
Fredholm representations of uniform subgroups 
Glenys Luke 

Introduction 

In [8] Mishchenko defined the notion of a Fredholm representation of a discrete 
group F and a map 

R(r) K( r) 
from the set of Fredholm representations of F to the K-theory of the classifying 
space BF. For the special case when BF is homotopy equivalent to a compact 
manifold of negative curvature, it was proved that the image of  a generates 
K(BF) |  This led to a proof of a conjecture of  Novikov concerning rational 
homotopy invariants. 

We give an extension of this result for the case when F is a torsionless, uniform 
subgroup of a non-compact, semisimple Lie group. By enlarging the class R(F) 
to include representations which become unitary after projecting to the Calkin algebra, 
it can be proved that the map is surjective. 

1. Fredholm representations 

Let H, Ha, / /2  be Hilbert spaces. The symbol B(H1,//2) will be used to denote 
the space of bounded linear operators from H1 to //2, and A(H), the Calkin 
C*-algebra of H. A representation Q of a group F on H will be said to become 
unitary in the Calkin algebra if 

5 (~)* - 5 (~-1) 
is compact for all ~ ~ F. 

A Fredholm representation of a discrete group F is a triple 

((H1, 50, F) 
where (//1, 51) and (H~, 52) are representations of F on //1 and H~, resp., 
that become unitary in their respective Calkin algebras and F: /-/1 ~H2 is a Fred- 
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holm operator such that 
rQx (~) - 0z (y) V 

is compact for all ?EF. 
Two Fredholm representations ((HI, Ol), (H2, Q2), F)  and ((H i, 0~), (H i, ~.), r ' )  

will be said to be equivalent if there exist invertible A1EB(H1, Hi) and A~EB(H~, Hi) 
such that 

/ ~ t A (i) A1Q~(7) O~(v)Ax, A~02(?) 02(?) z for all ?EF, 
(ii) F'Ax--A~F is compact. 

Then R(F) will denote the set of equivalence classes of Fredholm representations 
of F. 

If F has the property that BF has a triangulation, then Mishchenko (see [8]) 
has shown how to define a map 

: R ( r )  -~ K ( B r ) .  

A uniformly continuous family ,~: BF-~B(H1,112) parametrized by the universal 
covering space of BF is said to be associated to a Fredholm representation 
((//1, ill), (H~, fi~), F)  of F if 

(i) F-,~(x) is compact for all xEBF, 

(ii) 3(~x)=02(~)3(x)01(7-0 for all 7CF, x~BF 

where F acts on BF by deck transformation. For each Fredholm representation, 
an associated family may be constructed by selecting a F-invariant triangulation 

of BF, constructing an associated family on the zero skeleton and extending it to 

BF by linear interpolation on the higher dimensional simplices. Dividing out by the 
action of F gives a family of Fredholm operators on BF, which in turn determines 
an element of K(BF) (see [1]). 

2. The basic operator 

In this section we examine the properties of an operator constructed by H6r- 
mander (see [4]). It was suggested by Professor M. F. Atiyah that this operator might 
be used to generate Fredholm representations. 

Let G be a non-compact semisimple Lie group with Lie algebra go. Let 
g0=k0+P0 be a Caftan decomposition, 0 the associated involution, K the corre- 
sponding maximal compact subgroup and G]K the non-compact symmetric space 
of maximal compact subgroups. Let B denote the Killing form on go and A the 
positive definite form given by 

A (X, Y) = --B(X, 0Y). 
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The left invariant metric on G induced by A is invariant under the action of right 
translation by K. 

The Killing form induces a G-invariant metric on G[K. Let r(x, y) denote 
the geodesic distance between x and y in G/K and r(x) the distance from x 
to the coset eK. Let d denote exterior differentation on forms and d* its metric 
adjoint. Let  e and i denote the exterior and interior products of  forms. 

We consider the (unbounded) operator 

D: L (8* (C/K)) L (8* (C/K)) 
on square-integrable differential forms defined by the formula 

D = d+d*+e(d(r~/2))+i(d(r~/2))  

and taking the closure of  the operator on smooth forms of  compact support. 

Lemma 2.1. The operator D is self-adjoint. 

The proof  is standard (see [4]). 
Let Jql(E2*(G/K)) denote the completion of  the space of  smooth forms of  

compact support with respect to the graph norm associated to D. 

Theorem 2.2. The restricted operator 

D ". I-71 (~-~ev (G/K)) --~ L 2 (~odd (G/K)) 

is surjective with a one dimensional kernel generated by the function e -r~/z. 

It  is easy to check that the kernel of  the restriction of D to 0-forms, i.e., 
functions, is generated by e -:/~. The proof  is then completed by proving the exist- 
ence of  positive constants Cq, q = 1, 2 . . . . .  dim G/K, such that 

IIDflIL~ ~ C~llfllL~ for all f d t l ( f 2q (G/K) ) .  

Our method is a generalization of that given by Hrrmander  in [4]. If  rt: G-~G/K 
denotes the canonical projection, clearly, it suffices to find positive Cq such that 

[l~*Dfll => Cqll~*fll, q > 0. 

Let )(1 . . . . .  X, be an orthonormal basis for P0 and X,+I . . . . .  X, an ortho- 
normal basis for k0. We will use the same no ta t ion  for the corresponding left 
invariant vector fields on G and Wl . . . . .  w, for the dual M a u r e r a C a r t a n  forms. 
I f  f is a k-form on G/K then 7 r * f = ~ i f i w  r where I={il<=i~<=...<=ik} is a sub- 
set of  the indices 1 . . . . .  r and wX=w ~ ^ ... ^ w ~k. Further 

n*(df)  ---- Z / , ~ = I  XJ(fl) Wj A W', 

7z* ( a ' f )  = - ~ x ,  j Xj ( f i) i (w j) (w'). 
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Let n*(d(r2/2))=2 x, w i. Then 

[l *DfP = Z ,  2: =111(xj+xj)flP+Zj, xj--XjlfjL,ftL) 
where [xt+Xt, x j -Xj]  =Xj(x3 +Xt(xj) +[Xj, Xt]. The derivation property d ~ = 0  
implies that Xz(xj)=XJ(x3 and the theorem is proved by computing 

~ {2(X,(xt) f ,L, ftt) + (IX-t, Xj]f ,L, ftL)}" 

Notice that in the Euclidean case, G=R", [Xt, Xj] = 0  and Xj(x3=fijt see ([4]). 

Proposit ion 2.3. The Lie Bracket term satisfies 

IIrF (d + d*)f]l 2 -  Z j. ltl=a IlXJ (fl)llg Jr ZiLl=q-1 Z j, l ([Xj, Xt]f jL, AL) = 
n r ~ 2 = --(q/2)Ilfllm + 2(q--  1) - 1 Z m  =q-= . . . .  +1 I I 2 . ,  j=l c.~j fires] I 

where the C~,j are the constants of structure given by 

[Xm, Xj] = Zn=r+l  Cn~jX~. 

Proof. This may be computed directly but is better understood by considering 
the Weitzenb/Sck formula for the Laplacian on forms, namely, if V denotes the con- 
nection associated to the metric, then 

A = - - t rVoV+DqR 

where REF(T|  |174 denotes the curvature and DVR, the linear operator 
induced on q-forms, the derivation extension of  R (see [10]). 

The operator ~j,t([Xj, Xt]fjz,ftL) is precisely (DqR(f) , f ) .  
The WeitzenN5ck formula gives a decomposition of  DqR(f)  into two parts: 

the operator induced by the Ricci curvature and the difference. The Ricci curvature 
Rjt =~ i  Rijti of  a non-compact symmetric space is 1/2 (Riemannian metric) (see [7]) 
and hence the first term --(q/2)llfl] ~, the order q of the form enters as repetition 
coming from the number of ways of  expressing f ,  as fjL, ]LI=q-- l"  

We explain the remaining term more carefully. 
Let (R=f,f) denote the remaining term. Then 

(R~f)h...z ' = 2Z~,< ~ ( -  D,+~R ~b r I iv i~ J abil.., it*"" iv... iq 

where we are using the orthonormal basis w 1 . . . . .  w, for p~ and Rb~.~ denotes 
the curvature coefficient with respect to this basis. Then 

(Rzf , f )  = --(q-- 1) -1ZILI = p - 2 ,  a,b,v,# (Rbvat t fabL'  fvl~L) = 

= (q -- 1)-1 Z (Rb,~,~ LbL, fu~r) + ( q -  1)--1 Z (Rb~,~ LbZ, L~L) = 

= (q-- 1) -1 Z (Rbau~LbL, f~L)-- (q-- 1) -~ Z (Rbu.~LbL, LUL) = 

= ( q -  1)-1 Z L L, - (RJ,  D. 
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However, 

Hence 

n...~ = - B( [ [x . ,  xd ,  xo], xb) = - a ( [ x . ,  xd ,  IX., xb]) = Z= ca~c~.~. 

(Rzf, f )  : 2 ( q - - l )  - ~ v  C ~' C "er ,l-.aot, a, b, #, v Itv ab k3 abL, f~vL) = 

= 2(q--I) -~ Z . [ [ Z a ,  b CffbfabL{[ 2" 

Proposition 2.4. I f  f is a square integrable q-form on G/K, then 

Z j ,  l ZILI=q--1 ( "~J (x l ) f  J L ' f l L )  ~ q Z] I [=q  I1.1"111 ~" 

Proof We consider the bilinear form with coefficients Xj(xz). Note that 

xj(x,) : 8([xj ,  Z x, X,], x,) 

where ~xiX~ is the vector field on G dual to the form 

Z x,w' = r :  (d (r212)). 

In terms of  the Cartan decomposition G = e x p  1%- K, we define a vector valued 

map~0: G-+po by 

and then 
q0(g) = a d ( k - 9 ( P )  w h e r e  g = e x p P . k  = k.exp~o(g) 

Xj(x,) = B(XA~o), X 3. 

The function 

and hence Xi(xt) 
exp Po- 

The map ~0 
feomorphism and 

We compute 

~p is left K-invariant, q~(kg)=~o(g), so 

B(Xj(~o), Xz)(kg) = B(Xj(~p), Xt)(g) 

is left K-invariant. It  now suffices to calculate the form on 

factors n . z :  G o K X p o ~ P 0  where v(k exp P ) = ( k ,  P) is a dif- 
n the projection onto the second factor in the product. 

(L~xpvZ)(cp)=Z(q).LexpV) where ZEpo. 
Firstly 

(Lox :Z ) ( , p )  = dq,(Lo~ppZ) = d~.d~(L~xppZ)  

where depEF(T*(G)| is the vector valued exterior derivative. 
A tangent vector at (k, P)  has the form (LkT, I/') where TEko, YEPo and 

(dz-1)(k v)(LkT, Y) = Lkexpv {e-ad(V)T 4 1-e-ad(v) } 
' a d ( e )  ( Y ) "  
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According to the Cartan decomposition 
given by 

(1) 

,and the Po 

g0=k0OP0, the k 0 component is 

cosh ad(P)T-~ 1 - c o s h  ad (P) 
ad (P) Y] 

component by 
sinh ad (P) y. 

(2) - s i n h  ad (P)T -~ ad (P) 

Equating compact and non-compact components in 

((d~L~p ~)-~ (Loop ~, r ') = ( d z - % ,  p) (Loxp ,, Y) = Loop ,, Z, 

we have ( 1 ) = 0  and (2)=Z.  Hence 

Z = - s i n h  ad (P) T q sinh ad (P) a d ( e )  Y = A ( P ) ( Y - a d ( e ) T )  
sinh ad ( P ) 

where A ( P ) -  
ad(P) 

The map A(P):  P0-'Po is well known to be invertible: if exp: Po~G/K, then 
(dexp)p=Le~ppA(P). Hence Y-ad (P)T=A(P) - IZ .  From (1) we get 

T-~ cosh ad (P)--  1 (ad (P )T -  Y) = 0 
ad (e)  

and hence 
cosh ad (P) - 1 

T = A(P)-IZ. 
ad(P)  

Finally, Y-- ad (P) T =  A (P) - I  Z, Y = cosh ad (P) (A (P)-  1 Z), 

i.e., (dg)(re~peZ) = cosh ad (P)(A(P)-IZ). 

We now choose an orthonormal basis );1 . . . . .  Xr for Po by taking xx=f/llel[ 
and Xi, 2<~i<~r to be eigenvectors of  the self-adjoint transformation ad (P)~: po-~ 
-*P0 with ad (P)zXi=)LiXi. The symmetric space G/K has negative sectional cur- 
vature and it follows that 2i->0, 1 <-i~_r. Finally, 

Xj(xl) = B(dcp (Lexp eXj), Xt) = B(cosh ad (P)(A (P)- z Xy), Xl) = 

= t a n h l / ~  6jl if 2 j # 0  

cSjt if 2j = 0 

and 
tanh ~ 

Hence 

> 1  

Z j,,, L (Xj(x,)fjL, f,L) >-_ q 2 ,  IIf, tl 2. 
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The two lemmas together imply that 

II~*DYll m => (3/2)q [I~*YP. 

Remark. I f  we had chosen the weight e - ~  instead of e - ' '  i.e., the form 
d(er~/2), then the same method would yield positive constants C o whenever e>-l/4. 

3. The space /71(O*(GIK)) 

The space I71(s is the completion of  the smooth forms of  compact 
support on G/K, with respect to the graph norm associated to D. 

Lemma 3.1. The space ITx(f2*(G]K)) may be charaeterized by 

n l (~'~:~ ( C / K ) )  ~- { f  C L ~ (s (G/K)) I d f, d ' f ,  I r If E L ~ (s (G/K))}. 

Proof IIOfll2=lldfll~+lld* fll~+lle(rdr)fl[~+lli(rdr)fl[~ +(Rf, f )  + ( f  , RU) where 
R denotes the Lie derivative operation with respect to the radial vector field rd/dr. 

A routine calculation using spherical coordinates shows that 

I(Rf, y ) + ( f ,  Rf)] <= c(ijfll  +llvTfll=), c > o 
(see Appendix). 

Theorem 3.2. The inclusion HI( f2* (G/K)) '~ L2( f2* (G/K)) is a compact operator. 

Proof Let C c= G/K be compact and let 

~z 1(C) = {f~ I7 x (0" (G/K)) I supp f ~ C }. 

Then the inclusion ffll(C)2L~(K2*(G/K)) is well known to be compact (see [3]). 
Let e > 0  be small and X: G/K-~[O, 1] be such that 

) ~ ( x ) = l  if B(x,x)<=~-~ 

= 0  if B(x, x) >- (8/2) -2 

and Ildzll -<- 2. This can be done by defining Z as a function of r. 
Let 

n = {Y[[IfLI, [IdYll, [Id*f[[, ItrYtl <= 11 
and fEB. Then 

I lY-z "filL, <-- f~e~t_~-i lf(P)l z Idet h (P)l de. 

But f]r.f]~<=l and hence Ifl 2~ e. 

Hence IIf-z.fll<=s. 
The composition 

-O~(O*(G/K)) -* ~q~(C) '-* L~(O*(O/K)) 
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given by f~ -~g ' f  is compact. Hence the inclusion 17x(f2*(G/K))'~L~(f2*(G/K)) 
can be uniformly approximated by compact operators and is hence compact. 

Next we examine the natural action of  G on I71(f2*(G/K)). It  is clear that 
this action is isometric on L2(f2*(G/K)) and preserves the operators d and d*. 
To check that it preserves ~I(12*(G/K)), we need only observe that r - g .  r is 
bounded by the geodesic distance from gK to eK, i.e., r(g. O, 0), 

A proof  that bypasses the characterization of 17x(O*(G/K)) in Lemma 3.1 
involves proving the following result. 

Lemma 3.3. The form 

w(x) = d(r(O, x)2--r(g.O, x) 2) 

is bounded with respect to the metric on T*(G/K). 

Proof. Decomposing the form as a difference of squares, we get 

w(x) = d(r(O,x)q-r(g.O,x)) . (r(O,x)-r(g.O,x))+ 

+(r(0, x)+ r(g. 0, x)). d(r (0, x)--r(g. 0, x)). 

The form d(r(O, x)) has norm 1 everywhere except at 0. The homogeneity 
of  G/K gives the same result for d(r(g. 0, x)). Hence the first term is bounded. 

Put  r(0, x )=R and r ( g . 0 ,  x)=e. In terms of  the metric induced on P0 by 
exp: po~G/K, the sine of the angle between the geodesics from x to 0 and x to 
g - 0  is less than or equal to e/R. The cotangent vectors d(r(O, x)) and d(r(g. 0, x)) 
are dual to the unit tangent vectors along these geodesics and hence 

[d(r(0, x ) ) - d ( r ( g -  0, x))l ~ sin -~ (e/R) = 0(l/R). 

Hence the second term is bounded. 
This lemma implies that [D, g], the commutator of the differential operator D 

and an isometry gEG, preserves I71(f2*(G/K)). 

Lemma 3.4. Let gEG, then [D,g]:  It~(g-2*(G/K))-~L~(I2* (G/K)) is a compact 
operator. 

Notice that if gEK, then [D ,g ]=0  and hence K acts on Iql(O*(G/K)) 
isometrically. Further, the action of  G becomes unitary in the Calkin algebra o f  
I71(O*(G/K)). This follows from the following general result. 

Lemma 3.5. Let H be a Hilbert space, D: H ~ H  a densely defined operator 
with a closed graph, A: H ~ H  a unitary operator such that A (domain o f / ) ) =  
: domain of  D and such that the commutator [D, A] is compact. Then the restric- 
tion of  A to the domain of  D, equipped with the graph norm, is unitary modulo a 
compact operator. 
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Proof. This is proved by calculating the polar decomposition of A[domain of D. 
When the domain of D is identified with the graph of D, the action of A becomes 

(h, Dh) ~-~ (ah, DAh) = (Ah, nDh Tin,  H]h). 

In terms of the inclusion i: graphD(-~H• we have that Aldomain of D be- 
comes 

[~ [A'AD]}[graphD 

Let P denote the orthogonal projection onto the graph of D, then, 

and hence 

(1) (A / domain of D)* (Aldomain of D) = 

: I:){[AA;] * AOlliP( A [2~AD])i. 
However, 

Hence 

[ l (  0 A D } [ l[/~, D]*A A-I[I~' D]} A--1 0 [2~ ] i = P i. 
( 1 ) = P  [A,D]* A ' 

Hence (A]domain of D)*(A]domain of D) has the form 1 +self-adjoint com- 
pact operator. The spectral decomposition of this operator implies that the positive 
square root will have the same form. 

4. Hilbert bundles 

Let F be a discrete, torsionless subgroup of a non-compact, semi-simple Lie 
group G, 4 a smooth vector vector bundle on F\G/K,  and 4=<C N a fixed smooth 
inclusion in a trivial bundle with P the orthogonal projection of C ~ onto 4. We 
define the densely defined operator 

De: L 2 (0" (a/K) ~ 4) ~ L ~ (0" (a/K) | 4) 

by the composition 

L 2 (f2* (a/K) | 4) '-* L2 (f2* (G/K) | C ~v) ~ L ~ (f2 * (G/K) Q C n) P-* L (~2" (G/K) | r 

where L~(f2*(G/K)| denotes the square-integrable forms taking values in  the 
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bundle ~ pulled back onto G/K. The space 171(O*(G]K)| is defined to be 
the domain of the closure of the operator D e equipped with the graph norm. The 
bundle ~ on G/K has a canonical /"-action and hence induces an action on 
L2(O*(G/K) | and 171(f2*(G/K) | 

We will prove that when P is constant outside a compact subset of F \ G / K  
that the triple (1-71, L ~, De) is mapped by ~ to the class defined by [~] in K(F\G/K) .  

Fix y E G/K and let 
D r -~ d+d*+(e+i)(d(r(y ,  x)2/2)). 

Then Dr--D is compact and if g .O=y  ( 0=e .K)  then Dy=g.D.  Let H and L 
denote the trivial Hilbert bundles over G/K with fibres ffU(12*(G/K)) and 
Lz(f2* (G/K)), respectively. 

Lemma 4.1. The family 

= {Dy}r~GIK: GIK-~ B(H, L) 

is a G-invariant uniformly continuous family of  bounded operators. 

The proof of this lemma is similar to the proof of Lemma 3.3. 
Similarly, we define a F-invariant family 

~g: CI K ~ B(nl(aoY(GIK)(|162 L~(a~174 

by using the inclusion and orthogonal projection associated to 4. 

Theorem 4.2. Let 1" be a discrete, torsionless subgroup of  a non-compact semi- 
simple Lie group G and ~ a smooth vector bundle on G/K which is trivial on the 
complement of  a compact subset then ~ and the family ~ define the same element 
of  K(I'~G/K). 

Consider the family 

~ :  I7'(f2 ~v (G/K)) | ~ ~ L 2(~2 ~ (G/K)) | r 

given by ~ ( y ) = D y |  At each point yEG/K, the corresponding operator is 
surjective with kernel 

(e-'(r' ~)2/2) | ~y. 

Hence Ng defines the same lement as ~ in K(F\G/K) .  
The proof of this theorem consists of giving an invariant homotopy between 

the families ~ and Ng. Unfortunately, it is not uniformly continuous but H6r- 
mander has developed a theory of strongly continuous homotopy which can be used 
here (see [4]). 

We summarize the results needed from this paper of H6rmander. 
Let 1 be a compact space, E and F Banach spaces and P: I-~B(E, F). 
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Then P is called a closed family if the graph 

{(t, u,f)[tEI, uEE, f = P(t)u} <= I X E X F  is a closed set. 
If  the map 

(t,u)~-~ P(t)u: I X E  ~ F 

is continuous, then P is said to be a strongly continuous family. Let B e denote 
the unit ball in E. If  the image of  I)<Be is relatively compact in F, we say that P 
is a compact family. I f  {Et}tcx is a family of  subspaces of  E indexed by L we 
say that it is locally compact if {(t, e)]eEEt} is a locally compact subset of I •  

Lemma. I f  {E~}tE ~ is a locally compact family of  subspaces, then 

(i) dim JEt is a finite, upper semi-continuous function, 
(ii) i f  dim E t is constant, then the spaces 

{JEt} with the topology induced from 1XE  form a vector bundle over L 

Proposition. Let {Pt}tEI be a closed family of operators from E to F. Then i f  

(i) the family is almost left invertible in the sense that there exists a strongly 
continuous family {Qt}t~i from F to E and a compact family {K~}tci from E to 
such that for every tEI, Q t P t = I ~ + K  t, 

(ii) dim Ker Pt is a finite upper semi-continuous function of  t, the range o f  
Pt is closed and index Pt is upper semi-continuous. 

The homotopy we use is as follows. Let y E G/K, t E [0, 1]. Then exp: T~ (G/K) 
~ G / K i s  a diffeomorphism. Let Cr, t: G/K~G/K be the map induced on G/K by 
multiplication by t in Tr(G/K ). The family Cy, t, tel0, 1] consists of  contractions 
along the geodesics radiating from y. Let ~y,t be the pullback of ~ by Cy, t, i.e., 
~r,t(x)=r t(x)). Then ~y ,  1 = ~ and ~r,0=~(y), the trivial bundle with fibre r 

The inclusion ~ ~ C N induces inclusions ir, t (-'-C~r and orthogonal projec- 
tionsPy, t: CN~r We have now two families of  operators 9r  and Nr177 para- 
metrized by G/K• 1] 

~r t)" ~ l ( ~ ' 2 * ( G / g ) ~ y , t )  --~ L2(O*(G/K)| 

(y, t): (e/K) | | 

where ~• is the orthogonal complement to ~y,t in C N. Altogether, y,t 

~r ~D ~r • : G/K X [0, 1 ] -+ B (H* (a  * (G/K))~r L ~ (a * (G/K))N). 

We show tha~ the family ~ @~r177 satisfies the conditions of  H6rmander 's  proposi- 
tion locally. 

The first step is to produce a family of  parametrices. The operator 
D: ~q~ (O* (C/K)) -~ L ~ (~* (G/K)) 
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is Fredholm, the kernel and cokernel have dimension 1 and hence their exists a 
bounded operator P 

P: L ~ (a* (G/K)) -~ t71 (~* (G/K)) 

(mapping forms even to odd and odd to even) such that PD and DP have the 
form 1 +compact  operator. Further, D - D y  is compact and hence P is also a 
parametrix for Dy. The parametrix P induces a parametrix 

P: L~(~ * (G/K)) N -~ m ( ~ *  ( t /K))  N 

by taking N copies. Let 

Pr,,: L2(f2*(G/K)|162 ~ ITa(t2*(G/K)|162 

be given by Py, tP Pr, t and ~ be the family parametrized by G/K• 1] where 
~r t)=Py, t and ~ = ~ r  @~r Then ~ is our candidate for the family of para- 
metrices for @. 

Lemma 4.3. The projections Pr, t induce a strongly continuous families of  opera- 
tors in both ITI(f2*(G/K)) N and L~(Y2*(G/K)) n. 

Proof. We prove the t71 case, the proof of the L 2 case is included. 
Let (x., t . , f .)-~(x,  t , f )  be a convergent sequence in G/K• 1] XI~I(Y2*(G/K)) N. 

We must show that P y . , , ( f . ) - - P y , , ( f )  and D(Py.,t .(f .))-*D(Py,,(f))  in 
L2(Y2*(G/K)) N. The difference 

IIPy.,t. ( f . ) -Py, , ( f ) l]  <= IlPy.,,. ( f . ) -Pr . , , .  (f)ll + ]l (Py., , .-Pr, O(f)[I 

-< llf. -f l[  + II (Pr.,,,,-Py, t)(f)H. 

Considering Py, t as a matrix valued function on G/K, Py.,t ~Pr,  t uniformly 
on compacta. Choose R such that 

flxl~-R Ilfll ~ < ~ 

and such that [IPy,,t,,(x)-Py, t(x)il-<e for all xER. Then 

[](Py..t.-- Py, t)(f)]l <: el[f[] +2e. 

It follows that Py. , t ( f . )~Py ,  t ( f )  in L 2. 
The case involving D involves one further step, 

I]D(Py.,,. ( h ) -  Vy,,(f))[[ <-]ID(Py.,, .(L--f))I[+I[D((P~.,,--P~,3(f))]] <-- 

<-- [lID, Py.. t.](f. -f)[I  + lID (f" -f) l [  + [lID, Py . , , . -  Py,,] (f)[[ + [[(Pr.,,.- Py,,) (f)ll- 

The last term can be made small by the argument above. Further, 

[/9, Py., t.] --= [d + d*, Py., t.] =- [d, Py., ,.] - [d, Py.. ,.]* = e (dPy., ,.) - i (dPy., ,.) 
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where Py . , t  is considered as an N •  matrix of  functions a n d  de~,.t, ' the cor- 
responding N X N  matrix of  forms. Further, dPy. , t=t .dP.  Cr.,, .. Hence dPy. , t~  
~ d P  uniformly on compacta. It follows that 

II[D, P y o , , - P y ,  t ] ( f ) l l - -O as n ~ O .  

If  r comes from a uniform lattice or P is constant outside a compact subset of  
I~G]K, then dP is bounded. Hence, 

liED, Py.,t.](f. --f)ll ~ Ctlf,, --fll 

and hence converges to zero. 

Lemma 4.4. The families ~ and t~ are strongly continuous. 

Proof. A composition of strongly continuous families is strongly continuous. 
The next step is to check that 

20~---- l + o f  

where W is (locally) a compact family. Consider the families 

~,(y,  t) = Py, tPPy,, and ~ , (y ,  t) = Py,,~Py,. 
Then 

~ = P~,tPDyPy, t +Py,,P[Py,, ,  Dy]Py,, = 

= Py,, (1 + K+ PK;)Py,, + Py, tPK;'Pv, t 

where K; : ~I(g2*(G/K))N-~Itl(f2*(G/K)) N is given by 1/2(e+i)(d(O, x)2-d(y,  x) ~) 
and K~" by (e-i)(dPy, O. These operators Kf and Kf' are bounded on 
I~I(f2*(G/K)) iv and hence compact as operators from It~(~2*(G/K)) N to L~(~*(G/K)) ~. 
Therefore 

t )  = 

where Ky,,=Py, tKPy,,+Py, tP K~Py,,+Py,,P K~'Py, t is a family of compact opera- 
tors on Itl(~?* (G/K)) N. 

Lemma 4.5. Let Bc=I71(f2*(G/K)) N be the unit ball. Then 

U 
(y, t) ~ GIKx [o, 11 

is a bounded subset of I41(f2*(G/K)) N. 

Proof. Firstly 

IlOPy, ,fll ~ [I Py, ,Of I[ + II [D, Py,,]fl  -<- liD/l[ + l[ (e - i) (dPy, 3ill. 

The restriction that Py,, is constant outside a compact subset o f  F \ G / K  
implies that dP  is bounded. It now follows that Py, tK Py, t is (locally) a compact 
family. 
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The operators K~=l/2(e+i)(d(O, x)2-d(y,  x) 2) form a uniformly continuous 
family of operators on L2(Y2*(K/G)) N, uPr,  t(B ) is a bounded subset of~ql(O*(G/K)) ~r 
and hence a precompact subset of L2(K2*(K/G))~ The composition Pr, tP  K~ is 
strongly continuous and hence for each compact CC= G/K 

U Py,,PK;Py,,(B) 
(y,t)E Cx [0,1] 

is precompact. 
Similarly, the family Pr, t P K~" forms a strongly continuous family of operators 

from L2(Y2*(G/K)) N to ItI(Y2*(G/K)) N. 
Hence finally, the family Ky, t is (locally) a compact family as it is the sum of 

three such families. 
We may also show that ~ .  ~ has the form 1 +compact  family. The proof 

is slightly easier than for ~ .  ~ because we are then working with L~(Y2*(G/K)) N. 
H6rmander's theory now implies that ~ is a family of Fredholm operators 

of constant index and that the kernels and cokernels form locally compact families 
of spaces. 

The proof of Theorem 4.2 is completed by considering the index of the family 

~r (y, t ) : ~ 1  (~2* (G/K) Q ~, ,) ~ L 2 (f2* (G/K) | ~r,,)" 

We must show the that index of this family is defined as an element of 
K(F~G/KX[O, 1]). 

The family ~ is F-invariant. Divide out by this action to get a family 

~: C~G/K~<[O, 11 -~ B(H~(f2ev(G/K)) N, L2(O~ 

and a strongly continuous family of projections, Py,,, also parametrized by 
F~G/KX[O, 1] such that 

= P 2 P + 0  - P ) ~ ( 1  - P )  = ~ r 1 6 2  

Let (y', t ')EF\G/KX[O, 1]. Then enlarging the domain we can deform 
into a family surjective in a neighbourhood of (y', t ' )  by taking 

~(Y, t)| tE3(1 -- Py, t): 141(f2eV(G/K))n+ coker ~r t ' )+coker  ~r177 (y', t') 

--,. L 2 (g2o ar (G/K)) N. 

On any compact set C<=F\G/K we can deform the family by a finite number of 
steps of  this form so as the the family becomes surjective on C• l] and finally 
we have 

~ 3 p k G ( 1  _p)k:  I~(f2r (G/K))N eV~ ~3V 2 ~ L2(y2oda(G/K)N 

where V1 and V2 are finite dimensional. 
Hence the kernel of this deformed family forms a vector bundle over C)<[0, 1], 

call it y, and y - d i m  V~-dim V2 gives the element of K(C• 1]) defined by 
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the family ~ .  Notice that the kernel bundle t/ comes equipped with a continuous 
family P '  of projections, coming from the projections onto /71 (f2eV(G]K) | ~y, t) ~3 
| 111. The continuity implies that they are of constant rank. Then P ' ( q ) - d i m  V1 

gives the element of  K(CX[0, 1]) represented by the family ~r Finally, 

P '  03 - d i m  V~lCx {0} = [4] 

P ' ( t / ) - d im  V~ICX {0} = [Dr 

where De comes from a Fredholm representation. The theorem is proved. 

Appendix 

We prove that if R denotes the Lie derivative with respect to the radial vector 
field on G/K and fEf2q(G/K), then 

I(Rf, f ) + ( f ,  Rf)] <= c([Ifl[2 +tll/Tfjl ~ 

where C is a positive constant. 
Identify P0 and G/K through the diffeornorphism 

exp: P0 ~ G/K. 

The Riemannian metric induced on P0 is then given by 

(X, Y)p = B(A (P) X, A (P) Y) 

sinh ad (P) 
where B is the Killing form and A ( P ) =  . Let 

ad (P) 

S =- {XEPoIB(X, X) = 1}. 

Let X2, ..., X, be an orthonormal set of eigenvectors of the self-adjoint transforma- 
tion ad (ell[eli) ~ on Po and hence a basis for the tangent space of S at P/[IPI[. 
Let d92, .. . ,  0, denote the corresponding normal coordinates on a neighbourhood 
N of P/IlPII in S, with respect to the Riemannian metric induced on S by ( , ). 
These functions induce coordinates on the positive cone on N, 

Oi(X) -- O,(X/IlXII), 

which together with the radial distance r (X) :B(X ,  X) 1/2, form polar coordinates. 
Let f6DI(•*(G/K)). Then f decomposes as 

f = w l + w 2 ,  i(dr) w l # 0 ,  i(dr) w ~ : 0 ,  
so that 

wl = ~ l : t=~- i  fl, idr ^ dO x, w2 = ZIst=q f2,s d~J, 
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where  I - - - ( ix  . . . .  , iq_l) i s  a mult i - index and  

d(9 t = dr A . . . /x d~iq_l. 
Then  

and  

Hence  

R f ( P )  = Z t  (rd/dr  (A ,  ,) dr ^ dt~ t + A , ,  dr ^ d~ ~) + Z s  rd/dr  (A ,  s) dOJ 

[[O'(P)I[ = r - ( q - ~ ) / / ~ : ~  sinh r l / ~ j  " 

f po r d / d r ( A ' z ) f  l "  1r .4 (P)] dP = 

= - f [A , , [  ~ te ' [  ~ [det A (P)[ d e -  

- f ( f l , , ,  rd/drfl ,  ,) [d~'l 2 [det A (P) I d P -  

- f  IL . , l~(rd/dr  In ]~'1 ~) [~J2 ]det A(P)[  d P -  

- f IN,,? Io'1 ~(rd/d," in det A (P))Idet A (P)} dP. 
The  derivat ives d /dr ln  10'18 and  d / d r l n A ( P )  are b o u n d e d  a t  co. 

The  te rm we is similar.  Hence  the result .  
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