi>vL(cp). 
Then {E(K)t I c Z/2 X Z/2 X Z/3 X (Zip i- 1)~. 

2. Global applications 

We now assume that K is a global field, that is: K is a finite extension of  Q 
or a function field of  one variable over a finite field. We give now some applications 
of  the local theory described above. 

I f  v is a valuation of  K, let K v be the completion of K with respect to v. 
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w 1. Torsion of  elliptic curves over Q with integer j 

We look at E:  Y2-=XZ-geX-g3, g~, g3EZ, and 

j -=  12s.4-~-~ Z. 

If  q is a prime, and v~ the q-adic valuation, then vq(j)>-_O, so E has everywhere 
potentially good reduction. 

We begin with p = 2 .  I f  E has good reduction in p = 2 ,  it follows from Rie- 
mann's hypothesis that the order of  the group of  torsion points with order prime 
to 2 is at most 5. I f  E has bad reduction in p = 2  it follows that beside of points 
with an order divisible by 2 there is at most a point of  order 3. 

Next we look at p =3.  I f  E has good reduction in p - -3  then the order of 
the group of torsion points with order prime to 3 is at most 7. If  E has bad reduction 
in p = 3 then there are only points of order 3". 2. 

The prime p = 5  gives in the same manner: The group of  torsion points with 
order prime to 5 has at most 10 elements. I f  we combine the statements above we have: 

The torsion group E(Q)t of E(Q) is 
either equal to Z/5 
or contained in Z/6 
or equal to Z/4 
or equal to Z/2 X Z/2 

(0) 
(1) 
(2) 
(3) 

We now want to show that the case (0) does not  occur. Assume that E (Q ) t=  
= Z/5. Then it follows from above that E has good reduction in all primes except 

p---5. 
We choose g2 and gz such that ]AI is minimal in N, so: A=+__285 ". j E Z  

implies 5" _3 2 g~, so: 5"[1g3, n = 0  rood2. We have: 12Z-g~-3n.4~.g~=+__123435 ", 
o r  

A3--B2= • with A, BEZ. 

I f  n - 0  mod 6 it is well known that then B---0, A = ___ 3 . 4  *. 5 "/s, and so: j =  12 n. 
But if  g3= 0, E has always the point of  order 2 given by (0, 0), and this is a con- 
tradiction. 

Now let n ~ 0  mod3.  W e l o o k f o r  a solution B2=AZ+_3.42.5" with 5IA, 5"lIB z. 
But as 12 is no square mod 5 there is no such solution, and we are done. 

A short look at the table in Nrron [7] shows that the case 2 can only occur if E 
has everywhere good reduction except at p--2 .  The same arguments as in 2) together 
with a study of the list of  curves having a point of order 2 show: j has to be equal 
123 or 2333113 . 
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Now we handle with the case 3. Let  be given E by: 

y 2 = a X ( X - 1 ) ( X - # )  with # E Q * \ { 1 } ,  aEQ 

(After a transformation over Q we always may assume that E has such an equation, 
if E has 4 points of order 2 over Q.) 

This equation implies: 

j = 44. (1 _ # + # 2 ) 8 .  (1 _#) -2 . /~ -~ .  

jCZ, hence: 2a.ktEZ. With 8=24 .#  we have: 

j = (28 _2% +~)3 .  ~-2(2~_~)-2. 

As e-(2~--e)l(2a--2%+e2) 3, wehave:  e.(24-e)123"3, and hence: e and (24-e)  
are powers of  2. So 5= - 2 4  or 23 and j =  123. 

So we have the result that E fulfils case 3 only if j =  123. On the other hand 
Olson [8] has the result: If  j=123 then ease 2 or ease 3 may happen, and if  
j = 2 3 .  33. 113, case 2 may happen, with an exact description what points will really 
occur (depending on the Hasse-Invariant), so we can say that we exactly know the 
curves E with [E(Q)[=4. 

Now let E fulfil the case 1. 
Firstly we look for points of  order 3. 
A slight computation shows that E has a point of  order 3 rational over Q iff 

E has an equation: Y2-=X3+A2X2+2A.CX+C 2, with A, C6Z. For  A = 0  we 
get: j = 0 .  From now on we assume: A~0 .  

The substitution X-~A-2X, Y ~ A - 3  y gives the equation: 

y2 = X3+ X2+2C,X+C,2  

with C'E Q. We get a Weierstral3 normal form: 

y2 =_ X3+(2C , _  1/3)X+ C '2-2/3C'+2/27, 
and so 

vp(C') > 0  implies: 
j = 4 4 ( 1 - 6 C ' ) 3 ( 4 - 2 7 C ' )  -1 �9 C,-3. 

vp(j) = 8Vp(2)-3vp(C')-vp(4--27C'), 

hence: For  p r  vp(C')<=O, for p = 2 :  v2(C')<-l,  so: 2.C'-X~ktEZ.  
This gives: 

j = 24(# - 12) 3. # .  (2/t - 2 7 )  -1. 

I f  p - - 1 2 r  then: (2/z-27,/a) and ( (# - -12) , (2p-27) )  arepowers  of 3 and we 
must have: 

2 # - 2 7  =_+3", 
o r :  

# = (1/2)(__+_3"+27). 
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Hence: 

j = 3 6 - " ' ( l + 3 " - ' ) a . ( l + 3 n - a ) ,  or: j = 36-"(1--3"-1)a(3"-3--1), 

for n = 0  . . . . .  6, C ' = 4 - ( 2 7 + 3 " )  -1 resp. C ' = 4 . ( 2 7 - 3 " )  -1, n # 3 .  
Next we want to compute all elliptic curves with exactly two points of  order 2. 

The cases j = 0  and j---12 a are known (cf. Olson [8]), and so we assume from now 
on that j # 0 ,  128. 

E has exactly two points of order 2 iff E admits an equation: 

y2 = X ( X  2 _ 2aX + a ~-- b2 d) 

with a, b, c, dEZ, d squarefree, abd#O. 
Then a Weierstrag normal form of E is: 

Hence: 

Let  be p # 2 .  
lows in the same way: 

hence: 

y 2 =  Xz  (1/3ae+bed)X_(2/3ab2d_2/27a3).  

j = 4Z(a 2 + 3b~d)3(b2d �9 (a 2 -  b2d)9-a. 

If  vp(a2)<vp(b2d), then vp(j)<O, a contradiction. If  p = 2 ,  it fol- 

v~(a2)+6 @ v2(b2d), 

b~d126 a 2. 

Let be # E Z  so that # .b~d=26a  2. Then we get: 

j = (#+3.26)3( / , -26)  -3. 

From this we conclude that # has to be equal to 26+__2 ", and this gives: 

Theorem 1. Let  E be an elliptic curve defined over Q with j E U. Then either 

E(Q)t = {0} or E is one o f  the curves listed in the following table. 

j = 224-3"(1+2"-8)3. 
j is an integer iff 0_--<n<--12. 

26• is no square for 0_--<n<--12, except for n-----9:26+29=242 and n = 6 .  
In all other cases choose bEZ\{O}  and d square free so that (2e_+2")b2d is a 
square (=a2). 

We see in this way that we find for all admissible j an elliptic curve that has a 
point  of  order 2. But for j #O ,  126 all elliptic curves with the same absolute invariant 
have the same number of points of  order 2. So we have exactly determined all elliptic 
curves with exactly two points of  order 2, and taking all considerations together we 
have proved the following 
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E (Q) t  

= Z /2  X Z /2  

= Z / 4  

Z / 2 = E ( Q ) t = Z / 6  

Z/3  c E (Q)t = Z /6  

= z/6  

12 ~ 

122 

2332113 

0 
12 ~ 
22~-2-(1 ___2--s)3 

(0 _~ n _ 12) 

0 

3~-,,(1 + 3--1)8(1 + y ,-3 ) 

O < - n ~ 6  

36=' (1  - 3"-x)3 (3"-  2 -  1) 

( O ~ _ n ~ _ 6 ,  n ~  3) 

0 

243252 

Equa t i on  

Y~ = X3 - g2 X, g2 E Z 2 

y2 = X 3 + 4X 

y2 = X 3_ 11D~X+ 14D 3, 

D = 1,2 

y2 = X a + k ,  k C Z  a 

any  equa t ion  wi th  admiss ib le  j 
no t  appea r ing  in line 1 o r  2 

y~ = X a + k ,  k E Z  ~ 

y~ = X3 + X~ + 
8 

+ ~ X + - -  
2 7 + 3  n 

y2 = X a + X 2 +  

8 

4 ~ 

(27 + 3n) 2 

4 2 
+ 

27 -- 3" X + i 2 7 -  Y')~ 

Y~ = X 3 + 1 

- 4  [ 2 ~ 
Y" = X3 + XZ + ' ~  X + [ - - ~ -  ) 

w 2. Necessary conditions for the existence of torsion points 

Let K be a global field. I f  char (K) =p  > 0  then assume that p ~ 2 ,  3. I f  
char (K) = 0 and q a prime we define: 

e~=[min{%}], where ~ is a place of  K and % the ramification of s 
~lq  " 

over Q. 
I f  char (K) =p > 0  and ElK is an elliptic curve with discriminant A, then we 

define: L:= K(A1/12), let E'/L be an elliptic curve isomorphic to E over L with 
good reduction in all places q with vq ( j )  > 0 with Hasse-Invariant cpEL. Let E be 
the divisor of cp. 

Theorem 2. I f  E(K) contains a point of  order qi (q a prime ~ 5) then E has 
semistable reduction in all places ~3 of  K whose residue field has a characteristic 
different from q. Let ~ be a place of  K with residue fieM ks~ and char (k~)=q.  
Then E has semistable reduction in 5& i f  

i) s ~,E (regarded as divisors of  L) i f  char ( K ) = q > 0 .  

ii) qi-l~(eq or qi-l(q--1)>6e~ i f  c h a r ( K ) = 0 .  

Proof. Just apply Lemma 1 and Lemma 2. 
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Corollary 1. For given j # 0 ,  123 there are only finitely many elliptic curves 
with points of an order greater than 2. 

Proof. Let El, E2 be elliptic curves with absolute invariant j and Hasse- 
Invariant 61 resp. 63. 

Firstly assume: char (K) = 0. 
If E1 and E 2 have both points of prime order greater than 3 then E 1 and E2 

have semistable reduction outside the fnite set of places ~ with ea>l,  or 
d F'~'- 'N 

�9 5.7. We claim: K12=K[V~I is unramified in all such places. To ~12.3 s e e  
kr  -.-~] 

this let be ~ so that v~(j)<0. Then K(I/~) is unramified in ~ ,  and so KI~ is 
unramified in ~.  

If  v~(j)>=O then E1 and E2 have good reduction in ~ ,  and we can choose 
equations for E1 and for E2 with discriminants A1 and A2 such that v~(A1)= 

" s o  as ~ 2  K12 =v=(A2)=vz [t,~l] is unramified in 
J 

If E1 has a point of order 4 then v~(j)>-0 and ~ { 2 implies: E 1 has good 
reduction in ~ ,  and we can argue as above for s ~ 2. 

If E1 has a point of order 3 and if E1 has potentially good reduction in s 
(~  ~ 2, 3) then we have 

ve(A(E1)) = mod 12. (c.f. [7], p. 124) 

But since ve(A(E~))-ve(A(E1)) rood 6, E~ has a point of order 3 only if ve (~0-  
-ve(~2) rood2 in all ~ with v~(j)>=O. Hence there are only finitely many 
curves E1 . . . . .  E s with invariant j having a point of order 3. So choose ~ such that 

i) ~ ' 2 . 3 - 5 - 7 ,  

ii) El, ..., Es have good reduction in ~ and 

ii) eq = 1. 

Then if E, E" are elliptic curves with invariant j, Hasse-Invariants c51 and c~2 and 

points of order greater than 2, then K(~/~2) /K  is unramified in ~.  As there are 
only finitely many extensions of degree 2 over K with this property we are done. 

Now assume: char (K)=p>3.  Let Ex, E2 be as above. Again we claim: 
/ ,  

K / ] / a l l  is unramified outside a finite set depending only on El: 

Let ~ be a place of Kwith  v~(j)>-O and ~ ' Z l .  
If v~(E~)>0 then the reduction of E~ (defined as in the theorem) is super- 

singular. But then the reduction of Ex is supersingular too, and this gives a contra- 
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diction. Hence re (E2)=0 ,  and so E2 has to have good reduction in ~ ,  especially: 
f / - ' = ' - ' i t  

K { V ~ I / K  is unramified in ~ .  

Corollary 2. Let E have a point of  order q' with q>- 5, q r  (K), qi>- l l and 

qi-1;( eq or eq <q I-1 q -  1 Let y 2 = X Z - g 2 X - g  z be a Weierstrafl equation for E. 
6 

Then if ~3 divides both (g2) and (gs) and ~3;( 6 we have w~(g2)-O m o d 4  or 
w~(gz)---0 rood 6. Moreover we can choose g2 and g3 such that for all ~3~( 6 with 
v ~ ( j ) < 0  we have v~(g~)=v~(gs)=O. 

Proof. E has semistable reduction in all places of  K. Let be v~(j)>=O. In 
the completion K~a we find g~, g~ defining an elliptic curve isomorphic to E over 
K~ with v~(A)=0. So v~(g~)=0" or v~(gs)=0.' But as g~=~dg2 and gs=0~, 6g3 
for some aEK~ the corollary follows. 

Let be v~ ( j )<0 .  As v,(j)=3v~(g2)--v~(A) and v~(A)->min {3v,(g2), 2v,(gs)}, 
we have: 

3v~(gz)=2v~(gz). As 6=- l /2g2 .gs ,  and as K( l /~ /Kis  unramified it follows 
that  v~ (gz)- v~ (gs) mod 2. 

Hence v~(g2)=0 rood4  and v~(gs ) -0  mod 6. The approximation theorem 
in K gives the corollary. 

What happens if ~316. (Automatically K is a number field then.) We are 
interested in the case that v ~ ( j ) < 0  if ~[6. At first assume: ~312. Then we have: 
3v~(g2)+2v~(2)=2v~(gs) and v~(g2)+v~(2)--v~(g~) mod 2. This implies: 

We can choose g~ and g~ such that v~(g2)=O, v~(gz)=V~(2). Now assume: 
~13. We have: 3v~(g2)=3v~(3)+2v~(gz)and v~(g~)-v~(gz)mod2. Hence: We 
can choose ge and gz such that v~(g2)=v~(3)+2, v~(gs)=3, if v~(3)---1 rood2,  
or v~(g2)=v~(3), v~(g~)=0, if v ~ ( 3 ) - 0  mod 2. 

With U=3-~-g~ ,  V = 2 - 1 . g z  we get 

o r  

j = 123.4 
33U 3 

33. 4U 3 - 2 7 .  4V ~ 
= 12 3 . Us(u z -V2) -1  

( j)  = (123 . U 9 ~ - 1 .  ~- l f l  

with ~30,~31 divisors in K with ~3o.~3~=(Us-V~),  ~o_->1 and v ~ ( j ) < 0  iff 
v~(~3o)>0, (~3o, ~1)=1 and the common divisors of  V, ~o resp. U, ~30 divide 3, 
and if v~(U)~O, v , (V)~O then v$((3)~1)~0. 1) 

1) If One would push the discussion a little bit further at this point one would get results similar 
to the results in Zimmer [13]. 
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We know even a little more about ~1~3o: If there are no roots of unity o f  
order qi in K,(1/~, for example if Ik~l ~ +- 1 rood q* then the point of o rder  q* 
corresponds to an element aEK~(1/6) * with aq'-~Q;, where (s, q ) = l  and Q~ is 
the period of E at %X. Hence: 

K~(1/~=K~ and qi[v~(j), and so qilv~(~o)-3v~(12U ). The Riemann 

hypotheses implies that ~31~o if 2 ~l/~l+ ] k ~ l < q t  1. From above we conclude: If 

21/[k,[+l+lk,  l<q ~ then q* divides v~(~30)-3v,(12. U). 
We summarize these facts in 

Proposition 1. Assume E fulfils the conditions of  Corollary 2 of  Theorem 2 and 
has bad reduction in all primes 9~ that divide 6. 

Then ( j ) : ( 12U)~3o~3~  -12 with ~3o~3~z:(Uz--V2), (~3o,~31):1, ~3o~1 
((U), ~30)1(3), v~ ( j )<0  iff  v~(~0)>0, and qilv~(~3o)-3v~(12U)/f [k~t ~ + 1 rood q'. 

Corollary 1. I f  K is a number fieM and U, V are choosen to be integers in K 
(this can always be done) then NXlQ(A)=d o �9 d~ 2, and i f  ~]p and 21/Ik~l + Ik~l + 1 <q' 
then pq'ldo. 

To sharpen the situation assume: i=2L LetPi  be a point of order q~ in E(K), 
and P~ = q~. P~, this is a point of order q~. 

If ~3 is a place of K with v~ ( j )<0  then 

If ~o(Pt):a l �9 Q; with O~=v,(at)<v~(Q,) then q~(Pi):a,. Q; with O<=v,(ai)  <= 

<v~(Q~), and q%~(ai)==-v~(at) mod v~(Q~). 
Let be qr~ minimal such that q'~v~(at)~-O rood v~(Q~). Then if % > 0  then 

q,,+l is minimal with qr*§ rood v,(Q~). 
Hence q'~+t[v~(j). 
Now let E" be the curve isogeneous to E and defined by the isogeny kernel (Pl)- 

Then again E '  is semistable and v~( j ' )<0  iff v~(j)<0. But by the local theory 
(Roquette [12]) one knows: 

v~(j') : q1-~r~, v~(j). 

Hence q~t-~lv~(j" ), and as l>=%: 

q'[v~(j'). 
So we have 

Corollary 2. Under the assumptions of  Corollary 1 and with i=2l there exists 
an elliptic curve E" isogeneous to E over K, such that ~30=--(H~6)(123).~3~ ~ where 
~3 o is defined with respect to E" in the same way as ~o with respect to E. 
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In a special case we get a simpler result: 

Corollary 3. The same assumptions and definitions as in Corollary 2 and more- 
over we assume that ~'~ is a principal ideal, the class number of  K is prime to q, and 
v~(3)=O mod 2 for all ~.  

Then we find U', V', defined with respect to E', such that U ' 3 -  V '2 =~ .12 3. Z q', 
where ~ is a unit of  K, with U', V', Z relatively prime integers in K. 

w K = Q  

It is now easy to get the following results: Let be E an elliptic curve defined over 
Q by the WeierstraB equation 

y 2 =  X 3 _ g 2 X _ g 3  

with g2, g ~ Z  such that [A[ is minimal 

Theorem 3. Assume: E has a torsion point of  order q~ with q~>7. 

Then: 

i) E has semistable reduction in all primes. 
ii) E is uniquely determined by j,  

iii) 33[Ig2, 33[[g3, 21[g3 and 2~'g2. I f  we define: U=3-3g2,  V=2-1-3-~g3 ,  
then (U, V) = 1. 

iv) j=123 .  U3(U3- V2) -1, and vp(j)<O iff vp(U3-- V2)>O. 
q, I ( u  3 - v ~) 

v) I f  vv(j)<O and p~___l modq~ then qi]vp(j) and p [ -1-~ . Es- 
! 

q, ( U  s - V 2) 
pecially i f  p + 2  ] / p + l < q  i then p - ~  . 

vi) I f  i= 21 then there is an elliptic curve E" isogeneous to E over Q such that 

U,3_V,2 = 123 . Z  ql 

with U', V" defined in the same way as U, V; U', V', ZEZ,  relatively 
prime, and p[Z. 

The case that E(Q) contains a point of  order 2q ~ ( i~2)  has been studied by 
Hellegouarche [4] and Demjanenko [1], their result is that the Fermat equation 

~ + ~  = z ~  

has a solution with qlZ1. Z2. Z3. (c.f. footnote on p. 2) 



14 G. Frey 

We want to look for conditions for the discriminant in this ease. For  this purpose 
we choose an equation 

y2 = Xa+AX2+BX,  A, BEZ  
for E' .  Then: 

Using Theorem 3 we get: 

A = 2.3~.A0,  
o r  

A = 28. 3 I=.Z q' = B2(A2--4B). 

B = 3 ' . B  0 and (Ao,B0)= 1, 2~A0, 2~'B o (1) 

A = 3 2 . A 0 ,  B = 2 4 - 3 4 . B o ,  (Ao, B o ) = l ,  2{A0. (2) 

I f  A, B fulfil (1) then the elliptic curve E" derived from E '  by an isogeny of 
degree 2 fulfils (2) and conversely. 

So we assume without any loss of  generality: 
A, B fulfil (1). This implies: 

26.Z~' = Bg(A~--Bo) 

and since (Bo, A ~ - B o ) = I  and (Bo, 2 )=1 :  Bo=Zq 1' (ZI~Z),  and 

A~ = Z q ' ' 2 6 Z  q~ 
with Zi~Z,  and 72qt7ql--Tql 

~ 1  ~ 2  - -  ~ " 

As the period of E" has to be a qt-th power in Q~ for all p with v~(j)<O 
and no qZ-th root  of  unity i n  Qv, j has to be a qt-th power in Qp for the same 
primes, and this implies as one verifies easily the same conditions for A 0. 

Look especially at Qq. I f  q~Z~ then qlZ1, and so 2 has to be a qt-th power 
in Qp, hence 

24 -1 -1  - 0 mod ql+l 

(Wieferich's condition for the solvability of  the Ferrnat equation with a first type 
solution). 

Necessarily p~(Z2 if v 2 ( Z ) ~ 0  rood2  and v q ( Z ) ~ 0  mod2 .  If  E" has a 
point of  order 4 and q--3 rood 4 we find E" isogeneous to E '  such that for E"  
the above conditions are fulfilled. 

I f  Zx or Z= is a square, (say: Z 1 is a square) then to solve equation 

A~ = Z~"~ + 26 Z~ ' 
is equivalent to solve 

ZiEZ, relatively prime, and 
Z~' = 24 Z~ ~ + Z~', 

qlZa . Z4 . Zs. 

I f  E(Q) contains 4 points with 2-power order then we find an elliptic curve E" 
isogeneous to E" such that 

U,,3 _V,,2 = 123 . Z2q '. 
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(If all points of order 2 are in E(Q) take E'=E ' ,  if P is a point of order 4 in 
E'(Q), then E'=E'/(2P).)  

An easy computation shows that to solve this equation is equivalent to solve 

z ~ '  = 2 '  .zg+z~'. 
So we have 

Theorem 4. I f  E(Q) contains a point of  order 2q 21 then the equation." A2o= 
=ZqZ+2eZg ' has an integer relatively prime solution. I f  q:f Z2 or i f  E(Q) contains 
a point of  order 4 then 2q-1-1  m o d q  TM. I f  E contains 4 points with 2-power 
order then the equation: Z 3q' + Z4qZ_ 24zsq' has a relatively prime integer solution. 
For allprimes p with vp(j)<O (especially p+2~/-p+l<q l) and p ~  +_l m o d q  F 
or p=q  pIZ1. Z~ resp. plZ3. Za. Z 5. 

Now assume conversely that (A0, Z1, Z2) is an integer relatively prime solu- 
tion of 

A~ = Z~-t-26Z~, qlZ~.Z2, AoEQ~ q, 

with A--2-  32. Ao, B=34" Z1 q. We get the elliptic curve E: 

y2 = X3 + AX2 + BX 

E is semistable in all primes and has a point of  order 2. 
I f  (U, V, Z )  is an integer relatively prime solution of  

U 3 - V  2 = 123Z q (qIZ and U~Q*q) 

then again the elliptic curve E: 

y~ = X3- -33UX-2 .3 sv  

is semistable in all primes. (If necessary replace V by - V . )  Let E~ be the group 
of points of order q, and let be Kq := Q (E~), Gq:= G(Kq/Q). 

Gq is a subgroup of Gl(2, q). (el. Serre [11]), and KqDQ(0 ,  with ~q a primi- 
tive q-th root of  unity. I f  p ~ q  is a prime then KJQ is unramified in p, for if 

q 

Vp(j) >=0 then E has good reduction in p, and if vp(j) < 0 then Qp(E~) = Qp((q, l/j). 
But as vp(j)=O mod q the assertion follows. 

q 

For p=q  we have v~(j)<O, and Qq(~q, If)) is ramified of order q - 1 .  
So Kq[Q(~) is unramified, and the place ~ of Q((~) with ~[q splits com- 

pletely in KJQ(~q). 
Assume: G~ is contained in a Borel group, let {P)=Eq be a G~-invariant 

subspace. Then: Q(P) is either equal to Q(~q) or Q(P)/Q is unramified, hence 
Q ( P ) = Q .  

In both cases Kq/Q(0 is an unramified extension of degree <:q, normal 
over Q. An easy calculation shows that then Kq=Q((~). See footnote on p. 2. 
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But since Qq contains a point of order q it follows now that Q contains a 
point of order q. 1) 

If  Gq is not contained in any Borel subgroup of Gl(2, q) then it is an easy 
consequence of the situation that G~=GI(2, q). So we have realized G/(2, q) over 
Q by K~ such that Kq/Q((q) is unramified. I ignore if this is possible. 

Let be (/1) . . . .  , (Pq+l) the different cyclic subgroups of Eq; Zx . . . .  , Zp+l the 
fixed fields of the corresponding Borel subgroups of Gq. 

If  j~ is the absolute invariant of E/(Pi), then Zi:Q(j~) (i=1, . . . , q + l ) .  
It  is easy to describe the discriminant of ZJQ: I f  p # q  then p is unramified. I f  
p = q  then q has three extension to Z~, two of them are unramified, and the third 
has ramification order q - l .  (The degree of ZJQ is q + l . )  Hence D(Zi/Q): 
___ _+qq-~. 

So there are only finitely many possibilities for the fields Z~. 
Let #q(T, J)  be the invariant polynomial of degree q. This is a polynomial 

defined over Z of degree q + l  in T and J. The pair (j~,j) is a Z:rational 
place the curve defined by #q. For q=>23 the genus of this curve is greater than 1. 

Proposition 2. Let be (Ao, Z1, Z2) resp. (U, V, Z) as described above. Then 
E(Q) contains a point of order 2q resp. q iff #q(T, J) is reducibel over Q. I f  
1hereisaprime p with l + p + l / 2 ~ < q ,  and q~(Z1.Z 2 (resp. Z) then q)q(T,j) is 
irreducible over Q, and Gq= GI(2, q). 

I f  the Mordell conjecture is true for ~ (q_->23) then there are only finitely many 
admissible solutions (Ao, Z1, Z2) resp. (U, V, Z). 

Remark. The last part of proposition 2 is true without the condition q[Z (resp. 
.q]Z1.Z~) and UEQ~ q resp. AoEQ~ q, because of the fact that in any case ZJQ is 
only ramified in the places dividing q, and so D(Zi/Q) is bounded. 

w 4. char (K)=p 

In the following let K be a function field of one variable of the finite field k 
o f  characteristic p # 2 ,  3. We begin the discussion with the simplest case: K=k(t), 
where t is transcendental over k. 

Assume that E is defined over K and has semistable reduction in all places 
~3 of K. Without any loss, of generality we may assume: If  ~ is the unique 
place with v~ ( t ) < 0  then E has good reduction in ~ .  By the results of w we 
conclude: There are polynomials U, VEk[t], such that E has a WeierstraB equation 

y2= X3_33UX_2.33V 
with 

(j) = ( 1 2 ~ u 3 ) ~ 1 .  ~;1~. 

1) Added in proof- The results of Mazur imply that always Gq:GI(2, q). 



Some remarks concerning points of finite order on elliptic curves over global fields 17 

Let be dx~k[t ] such that (d0=~3~-~3~ (sCZ). By the transformation X ~ d ~ X ,  
Y ~ d Z S Y  we can assume: 

(j) = (123U3)~ -1 . ~soo 
hence 

12 3 U 3 

j -  U s _ V  2 

with U, VCk[t], relatively prime, such that v ~ ( j ) < 0  iff v~(U 3 -  V2)>0. Further- 
more: 3 deg (U)=<(deg (U 3 -  V2)), and deg (U 3 -  V z ) -  0 mod 12. (For example: 
3 deg U < 2  deg V, and deg V=0  mod 6.) 

I f  E(K) contains a point of  order q~, then as before we find an elliptic curve 
E" isogeneous to E with: 

U'3-V  "a = cZ q~, cEk*. 

But as K admits no unramified extension (in the sense that for all places ~ the 
value group of  K has index 1 in the value group of  the corresponding places of 
the extension) except extensions of the constant field k, we have the converse: 
The curve E" with 

U'3 -V  "2 = cZq', U', V" E k[t], 
relatively prime, 

3 deg U' - d e g  (Zq') = 0 mod 12, 3 deg U'  < deg (Zq'), c E k* 
and 

U ' E K  *p' if q = p ,  

has all points of  order q' in E'(K. I~). 
At first assume: q=p .  
Then it is easy to find solutions: Take U1, ViEk[t] \k ,  relatively prime, 

2deg//1---0 mod 12, 3deg U l < 2 d e g  V1 and ZI=(U~-V~)c  -1. By rising to the 
p-th power we get a solution of  the desired shape. As j~ = 123UsaP(U~ p -  V~P) -1 
is not  constant, E" is not defined over k',  and so E" is not supersingular, and 
hence E'(K. Ic) contains points of  order p'.  

Now assume: qr  q>=7. Let E be an arbitrary elliptic curve with non con- 
stant invariant jCK, defined over k ( j )  with Hasse-Invariant 1. Then we can choose 
an equation for E such that the discriminant is: 

A = 3 z- 272 -j~(j - 128) -a. 

Regarded over k (j),  E has bad reduction at the places ~ with v~(j)  < 0 or v , ( j )  > 0  
or v~( j - -  123)>0. 

Let P be a point of order q of  E, and Kq be equal to k(j)(xe),  where 
xe is the X-coordinate of  P. By the local theory we conclude: Kg is ramified in 
these places, the ramification order is equal to q, or is divided by 3 or 2 respec- 
tively. The genus formula then gives: g(Kq)>0, and g(Kq) growths like q(q-1)/6.  



18 G. Frey 

Hence K~ ~z K .  ~. 
On the other side if Ga is the Galoisgroup of  k(j)(Eq)/k(j)  (Eq the group 

of points of  order q of E)  then G~ D SI(2, q), (el. Igusa [5], the idea of the proof  
is that otherwise Gq would be contained in a Borel group, as Gg contains elements 
of  order q, and this contradicts the ramification of  k(j)(Eq)/k(j)  as one sees 
easily). 

Now assume that E'/K. k has the same invariant as E and has a point of  
order q in E'(K. ~). After a quadratic extension KI/K. I~ E" is isomorphic to E, 
and hence G(K. [(Eq)/K. re) has an order dividing 2q. But this means that the 
X-coordinate o f  a point of  order q of  E has to be in K .  ~, and this is a contradic- 
tion. So we proved 

Proposition 3. I f  K : k ( t )  and q~p  then there isno elliptic curve E with non con- 
stant invariant having a point of  order q in E(K. ~), and hence the equation: U 3-  V 2 = cZ ~ 
has no admissible solutions with U, VEk[t] \k ,  and deg (~Z~)-3 deg U - 0  mod 12. 

I f  q=p there are always elliptic curves defined over K with non constant invariant 
such that E(K. ~) contains points of  order pt (lCZ). 

To end the discussion let K be an arbitrary function field of genus g. Let 
be q~p. 

Just as above we conclude: There is a bound M depending on g, such that 
there is no non constant elliptic curve over K with a point of order q if q>_-.M. 

Let be U, VEK, such that 
U 3 

j = 123 U3_V-------- T (~ k, 

and 
(j) = (123- U3)~f f l~ l  2, with ((U), ~0) = (1) 

% ( j ) <  0 iff %(~30) > 0, and then qlv~(~0). 

Let  E be the elliptic curve with absolute invariant j and Hasse-Invariant U/E 
Then E is semistable in all places of  K, and the adjunction of  the points of  order 
q gives an unramified extension of  K. Let  be (Pi)cEq, and Ji the invariant of  
E/(Pi). Then K(j.)/K is unramified and of  degree <_-q+ 1, hence there are only 
finitely many possibilities for K(ji), As the Mordell conjecture is true for ~ J K  
( ~  the invariant polynomical of  degree q) (cf. Samuel [10]) we have for q_->23: 
There are only finitely many elements (U, V)EK that fulfill the conditions above. 

So we get 

Proposition 4. There is a bound M depending on the genus of  K such that there 
is no elliptic curve over K with points of  order q in E(K.~). I f  q_~23, q~p  then 
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there are only f in i te ly  many  U, VE K such that 

U 3 
j = 123Ua_VZ~[k,  ( j )  = ( 1 2 3 U 3 ) ~ - 1 ~ I  2 with ((U), ~3o) = 1, 

v~( j )  < 0 / f f  v~(Z~o) > O, and then q[v~(~o). 
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