
The inverse of vowel articulation 
Lars G~trding 

introduction. The input of  vowel articulation consists of  air pulses at the glottis, 
the vocal tract acts as a filter and the output  f rom the lips is heard as a vowel. T o  
make a simple mathematical  model of  this, one considers the vocal tract  as a tube  
T specified by a single area function x ~ A ( x )  where x is the distance f rom the 
glottis along an axis o f  the tube and A (x) is the area of  a cross-section of  the tube  
at  x orthogonal to the axis. The pressure ~, density ~ and velocity v of  the a i r  
in the tube are assumed to be functions only of the time t and the coordinate x. 
Further assumptions are that f f = p * + p  and ~ = Q * + Q  deviate very little f rom 
their mean values p* and Q* and that  v is small. I f  we introduce the volume- 
velocity u ( x , t ) = A ( x ) ~ ( x , t ) v ( x , t ) ,  Newton's  law gives u t + A p x = 0  and con- 
servation of  mass u~+(A~) t=0  where the indices denote derivatives. Since p = c ~ r  , 

where c is the velocity of  sound, this gives us two equations for the pressure p 
and the volume velocity u, 

(1) A p x + u t  = O, A p t + u  x = 0 

provided we choose our units so that c = 1. At the same time we can prescribe tha t  
x = 0 at the glottis and x = 1 at the lips. We note in passing that  if A = A0 is con- 
stant then the general solution Po, uo of  (1) is given by 

A o P o : f ( x + t ) + g ( x - - t ) ,  U o : - - f ( x + t ) + g ( x - - t )  

where f and g are arbitrary. I f  f is identically zero, we have AoPo=U o and con- 
versely and that  characterizes a solution which is outgoing, i.e. a wave travelling 
f rom the glottis. 

To account for the radiation f rom the mouth  in the simplest possible way we: 
assume that  T connects there with a bigger tube To of constant cross-section 

Ao>A(1)  and that, at  the lips, P=Po,  U=Uo where P0, u0 is an outgoing solution 
in T O (see Figure 1). This gives the boundary condition 

(2) x = 1 ::~ A p  = bu 

where b = A ( 1 ) ] A  o is a number between 0 and 1 which we shall call the loss coeffi- 
cient. Another  possibility, closer to physical reality, is to assume that  T connects 
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with a conical flange with a wide opening. I f  its mathematical vertex is at 1 - x 0  
(see Figure 1) it turns out that (2) should be replaced by 

(2') X = 1 :=~ x o A p t + A  p = XoUt . 

This radiation condition is close to one used in phonetics and based on three- 
dimensional radiation from a circular disk in a wall (Flanagan [3] p. 61). In order 
not  to comp l i ca t e  the mathematics too much we shall stick to the simplest case (2). 

Eliminating p or u from (1) one gets the Webster horn equations 

(3) (APx)x--Apt  t = 0 and ( A - l u x ) x - - A - l u t t  -~ O. 

For  simplicity we shall call (1) the Webster system. By the elementary theory of  
linear hyperbolic second order equations in two variables, the Webster system has 
unique solutions under a variety of boundary conditions. A forward (backward) 
solution is one which vanishes for large negative (positive) time. We shall restrict 
ourselves to infinitely differentiable area functions. 

L e t  p, u be the forward solution of (1), (2) with given u(0, t), necessarily 
vanishing for large negative t. The linear map from the function u(0, t) to the 
function u(1, t), conveniently denoted by u(0, t )~u (1 ,  t), is called the vowel 
transfer. Physically, the vowel transfer represents the action at the lips of an input 
volume velocity at the glottis. It turns out that the impulse response 6 ( t ) ~ f ( t )  o f  

the vowel transfer has a Fourier--Laplace transform 

F(~o) = f e -2~ i~ t f ( t )  d t  
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Figure 1. The area functions of the tubes T and To. 
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which is meromorphic with poles 09,, - ~ ,  in the upper complex half-plane such 
that  0<-ReoJl<=Re092<-_... and Im09 ,>0  for all n = l , 2 , . . . .  We shall call 
091 . . . .  the vowel resonances. In general one has of  course 0 < R e  09~< . . . .  For  the 
straight tube with a constant area function, 09,=n/2-1/4 .  In phonetics, the num- 
bers Re 09~, Re 09z, ..- and Im 09 1, Im 092 . . . .  are called, respectively, the formants 
of  our idealized vowel and their bandwidths. The first three or four formants can 
be measured also for actual vowels and are widely used as vowel characteristics. 
There are also numerical schemes how to compute them from the form of  the vocal 
tract (see Fant  [2] and Flanagan [3] and the literature quoted there). One much dis- 
cussed problem is the possibility of  reversing the procedure, namely to compute 
the area function when the vowel resonances are known. At least one numerical 
scheme for this already exists (Wakita [8]). A main difficulty is measuring the band- 
widths and taking various physical features into account, e.g. losses through vibra- 
tions of the walls of  the vocal tract. 

In our mathematical model, the vowel resonances turn out to be essentially 
arbitrary except for a regular asymptotic behaviour. We shall prove 

Theorem. The vowel resonances 09~, 092,... o f  a tube with an indefinitely dif- 
ferentiable area function A(x)  and loss coefficient b > 0  have the property that 
Im 09, >0 ,  Re 09,_->0 for all n and i f  they area labelled so that Re 09, does not decrease 
with n, there is an asymptotic expansion 

09, ~ 2 -1n- -4 -~  + i c + c l n - I  +c2n-~ + ... 

for  large n where 4zc---log (1 + b ) / ( 1 - b ) > 0 .  Conversely, given such numbers, 
they are the vowel resonances o f  a tube with loss coefficient b = t a n  hyp 27rc and 
an infinitely differentiable area function A (x), unique when normalized so that A (1 )= I .  

When b = 0, the tube is loss-free and the vowel resonances are real. As explained 
below, they are then not  sufficient to reconstruct the tube. Generally speaking, 
losses move the resonances into the complex plane giving them one more degree of  
freedom and more informative value. 

With an appropriate asymptotic expansion of  the vowel resonances, the theorem 
is certainly true also for more sophisticated radiation conditions like (2") but  the 
proof  will then be more delicate. 

The proof  of  the theorem uses the fact that the vowel resonances are identical 
with the zeros of  the function 09-~P(1, 09)-bU(1,  09) where 

e(x, 09) = f e-~"~'p(x, t )dt ,  U(x, 09) = f e-2"i~'u(x, t ) d t  

are the Fourier--Laplace transforms of  the glottis reflection pulse, i.e. the solution 
p, u of  the Webster system such that p(0, t )=6( t ) ,  u(O, t )=0 .  The functions 
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P and U are entire analytic of exponential type and for x =  1 given by canonical 
products 

P(1, co) = / / 7  (1 -o~2/~5, U(1, co) = -A2~ io , / / ; o  (1 - ,o2/B, ') 

where Y~=f~A(x)dx is the mean area and 0 < a 1 < / ~ < ~ 2 < . . .  with asymptotic 
expansions 

ten ~ 2 - 1 n - - 4 - 1 + a l n - l + a ~  n - ~ +  . . . .  fin "" 2 - 1 n + b ~ n - l + b ~  n - ~ +  . . . .  

These numbers are the eigenvalues of the Webster system under the boundary con- 
ditions u(O, t )=0 ,  us(l,  t ) = 0  and u(0, t )=0 ,  u(1, t ) = 0  respectively and will be 
called the pure resonances and antiresonances of the tube. They are determined by 
the vowel resonances. On the other hand, it has been known since the work of 
Borg [1] that the resonances and antiresonances determine the area function and 
explicit formulas are available in the work of Gelfand and Lewitan [4] and M. Krein 
[5]. These papers deal with SturmwLiouville operators with an unknown potential 
but are easily adapted to the Webster system. Following Sondhi and Gopinath [7] 
we shall get the area function from the lip transfer u(1, t )~p(1 ,  t) for forward 
solutions with u(O, t )=0 .  Its impulse response 6( t )  ~ - A ( 1 ) h ( t )  has the property 
that for t<2 ,  h ( t ) = f ( t ) + g ( t )  where g vanishes for t < 0  and is an infinitely diffe- 
rentiable functions when 0<_-t<-2. The integral equation 

f Y _ y ( h ( s - t ) + h ( t - s ) ) w ( y ,  s )ds  = 2 

has a unique solution w defined and of class C ~ when ]tl<=y-<_l and we have 
,40 -y)=AO)w(y, y)~. 

This paper was initiated through phonetical discussions with Gunnar Fant  
and Sven Ohman. I am also grateful to a referee for some valuable remarks. 

1. Existence. We shall collect existence results for some boundary problems 
for the Webster system 

A p x + u  t = O, A p t + u ~  = 0 

in the strip 0<=x<=l. The area function A ( x )  is assumed to be positive and of 
class C ~. The solutions p, u are allowed to be distributions. They are then in- 
finitely differentiable in x considered as distributions in time t. In particular, the 
boundary values of p and u as x tends to 0 or 1 exist as distributions. It is some- 
times useful to rewrite the Webster system as 

(1) v x - v ,  = a ( v + w ) / 2 ,  w , + w ,  = a ( v + w ) / 2  

where v = A p - u ,  w = A p + u  and a ( x ) = A ' ( x ) / A ( x ) .  
Let T be a triangle in the strip consisting of  half a square with sides parallell 

to the coordinate axes or to the diagonals t •  Lines with this last property 
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are called characteristics. I t  is a classical fact that  the system (1) has a unique C ~ 
solution in T with arbitrary C ~0 data u, v on the large side when it is not  char- 
acteristic (a Cauchy problem) or with v given o n  one small side and w on the 
other (a characteristic problem when these sides are characteristic) or with v given 
on a small side and w on the large side (a mixed problem). In a characteristic 
problem, the solution extends to the entire square of  which T is a part.  In  these 
statements the boundary data can also be independent linear combinations of  v 
and w. 

Cauehy problems 

Ch~raeteristie pr 

v 

Mixed problems 

Figure 2. Boundary problems for the Webster system. 

Cutting the strip 0<=x<-I into suitable triangles it follows f rom this that  (1) has 
a unique C = solution with C ~* data v, w at x - - 0  or x = l  and that  the solu, 
tion vanishes at a point unless a characteristic through that  point meets the support  
of  the data. In particular, if  that  support  is contained in an interval x = 0 ,  ]t]<e, 
the solution v, w vanishes when [tl>x+e. I t  also follows that  (1) has a unique 
forward (backward) C ~ solution with given C ~ data at  x = 0  and x = l  which 
are non-zero linear combinations of  v and w and vanish when t is large negative 
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(positive). In this case a forward (backward) solution vanishes at a point when the 
boundary data  vanish below (above) the characteristics through the point. All this 
is also true for the inhomogeneous system (1) with C = right sides. We can a!so 
allow the boundary data and the solution to be distributions in time. This is easy to 
prove by regularization and by estimating C = solutions in terms of C ~~ boundary 
data in the inhomogeneous ease. 

We shall first consider solutions with Ap = 6 ( 0 ,  u = 0  when x =0  or Ap =bf ( t ) ,  
u = 6 ( t )  when x =  1. They will be called the glottis and lip reflection pulses respec- 
tively and are fundamental for the study of the vowel transfer u(0, t)-~u(1, t) of 
forward soIutions with Ap=bu  for x---1. We let O0(t)=(1 +sgn t)/2 denote the 
Heaviside function. 

Theorem 1. The vowel transfer. Let A E C ~. Then 

O) there is a unique solution p, u, the glottis reflection pulse, such that Ap = 5 (t ), 
u = 0  when x = 0 .  It  vanishes when ] t ]>x and has the form 

A(x)  p(x,  t) = c ( x ) ( 6 ( x - t ) + 6 ( x  + t ) )+5o(XZ-t2)A(x) f i (x ,  t) 
(2) 

u(x, t) = c ( x ) ( 5 ( x - t ) - 6 ( x  + t ) )+5o(x2- t2)~(x ,  t) 

where 2c(x)=(A(x)/A(O))  112 and fi, ~ are C ~ functions when [t[<=x<~l. 
(ii) there is a unique solution p, u, the lip reflection pulse, such that A p = b f ( t ) ,  

u = 6 ( t )  when x = l .  It  vanishes when I t l > l - x  and has the form 

A(x )p (x ,  t) = - b l ( x ) 5 ( y - t ) + b ~ ( x ) 6 ( y + t ) + 5 o ( y 2 - t 2 ) A ( x ) ~ ( x ,  t) 
(3) 

u(x, t) = b t ( x ) 5 ( y - t )  + b2(x)6(y + t)+~o(Y~--t~)~(x, t) 

where y =  1 - x ,  2bl (x)--(1 - b ) b ( x ) ,  2b2 (x) =(1 +b)b(x) ,  b(x)=(A(x)/A(1))  ~/2 
and if, ~ are C ~ functions when I t ] ~ y ~ l .  

(iii) there is a unique forward solution p, u, the impulse response of  the vowel 
transfer, such that u = 5 ( t )  when x---O, A p = b u  when x = l  and, i f  t<=x<l, 

A (x) p(x,  t) = c ( x ) f ( x - - t ) + f o ( x - t ) A  (x) p(x, t) 

u(x, t) = c ( x ) 5 ( x - - t ) + 5 o ( x - - t ) u ( x ,  t) 

where c(x)=(A(x)/A(O))  1/2 and p, u are C ~ functions when t<=x~-l. 

This theorem and its proof are illustrated by Figure 3. 

Proof. (i) I f  p, u, c are C ~ functions, (2) defines distributions p, u such that 

Apt+us  = ( - - A f i + ~ + c ' ) 5 ( x - t ) + ( A ~ + Y t - c ' ) 5 ( x + t ) + 5 o ( X ~ - - t 2 ) ( A ~ t + ~ )  

Ap~+ut = ( A f i - ~ + c ' - a c ) 5 ( x - t ) + ( A ~ + ~ + c ' - a c ) 5 ( x + t ) + 6 o ( X 2 - t 2 ) ( A f i ~ + ~ t )  
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where a = A ' / A .  Putting the right side equal to zero gives 

t = x=~ A f f - ~ - - c ' = O ,  

t = - x  ::* A f f + f i - c "  = 0, 

x 2 - t  2 >= 0 =~ Afft+~t~ = O, 

2c' = ac 

2c' = ac 

Ap~+~,  = 0. 

Thisgives c ( x ) = ( A ( x ) / A  (O)) 112 andacharacteris t icboundaryproblemfor v = A ~ - a ,  

w = A f f + ~  in the region t2<=x 2 with C = data on the boundary. This proves 
(i) and the proof of (ii) is entirely similar. 

(iii) Putting v = A p - u ,  w = A p + u ,  the problem is to find a forward solution 
of  (1) such that 

x = O=*, w - v  = 26(t),  x = l =~ v = bow 

where b o = ( b - 1 ) / ( b + l ) .  Putting c ( x )=(A (x ) /A (O) )  1/~ we try to find a solution 
of the form 

w = 2c(x) ~ ' o  b k o f ( t - x - 2 k ) + Z o  (ZkWk(X, t)+Z~W~(X, t)) 
(5) 

v = 2c(x)  Z o  b k o f ( t + x - 2 k - 2 ) + ~ o  (ZkVk( x, t)+Z~,V~,(X, t)) 

where the Zk and Z~ are the characteristic functions of  the triangles Tk: It-- 2 k -  1 I 
~ l - x  and 7 ~ : l t - 2 k + l [ ~ _ x  and the pairs Wk, V~ and w k, v k are C ~ solu- 
tions of (1)inside Tk and T~ such that Wk=Vk when x = 0  and v'k=bow' k when 
x =  1. Note that if  A ( x )  is constant, we get a solution by taking c =  1 and all 
w~, Vk, W E, V k equal to zero. Near the line Lk: t - x - 2 k = 0  separating the triangles 
Tk and T~_ 1 (see Figure 3) (5) gives 

k v t v �9 

w = 2boc(x) f+6OWk+foWk_I ,  V =60Vk+JoVk_l 

where 6 = 6 ( t -  x - -  2k), 60 = 6 o ( t -  x -  2k), g0 = 6o(X + 2 k -  t). Hence 

wt + wx 2b~o c'(x) J + 60 (Wkt + Wk~) v , , = +60(Wk-1, t+Wk-l ,~)  

v,--v~ = 2(v k --v~,_Oa+ao(vk,-- Vkx)+go(V~,_l.,--v~,-1,~) 

2 - * a ( v + w )  = b~oaca+ao2-*a(v+w)+ a02-1a( +w). 

Since 2c '=ac ,  (1) holds for (5) across L k if and only if 2(Vk_V~_O+boac= O ,  k on 
that line. Similarly, (5) satisfies (1) across the line L~: t + x - 2 k - 2 = O  separating 
Tk and Ts if and only if  2(Wk--W'k)+bkoac=O on that line. Hence (5) is a solution 
of(1) provided wk, ok solve themixedproblemin  Tk given by wk=v ~ when x = 0 ,  

�9 1 �9 �9 r v k = v k _ ~ + 2 - b o a c  on Lk and wk, v k solve the mixed problem in T~ given by 
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v'k=bow' k when x = l  and Wk=W'k+2--1bkoac=O on L~ (see Figure 3). Since all 
these mixed problems have C ~ solutions uniquely determined by C = data, putting 
v'._l=0 and solving them in To, To, 7"1 . . . .  gives a solution (5) of (1) with all the 
desired properties. 

Our next theorem deals with the lip transfer, i.e. the map u(1, t)~p(1,  t) for 
forward solutions of the Webster system such that u=0  when x=0.  

Theorem 2. The lip tramfer. Let A C C~*. Then 

(i) the impulse response 6( t )~p(1,  t) of the lip transfer has the property that 

(6) -A(l)p(1,  t) : 6( t )+g( t )  

when t<2  where g is a C ~ function when 0~t=<2 and vanishes when 
t<0.  

(ii) for every 0 < y < l  there is a unique solution p, u when t<-O vanishing for 
t < l - x - y  such that p = - I  when 1-y<=x<=l. It is of class C ~ when 
0=>t->l - x - y  and depends on the parameter y. 

(iii) I f  p, u is the solution under (ii), the function w(y, t)=u(1,  t)/A(1) has the 
property that 

(7) w (y, y) -= (.4 (1 -y) /A (1)) 1/2. 

Extended by symmetry so that w(y, - t ) = w ( y ,  t) it is o f  class C ~ when 
1 >=y >-t and it is the unique solution of the integral equation 

2w(y, t) + f+Yr ( g ( t - s )  + g ( s - t ) )w (y ,  s) ds =- 2 

where g is given by (6). 

Proof. (i) Put w=-Ap+u, v = A p - u .  Precisely as in the proof of Theorem 1, 
one sees that the impulse response is unique and given by 

W = --2b(x) ~ o  6 ( t - x - - 2 k - 1 )  + ~  (ZkWk(X, t)+Z~W~(X, t)) 

v = -2b(x)  2 o  6 ( t + x - 2 k  - 1) + 2 0  (ZkVk( x, t) +Z~V~(X, t)). 

Here Xk and ~ are the characteristic functions of the triangles Tk: l t - 2 k - l l  <-x 
and T~: It-2k-21<=l-x, b(x)=(A(x)/A(1)) 11~ solves the differential "equation 
2b'=ab and the Wk, Vk and w~, v k are C = functions in Tk and T~ respectively 
given by mixed boundary problems with C ~ boundary data. In particular, 
-2A(1)p(1, t) = - v ( 1 ,  t ) -w(1 ,  t) has the desired properties. 
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(ii) We try to construct a solution of  the form p=5o/~, U=5off where 50= 
= 5 o ( t + x + y - 1 )  a n d f f  and ~7 are C ~ functions when O ~ t > = l - x - y ,  We get 

a p x + u t  = ( n p + a ) 5 + ( A p , + a , ) 5 o  

Apt+ux  = (AP+~)5+(AA+a~)5o .  

Together with the condition that  p = -  1 when t = 0 ,  1 -y<=x<= 1, this gives the 
system (1) with the boundary conditions 

O = t = l - x - y = ~ w = O  and 0 = t ,  1 - y < - x < = l = * v + w = - - 2 A ( x )  

for v = A f f - ~ ,  w=A~+~.  I t  has a unique C ~ solution in the triangle 0=>t~ 

>=l-x-y>=O and this proves (ii). To prove (iii) note that  when t + x + y - l = O ,  

A (ff + A-~)"  = -Ap t  + Aff--#t + ~ - a ~  = -(Ap,  +a~)+(Afi~ +~,)§ 2u'--au 

where the prime denotes the derivative with respect to x. Hence 

0 = t = 1--x--y  =* ~ = (.4(1 --y)A(x)) 1/2 

so that  (7) follows. Since p = - I  when t = 0 ,  x > l - y ,  all odd t-derivatives of  
u vanish in the same interval. Hence u(1, t )=u (1 ,  - t )  defines a C = extension 
of u f rom the interval x = l ,  O>-t>-_-y to the interval x = l ,  ]tl<-y. Using this, 
the solution p, u in the triangle 0 _ ~ t _ - > l - x - y  extends to a C ~ solution in the 

V" 

~t - -  0 

.0 

(i) 
T h e  l ip  t r a n s f e r ,  

p(1,t) 

t t  - -  0 

'& .g  

o 

OiL (iii) 

A f o r w a r d  s o l u t i o n  w i t h  p = - i 

on  t h e  i n t e r v a l  t - 0, 1 - y ~ x,:; 1 

F i g u r e  4.  T o  T h e o r e m  2 .  
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triangle lt[<=x+y--l~O with u given as above when x = l .  Call this new solu- 
tion p, u also. Then p*(x, t)=p(x, - t ) ,  u*(x, t ) =  -u(x ,  - t )  is another C ~ solu- 
tion in the same triangle and hence also P=p+p*, U=u+u* with the property 
that P = - 2  when t = 0  and U = 0  when x--1  and also when t=0 .  But then 
P = - 2 ,  U = 0  when It I = 1--~r and hence also in the rest of  the triangle. In par- 
ticular, 

It} <-- y =--* p(1, t )+p*(1 ,  t) = - 2 ,  
On the other hand, by (i) 

-A(1 )p (1 ,  t) = u(1, t)+fg(t-s)u(1, s)ds 
so that also 

- A ( 1 ) p * ( l ,  t)  = - -u*(1 ,  t ) -- fg(-- t+s)u*(1,  s)ds 

and hence, inserting u(1, t) =A(1)w(y, t) and u*(1, t ) =  -A(1)w(y,  t) we get 

(8) 2 = 2w(y, t) + (g(t-s)+ g ( s - t ) ) w ( y ,  s) ds 

when ltt<=y. Here t~w(y , t )  is a C = function. Next suppose that  t~w(y , t )  
is a C a function solving the corresponding homogeneous integral equation. Con- 
struct a solution p, u of  the Webster system when t<-0 and O~_t<=x+y-1 van- 
ishing when t < l - y - x  such that u(1, t)=A(1)w(y,t)  when [t[<-y. Let 
p*(x, t)=p(x, t), u*(x, t) = -u (x ,  --t). Then P=p+p*, U=u+u* is a solution 
in the triangle [tl<=x+y-1 such that P = U = 0  when t = 0  and U = 0  when 
x = l .  But then P = U - - 0  in the entire triangle so that p = p * = 0  when t = 0  and, 
by the computations under (i), u = p = 0  when t - - 1 - x - y < O .  Hence p and also 
p* vanish when x = l ,  [tl<=y. But then u and u* vanish there also so that 
w(y, t ) = 0  when [t[<-y. This finishes the proof  of  (iii) since differentiations of (8) 
with respect to y show that a solution t ~w(y, t) which is bounded is of class C a 
in both variables when It I =<Y- 

2. Fourier--Laplace transforms. Our various solutions p, u of the Webster 
system have been C = functions of  x considered as tempered distributions in t, 
i.e. the functions x~ fp (x , t ) f ( t ) d t  and x ~ f u ( x , t ) f ( t ) d t  where the integrals 
are taken in the distribution sense are infinitely differentiable when f belongs to 
the Schwartz class S of  C ~ functions such that tqf(~ is bounded for all non- 
negative integers q and r. Hence, by the theory of  distributions, the Four ie r - -  
Laplace transforms 

P(x, o~) = f e-~"~o'p(x, t)dt, U(x, a~) = f t)dt 

are also C = functions of  x considered as tempered distributions in 09 and they 
satisfy the system 

(1) P~+2nio~A-1U = O, U~+2niogAP = O, 
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Conversely,  i f  P and  U have these propert ies ,  the inverse t ransforms  

p(x, t) = f e2='~'P(x, co)dco, u(x, t) = f e2=t~'U(x, co)dco 
are  solutions o f  the Webster  system and C ~ funct ions o f  x considered as t empered  
dis t r ibut ions  in t. Finally, by  the P a l e y - - W i e n e r  theorem for  distributions,  p(x ,  t) 
a n d  u(x, t) vanish for  t <  t(x) i f  and  only if the distr ibutions co-*P(x,  09) and 
09 ~ U(x, 09) have analytic extensions to the lower half-plane which are O (e 2= ~r, (,(x)- 0o) 
fo r  every e > 0 .  

We shall now analyze our  t rans forms  in detail. 

Theorem 3. Let A E C~. Then 

O) the Fourier--Laplace transJbrms P, U and Pb, Ub o f  the glottis reflection 
pulse and the lip reflection pulse o f  Theorem 1 are C ~ functions o f  x, o9 whose 
derivatives are o f  at most polynomial growth for real values o f  co. They ate also 
entire analytic functions o f  09 with unique asymptotic expansions 

(2) AP ~,. e-2~"~176 

(3) U ~-, e -  2~,ox (c (x) + . . . )  - e ~ 'ox (c (x) + . . . ) ,  

(4) APb "~ e-~"~ ~) (_  bl (x) +. . . )  + e ~"i~ ~) (b~ (x) +.. .) ,  

(5) Ub ~ e-  ~i,o(~- ~) (bl (x) +. . . )  + e ~'~ ~) (bz (x) +. . . )  

where the dots stand for asymptotic series o f  the form fl(x)co -1 +f~(x)co -~ + . . .  with C ~ 
coefficients which are continuous with respect to A. 

(ii) i f  0 <= b < 1 there are unique factorizations 

(6) P(1,  o)) = / - /~o  (1 --co~/~]), 

,(7) U(1, co) H I  = f a(x)ax, 
(8) A(1)PO, o~)-bUO, co) = ~(1) 117 (1 -co/co.)(l +co/~.) 

where the zeros are such that 

(9) 0 < cq < fll < a2 < fl~ < . . .  
and, for all n, 

(10) 0 <= Re  col <- Re  co2 <-- . . . .  b > 0 ~ I m  co, > 0. 

They have asymptotic expansions 

{11) % ~ 2 - 1 n - - 4 - 1 + a l n - l + a ~ n - ~ +  ..., 

(12) ft, ~ 2 -1 n + b~n-1 + b~ n -2 + .... 
0 3 )  co, ~ 2 - 1 n - 4 - 1 + i c + c l n - l + c 2 n - Z + . . . ,  4~c = l o g ( l + b ) / ( 1 - b ) .  

where the coefficients are continuous functions o f  A. 
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(iii) one has 
(14) A(I)U~(0, to) = A(1)P(1, to)-bU(1, to) 

and 1/Ub(0, to) is the Fourier--Laplace transform of the impulse response of the 
vowel transfer u(O, t )~u(1 ,  t) under the condition that Ap=bu for x = l .  

Note. The expansions under (i) are taken in the sense that the differ- 
ences between the left sides and partial sums with n terms of the right sides 
are O(e~LIm~ ) as to-do,, uniformly in x. Continuity wi threspect to  A is 
taken in the C *~ topology. 

Proof O) follows from (i) of  Theorem 1, differentiations under the integral 
sign and integrations by parts. To prove (ii) note that it follows from (1) that the 
functions x~P(x ,  to) and x~U(x ,  to) cannot bo thvan ishforany  x with 0=<x<=l. 
In fact, if they do, they vanish for all such x. We also get the identity 

P~ u + e f~  + 2rcito(A-11fl2 + A[Pl ~) = O. 

Taking the real part and integrating over the tube gives 

Re P(1, to) U(1, co) -- 2re Im tof~ (A-1IUI~+A [el ~) d x  = O. 

When the first term vanishes, Im to must also vanish. Hence the functions to ~P(1, to) 
and to ~ U(t, o9) have only real zeros and since the two functions cannot vanish 
simultaneously, the identity shows that their zeros are simple. When P(1, to)--= 
=bU(1, co) and b>0,  the first term is positive and hence Im to>0. Hence the 
zeros of the function to--P(1, to)-bU(1,  to) lie in the upper half-plane when b>0.  
As solutions of (1), P and U are uniquely determined by the condition that P--- I, 

U = 0  when x = 0 .  This proves that P(x, to)=P(x,  --~), U(x, to)= U(x, --~) and 
hence if ? is a zero of one of the three functions above, so is -9-  When A (x) is 
constant, then AP= cos 2rctox, U = - i sin 2rctox and hence 

A(1)P(1, co) = cos 2nto, U(1, to) = - i  sin 2zcto, 

A(1)P(1, co)-bU(1, to) = (1 --b2) 1/2 cos 2n(to--ic) 

with c as in (13). In this case, the formulas (2), (3), (4), (5) and (11), (12), (13) are 
exact if we delete the negative powers of  to and n respectively. It follows from 
(2) that 

A (1)P(1, to) ~ (1 +u2to-~+ ...) cos 2rcto+(Vxto-1 +v8 to-3+ ...) sin 2no) 

with real coefficients in the asymptotic series. In fact, P(1, to) is real when o is 
real. Hence, for large n, P(1, to) has precisely one real zero cr close to e0n =n/2-1/4 
with an asymptotic development (11) in terms of negative powers of c~0, and hence 
also of n. That this zero has number n in the sequence of positive zeros of P(1, to) 
follows by a homotopy through tubes with area functions x ~ l - s + s A ( x )  where 
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0~s=<t.  The formulas (12) and (13) are proved in precisely the same way. Since 
P(1, o9) and U(1, co) have no common zeros, the homotopy also shows that the 
separation (9), true when A (x) is constant, holds in the general case. The ordering 
of  (10) is just a convention. 

Next, let F be any left side of (6), (7) or (8). By (2) and (3), 

(15) loglF(co) ] = 2~rtImcol(I+o(1)) ' co -~ 00 Reco = 0 .  

On the other hand, if G is the corresponding right side, a comparison with, e.g., 
the product 

cosh 2~ [col ----//~ (1 + [co]2/~02,), n0, = 2 - 1 n - 4  -1, 

shows that log [G(co)l=O(2rclcol) and that (15) holds for G when Reco---0. In 
particular, F and G are entire analytic functions of exponential type. Since they have 
the same zeros, Hadamard's factorization theorem shows that F(co)=en~'+CG(co). 
Here, since F ( c o ) = F ( - ~ )  and the same for G, B is purely imaginary. Letting 
Re co=0 Im c o ~  and using that (15) holds for both F and G it follows that 
B=0 .  Hence (6), (7), (8) hold modulo constants on the right sides. They are deter- 
mined by putting co=0 and noting that then P = I  and dU/dco=--2rciA. 

To prove (iii) note that, by virtue of (i), the two sides of (14) are entire analytic 

in co of exponential type, that they share the symmetry property F(co)=F(- -~)  
and that their two quotients are bounded far away on the imaginary axis. Hence, 
as before, the two sides are equal modulo a constant factor which must be one since 
the two sides are equal when co=0. According to (ii), all the zeros of Ub(O, 09) lie in 
the upper half 'plane and, by (5), Ub(O, co)=(A(O)/A(1)) 1/2 cos 2rc(co--ic)+O(co-O 
for  large real co with c as in (13). Hence P*(X, co)=Pb(X, co)/Ub(O, co) and 
U*(x, co)= Ub(X, co)/Ub(O, co) are C = functions, solutions of (1) with the boundary 
condition AP*=bU* when x = l ,  whose derivatives are of at most polynomial 
growth in co. Hence their inverse Fourier--Laplace transforms, p* and u*, solve 
Webster's system with Ap*=bu* when x = l  and u*=6 when x=0 .  In fact, 
U* = 1 when x = 0 .  This identifies U*(1, co) = 1/Ub(O, o9) with the impulse response 
of the vowel transfer provided p*, u* is a forward solution. But this is so since P* 
and U* are analytic in the lower half-plane and, by (4) and (5), equal to O(e 2~Im ~ )  
there. Hence p* and u* vanish when t<x. 

3. Canonical products. To prepare for the reconstruction of the area function 
from the vowel resonances we shall now study canonical products of the type em- 
ployed in (8) of the preceding section whose zeros have asymptotic expansions. 
First an auxiliary result that has to do with analytic functions having asymptotic 
expansions 

(1) g(co) - Z ~  hk(co) co-k 
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where the hg are analytic of period c>O and the expansion is such that 

(2) g(co) - -~o  k hj(co)eo-J = o(Icol -k) 

for all k. 

Lemma (i) Suppose that (2) holds on the real axis as co ~ co and that ho(O)=0, 
ho(O)r Then, for large integral n, the equation g(co-zn)=O has precisely one 
small zero w--co(n). This zero has an asymptotic expansion in terms of  negative 
powers of n. 

(ii) Suppose that the hk are meromorphic with poles at the integral multiples of  
and that (2) holds on all circles of  some fixed radius O<e<v  around these multiples. 

Then the numbers 

have an asymptotic expansion in terms of  negative powers of n. 

Proof. We may assume that z = 1. (i) By assumption, 

g (r --  n)  = ~ .k  o hj (co) (o~ - -  n ) -  J + gk (W --  n) 

where gk(co--n)=o(Ico--nl-k). Putting y = n  -1 and writing (o~--n)-k= 
=(--y)*(1--coy) -k as a power series in y and r we have 

g(~o-n) = P,(o~, y)+y~Q, qo, y) 

where Pk(O),y)=h'o(O)co'+... is a polynomial of degree =<k in co and y and 
Qk is analytic in co and continuous at the origin and vanishes there. Consider 
now the function Fk=Pk(o), y )+ykz  of the small complex variables co, y, z. By 
the Weierstrass preparation theorem, Fk(CO, y, z )=0 if and only if ~o----fk(y, Z) where 
fg is analytic at the origin. By the form of FK, fk (y , z )=aly+. . .+ak-- lYk- - l+ 
+gk(Y, z)Y k where al . . . .  are constants and gk(Y, Z) analytic at the origin. Hence 

g(co--n)=O with small m if and only if co =fk(n - t ,  Qk(co, n-l))  and this completes 
the proof. 

(ii) By assumption, 

g(co-n)  = ~ k  o hj(co)(co --n)-J +o([nl -k) 

when lco-n]=e. The assertion follows by a series expansion of (CO--n)-k= 
= (--n)--k(1 --co/n) -k. 

We can now prove 

Theorem 4. (i) Let co D cos . . . .  be complex numbers with asymptotic expansion 

co, ~ coo,+cln-l+c~n-2 + .. . .  O~o. -= n/2--1/4+ic 
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where c > 0  a n d a s s u m e t h a t  0~ReoJl_--<Rem2~.., and that Imog ,>0  f o r  aH n, 

Then 

e(o9) = I I ~  (1 -co~co.)(1 +o9/~.) 
is entire analytic and 

F(w) + F( -co)  = 2 / / ~  (1 --co2/c~.~), 

F(co) -- F(  - co) = 2F'(0)co H ~  (1 -w~Jfl~) 

where 0<cq<[31<~2<.. .  with asymptotic expansions 

~. ~ ~ o . + a l n - l +  . . . .  ~o. = n ] 2 - 1 / 4 ,  

[3. ~ f l o .+b~n-~+ . . . .  [30. = n/2. 

(ii) Suppose that ~ ,  ... and [31 . . . .  have the properties above and let a.]2rci 

be the residue at co=[3, o f  the quotient 

H(co) = I I 7  (1 - co~/='.)/2.ico I I ~  (1 -co~/[3~.). 

Then there is an asymptotic expansion 

a .  ~ s o + s i n - l + . . .  
where 

ao = 1 ~  (fl./[3o.)~/II~ (~./ao.) z = lira H ( - -  ico) as m ~ + ~o. 

Proof. O) Put 
F.(og) = (1 -co/con)(1 +co/~.)  

so that F =  Fx F~... and consider 

V.(-o9)lF.(co) = (o9 + co.)(o9 + ~ ) / ( c o - o 9 . ) ( o g -  ~.) .  

The absolute value of the right side equals 1 precisely when co is real. Hence F(co) 
•  unless co is real and f(co)=argG(co) with G ( c o ) = F ( c o ) l F ( - o ) )  
equals n or 0 respectively modulo 2z~. Since 

f ' (o9) = a'(co)/ia(co) = i -~ Z 7  ((co--c~ - a - ( c o  +c~ -1) = 

= 2 ~ ([co--o9.l-3+ ]coWco.l-~) Im co. > 0 

when co is real, the zeros •  • of  functions F(og)+_F(-co)  are real and 
simple and separate each other. To investigate their asymptotic properties we shall 
compare F to the product 

Fo(co) = cos 2~(w--ic)/cos ic = / / ~  (i -co/coo,)(l+co/~o.) 

where o9o , ,=n]2-1 /4+ic  and compare G to the quotient 

Go (o9) = F o ( -  co)/Fo (co) = cos 2n (co + ic)/cos 2re (co - ic). 
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It has the property that 

Go(co) -= - i .,~ 09 = + % .  = •  

Go(co) = 1 r co = q-]~o. = +n/2. 

We shall see that, in the sense of  the first part  of the lemma, 

(3) G(co)•  ~ ho (co ) ! l+h l ( co )co - l+ . . .  

where ho=Go and all coefficients have the period 1/2. Since ho(co)~0 when eo=~o. 
or /~o., an appeal to the lemma then finishes the proof. In fact, the only remaining 
part, i.e. that  the equations F(co) • F ( -  co) = 0 have, respectively, precisely 2n zeros 
when, e.g., Icol<~o.+8 -1 and precisely 2 n + l  zeros when, e.g., Icol</~o.+8 -x, is 
taken care of  by a homotopy from the case when co. =coo. for all n. 

Our asymptotic series will be linear combinations of  the functions 

hjk(co ) = Z + =  (co--coOn)-k co;,, j 

where j,  k=>0 and j + k > l .  Here, by definition, coo .=n/2-  1/4 +ic for all n. In 
particular, 

h 1~ (co) = ~ ((co - co0.)-1 coW-1 + (co + ~o.) ~ 1 )  = _ 2~ tan 2n (co - ic). 

Using the fact that cohjk=hj_l,k+hj, k_~ an easy argument shows that 

(4) hjk(co ) = h]k,o(co)-k hjk, l(co)co-l-k ... + hik, v(co)co -p 

where p - m i n ( j ,  k) and the coefficients are periodic with period 1/2. In the 
same way, 

(5) Z_+= Ico-coo.l-Jfcoo.I -~ = o(Icoll-mi~ 
Next, consider 

log F(co)/Fo (co) = Z +• log (1 - co/co.)/(1 - co/co0.) 

where, by definition, c o _ . = - ~ . .  Assuming for the moment that 

(6) ]co. -- coo.] < c/2 

for all n, this can be rewritten as 

log F(co)/Fo(co ) = Co+Z+S log (1 -(co.-co0.)/(co-coo.)) 

where C o = ~ l o g  co0./co, and the logarithms can be expanded in power series. 
The result is that 

log F(co)/ Fo(co) = Co + z~,~ Z + ~  k- l (co. -coo.)*(co-  coo.) -~ 

where the series converges absolutely. In view of  the asymptotic expansion of  
co.-co0., which we can write in terms of  negative powers of coo.. this together with 
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(4) and (5) shows that 

(7) log F(co)/ Fo(co ) ... co + hl (co)co-l + h~(co)co-~ § ... 

where the hk(co) are analytic and periodic with period 1/2. Since this statement 
holds true also when F(co)/Fo(co ) acquires a rational factor which is regular at 
co = co, the assumption (6) is now superfluous. In fact, changing a factor F. with 
parameter co. to another such factor with a different parameter amounts to multi- 
plying F by a rational function regular at co. Since 

G(co)/Go(co) ---- e l~176176 

the desired expansion (3) now follows from (7). 
(it) Put  

Ho(co) = / / ~  (1 -co2/co~o.)/21rico ] I 1  (1 -co~/coo~.) = i -1 cot 21rco. 

I t  suffices to prove that 

(8) H(co) ~ ~oHo(co)§247 

in the sense of  the second part of the lemma with coefficients hl . . . .  of  period 1/2. 
In fact, the residue of  Ho(co) at co=rio, equals 1/2~i. Consider the quotient 

U(co)/Uo (co) = / 7  +_ Z ( 1 - co/a,) (1 - co/~o,)-l( 1 - co~tic,) (1 -- co/ft,)-1 

where the product runs over all integers ~0.  With a0 as in the theorem we can 
write this as 

~ 0 / 7  + = ( l  - ( ~ .  - ~ o . ) l ( c o  - a 0 . ) )  ( 1 - ( ~ .  - B 0 . ) / ( c o  - ~ 0 . ) )  - 1. 

The limit of  the product as co-~oo with Re co bounded is 1. Since H o ( - i ~ ) = l ,  
this shows that a o = H ( - i o o  ). I f  we restrict co to small circles [co--fl0,[=~ we can 
take the logarithm and make series expansions provided 

(9) Icr < e/2, Ifl.-flo.I < e/2 

for all n. The result is that 

log H(co)lHo(co) = ~ ' ~  k -1 Z + =  (--(~.--a0.)k(co--C~0.)-~+(fl.--/~0.)~(co--fl0.)-k). 

Inserting asymptotic expansions of  c~. and ft. in terms of, respectively, negative 
powers of  a0. and B0., (8) follows as before. Since changing the parameters of a 
finite number of  factors of  H does not affect the form of (8), (9) can now be dis- 
regarded and this finishes the proof. 

4. The lip response and the integral equation for the area function. Let u(1, t ) =  
=6( t ) - + - - A( 1 )h ( t )  be the impulse response of  the lip transfer u(1, t)-*p(1, t) 
obtained from forward solutions of  the Webster system such that u = 0  when x = 0 .  
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By Theorem2,  if t<2 ,  h(t )=6(t )+g(t )  where g ( t ) = 0  when t < 0  and g is a C ~~ 
function when 0=<t<=2 such that the integral equation 

(1) 2w(y, t) + f+~ (g( t - s )  + g(s - t ) )w(y ,  s) ds = 2 

has a unique C = solution w(y, t )=w(y,  - t )  when ]tl<=y<=l. We shall now call 
any such function a lip response even if we do not  know that it comes from the 
impulse response of  a tube with a C = area function. More precisely, we require 
that g ( t ) = 0  when t<0 ,  that g is infinitely differentiable when 0<_-t=<2 and 
that w(y, t ) = 0  is the only continuous solution of  the homogeneous equation (1) 
when y ~ l .  

We can now prove a result due to Sondhi and Gopinath [7]. A tube whose area 
function is such that A (1)= 1 is said to be normalized. 

Theorem 5. Let g be a lip response. Then 
O) the integral equation (1) has a unique C = solution w(y, t )=w(y,  - t )  defined 

when [ t ] ~ y ~ l  such that 

(2) wyy-wtt = 2wyf' (y)/f(y) 
where f ( y )=w(y ,  y)>0 .  

(ii) the function g is the lip response of  a tube, unique when normalized, whose 
area function is given by 
(3) A (1 - y )  = A (1) w (y, y)~. 

Proof (i) By Fredholm theory, the equation (1), considered for fixed y ~ l ,  
has a unique continuous solution t-*w(y, t). Since t~w(y ,  - t )  solves the same 
equation, w is an even function of t. By the properties of the integral, a continuous 
solution w(y, t) of (1) is successively seen to be bounded, continuous and of  class 
C = in both variables when ]t[<=y~l. Putting 

Zw(y, t) = 2w(y, t) + fy+t du + f~ - t  +u)g(u)  du a o w(y, t -u)g(u)  w(y, t 

we can write (1) as Zw=2. Differentiating the equality Zv(y, t )+h(y,  t)==0 
we get 

(4) Zvr(y , t)+v(y,  - -y)g(y+t)+v(y,  y )g(y - t )+hy(y ,  t) =- 0 

(5) Zvt(y, t)+v(y, - y ) g ( y + t ) - v ( y ,  y )g (y - t )+h t (y ,  t) = 0 
so that 

(6) Z (vy +_ vt) (y, t) + 2v (y, ~- y) g (y +_ t ) + (hy +_ ht) (y, t) = 0 

with corresponding signs. In particular, if v=w and h =2 ,  

Z(wy + wt) (y, t) + 2f(y)g (y + t) = 0 
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where f ( y )=w(y ,  y). Hence, applying (6) with the lower signs and with 

v = w r + w t ,  h = 2 f ( y ) g ( y + t ) ,  noting that (wy+wt)(y ,y)=f ' (y)  we get 

Z(w,,  - wn) (y, t) + 2f" (y) (g (y - t) + g (y + t ) ) =  0. 

Comparing this to (4) with v = w and h = 2 shows that Z annihilates Wyy -- Wtt-- 

- 2 w r f ' J f  so that (2) follows. If  f ( y ) = 0  for some y, then, by (5), w,(y, t ) = 0  
when [t[<=y so that also w(y, t ) = 0  when [t[~y. But then, by (1), w(y, 0 ) = l  
and this contradiction shows that w(y, t ) > 0  when It l=<y. By Theorem 2, if g 
is the lip transfer of a tube with area function A(x), then A ( 1 , y ) = A ( 1 ) w ( y ,  y)Z. 

(ii) If  g is just a lip response, let w(y, t) be the solution of (2 )and  define 
A ( 1 , y )  by (3) with A(1)=I  (note that w(0, 0)=1). Let g*(y) be the lip response 
of a tube with area function A (x) and let w* solve the corresponding integral 
equation Zw*(y , t )=2.  Then A ( 1 - y ) = w * ( y , y )  z so that w(y,y)=w*(y ,y) .  On 
the other hand, both w and w* satisfy the differential equation (2) with the same 
function f = f *  on the right and the same valuef (y)=f*(y)  when Itl=-y. Since 
this characteristic boundary problem has a unique solution, it follows thaf w*(y, t) = 
=w(y,  t) for all Itl<=y<=l. Now the equation (1) holds for both g and g*. Hence 
their difference h = g - g *  satisfies the equation 

f ~y ( h ( s - t ) +  h(t-s))wy(y, s) ds +f(y)(h(y + t)+ h ( y - t ) )  = 0 

when Itl<=y<=l. Putting t=O this gives a homogeneous Volterra equation for 
h(y) so that h(y)=O when O=<y<=l. But then the equation reduces to 

f o  h ( t -  s) w, (y, s) ds +f(y) h (y + t) = 0 

when y>=t>-O. But then again, h(y+t)=O when y+t>=O so that h ( t ) = 0  when 
0_<-t~2. This finishes the proof. 

5. The resonaces and antiresonances and the area function. We shall now prove 
that there is a unique normalized tube with given resonances and antiresonances 
having a proper asymptotic behavior. 

Theorem 6. (i) Let 6(t) ~ - h ( t ) / A ( 1 )  be the impulse response of the lip transfer 
of  a tube with a C ~ area function A(x). Then h(t) has the Fourier--Laplace trans- 
form H(~o)=-A(1)P(og)/U(o~) where P, U is the Fourier--Laplace transform at 
x = 1 of  the glottis reflection pulse of  Theorem 1. More precisely, 

(1) Im,o < o = = f e-"~~ dt 

with the integral taken in the distribution sense. 
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(ii) Conversely, let 
0 < a i < fli < ~2 <.. .  

and suppose that ~, and fin have asymptotic expansions (11), (12) of  Theorem 3, 
define P and U by (6), (7) of  the same theorem with arbitrary 4 > 0  andput  

n(o~) = -A O)P(@/U(@ 

where A(1) is chosen so that H ( - i ~ o ) = l .  Then (1) defines a tempered distribution 
h(t)  such that 

t < 2 :~  h(t)  = J ( t ) + g ( t )  

defines a lip response g. The corresponding tube is unique when normalized and has 
the resonances al, ~2 . . . .  and antiresonances ill, f12, ... �9 The pair P, U is the 
Fourier--Laplace transform o f  its glottis reflection pulse. 

Proof. (i) According to Theorem 30), P*(x, ~o)=P(x, co)/U(1, co) and 
U*(x, co)=U(x,o~)/U(1, co) are C = functions of x and co when Im co r  they 
are O(e 2~(1-~)Im~ when I m c o ~ c o n s t  < 0  and their derivatives are of at most 
polynomial growth on lines Im co = const r 0. They are also solutions of the trans- 
formed Webster system (1 )&Sec t ion  2 and U*=O when x = 0  and U * = I  when 
x =  1. Hence their inverse Fourier--Laplace transforms 

p*(x, t) = f P*(x, co)e2ni~ u*(x, t) = f U*(x, ~)e~i~ 

with integration over lm ~o=const < 0  are solutions of  the Webster system, van- 
ishingwhen t < ! - - x ,  such that u*----O when x=O and u*=6 when x = l .  This 
identifies 6(t)--*p*(1, t) with the impulse response of the lip transfer so that (1) 
follows. 

(ii) In view of the fact that % = % . + O ( n - 1 ) ,  f l .=f io .+O(n -~) a comparison 
factor by factor of H(co)=-A(1)P(co) /U(co)  with H0(co)=--Po(eo)/Uo(m) cor- 
responding to the tube with area function equal to 1 shows that H(co) is bounded 
away from the real axis. Hence. if  c>0 ,  

(2) h (t) = fire o~ = -c e2'~i~176 d o  

defines a distribution independent of c which vanishes when t<0 .  Also, (2) and (1) 
are then equivalent. For  the residues of H we have the formula 

O+. = 2zti Res (H, •  = A (1)P(•177 

where V(m)=co//(1 _co2/fl~). Since the numbers c~. separate the numbers B., all 
0 . = 0 _ .  and oo=A(1)]A are positive. Moreover, by the second part of  Theorem 4 
they have asymptotic expansions 

(3) 0. ~ 1 + clfig, 1 + .. . .  
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Hence, taking residues, 
t > 0 =* h ( t )  = ~+_~  ~ne ~it~.' 

with the sum taken in the distribution sense. This shows that h is a tempered dis- 
tribution and (2) shows that 

(4) h ( t ) + h ( - t )  = ~. e,e~i~,, ' 

for all t: Inserting (3) we can write 

h (t) + h ( - t) = ~.o ~ o  cJk QJ (t) t k +f.m (t) 

where n=>0, m:>0, f.m(t) is of  class C " + ' - 2  and 

Qj(t) = ~,n~Ofl~nJe 2~iaoJ, j > O, 

are the Bernoulli "polynomials", successive integrals of  

Qo(t) = Z eZ~'t~~ = 2 Z 6(t--2n). 
This means that 

h(t) = 6( t )+g( t )  

where g ( t ) = 0  for t < 0  and g is a C = function when 0-<_t<=2. We shall now 
see that g is a lip response. 

Consider the integral equation 

f ~ y  (h (s - t) § h ( t -  s)) w (s) ds = 0 

where w is a real C ~ function and [tl~y.  Multiplying by w(t), integrating and 
inserting (4) gives 

2 Z e, f'_y e-~='a,~ w (s) ds 2 : O. 

Hence g is a lip response provided the functions e ==~a.t form a complete set in 
L2( - 1, 1). But this follows from the asymptotics of t ,  and a result by N. Levinson 
([6] p. 6). In fact, the number f (x )  of integers n such that I/~.l-<_x is at least 
4 x - O ( x  -1) for large x and Levinson's criterion requires only that f~  f(y)dy/y>= 
~ 4 x - l o g  x - c o n s t .  

Since g is a lip response, we know from Theorem 5 that there is a unique 
normalized tube with a C ~ area function whose lip response is g(t). Let p*, u* 
be its glottis reflection pulse and h* the impulse response of  its lip transfer. With 
capital letters denoting Fourier--Laplace transforms we t h e n  have H*(~o)= 
=-P*(og)/U*(co). Also, h(t)=h*(t)  when t<2 .  Since h ( t ) - h * ( - t )  is a tem- 
pered distribution, it follows from this that for some N > 0 ,  H ( o J ) - H * ( c o ) =  
=O(e-4~lIm'~ N) when I m c o < - l .  Hence F(o~)=A(1)P(og)U*(eo)- 
-P*(o))U(co)=O((l  +lo)l) u) in the same region. In fact, a comparison factor by 
factor of  P, P*, U, U* with Po, Uo show all of them to be O(e ~l~m'~l) in the whole 
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complex plane. Since they are bounded close to the real axis, F has the same prop- 
erty. But F is also an odd function and hence F =  O( (1+  Icol) N) everywhere. Hence 
F is an odd polynomial bounded close to the real axis and has to vanish. Hence 
H = H *  and h=h* so that the tube has the resonances a, and the antiresonan- 
ces ft,. The proof  is finished. 

6. The vowel resonanees and the area function. Finally, we shall show that there 
exists a tube with given vowel resonance having appropriate asymptotic properties. 
We shall prove 

Theorem 7. Let ~o 1, w2, ... be complex numbers and assume that Im 09,>0 
for all n, that 0<=Re o91<-Re r and that there is an asymptotic expansion 

to, ,'~ 2 - 1 n - - 4 - 1 + i c  + c z n - l  +c~n-2+ ... 

for  large n where c>O, Then o92, o22 . . . .  are the vowel resonances o f  a unique 

normalized C ~ tube closed at the glottis and with loss coefficient b =cosh  2nc at 

the lips. 

Proof Put 
F(co) = / / ~  (1 -~o/co.)(l +og~.) 

and 
F(~o)+F(--og) = 2P(o2), F(og)--F(--o2) = 2F ' (0)Q(o 0.  

By Theorem 4, there are numbers 0 < e l < i l l < . . .  satisfying the requirements of  
Theorem 6 such that 

Note that 
P(o.,) = H 7  (1 -o~/<~]), Q ( ~ )  = ~ H ;  ~ (1 -~/ /7,~) .  

F ' (0 )  = Z (o-' ,-~,)/Io~,1 ~ 

is purely imaginary with positive imaginary part. Now put 

U(~o) = --,,127ci ] ] ~  (1 -(.o2/fl~) 

with A>O chosen so that P(og)/U(og) tends to - 1  as ~o tends to - i ~ .  Then, 
by virtue of Theorem 6, there is a unique normalized tube with resonances al, c%, ... 
and antiresonances /11,/73 . . . .  for which P and U are the Fourier--Laplace 
transforms at x =  1 of its glottis reflection pulse. Putting F'(O)=2niAb we have 
b > 0  and 

e(og) --- P(og) - bU(o O. 

Hence, by Theorem 3(iii), oh, to2, ... are the vowel resonances of  the tube and 
Theorem 3(ii) shows that b=cosh  2nc. This finishes the proof. 
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