Multiparameter spectral theory

A. Källström and B. D. Sleeman

0. Introduction

Let H_1, \ldots, H_n be separable Hilbert spaces and let $H = \bigotimes_{i=1}^n H_i$ be their tensor product. In each space H_i we assume we have operators $A_i, S_{ij}, j=1, \ldots, n$ enjoying the property,

(i) $A_i, S_{ij}: H_i \rightarrow H_i, i, j=1, ..., n$ are Hermitian and continuous.

In addition we shall require a certain "definiteness" condition which may be described as follows: Let $f=f_1\otimes\ldots\otimes f_n$ be a decomposed element of H with $f_i\in H_i$, $i=1,\ldots,n$ and let $\alpha_0,\alpha_1,\ldots,\alpha_n$ be a given set of real numbers not all zero. Then the operators $\Delta_i: H \to H, i=1,\ldots,n$, may be defined by the equation

$$Af = \sum_{i=0}^{n} \alpha_{i} \Delta_{i} f = \det \begin{vmatrix} \alpha_{0} & \alpha_{1} & \dots & \alpha_{n} \\ -A_{1} f_{1} & S_{11} f_{1} & \dots & S_{1n} f_{1} \\ \vdots & \vdots & \vdots \\ -A_{n} f_{n} & S_{n1} f_{n} & \dots & S_{nn} f_{n} \end{vmatrix},$$
(0.1)

where the determinant is to be expanded formally using the tensor product. This defines $\Delta_i f$ for decomposable $f \in H$ and we can extend the definition to arbitrary $f \in H$ by linearity and continuity. The definiteness condition referred to above can now be stated as

(ii) A: $H \rightarrow H$ is positive definite, that is

$$(Af, f) \ge C \|f\|^2 \tag{0.2}$$

for some constant C>0 and all $f \in H$. Here (\cdot, \cdot) denotes the inner product in H and $\|\cdot\|$ the corresponding norm. Note that for a decomposable element $f=f_1 \otimes \ldots \otimes f_n$ in H we have

$$(Af, f) = \det \begin{vmatrix} \alpha_0 & \alpha_1 & \dots & \alpha_n \\ (-A_1 f_1, f_1)_1 & (S_{11} f_1, f_1)_1 & \dots & (S_{1n} f_1, f_1)_1 \\ \vdots & & \\ (-A_n f_n, f_n)_n & (S_{n1} f_n, f_n)_n & \dots & (S_{nn} f_n, f_n)_n \end{vmatrix} \ge C \|f_1\|_1^2 \dots \|f_n\|_n^2$$

where $(\cdot, \cdot)_i(||\cdot||_i)$ denotes the inner product (norm) in H_i , i=1, ..., n.

The system of operators $\{A_i, S_{ij}\}, i, j=1, ..., n$ having the properties (i) (ii) above have formed the basis for multi-parameter spectral theory, firstly by Atkinson [1] and Browne [2] when property (ii) is specialized to the case $\alpha_i=0, i=1, ..., n$, and secondly by the authors in [3, 4] when $\alpha_0=0$ and the operators A_i are assumed to be positive on H_i and at least one is positive definite. In fact the theories in [3, 4] allow the operators A_i to be self adjoint and not necessarily Hermitian, but in addition they must satisfy a certain "compactness" criterion. In this paper we dispense with any compactness requirements. Indeed a fundamental purpose of this paper is to show that each of the above special cases may be subsumed into a unified theory.

Each of the operators A_i , S_{ij} : $H_i \rightarrow H_i$, i=1, ..., n induces corresponding operators in H. The induced operators will be denoted by A_i^+ , S_{ij}^+ . For example, given any decomposed element $f=f_1 \otimes ... \otimes f_n \in H$, $S_{ij}^+ f$ is defined by

$$S_{ij}^+ f = f_1 \otimes \ldots \otimes f_{i-1} \otimes S_{ij} f_i \otimes f_{i+1} \otimes \ldots \otimes f_n.$$

$$(0.3)$$

 S_{ii}^+ is then extended to the whole of H by linearity and continuity.

The theory to be developed here is based, as are the theories of Atkinson [1] and Browne [2] on the solvability of certain systems of linear operator equations. Let $f \in H$ be given; we seek elements $f_i \in H$, i=0, 1, ..., n, satisfying the system of equations

$$\sum_{i=0}^{n} \alpha_i f_i = f, \qquad (0.4)$$

$$-A_i^+ f_0 + \sum_{j=1}^n S_{ij}^+ f_j = 0, \quad i = 1, ..., n.$$

It has been established by Källström and Sleeman [5] that the system (0.4) subject to the condition (ii) is uniquely solvable for any $f \in H$ and the solution is given by Cramer's rule, that is

$$f_i = (A^+)^{-1} \Delta_i^+ f, \quad i = 0, 1, \dots, n,$$
 (0.5)

where the operators A^+ , Δ_i^+ : $H \rightarrow H$, i=0, 1, ..., n are the operators induced by A, Δ_i as defined in (0.1). Note: because of condition (ii) $(A^+)^{-1}$ exists as a bounded operator.

The operators $\Gamma_i: H \rightarrow H, i=0, 1, ..., n$ defined by

$$\Gamma_i = (A^+)^{-1} \Delta_i, \quad i = 0, 1, \dots, n$$
 (0.6)

are basic for the theory to be developed.

The plan of this paper is as follows. In Section 1 we reconsider the solvability

of the system (0.4) and establish some commutativity properties enjoyed by the operators A_i , S_{ij} . Section 2 develops the spectral theory based on the operators Γ_i defined in (0.6) while Section 3 discusses the concepts of "homogeneous" and "inhomogeneous" eigenvalues.

1. Commutativity in operator equations

For convenience we write

$$\alpha_0 \equiv -A_0^+, \quad -A_i^+ \equiv S_{i0}^+, \quad \alpha_j \equiv S_{0j}^+, \quad j = 1, \dots, n$$
 (1.1)

and consider the system

$$\sum_{j=0}^{n} S_{ij}^{+} f_{j} = g_{i}, \quad i = 0, 1, ..., n$$
(1.2)

where $g_0=f$ and $g_i \in H$, i=1, ..., n are arbitrary. Furthermore since A defined in (0.1) is positive definite there is no loss in generality in assuming it has at least one positive definite cofactor. This follows from [5, Lemma 1]. Thus, as in [5], the system (1.2) is uniquely solvable for $f_i \in H$, i=0, 1, ..., n and the solution is given by Cramer's rule, i.e.

$$f_j = (A^+)^{-1} \sum_{i=0}^n \hat{S}_{ij}^+ g_i \quad j = 0, 1, \dots, n$$
(1.3)

where \hat{S}_{ij}^+ is the cofactor of S_{ij}^+ in the determinant A.

First we note that S_{ij}^+ commutes with \hat{S}_{ik}^+ for j, k=0, 1, ..., n. This follows because \hat{S}_{ik}^+ contains no elements from the *i*-th row. Secondly the f_j given by (1.3) must satisfy (1.2). Thus on substitution we find,

 $\sum_{i=0}^{n} S_{ii}^{+} (A^{+})^{-1} \sum_{k=0}^{n} \hat{S}_{ki}^{+} g_{k} = g_{i}, \quad i = 0, 1, \dots, n,$

i.e.

$$\sum_{j=0}^{n} \sum_{k=0}^{n} S_{ij}^{+} (A^{+})^{-1} \hat{S}_{kj}^{+} g_{k} = g_{i}, \quad i = 0, 1, \dots, n.$$
(1.4)

However, this must be true for all $g_i \in H$, i=0, 1, ..., n, and so on equating coefficients of g_i in (1.4) we find

$$\sum_{j=0}^{n} S_{ij}^{+} (A^{+})^{-1} \hat{S}_{ij}^{+} = I, \quad i = 0, 1, ..., n$$
(1.5)

where I denotes the identity in H and

$$\sum_{j=0}^{n} S_{ij}^{+} (A^{+})^{-1} \hat{S}_{kj}^{+} = 0, \quad k \neq i, \quad i, k = 0, 1, \dots, n.$$
 (1.6)

In particular with i=0, in (1.5, 1.6) we have

$$\sum_{j=0}^{n} \alpha_j (A^+)^{-1} \hat{\alpha}_j = I,$$

$$\sum_{j=0}^{n} \alpha_j (A^+)^{-1} \hat{S}_{kj}^+ = 0, \quad k = 1, ..., n,$$

$$\sum_{j=0}^{n} S_{ij}^+ (A^+)^{-1} \hat{\alpha}_j = 0, \quad i = 1, ..., n.$$
(1.7a, b, c)

and

Lemma 1. The operators appearing in the system (1.2) enjoy the following commutativity properties.

$$\sum_{j=0}^{n} \alpha_{j} (A^{+})^{-1} \hat{\alpha}_{j} = I,$$

$$\sum_{j=0}^{n} S_{ij}^{+} (A^{+})^{-1} \hat{S}_{ij} = I, \quad i = 1, ..., n,$$

$$\sum_{j=0}^{n} \alpha_{j} (A^{+})^{-1} \hat{S}_{kj} = 0, \quad k = 1, ..., n,$$

$$\sum_{j=0}^{n} S_{ij}^{+} (A^{+})^{-1} \hat{\alpha}_{j} = 0, \quad i = 1, ..., n,$$

$$\sum_{i=0}^{n} S_{ij}^{+} (A^{+})^{-1} \hat{S}_{kj}^{+} = 0, \quad k \neq i, \quad i, k = 0, 1, ..., n.$$

We now establish a fundamental result.

Theorem 1. The solution operators Γ_i , i=0, 1, ..., n, defined by (0.6) or equivalently from (1.3) by $\Gamma_i = (A^+)^{-1} \hat{S}_{0i}^+$, i=0, 1, ..., n commute.

Proof. In the same way as in [1, Theorem 6.7.2] we show that for any $f \in H$,

$$\Delta_i(A^+)^{-1}\Delta_j f = \Delta_i(A^+)^{-1}\Delta_i f, \quad i \neq j$$

and an application of $(A^+)^{-1}$ establishes the result.

2. Multiparameter spectral theory

Rather than use the inner product (\cdot, \cdot) in H generated by the inner products $(\cdot, \cdot)_i$ in H_i , we use the inner product given by $(A^+ \cdot, \cdot)$ which will be denoted by $[\cdot, \cdot]$. The norms induced by these inner products are equivalent and so topological concepts such as continuity of operators and convergence of sequences may be discussed unambiguously without reference to a particular inner product. Algebraic concepts however may depend on the inner product. For $L: H \rightarrow H$ we denote

96

by L^* the adjoint of L with respect to $[\cdot, \cdot]$, i.e. for all $f, g \in H$ we have

$$[Lf, g] = [f, L^*g]. \tag{2.1}$$

For the operators $\Gamma_i: H \rightarrow H, i=0, 1, ..., n$ defined by (0.6) we have

Theorem 2.

$$\Gamma_i^{\#} = \Gamma_i, \qquad i = 0, 1, \dots, n$$

The proof of this is an immediate consequence of our definition of adjoint.

Working with the inner product $[\cdot, \cdot]$ in H the operators Γ_i , i=0, 1, ..., n form a family of (n+1) commuting Hermitian operators. Let $\sigma(\Gamma_i)$ denote the spectrum of Γ_i and $\sigma_0 = \times_{0 \le i \le n} \sigma(\Gamma_i)$ the Cartesian product of the $\sigma(\Gamma_i)$, i=0, 1, ..., n. Then since $\sigma(\Gamma_i)$ is a non-empty compact subset of \mathbf{R} it follows that σ_0 is a non-empty compact subset of \mathbf{R}^{n+1} .

Let $E_i(\cdot)$ denote the resolution of the identity for the operator Γ_i and let $M_i \subset \mathbb{R}$ be a Borel set, i=0, 1, ..., n. We then define $E(M_0 \times M_1 \times ... \times M_n) = \prod_{i=0}^n E_i(M_i)$. Notice that the projections $E_i(\cdot)$ will commute since the operators Γ_i commute. Thus in this way we obtain a spectral measure $E(\cdot)$ on the Borel subsets of \mathbb{R}^{n+1} which vanishes outside σ_0 . Thus for each $f, g \in H$ $[E(\cdot)f, g]$ is a complex valued Borel measure vanishing outside σ_0 . Measures of the form $[E(\cdot)f, f]$ will be non-negative finite Borel measures vanishing outside σ_0 .

The spectrum σ of the system $\{A_i, S_{ij}\}$ may be defined as the support of the operator valued measure $E(\cdot)$, i.e. σ is the smallest closed set outside of which $E(\cdot)$ vanishes or alternatively σ is the smallest closed set with the property $E(M) = E(M \cap \sigma)$ for all Borel sets $M \subset \mathbb{R}^{n+1}$. Thus σ is a compact subset of \mathbb{R}^{n+1} and if $\lambda \in \sigma$, then for all non-degenerate closed rectangles M with $\lambda \in M$, $E(M) \neq 0$. Thus the measures $[E(M)f, g], f, g \in H$ actually vanish outside σ .

We are now in a position to state our main result namely the Parseval equality and eigenvector expansion

Theorem 3. Let $f \in H$. Then

(i)
$$(A^+f, f) = \int_{\sigma} [E(d\lambda)f, f] = \int_{\sigma} (E(d\lambda)f, A^+f).$$

(ii) $f = \int_{\sigma} E(d\lambda)f,$

where this integral converges in the norm of H.

This theorem is an easy consequence of the theory of functions of several commuting Hermitian operators. See for example Prugovečki [6, pp. 270–285].

3. Eigenvalues

In this section we discuss the eigenvalues of the system $\{A_i, S_{ij}\}$. A "homogeneous" eigenvalue is defined to be an (n+1)-tuple of complex numbers $\lambda = (\lambda_0, \lambda_1, ..., \lambda_n)$ for which there exists a non-zero decomposable element $u = u_1 \otimes ... \otimes u_n \in H$ such that

$$\sum_{i=0}^{n} \alpha_i \lambda_i = 1$$

$$-\lambda_0 A_i u_i + \sum_{j=1}^{n} \lambda_j S_{ij} u_i = 0, \quad i = 1, \dots, n.$$
(3.1)

 A_i it is

and

If
$$\lambda$$
 is an eigenvalue then because of (0.2) and the self adjointness of the

well known that each λ_i is real. It then follows **Theorem 4.** [2] If $\lambda \in \sigma$ is such that $E(\{\lambda\}) \neq 0$, then λ is an eigenvalue. Con-

versely if λ is an eigenvalue then $\lambda \in \sigma$ and $E(\{\lambda\}) \neq 0$.

It is appropriate to note here that if $\alpha_0 = 1$ and $\alpha_i = 0$, i = 1, ..., n then $\lambda_0 = 1$ and the results of Theorem 3 and Theorem 4 reduce to those of Browne [2].

If, as is usual, we go over to the "inhomogeneous" concept of spectrum and eigenvalue, then necessarily we must have $\lambda_0 \neq 0$. That is we require

$$0 \notin \sigma(\Gamma_0) = \sigma(A^{-1}S)$$

where A is defined by (0.1) and $S = \det \{S_{ij}^+\}$ in (0.1). Now $0 \in \sigma(A^{-1}S)$ if and only if $f \in H_A(\infty)$ where

$$H_A(\infty) = \{ f \in H | Sf = 0 \}.$$
(3.2)

Thus if we define

$$\sigma^* = \{\lambda \in \sigma | \lambda_0 = 0\}$$

then for the "inhomogeneous" concept of spectrum we have in analogy with Theorem 3

Theorem 5. Let $f \in H \ominus H_A(\infty)$. Then

(i)
$$(A^+f, f) = \int_{\sigma-\sigma^*} (E(d\lambda)f, A^+f)$$

(ii) $f = \int_{\sigma - \sigma^*} E(d\lambda) f.$

Theorem 5 generalizes, for bounded operators, the Parseval equality and eigenvector expansion of [3, 4]. Again if $\alpha_i=0, i=1, ..., n$ then (0.2) reduces to the condition S is positive definite. Consequently $\sigma^* = \emptyset$ and Theorem 5 coincides with that of Browne [2].

Acknowledgement. The research for this paper was supported by a grant from the Science Research Council.

Multiparameter spectral theory

References

- 1. ATKINSON, F. V., Multiparameter Eigenvalue Problems Vol 1, Matrices and Compact Operators, Academic Press, New York, (1972).
- 2. BROWNE, P. J., Multiparameter spectral theory, Indiana Univ. Math. J., 24 (1974), 249-257.
- 3. Källström, A., Sleeman, B. D., An abstract multiparameter eigenvalue problem, Uppsala University Mathematics Report No 1975:2.
- 4. Källström, A., Sleeman, B. D., An abstract multiparameter spectral theory, Dundee University Mathematics Report No DE 75:2.
- 5. Källström, A., Sleeman, B. D., Solvability of a linear operator system, J. Math., Anal. Appl., 55 (1976), 785–793.
- 6. PRUGOVEČKI, E., Quantum Mechanics in Hilbert space, Academic Press, New York, (1971).

Received February 25, 1976

A. Källström Institut Mittag-Leffler Auravägen 17 S-18262 Djursholm Sweden and B. D. Sleeman Department of Mathematics The University Dundee Scotland