Multiparameter spectral theory

A. Källström and B. D. Sleeman

0. Introduction

Let H_{1}, \ldots, H_{n} be separable Hilbert spaces and let $H=\otimes_{i=1}^{n} H_{i}$ be their tensor product. In each space H_{i} we assume we have operators $A_{i}, S_{i j}, j=1, \ldots, n$ enjoying the property,
(i) $A_{i}, S_{i j}: H_{i} \rightarrow H_{i}, i, j=1, \ldots, n$ are Hermitian and continuous.

In addition we shall require a certain "definiteness" condition which may be described as follows: Let $f=f_{1} \otimes \ldots \otimes f_{n}$ be a decomposed element of H with $f_{i} \in H_{i}, i=1, \ldots, n$ and let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ be a given set of real numbers not all zero. Then the operators $\Delta_{i}: H \rightarrow H, i=1, \ldots, n$, may be defined by the equation

$$
A f=\sum_{i=0}^{n} \alpha_{i} \Delta_{i} f=\operatorname{det}\left|\begin{array}{cccc}
\alpha_{0} & \alpha_{1} & \ldots & \alpha_{n} \tag{0.1}\\
-A_{1} f_{1} & S_{11} f_{1} & \ldots & S_{1 n} f_{1} \\
\vdots & \vdots & & \vdots \\
-A_{n} f_{n} & S_{n 1} f_{n} & \ldots & S_{n n} f_{n}
\end{array}\right|,
$$

where the determinant is to be expanded formally using the tensor product. This defines $\Delta_{i} f$ for decomposable $f \in H$ and we can extend the definition to arbitrary $f \in H$ by linearity and continuity. The definiteness condition referred to above can now be stated as
(ii) $A: H \rightarrow H$ is positive definite, that is

$$
\begin{equation*}
(A f, f) \supseteqq C\|f\|^{2} \tag{0.2}
\end{equation*}
$$

for some constant $C>0$ and all $f \in H$. Here (\cdot, \cdot) denotes the inner product in H and $\|\cdot\|$ the corresponding norm. Note that for a decomposable element $f=f_{1} \otimes \ldots$ $\ldots \otimes f_{n}$ in H we have

$$
(A f, f)=\operatorname{det}\left|\begin{array}{cccc}
\alpha_{0} & \alpha_{1} & \ldots & \alpha_{n} \\
\left(-A_{1} f_{1}, f_{1}\right)_{1} & \left(S_{11} f_{1}, f_{1}\right)_{1} & \ldots & \left(S_{1 n} f_{1}, f_{1}\right)_{1} \\
\vdots & & & \\
\left(-A_{n} f_{n}, f_{n}\right)_{n} & \left(S_{n 1} f_{n}, f_{n}\right)_{n} \ldots & \left(S_{n n} f_{n}, f_{n}\right)_{n}
\end{array}\right| \geqq C\left\|f_{1}\right\|_{1}^{2} \ldots\left\|f_{n}\right\|_{n}^{2}
$$

where $(\cdot, \cdot)_{i}\left(\|\cdot\|_{i}\right)$ denotes the inner product (norm) in $H_{i}, i=1, \ldots, n$.

The system of operators $\left\{A_{i}, S_{i j}\right\}, i, j=1, \ldots, n$ having the properties (i) (ii) above have formed the basis for multi-parameter spectral theory, firstly by Atkinson [1] and Browne [2] when property (ii) is specialized to the case $\alpha_{i}=0, i=1, \ldots, n$, and secondly by the authors in [3,4] when $\alpha_{0}=0$ and the operators A_{i} are assumed to be positive on H_{i} and at least one is positive definite. In fact the theories in [3, 4] allow the operators A_{i} to be self adjoint and not necessarily Hermitian, but in addition they must satisfy a certain "compactness" criterion. In this paper we dispense with any compactness requirements. Indeed a fundamental purpose of this paper is to show that each of the above special cases may be subsumed into a unified theory.

Each of the operators $A_{i}, S_{i j}: H_{i} \rightarrow H_{i}, i=1, \ldots, n$ induces corresponding operators in H. The induced operators will be denoted by $A_{i}^{+}, S_{i j}^{+}$. For example, given any decomposed element $f=f_{1} \otimes \ldots \otimes f_{n} \in H, S_{i j}^{+} f$ is defined by

$$
\begin{equation*}
S_{i j}^{+} f=f_{1} \otimes \ldots \otimes f_{i-1} \otimes S_{i j} f_{i} \otimes f_{i+1} \otimes \ldots \otimes f_{n} \tag{0.3}
\end{equation*}
$$

$S_{i j}^{+}$is then extended to the whole of H by linearity and continuity.
The theory to be developed here is based, as are the theories of Atkinson [1] and Browne [2] on the solvability of certain systems of linear operator equations. Let $f \in H$ be given; we seek elements $f_{i} \in H, i=0,1, \ldots, n$, satisfying the system of equations

$$
\begin{gather*}
\sum_{i=0}^{n} \alpha_{i} f_{i}=f \tag{0.4}\\
-A_{i}^{+} f_{0}+\sum_{j=1}^{n} S_{i j}^{+} f_{j}=0, \quad i=1, \ldots, n
\end{gather*}
$$

It has been established by Källström and Sleeman [5] that the system (0.4) subject to the condition (ii) is uniquely solvable for any $f \in H$ and the solution is given by Cramer's rule, that is

$$
\begin{equation*}
f_{i}=\left(A^{+}\right)^{-1} \Delta_{i}^{+} f, \quad i=0,1, \ldots, n \tag{0.5}
\end{equation*}
$$

where the operators $A^{+}, \Delta_{i}^{+}: H \rightarrow H, i=0,1, \ldots, n$ are the operators induced by A, A_{i} as defined in (0.1). Note: because of condition (ii) $\left(A^{+}\right)^{-1}$ exists as a bounded operator.

The operators $\Gamma_{i}: H \rightarrow H, i=0,1, \ldots, n$ defined by

$$
\begin{equation*}
\Gamma_{i}=\left(A^{+}\right)^{-1} \Delta_{i}, \quad i=0,1, \ldots, n \tag{0.6}
\end{equation*}
$$

are basic for the theory to be developed.
The plan of this paper is as follows. In Section 1 we reconsider the solvability
of the system (0.4) and establish some commutativity properties enjoyed by the operators $A_{i}, S_{i j}$. Section 2 develops the spectral theory based on the operators Γ_{i} defined in (0.6) while Section 3 discusses the concepts of "homogeneous" and "inhomogeneous" eigenvalues.

1. Commutativity in operator equations

For convenience we write

$$
\begin{equation*}
\alpha_{0} \equiv-A_{0}^{+}, \quad-A_{i}^{+} \equiv S_{i 0}^{+}, \quad \alpha_{j} \equiv S_{0 j}^{+}, \quad j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

and consider the system

$$
\begin{equation*}
\sum_{j=0}^{n} S_{i j}^{+} f_{j}=g_{i}, \quad i=0,1, \ldots, n \tag{1.2}
\end{equation*}
$$

where $g_{0}=f$ and $g_{i} \in H, i=1, \ldots, n$ are arbitrary. Furthermore since A defined in (0.1) is positive definite there is no loss in generality in assuming it has at least one positive definite cofactor. This follows from [5, Lemma 1]. Thus, as in [5], the system (1.2) is uniquely solvable for $f_{i} \in H, i=0,1, \ldots, n$ and the solution is given by Cramer's rule, i.e.

$$
\begin{equation*}
f_{j}=\left(A^{+}\right)^{-1} \sum_{i=0}^{n} \hat{S}_{i j}^{+} g_{i} \quad j=0,1, \ldots, n \tag{1.3}
\end{equation*}
$$

where $S_{i j}^{+}$is the cofactor of $S_{i j}^{+}$in the determinant A.
First we note that $S_{i j}^{+}$commutes with $\hat{S}_{i k}^{+}$for $j, k=0,1, \ldots, n$. This follows because $\hat{S}_{i k}^{+}$contains no elements from the i-th row. Secondly the f_{j} given by (1.3) must satisfy (1.2). Thus on substitution we find,
i.e.

$$
\sum_{j=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \sum_{k=0}^{n} \hat{S}_{k j}^{+} g_{k}=g_{i}, \quad i=0,1, \ldots, n
$$

$$
\begin{equation*}
\sum_{j=0}^{n} \sum_{k=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{S}_{k j}^{+} g_{k}=g_{i}, \quad i=0,1, \ldots, n \tag{1.4}
\end{equation*}
$$

However, this must be true for all $g_{i} \in H, i=0,1, \ldots, n$, and so on equating coefficients of g_{i} in (1.4) we find

$$
\begin{equation*}
\sum_{j=0}^{m} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{S}_{i j}^{+}=I, \quad i=0,1, \ldots, n \tag{1.5}
\end{equation*}
$$

where I denotes the identity in H and

$$
\begin{equation*}
\sum_{j=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{S}_{k j}^{+}=0, \quad k \neq i, \quad i, k=0,1, \ldots, n \tag{1.6}
\end{equation*}
$$

In particular with $i=0$, in $(1.5,1.6)$ we have

$$
\begin{gather*}
\sum_{j=0}^{n} \alpha_{j}\left(A^{+}\right)^{-1} \hat{\alpha}_{j}=I, \\
\sum_{j=0}^{n} \alpha_{j}\left(A^{+}\right)^{-1} \hat{S}_{k j}^{+}=0, \quad k=1, \ldots, n \tag{1.7a,b,c}
\end{gather*}
$$

and

$$
\sum_{j=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{\alpha}_{j}=0, \quad i=1, \ldots, n
$$

These results may be conveniently summarized in
Lemma 1. The operators appearing in the system (1.2) enjoy the following commutativity properties.

$$
\begin{gathered}
\sum_{j=0}^{n} \alpha_{j}\left(A^{+}\right)^{-1} \hat{\alpha}_{j}=I, \\
\sum_{j=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{S}_{i j}=I, \quad i=1, \ldots, n, \\
\sum_{j=0}^{n} \alpha_{j}\left(A^{+}\right)^{-1} \hat{S}_{k j}=0, \quad k=1, \ldots, n, \\
\sum_{j=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{\alpha}_{j}=0, \quad i=1, \ldots, n, \\
\sum_{j=0}^{n} S_{i j}^{+}\left(A^{+}\right)^{-1} \hat{S}_{k j}^{+}=0, \quad k \neq i, \quad i, k=0,1, \ldots, n
\end{gathered}
$$

We now establish a fundamental result.
Theorem 1. The solution operators $\Gamma_{i}, i=0,1, \ldots, n$, defined by (0.6) or equivalently from (1.3) by $\Gamma_{i}=\left(A^{+}\right)^{-1} \hat{S}_{0 i}^{+}, i=0,1, \ldots, n$ commute.

Proof. In the same way as in [1, Theorem 6.7.2] we show that for any $f \in H$,

$$
\Delta_{i}\left(A^{+}\right)^{-1} \Delta_{j} f=\Delta_{j}\left(A^{+}\right)^{-1} \Delta_{i} f, \quad i \neq j
$$

and an application of $\left(A^{+}\right)^{-1}$ establishes the result.

2. Multiparameter spectral theory

Rather than use the inner product (\cdot, \cdot) in H generated by the inner products $(\cdot, \cdot)_{i}$ in H_{i}, we use the inner product given by $\left(A^{+} \cdot, \cdot\right)$ which will be denoted by $[\cdot, \cdot]$. The norms induced by these inner products are equivalent and so topological concepts such as continuity of operators and convergence of sequences may be discussed unambiguously without reference to a particular inner product. Algebraic concepts however may depend on the inner product. For $L: H \rightarrow H$ we denote
by $L^{\#}$ the adjoint of L with respect to $[\cdot, \cdot]$, i.e. for all $f, g \in H$ we have

$$
\begin{equation*}
[L f, g]=\left[f, L^{*} g\right] \tag{2.1}
\end{equation*}
$$

For the operators $\Gamma_{i}: H \rightarrow H, i=0,1, \ldots, n$ defined by (0.6) we have

Theorem 2.

$$
\Gamma_{i}^{\#}=\Gamma_{i}, \quad i=0,1, \ldots, n .
$$

The proof of this is an immediate consequence of our definition of adjoint.
Working with the inner product $[\cdot, \cdot]$ in H the operators $\Gamma_{i}, i=0,1, \ldots, n$ form a family of ($n+1$) commuting Hermitian operators. Let $\sigma\left(\Gamma_{i}\right)$ denote the spectrum of Γ_{i} and $\sigma_{0}=\times_{0 \leq i \leq n} \sigma\left(\Gamma_{i}\right)$ the Cartesian product of the $\sigma\left(\Gamma_{i}\right)$, $i=0,1, \ldots, n$. Then since $\sigma\left(\Gamma_{i}\right)$ is a non-empty compact subset of \mathbf{R} it follows that σ_{0} is a non-empty compact subset of \mathbf{R}^{n+1}.

Let $E_{i}(\cdot)$ denote the resolution of the identity for the operator Γ_{i} and let $M_{i} \subset \mathbf{R}$ be a Borel set, $i=0,1, \ldots, n$. We then define $E\left(M_{0} \times M_{1} \times \ldots \times M_{n}\right)=$ $=\prod_{i=0}^{n} E_{i}\left(M_{i}\right)$. Notice that the projections $E_{i}(\cdot)$ will commute since the operators Γ_{i} commute. Thus in this way we obtain a spectral measure $E(\cdot)$ on the Borel subsets of \mathbf{R}^{n+1} which vanishes outside σ_{0}. Thus for each $f, g \in H[E(\cdot) f, g]$ is a complex valued Borel measure vanishing outside σ_{0}. Measures of the form $[E(\cdot) f, f]$ will be non-negative finite Borel measures vanishing outside σ_{0}.

The spectrum σ of the system $\left\{A_{i}, S_{i j}\right\}$ may be defined as the support of the operator valued measure $E(\cdot)$, i.e. σ is the smallest closed set outside of which $E(\cdot)$ vanishes or alternatively σ is the smallest closed set with the property $E(M)=E(M \cap \sigma)$ for all Borel sets $M \subset \mathbf{R}^{n+1}$. Thus σ is a compact subset of \mathbf{R}^{n+1} and if $\lambda \in \sigma$, then for all non-degenerate closed rectangles M with $\lambda \in M$, $E(M) \neq 0$. Thus the measures $[E(M) f, g], f, g \in H$ actually vanish outside σ.

We are now in a position to state our main result namely the Parseval equality and eigenvector expansion

Theorem 3. Let $f \in H$. Then
(i) $\left(A^{+} f, f\right)=\int_{\sigma}[E(d \lambda) f, f]=\int_{\sigma}\left(E(d \lambda) f, A^{+} f\right)$.
(ii)

$$
f=\int_{\sigma} E(d \lambda) f
$$

where this integral converges in the norm of H.
This theorem is an easy consequence of the theory of functions of several commuting Hermitian operators. See for example Prugovečki [6, pp. 270-285].

3. Eigenvalues

In this section we discuss the eigenvalues of the system $\left\{A_{i}, S_{i j}\right\}$. A "homogeneous" eigenvalue is defined to be an ($n+1$)-tuple of complex numbers $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ for which there exists a non-zero decomposable element $u=u_{1} \otimes \ldots \otimes u_{n} \in H$ such that

$$
\sum_{i=0}^{n} \alpha_{i} \lambda_{i}=1
$$

and

$$
\begin{equation*}
-\lambda_{0} A_{i} u_{i}+\sum_{j=1}^{n} \lambda_{j} S_{i j} u_{i}=0, \quad i=1, \ldots, n \tag{3.1}
\end{equation*}
$$

If λ is an eigenvalue then because of (0.2) and the self adjointness of the A_{i} it is well known that each λ_{i} is real. It then follows

Theorem 4. [2] If $\lambda \in \sigma$ is such that $E(\{\lambda\}) \neq 0$, then λ is an eigenvalue. Conversely if λ is an eigenvalue then $\lambda \in \sigma$ and $E(\{\lambda\}) \neq 0$.

It is appropriate to note here that if $\alpha_{0}=1$ and $\alpha_{i}=0, i=1, \ldots, n$ then $\lambda_{0}=1$ and the results of Theorem 3 and Theorem 4 reduce to those of Browne [2].

If, as is usual, we go over to the "inhomogeneous" concept of spectrum and eigenvalue, then necessarily we must have $\lambda_{0} \neq 0$. That is we require

$$
0 \notin \sigma\left(\Gamma_{0}\right)=\sigma\left(A^{-1} S\right)
$$

where A is defined by (0.1) and $S=\operatorname{det}\left\{S_{i j}^{+}\right\}$in (0.1). Now $0 \in \sigma\left(A^{-1} S\right)$ if and only if $f \in H_{A}(\infty)$ where

$$
\begin{equation*}
H_{A}(\infty)=\{f \in H \mid S f=0\} \tag{3.2}
\end{equation*}
$$

Thus if we define

$$
\sigma^{*}=\left\{\lambda \in \sigma \mid \lambda_{0}=0\right\}
$$

then for the "inhomogeneous" concept of spectrum we have in analogy with Theorem 3

Theorem 5. Let $f \in H \ominus H_{A}(\infty)$. Then
(i) $\left(A^{+} f, f\right)=\int_{\sigma-\sigma^{*}}\left(E(d \lambda) f, A^{+} f\right)$

$$
\begin{equation*}
f=\int_{\sigma-\sigma^{*}} E(d \lambda) f \tag{ii}
\end{equation*}
$$

Theorem 5 generalizes, for bounded operators, the Parseval equality and eigenvector expansion of [3, 4]. Again if $\alpha_{i}=0, i=1, \ldots, n$ then (0.2) reduces to the condition S is positive definite. Consequently $\sigma^{*}=\emptyset$ and Theorem 5 coincides with that of Browne [2].

Acknowledgement. The research for this paper was supported by a grant from the Science Research Council.

References

1. Atkinson, F. V., Multiparameter Eigenvalue Problems Vol 1, Matrices and Compact Operators, Academic Press, New York, (1972).
2. Browne, P. J., Multiparameter spectral theory, Indiana Univ. Math. J., 24 (1974), 249-257.
3. KÄliström, A., Sleeman, B. D., An abstract multiparameter eigenvalue problem, Uppsala University Mathematics Report No 1975:2.
4. Källström, A., Sleeman, B. D., An abstract multiparameter spectral theory, Dundee University Mathematics Report No DE 75:2.
5. KÄllström, A., Sleeman, B. D., Solvability of a linear operator system, J. Math., Anal. Appl., 55 (1976), 785-793.
6. Prugovečki, E., Quantum Mechanics in Hilbert space, Academic Press, New York, (1971).
A. Källström

Institut Mittag-Leffler
Auravägen 17
S-18262 Djursholm
Sweden
and
B. D. Sleeman

Department of Mathematics The University Dundee
Scotland

