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1. Introduction 

Let f2 be a bounded simply connected domain in the complex plane, let dA 
denote two-dimensional Lebesgue measure and let w be a positive measurable 
function defined on f2. Assume, moreover, that w is essentially bounded. The 
purpose of this investigation is to study the spaces HP(f2, wdA) and LP,(f2, wdA) 
which for each p, 1 <=p< ~, are defined as follows: HP(f2, wdA) consists of those 
functions that can be approximated arbitrarily closely in the LP(f2, wdA) norm by 
a sequence of polynomials; LP,(f2, wdA) denotes the set of functions in LP(f2, wdA) 
which are analytic in f2. I f  w is bounded away from zero locally or, more generally, 
if log w is locally integrable then L~(O, wdA) is norm closed and HP(O, wdA) 
is contained in LP,(f2, wdA) (cf. [6], p. 175). It is an old problem to find conditions 
on f2 and w which imply that HP(f2, wdA)=LP,(f2, wdA). When this occurs the 
polynomials are said to be complete in LP,(f2, wdA). In this paper we consider the 
completeness problem for certain special domains f2. 

Questions of this kind were first considered by Carleman [9] in 1923. He proved 
that the polynomials are complete in L~(f2, wdA) if f2 is a Jordan domain and 
w - 1 .  A decade later MarkugeviE and Farrell (cf. [18], [39] & [40, p. 112]) obtained, 
independently, the corresponding theorem for Carath6odory domains and Sinanjan 
[51] subsequently extended it to closed Carath6odory sets. A Carath6odory domain 
(or set) is by definition a domain (or set) whose boundary coincides with the boundary 
of the unbounded complementary component of its closure. By itself, the Carath6- 
odory property is not sufficient to ensure that the polynomials are complete in 
LPa(f2, wdA) for an arbitrary weight w (cf. [36, pp. 3 4] & [40, p. 134]). Weighted 
polynomial approximation on Carath6odory domains has been studied extensively by 
many authors and will not be of principal concern to us. For a more detailed descrip- 
tion and historical account of this aspect of the completeness problem the reader is 
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referred to the survey article of Mergeljan [40] and the text of Smirnov and Lebedev 
[53]. The most recent work in this area is that of Hedberg [30] & [31]. 

Our main objective here is to study weighted polynomial approximation on 
certain non-Carath6odory domains. The following are more or less typical of the 
kind of regions we intend to consider: 

(i) a Jordan domain with a cut or incision in the form of a simple arc from an 
interior point to a boundary point; 

(ii) a "crescent", i.e. a region which is topologically equivalent to one bounded 
by two internally tangent circles. 

In the first case (i) completeness depends on several factors, one of which is the 
behavior of the weight w in a neighborhood of the cut. I f  for example, w is bounded 
away from zero in any open set which meets the cut then it is easy to see that the 
polynomials cannot be complete with respect to any of the L ~ (wdA) norms, 1 <=p < ~o. 
On the other hand, if w is allowed to approach zero rapidly at each point of the cut 
then completeness may occur. This phenomenon was discovered by Keldyg (of. [36] 
& [40]) in 1939 and since then has been studied by D~rba~jan [40], Mergeljan, Tamad- 
jan [54] and others. Our principal contribution in this area is the material in Section 3,  
Here we obtain a sufficient condition (of. Theorem 3.4) for the polynomials to be 
complete in L~(~2, wdA) for a domain Y2 having an arbitrary number of rectifiable 
cuts. This condition is "best possible" (cf. Theorem 3.5). 

Topics concerning approximation on domains of the second kind (ii) are the 
subject matter of Section 5. In contrast to the situation in case (i) we shall consider 
here only the weight w ~ l .  Under these circumstances completeness depends 
entirely on the region Y2 and, more specifically, on certain of its metric properties 
near multiple boundary points. This too was discovered by Keldyg (of. [40, p. 116]). 
Later and with additional restrictions on the boundary of the crescent (2, D~rbagjan 
and ~aginjan (of. [40, p. 158]) obtained a necessary and sufficient condition for com- 
pleteness in this setting. In recent years the problem has been taken up by Havin [23], 
Havin and Maz'ja [25] & [28], Saginjan [49], Shapiro [50] and the present author [6]. 
In Section 5 we obtain extensions and improvements to much of this work. The 
principal results are Theorems 5.7 & 5.11 and their associated corollaries. As an 
added dividend we obtain through the ideas of Section 3 a general metric criterion 
for completeness in LPa(~2, dA) (cf. Theorem 5.2) which complements a theorem 
of Mergeljan [42]. Again the condition is very nearly sharp (cf. Theorem 5.4). 

Section 6 is devoted to an unpublished result of Carleson which is used in prov- 
ing Theorem 5.11. In Section 7 we discuss briefly the completeness problem for 
harmonic polynomials on higher dimensional crescents. This study was begun 
by Havin and Maz'ja [26] and is still in the very early stage of development. 

In the succeeding pages we shall adhere to the following notation: (2 wilt 
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always be a domain and ~ will denote its closure. For each p=>l the conjugate 
index p/(p- 1) will be denoted by q. The letters C and K will be used to denote 
various constants which may differ from one formula to the next, even within a single 
string of estimates. 

2. Sobolev spaces and the Cauchy transform 

In order to carry out the program described in the introduction we shall have 
to verify, in certain instances, that HP(f~, wdA)=LP,(O, wdA). To accomplish this 
it is sufficient to prove that if gELq(~, wdA) and if fQgwdA=O for every polyno- 
mial Q then fFgwdA=O for every FELP.(g2, wdA). In the cases we consider this 

e gw (~) dA is done by a careful analysis of the Cauchy transform j f _  z ~, which is denoted 

~ ( z ) .  As a distribution O~'~/O~=-~gw and, since fQgwdA=O for every polyno- 

mial Q, g~'~ vanishes identically in the unbounded complementary component of 
O. Our task will be to prove that 

(i) g'~=O everywhere in C \ ~  and almost everywhere on O0 in an appro- 
priate sense. 

Oq~i-gw ~ 0  as (ii) there exists a sequence q~EC~(f2) such that [(-~--5 []Lq(~,aA) 

j--o- oo. 

Once this has been done it follows from property (ii) that if FEL~(FZ, wdA)n 
nLP(O, dA) then 

Jim fo e- dA = fo egwaA 

On the other hand, integrating by parts 

fa F ~  dA OF =-f.  jdA =0 

for all j ,  since F is analytic in Q. Hence, fFgwdA=O and so FEHP(~2, wdA). 
This argument originated with Havin [22] and Bers [4]. Whenever LP,(Q, wdA)n 
nLP(O, dA) is dense in LP~(~, wdA) we can conclude that the polynomials are 

complete in L~(f2, wdA). For those weights which we consider this will always be 
the case. In particular, if w = 1 the assertion is obvious. 

In establishing (i) we shall invariably make use of  one of  the following two 
lemmas. Both are variations of a / e m m a  of  Carleson [11, Lemma 1] and they are 
restated here solely for the convenience of the reader. A proof of Lemma 2.1 can 
be found in the author's paper [6, p. 169] and Lemma 2.2 is in Hedberg [32, p. 164]. 
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Lemma 2.1. Let E be a compact subset of the plane having connected comple- 
ment andlet kELq(E, dA) for some q > l .  I f  k = 0  identicallyin C \ E  then ~(z0)=0 
at every point zoEOE where 

Ik(z)la d A  < co. 
Iz-z01 

Lernma 2.2. Let E be a compact set with connected complement and l e t  
kCLq(E, dA), l<q<-2 .  I f  fc=0 identically in C \ E  and ~o is a point of E ~ (the 
interior of E) at a distance 5 < l / e  from OE then 

Ik(r <- c {k*(r log 1/~ + (rq(~) f , .  ~0,~,, Ik(z)lq dA)I"}, 

where k*(ff)=sup. (zcr2) -1 fl .-~t<, lk(z)l dA is the Hardy--Littlewood maximal func- 
tion, Fq(5) is equal to log 1/5 or 5 q-~ according to whether q = 2  or q < 2  and, 
C is a constant depending only on q and the diameter of  E. 

In order to describe accurately the meaning of the expression "almost every- 
where" as it relates to our problem it is necessary to introduce the notion of capacity. 
I f  1 < q <  oo t h e  q-capacity of  a compact set E c  C is defined by 

F q ( E )  = inf f  IVul q dA, 

where the infimum is taken over all functions UECo(C ) such that u--1 on E. 
Here Vu denotes the gradient of u and C O (C) is the set of  all infinitely differ- 
entiable functions with compact support. I f  q_->2 each function u is required to 
have its support in some fixed disk. The q-capacity of  an arbitrary set X is defined by 

Fq(X) = sup re(E), 
the supremum being taken over all compact sets E c X .  A property is said to hold 
Fq quasi-everywhere if the set where it fails has F~ capacity zero. 

We shall denote by W q the Banach space of  all functions uELq(R 2) whose first 
partial derivatives (taken in the sense of distribution theory) also belong to L*(R~). 
The norm is customarily defined as follows: 

Ilull~ = { f  (1~1'+ [Vu[2)q/2dA} l/q" 
For  a fixed open set f 2 c R  2 we denote by l~lq(f2) the closure of C o ( O  ) in W q. 

Functions of  class W q arise naturally in connection with approximation prob- 
lems. If, for example, kELq(Q) and if  k has compact support then kE W q. In 
particular, by a theorem of  Calder6n and Zygmund 

IlVfc[l~ <= -b-2] q= .C  [] kl[q, 

where C depends only on q (cf. [28, p. 564]). The Cauchy transform ~ of  an 
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L ~ function also has the following remarkable continuity property (cf. [33, p. 
306]): Given any 5>0  there exists an open set U such that Fq(U)<e and k is 
continuous in the complement of  U. A function with this property is said to be 
quasi-continuous. It  can be shown that every W1 q function agrees almost every- 
where with one that is quasi-continuous. Of course, if q > 2  t h e n  k is actually 
continuous and likewise each W~ function has a continuous representative. 

The next lemma is due to Bagby [1, p. 264] (el. also [33, p. 313]) and can be 
used to establish ~ assertions such as (ii) when l < q < o o .  In case q=~o, however, 
this must be replaced by an argument of  Ahlfors (cf. [4, p. 3] & [32, p. 168]). Con- 
sequently, we shall hereafter state all results for p_->l, give the proofs for P > !  
and allow the reader to make appropriate modifications for p--1  whenever nec- 
essary. 

Lemma 2.3. Let s be an open set in the complex plane and let uC W q be 
quasi-continuous. In order that uEl~'lq(f2) it is necessary and sufficient that u=O 
quasi-everywhere with respect to r~ on C~f2. 

There is another kind of continuity associated with Sobolev functions that can 
sometimes be useful. A function g which is defined Fq quasi-everywhere is said 
to be Fq pseudo-continuous at x0 if for every 2 > 0  the set {x: ]g(x)-g(xo)]>=2} 
is suitably thin at x0. For  a precise description of thinness the reader is referred to  
[33]. It  will be sufficient for our purpose to know that a Borel set E is not  / 'q-thin 
at x0 if l<q<_-2 and 

f0 ' r2_ q - = co, (2.1) 

where A,=A(xo; r) denotes the disk of  radius r with center at x,  (cf. [33, p. 302]). 
Suppose for example, that kCLq(f2) and that ~c-~0 in C \ O .  By a theorem of  
Fuglede (cf. [33, p. 306]), k is pseudo-continuous Fq quasi-everywhere. Thus, in 
order to prove that k = 0  q.e. in C \ •  it is enough to verify that (2.1) is satisfied 
at all points of 0~? with E = C \ ~ .  We shall make repeated use of  this idea in con- 
nection with assertion (i). Note  that F~(Ar).~r 2.q if  l < q < 2  and F2(Ar)~ 
-~0og 1/r) -~ (cf. [61, Lemmas 7, 8] & [33, p. 312]). 

3. Approximation with respect to a weight 

Let f2 be a bounded simply connected domain and let w be a positive weight 
defined on t2. Throughout  this section q~ will denote a conformal map of  f2 
onto the open unit disk D and ~=~o -1 will be the inverse mapping. We shall con- 
fine our attention to those weights w which, when composed with ~k, have one 
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of the following approximation properties Ap, ! <-P< ~:  

H'(D, w($) dA) = LPa(D, w($) dA) (Ap) 

Unfortunately, it is difficult to tell in any given instance if property .4p is satisfied 
and our results are, therefore necessarily limited. We remark only that w has prop- 
erty Ap for every p if w($) is constant on each circle {zI=r(r<l) (cf. Mergeljan 
[40, p. 131] for p=2).  What little additional information is available can also be 
found in [40]. 

Most of the results in this section are based on the following elementary fact 
(cf. [31, p. 121] & [40, p. 136]). 

Lemma 3.1. If, for afixed p, the weight w hasproperty Ap and if 9n.(~o')2/PE 
E HP(f2, wdA) for n=0, 1, 2 . . . .  then HP(f2, wdA)=L~(E2, wdA). 

Proof. Suppose that FELl(f2, wdA). For any polynomial Q we have 

f n I F -  Q(~o). (~O")2/PlP W dA --- f n IF. (q,') -2 / , -  Q (q~)lv ]p'l~w dA = 

= IF(e) .  ( r  Ql.w(r  dA. 

Since w has property Ap, the last integral can be made arbitrarily small by a suit- 
able choice of Q. Therefore, FEItP(f2, wdA), since by hypothesis Q(cp).(q~')2/P6 
~H/'(t2, wdA). Q.E.D. 

It is important to recognize here that property Ap is not, by itself, sufficient to 
ensure that HP(f2, wdA)=L~(f2, wdA). The weight w = l ,  for example, always 
has property Ap but, if O 0 is the disk with a single radial cut then HP(f2o, dA)r 
~L~(f2 o, dA) for any p. The difficulty arises from the fact that Lebesgue measure 
dA does not "see" the cut. Thus our task will be to find those weights w on a 
given region f2 for which the measure wdA respects all boundary cuts. In particular, 
we shall be interested in finding conditions on w which imply property Ap and the 
remaining hypothesis of Lemma 3.1, namely, that q~"(q~')2/P belongs to H p (f2, wdA) 
for n=0, 1, 2,. . . .  

As a rule, we shall also be interested in rather general domains. In this context 
the part of the boundary which plays the role of the cut in g20 is called the inner 
boundary. We now make that notion precise. 

Definition. For an arbitrary domain f~, the inner boundary is that part of 00 
which is contained in the interior of ~. The inner boundary will be denoted 0* ~2. 

In this section we shall restrict our attention to domains (2 for which 0(2\0" (2= 
=0E2~, where f2~ denotes the unbounded component of C \ ~ .  This would 
exclude the crescent, for instance. We shall further assume, at least initially, that each 
point of O+ f2 can be joined to Of 2= by a rectifiable arc which, except for one end- 
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point, lies entirely in 0* f2. A typical example would be a Jordan region with one 
or more rectifiable cuts in it. 

One of the basic tools in our investigation is the Denjoy--Carleman theorem 
for quasi-analytic classes on a rectifiable arc 7- If  f is a complex valued function 
defined on ~ and z 0 E ~ the derivative f '(zo) is defined in the usual manner: 

f ' (zo) = lim f ( z ) - - f (zo)  , zET. 
z ~ z  0 Z - -  Z 0 

The set of functions having derivatives of  all orders along 7 is denoted C~(7). 
A family in C= (7) is quasi-analytic if each of its members is completely determined 
by its value and the value of its derivatives at a single point. The following version 
of the well known Denjoy--Carleman theorem is due to A. M. Davie (unpublished, 
cf. also [13, p. 34]) and will be used by us in subsequent discussions. The proof, 
which we outline, is based on an argument of Bang [2] (cf. [38, pp. 107--113]). 

Theorem 3.2. Let ~ be a rectifiable arc and suppose that fCC=(7) .  Assume that 
there exists a sequence {An}~=0 of non-negative real numbers such that 

(i) sup~ [f(n)l<=A ., n=0 ,  1, 2 . . . .  ; 
(ii) the sequence {A,} is logarithmically convex, i.e. A2<=A,_IA,+I for all n; 

(iii) ~ = 0  (I/A,) 1/"= ~. 

I f  aE? and f (" ) (a )=0 for n=0,  1, 2, ... then f vanishes identically on 7. 

Proof. The proof makes use of a generalized Taylor formula for functions 
defined on a rectifiable arc. Let 40, 41,-.-, ~, be points taken in order along 7 
with 4 , = a  and 4o an arbitrary point of y. Define polynomials Go, G1 . . . . .  G, 
inductively as follows: 
(1) Go(Z) = 1 ; 

(2) Gk(~O, ~ k _ ~ , z ) = f  z Gk_l(~o , ~k_2, t )dt  for k=>l .  

As in [38, p. 108] it can be shown by induction on n and integration by parts that 

(3) f(4o) ---- Z ; - o  1 (-- 1)kf (k) (4.) Gk (~.) + R. 

where the remainder R. is given by 

n k ~k (4) R, = Z k = l  ( -1)  f~_ f(k)(t)Gk_~(r . . . . .  Ck-~, 0 dt. 

By choosing r . . . . .  ~,-1 we obtain from (3) and (4) the usual Taylor formula 

f(k) (~.) 
(3') f(~o) =~.-~o k ~  (~~ 
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and, in this case,4he remainder has the particularly simple form 

- 1  
(4') R.  -- f g :  f ( " ) ( t ) ( ~ o - t ) " - l d t .  

Verification of  the preceding remarks is, at least formally, the same as in the 
classical case. One must check, however, that the integrations involved can be carried 
out in the usual way. In particular, the following is needed: 

(5) I f  FECI(7) then f~2 F ' ( z ) d z  = F ( z 2 ) - V ( z O  whenever zl, z2Ey. 

To establish this we assume that 7 has a parametric representation z = z ( s ) ,  where 
s denotes arc-length on 7- Note that z ' ( s )  exists for almost every s since ~ is 
rectifiable. Thus, if g ( s ) =  F(z ( s ) )  and if we write 

g (s) - g (So) = F(z  (s)) -- V(z (So)). z (s) - z (So) 
S-So z (s ) - z (so)  S-So 

it is easily seen that 

(6 )  limsup]ig(~'-~z--g- g~s~ -<_ M - - - s u p l F ' ]  fo revery  so; 

(7) g'(so) = F'(z(So))Z'(So) for almost every So. 

We conclude from (6) that g is absolutely continuous and hence if Zl=Z(SO and 
z2=z(s2)  then 

F ( z ~ ) -  F(z l )  : g (s~)-- g (sl) 

= f : :  g'(s) ds 

= f : :  F' ( z ( s ) ) z ' ( s )ds  

= f : :  

Suppose now that f(k)(~,)=O for k=O, 1, 2, . . . .  Our objective is to prove 
that f(~o)=O. In this endeavor we consider the following two possibilities: 

( Ak ] a/~ R <  co (8) t iminf  ~-~.j = . 

(9) tim A ~,/k = ~ . 
k ~  

If  the sequence {Ak} happens to satisfy condition (8) we choose ~1 . . . . .  ~,-x=~o 
and estimate [f(~0)] by means of  (3') and (4"). In this way we obtain another se- 
quence kj-~ + oo with the property that 

If(~o)l <= (R I~o-~,l)kJ 



Approximation in the mean by polynomials on non-Carath6odory domains 125 

for every k x. Evidently, then, f ({0)=0  if [~0-r By repeating the argument 
a finite number of  times we can infer that f -=0 on 7. 

If  (8) fails then (9) holds and in that case the points {1, ..., 4n- ~ must be chosen 
more carefully. In order to do this we recall that, by an inequality of Carleman (cf. 
[21, p. 249] & [38, pp. 22--24]), 

.~  L ~ I.-~k ] <- e .Z~ k = l A k--~+ x , 

where e is the base of  the natural logarithm. Consequently, both series diverge. 
Define #~=l ,  ltk=Ak_~/A k for k=>2 and, with d standing for distance along 7, 
put  c~n=d(~0, a ) / ~ = l  Pk. By virtue of  (ii) the sequence {/~k} is nonincreasing and, 
according to our previous remarks, an-~0 as n-* oo. Now choose points ~ . . . .  , ~n-1 
on 7 in such a way that 

d(~k-~,~k)=~n~k ( k = l  . . . .  ,n). 

As in [13, p. 35] and [38, pp. 111--113] it follows from (3) and (4) that 

If(~o)l <- AI~z.( 1 --a,e)  -1. 

Since an~O as n~oo, once again f(~0)=O. Q.E.D. 
We can now state and prove our first result and in so doing we introduce a ncw 

concept. A rectifiable arc 7 will be called strongly rectifiable if 

d (z, z0) lim s u p ~  < oo 

for every z 0E 7- Here, as before, d(z, Zo) denotes the distance from z to Zo along 
7. Since 7 is rectifiable, the limit supremum is actually equal to 1 almost everywhere 
with respect to Hausdorff measure. 

Theorem 3.3. Let f2 be a bounded simply connected domain with 0f2\0*g2--- 
=0~2~ . Assume that each point of  O* ~ can be joined to Of 2 by a strongly rectifiable 
arc in O*f2. Let  6(z)=dist(z,O*f2). I f  w>=O is bounded and i f  it has property Ap 
then HP(f2, wdA)=LP,(~, wdA) whenever the following two conditions are satisfied: 

w(z)dA]l lP= Mn < ~ , n =  O, 1, 2, (1) . ~ _ .. . .  �9 

1 
(2) Z ~ : l  n (M,) 1In -- oo. 

Remark. Theorem 3.3 is somewhat reminiscent of a theorem of Bern~tein [3] 
concerning weighted polynomial approximation on the real line R. Let h_->0 be 
a bounded measurable function defined on R and put Ch = { f :  liml, I+~ h (x)f(x) = O, 
f continuous}. Bernltein's problem was first posed in 1924 and it asks: For  what 
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weights h are the polynomials dense in Ch in the sense that given fE  Ch there 
exists a sequence of polynomials Q~ such that 

suph(x)[f(x)-Qj(x)]-~O as j - . o o ?  
x 

In 1951 Bern~tein himself obtained the following result (since then, of course, a com- 
plete solution has been given by Mergeljan [41]): 

Theorem (Bern~tein). The polynomials are dense in C h if 

(1') sup]x]"h(x )=m,<~,  n = 0 , 1 , 2  . . . .  ; 
2r 

1 
(2') Z~=I (M,)I:--------W - ~ .  

In relation to Theorem 3.3 condition (1') corresponds to (1), condition (2') to 
(2) and the point at co to O* ~2. 

Proof of Theorem 3.3. Let (p: f~+D be a conformal map of ~2 onto the 
open unit disk D. We will verify that q~"(q~')~IpEHP(~, wdA), n=0 ,  1, 2 . . . . .  

Suppose, therefore, that gELq(~?, wdA) and fQgwdA=O for every polyno- 
mial Q. We must prove that f~o"(~o')=lVgwdA=O for n=0 ,  1,2 . . . . .  To accom- 
plish this we consider the Cauchy transform G(z)= fgw(~)/(r By hypothesis 
G = 0  in Q~. We shall prove that G = 0  quasi-everywhere with respect to F~ 
in C \ ~ ?  and then use the argument outlined at the beginning of Section 2. 

The first step is to verify that G vanishes identically on O* ~2. To this end, fix 
XlCO*~2 and choose a strongly rectifiable arc y lying in O*~ and joining xl to a 
point XoEOg?=. Now apply Lemma2.1 to G with E=s~, k=gw and z0=x0. 
It is a simple matter to check that the hypotheses are satisfied: 

(i) f ~  Igw]"dA <= (esssupw)q-~f~ lglqwdA < co; 

(ii) f ~ ]gw(z)[Z [z-xol dA<~o for every 2 < q  and hence for some 2 > 1 .  

The first is obvious; the second follows from H61der's inequality and assump- 
tion (1). Thus, according to Lemma2.1,  G(x0)=0. By the same reasoning 

f Q (z) gw(z) dA = 0 for every polynomial Q and so 
Z - -  X o 

f l _ L  - [gw(z ) ]  dA = 0 
Z - (  ( Z - X o J  

whenever (q ~. Hence, again by Lemma 2. l 

f ~ gw(z----L dA = O. 
( Z -  Xo) ~ 
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Continuing in this manner, we conclude that 

fra gw(z~) d A = O ,  n = 0 , 1 , 2 ,  
( z - x o ) "  """ 

Now, by virtue of hypothesis (1), GEC=(y) and for each xE7 

gw(z)  
G(n)(x) = n! fsa (z_x)n+l dA, n = O, 1, 2 . . . . .  

Here, of course, differentiation is carried out along 7. From this and our earlier 
remarks it follows that 

(iii) G(n)(x0)=0, n = 0 , 1 , 2  . . . .  ; 
(iv) sup ]G(")I ~ n! M,+lllglIL,(,,da), n = O, 1, 2 . . . . .  

y 

We would like to invoke Theorem 3.2 and conclude that G - 0  on y. Unfortunately, 
Theorem 3.2 cannot be applied to G directly. We can, however, do the following: 

F x For each xEV define (x)=f:,oG(z)dz,  integration being along 7- Since 7 is 
strongly rectifiable, it is easy to  see that F '  = G and consequently 

(v) F (")(x0)=0, n = 0 , 1 , 2  . . . .  ; 
(vi) sup IF(")I = sup ]G("-x)[ <= n! Mnl[gHLq(waa) ,  n = 1, 2 . . . . .  

7 Y 

Theorem 3.2 can now be applied to F with A , = n ! M ,  1}gIt. First, the sequence 
{A,} is logarithmically convex, since the same is true of {11//,}. The latter can easily 
be seen by writing 6-"P=a-P(n-1)I2'a-P(n+x)I2 and applying Schwarz's inequality 
with respect to the measure wdA. Secondly, since (nI)X/n is asymptotic to n as 
n - ~  it follows from hypothesis (2) that ~ '=  A-11n--r Therefore, F = G = 0  

' - ( - - /n  = X n - -  " 

on y which implies that G---O on a*t~. 
We wish now to conclude that G = 0  quasi-everywhere on 0 ~  and hence 

quasi-everywhere in C \ ( a .  The following facts are known: 

(a) G is pseudo-continuous at F~ quasi-every point of C (in fact, actually 
continuous everywhere if q >2);  

(b) G vanishes identically in ~=. 

Since s is " thick" in the potential theoretic sense (i.e. (2.1) is satisfied with E =  ~=)  
at every point of 0fa=, the desired conclusion is obvious. Consequently, by Lemma 
2.3, GEIYC~(f2) and fFgwdA=O for every FEL~(fa, wdA)c~LV((2, dA). Since we 
can take F=q~"(~o') =/p, the proof is complete. Q.E.D. 

We have seen (Theorem 3.3) that in L~(~, wdA) completeness is subject to 
the behavior of w near O* ~2. As a general principle, of course, this was discovered 
by Keldy~ and has been known for many years. It is illustrated even more graphically 
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in the following two theorems. The first, Theorem 3.4, was obtained earlier by 
M. M. D~rbagjan (cf. [40, p. 144]) in the case of a disk with a single radial cut. His 
argument, however, does not extend to the more general setting to be considered 
by us. The second, Theorem 3.5, indicates that Theorem 3.4 is "best possible". It 
is closely related to a theorem of N. Levinson concerning the normality of 
certain classes of analytic functions and its proof is based on recent work of 
E. M. Dyn'kin [16]. 

Theorem 3.4. Let f2 be bounded simply connected domain with Of 2~O* I2= 
=Of2~. Assume that each point o f  O* f2 can be joined to Of 2~ by a rectifiable arc 
in O* f2. Let 6 (z) = dist (z, O* f2). Suppose further that w (z) <= W(6 (z)), where W 
is continuously differentiable and 

W'(t) 
(1) Z ( t ) : t ~ l + o ~  as t~0;  

1 
(2) f o l o g l o g - ~ - ~ d t  ~-+~o. 

Then, HP(Q, wdA):LPa(Q, wdA) i f  w has property Ap. 

Remark. Hereafter, a majorant W satisfying condition (1) above will be called 
a regular majorant. 

Theorem 3.5. Let ~2 o be the region obtained by deleting the positive real axis 
from the open unit disk. Let 5 (z) be the distance from z to the cut. Suppose that 
w(z)= where 

(3) W(t) lO as t~O; 
1 

(4) f0  log log ~ - ~  dt < § ~.  

Then, HP(f2o, wdA)#L~(t2o, wdA) for any p. 

Historical Notes: Results of the kind described in Theorems 3.4 & 3.5 have 
been obtained by several authors. I t  seems appropriate, therefore, to comment 
briefly on the work of these men. The following is a summary of what was previously 
known: 

(a) The first and perhaps the most comprehensive result was obtained by 
Keldy] [36] in 1941 (el. also [40]). Assuming that f2 is an arbitrary bounded simply 
connected domain and w has property A2, he proved that HZ(f2, wdA)= 
=L~(g2, wdA) if, for some e>0,  

1 
lim inf [6 (z)] ~ +~ > O, (3.1) ~(~)~o log log 
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where 6(z)=dist  (z, Of 2). His proof consisted in modifying the technique used in 
proving the classical Runge theorem. He also observed that (3.1) is very nearly sharp 
in the sense that there exists a domain f21 such that H~((21, wd/l)#L2a(QlWdA) 
for any weight w satisfying 

1 
lim sup [6 (z)] 2-" log log = 0. (3.2) 
+cz)+0 W(~) 

(b) In 1953 Tamadjan [54] noticed that condition (3.1) could be relaxed some- 
what without destroying comp!eteness. By modifying Keldyg' technique he was able 
to replace (3.1) by the weaker estimate 

1 
li~inof [6 (z)] ~ log l o g - w ~  > 0. (3.3) 

(c) At the same time that he obtained (3.1) Keldyg noted that this rate of 
decay for w could be substantially reduced if  Of 2 were sufficiently nice. In particular, 
for f2o, the disk with a single radial cut, he showed that (3.1) could be replaced by 
the condition 

1 
lim inf [5 (z)] ~ +~ > O. (3.4) ~(2)+o log log 

Again, he observed that this was nearly sharp. That is, H2(Oo, wdA)~L](Oo, wdA) 
for any weight w satisfying 

1 
lim sup [6 (z)] ~-~ log log - -  = 0. (3.5) 

+(z)+0 w(z) 

(d) Around 1949 D2rbagjan (cf. [40, p. 143]) was able to reduce the rate of 
decay required for completeness in L~ (f20, wdA) still further, provided w satisfied 
a certain regularity condition. I f  w(z)=W(6(z)) and W(t) decreases regularly 
(cf. (1), Th. 3.4) as t+0 then H2(f2o, wdA)=L~a(f2o, wdA) if 

1 1 f0 o g l o g ~ ( f ~ d t  = + ~ .  (3.6) 

Of course, he assumed property A2 as usual. Our Theorem 3.4 includes this as a 
special case. Moreover, to our knowledge it was not previously known to what 
extent (3.6) was sharp. This question is taken care of in Theorem 3.5. 

(e) In a recent paper, [59], Beurling has studied uniform weighted approxima- 
tion and in that setting he has obtained results which complement Theorems 3.4 & 
3.5. This work is based on ideas contained in [60] and can be used to give an alternate 
proof of Theorem 3.5. It is not unlikely that his method can be adapted to other 
problems encountered in LP-approximation. 

He considers the following situation: Let f2 be the rectangle {x + iy: Ix l <a, lYl <b} 
and g2 -+ its intersection with the upper and lower half planes, respectively. Assume 
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that w(y) is a continuous function defined on the interval [ - b ,  b] satisfying: 
w(y)>0  for yr w(0)=0 and w(y) ~0 as ]y[ r Let C~(f2) be the Banach space 
of all complex valued functions f for which the product w(y)f(x + iy) is continuous 
on ~ and equal to zero on [ - a ,  a], the norm being 

I]fll~= sup w(y)[f(x+iy)]. 
x+iyEf~ 

Define 
Aw(O ) = {f:fCCw(g2), f analytic in (~}, 

Aw(Q +) -- {f: fcC~(~2), f analytic in ~+ w ~-}.  

Aw(O +) is a closed subspace of Cw(~ ) and the problem is to determine when 
A,~(O) is dense in A~(g2-+). Beurling proved that the polynomials, and hence Aw(O), 
are dense in Aw(O -+) if and only if 

f~_~loglog 1 ~(y)  dy = + ~ .  

The proof of necessity depends on the solvability of a certain generalized Dirichlet 
problem. This replaces the result of Dyn'kin used by us in establishing Theorem 3.5. 

Proof of Theorem 3.4. We shall obtain a bound for the integral f~  w(z)5(z)-"PdA 
and then argue as in Theorem 3.3. To do this we simply estimate the maximum of 
the function W ( t ) r  "p, t>0,  in the obvious manner. Differentiating and setting 
the derivative equal to zero we find that the maximum occurs at the unique point t 
which satisfies the equation 

-npW( t )+tW' ( t )  = O, 

that is, when t--)c-a(np). Since, in particular, W(t)~const . t  p it follows that 

I f  w(z) ~l/p dA] <: C 
M, ----- (a ~ ~ Z-l(np).-1 ' 

where C is independent of n. Thus, if gELq(Q, wdA) and if ? is any arc lying 
in 0 "~  the Cauchy transform G(z)=fgw(~)/(~--z)dA~ belongs to C=(?) and 

Cn! 
supv [G(")] ~ n! i.+lllg]lL.(~,waA ) ~ Z_~(np). IlgllL~(.,wda)" 

In order, then, to apply the Denjoy--Carleman theorem as in Theorem 3.3 we must 
prove that 

Z7=1 Z-I(nP------~) -- ~" (3.7) 
n 

Since Z ~ is a decreasing function, this series will diverge provided 

f ;~ z- (sv) d s  = c o  
S 



Approximation in the mean by polynomials on non-Carath6odory domains 131 

Z-l(S)ds= ~o. To verify that the latter diverges we integrate or, equivalently, if f ~  
s 

by parts: 

f~o Z-l(s)  ds = [Z-l(s) logs]~~ f ~  ~ log s dz-l(s). 
s 

The first term on the right hand side is bounded below and the second is equal to + co. 
In particular, 

-- f ~ logs dZ-1 (s) = fo log Z (t) at 

- -  

1 
const,  f0 log l o g - ~  dt 

~ - ~ o  

Wc have used here the fact that d log Width-Clog ( l /W) (cf. [16, p. 186]). There- 
fore, the series (3.7) diverges and we can conclude as in Theorem 3.3 that 
IIP(g2, wdA)=L~(t2, wdA) if w has property Ap. Q.E.D. 

1 
Proof of Theorem 3.5. Since W is monotonic and since fo  log log dt < 

w(t) 
< + ~,  there exists a function W1 with the following properties: 

(a) W1(t)~W(t) for 0 < t ~ l ;  
~ ' ( t )  

(b) W1 has a continuous derivative and t ~ + ~  as t~0; 
~ ( t )  

1 
(c) fo log log ~ ( t )  dt < + ~.  

The existence of  W1 was demonstrated by Dyn'kin [16, Lemma 3]. 
Now fix a point ~ in the inner boundary of  ~2 o. Since (W1) 2 also has prop- 

erties (a), (b) and (c), we can find a continuously differentiable function/~(z) defined 
for [z]<l and satisfying 

(0 ~ (0  = 1; 
(ii) /~ -0  off a compact subset of  the open unit disk; 

(iii) '10~z ~_ <= const.  W~(6(z)) ~. 

This is again a consequence of  Dyn'kin's work [16] (see, e.g., the proof  of  Theorem 3, 
p. 188). We shall write wl(z)=Wx(6(z)). I f  Q is any polynomial then, according 
to Green's theorem, 

1 O# dA~ 
Q(O = Q(Ou(~) = ---s fo Q(z) O2 ( z - ~ )  8 
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From this, property (iii) and our choice of ~ it follows that 

wdz)  ~ 
Io(r <- C f , o IO(z)l-a  dA 

for every polynomial Q; the constant C does not  depend on Q. Because of the 
convexity condition (b), wl(z)[a(z) is bounded on O 0 (see Theorem 3.4) and so 
we have 

IQ(~)l <= C IlQllL~m.w~aa~ 

for every polynomial Q. In other words, the mapping Q~Q(~) is a bounded 
linear functional on the polynomials in the U(~o, wldA) norm. Hence, it is also 
a bounded mapping in each of  the LP(~o, wdA) norms, p ~ l .  

From this we can conclude that HP(*20, wdA)r wdA) for any p. If  
we assume the opposite for some p then we can find a function g~Lq(~o, wdA) 
such that 

Q (~) = fno QgwdA (3.8) 

for every polynomial Q. Hence, f(z-~)QgwdA=O. Since *2 o is simply con- 
nected and ~ ~ .20, we can define in ~0 an analytic branch of (z-r  for each 
real ft. By choosing a positive integer n so that 1/n-<2/p we have (z -~ )  -1#' in 
L~ (.2o, wdA). Consequently, for every polynomial Q 

f Q s~0 (z_~)lJ, (z-g~)gwdA = O. 

That is, f(z-~)~-a/"QgwdA=O. Continuing in this way, we see that 

f ~o (z-~)~k/"QgwdA = 0 

for k = l ,  2, ..., n and every polynomial Q. When k=n this reduces to 

f QgwdA = 0 

for every Q, contradicting the reproducing property (3.8). Therefore, we must 
conclude that H p (92owdA) 7 ~ L~ (*20, wdA). Q.E.D. 

In the proof of Theorem 3.5 the boundedness of the mapping Q--*Q(~) played 
a special role. A point ~ for which this map is bounded on the polynomials in the 
LP(*2, wdA) norm is called a bounded point evaluation for HP(O, wdA) or, more 
precisely, HP(Fa, wdA) is said to have a bounded point evaluation at ~. These 
bounded point evaluations have been studied extensively in connection with several 
problems in approximation theory (cf. [5], [6], [7], [52]). What was actually proved 
in the second part of Theorem 3.5 is the following: 
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Theorem 3.6. Let f2 be a bounded simply connected domain and w a positive 
weight function defined on f2. Assume that wEL=(dA). In order for HP(f2, wdA)= 
=L,P(f2, wdA) it is necessary that H p has no boundedpoint evaluations outside f2. 

The short proof  given here was discovered in a dual form by Sinanjan [52] (cf. 
also [62, pp. 204--206]). 

It is natural now to ask if the necessary condition in Theorem 3.6 is also suffi- 
cient. As early as 1955 Mergeljan [42, p. 904] had conjectured that indeed it is. 
Although the conjecture has never been settled, results of  this kind can be established 
in certain cases. In this regard we have found it necessary to insist on more restrictive 
hypotheses than those suggested by Theorem 3.6. The following is a summary of  
what we have been able to obtain. 

Theorem 3.7. Let f2 be a bounded simply connected domain and let wC L=(f2, dA) 
be a weight function. I f  w has property Ap then HP(f2, wdA)=LVa(f2, wdA) when- 
ever either of the following two conditions is satisfied: 

(1) for some fl>2p the polynomials have no bounded point evaluations on 0"12 
in the La(g2, wdA) norm. 

(2) f~w(z) / f (z)ndA<~" for every n>=O and, for some fl>p, the polynomials 
have no bounded point evaluations on O'f2 in the La(f2, wdA) norm. 

Remark 1. The author is indebted to L. I. Hedberg for pointing our that a more 
appropriate capacity could be used in place o f / ' ~  in order to remove an unnecessary 
restriction that had been placed on 0* f2 in part (1) of an earlier version of  Theorem 
3.7 (cf. (3.9), (3.10) and (3.12)). 

Remark 2. The requirement that the integral in (2) be finite for all n does not, 
by itself, imply completeness. Consider, for example, the region f2 o of Theorem 3.5 
and with W(t )=e  -~/t put w(z)=W(6(z)) .  Then f~oW(Z)/~(z)"dA<~,, since the 

1 
integrand is bounded. On the other hand, f0 log log ~ dt < ~ and so, by Theo- 

rem 3.5, completeness cannot occur. 
Before proving Theorem 3.7 we shall state two corollaries. The first follows 

easily from the theorem and needs no further amplification. The second is a theorem 
of  Keldyg and was described earlier in our historical remarks. I t  is restated here 
for the purpose of  establishing a connection between our results and those which 
were previously known. We assume in both cases that 0 0 \ 0 0 ~  =0"  ~2. 

Corollary 3.8. Let wEL=(O, dA) be a weight having property Ap for all p>:l. 
If, for each p, HP(~2, wdA) fails to have a bounded point evaluation in 0 " 0  then 
HP(~, wdA)=L~(~2, wdA) for every p. 
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Corollary 3.9 (Keldy]). Let wE L~(Y2, dA) be a weight having property Ap for 
every p and let ~(z)=dist (z, O* 12). If, for some e>0 ,  

1 
|ira inf [fi(z)] 2+~ log log ---7--c > 0 ~(z) ~o W ~z) 

then H'(O,  wdA)=L~(f2, wdA), for all p. 

Proof o f  3.9. Let xoEO*f2 and fix p>0 .  By a lemma of  Keldy~ (cf. [40, pp. 
125--128 & 136--139]) there exists for each p a polynomial Q such that 

(i) a(x0) : 1; 
(ii) [IQI[Lp(~, ~dA) <- Q. 

Thus, HP(f2, wdA)=L~(f2, wdA) by Corollary 3.8. Q.E.D. 
In order to prove Theorem 3.7 we must introduce some additional terminology 

and notation. 
I f  v is a positive (Borel) measure in the plane and 0 < ~ < 2  we define 

v:(x) = f [x-y[ -2dv(y) 

and if  dv=fdA we write U{(x) instead. For  an arbitrary set E c R  ~ the (e, q)- 
capacity of  E, denoted C~, q(E), is defined by 

C,,q(E) = i ~ f f  lflqdA, (3.9) 

where the infimum is taken over all non negative functions fELq(R 2, dA) such 
that U~(x)~ 1 on E. I f  E happens to be a Borel set it can be shown that 

C (EWq = supv(E),  (3.10) ~ , q \  7 
V 

where the supremum is taken over all positive measures concentrated on E and 
satisfying ][U~[Ig~I. I t  can also be shown that C~,~ is equivalent to Fq in the 
sense that there exists a constant K so that 

K-~C~,q(E) <~ rq(E) <-- KC~,q(E) (3.11) 

for every E. A property will be said to hold (~, q) quasi-everywhere if the set 
where it fails has (~, q)-capacity zero. For  more information concerning these ca- 
pacities the reader should consult [27], [33] and [61]. The notation A~ will be used 
to designate 1-dimensional Hausdorff measure. 

We shall also need the following lemma on potentials (cf. [6, p. 169], [32, p. 160], 
[37, p. 80] etc.). 

Lemma 3.10. Let v be a positive measure in the plane of  total mass 1. Then 

(a) f tU~tPdA<=K{suPc U~(z)} p-I  i f  t < q < 2  and K depends only on q; 
(b) f lU~'l~dA<=KsuPcU[(z), where U~(z) denotes the usual logarithmic 

potential. 
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Proof of Theorem 3.7. We shall give the proof based on the first assumption 
(1); the proof in the second case is similar and will be omitted. 

Suppose that gEL~ wdA) and that fQgwdA=O for every polynomial Q. 
Thus, G, the Cauchy transform of gw, vanishes identically in O= and, as previ- 
ously, we must prove that G = 0  quaSi-everywhere on 0 0  with respect to the ca- 
pacity Fq. There is no problem in verifying this for 0Q=, since G is quasi-continu- 
ous andidentically zero in O~. Thus, we have only to determine the behavior of G 
on 0 0 \ 0 0 ~ ,  i.e. on 0"O. 

Here is where we make use of the capacities introduced above. Since gCL q 
and wEL ~, the integral 

g(z) l+~w(z)dAz < ~o (3.12) f~ z-4 

(1-~,  q/(1 +8)) quasi-everywhere (cf. [61, p. 260]). Hence, the integral is finite A1 
almost everywhere if (1-e)q/(1 +~)>1,  that is if 1 +e<2q/(q+ 1) (cf. [27, p. 133] 
& [61, p. 290]). We conclude that (z--~)-lgEU(wdA) for A1 almost every 4E0*O 
whenever r<2q/(q+ 1) and we note that the bound on r is the index conjugate 
to 2p. 

Suppose now that ~ E 0* O and that (z-4)-Ig E U (wdA) for every r < 2q/(q + 1). 
I f  we assume that G(~)r  it follows that 

1 Q ( z ) ~  dA~ 

for every polynomial Q. But, since the polynomials have no bounded point evalua- 
tions on 0"O in the La-norm, fl >2p, this entails a contradiction. The only alter- 
native is to conclude that G(~)--0. Therefore, according to our remarks in the 
preceding paragraph, G vanishes Aa almost everywhere on 0* O. 

In order to see that G actually vanishes on a much larger portion of 
0"O we appeal to its continuity properties. In particular, we shall prove that 
E={4EOO: G(~)=0} is thick (i.e. not thin) with respect to Fq at every point 
of O*O, from which it follows that G = 0  q.e. --Fq on 0"O. Tlae argument given 
here is based on the assumption that l < q < 2 .  The case q = 2  can be treated in 
similar fashion and is left to the reader. I f  q > 2  then G is continuous everywhere 
and there is little to prove. 

Suppose t h a t  ~oE0*O and let A,=A(40; r) be the disk of radius r with 
center at 40- Because O is connected and simply connected, each circle Iz -~0[=r  
meets OO provided r is sufficiently small (r<=ro, say). We can therefore find a 
Borel set Xc(O0 r~ A~) which projects in a one-to-one manner along circles centered 
at ~o onto a fixed radial segment of A, (el. [37, p. 159] for a more detailed expos6 
of a similar assertion). By setting /~(B)=Aa(Proj (Bc~X)) for each Borel set B, 
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we obtain a measure on X. On the other hand, circular projection is a length decreas- 
ing map and so # is actually concentrated on Ec~A,, i.e. Al(Proj (Of2\E)  c~A,)=0. 
I f  we now apply Lemma 3.10 with v = r - " #  we have 

f cl r dv(r [" K [sup f d,(r 
[ a  Ig -z l l  dA= <= t ,  c c - [ g - z [ = - q J  

{1  s/,1 
<_- g fo is_tzll _q 

[1 ~ ds ]p-a 

Kr(q- 2)p/q. 

Thus, a=K-lr(2-q) lqv  is a measure on E n A  r with the property that t[U~l[p<=l. 
Consequently, since a has total mass equal to K - l r  (2-q)/r it follows from (3.10) 
and (3.11) that 

Fq(E~Ar)  >= Cr 2-q 

and this holds for all r<=ro . We conclude from this and (2.1) that E is thick at 40 
and hence thick at every point of  0* f2. Q.E.D. 

4. Some weights with property Ap. 

Having discussed weighted polynomial approximation at some length, one 
fact stands out. In every instance where we were able to prove that H~(O, wdA)= 
=L~(f2, wdA) we found it necessary to insist the weight w possess a certain approxi- 
mation property, called property Ap. Our intention here is to describe a method 
for constructing weights which have this property and which satisfy the various 
decay estimates at 0*f2 required by the theorems of  Section 3. 

The method is due to Keldy~ [36, p. 14] and is based on the following lemma 
concerning the distortion of  sets under a conformaI mapping. Although the lemma 
is old and quite well known, the most convenient reference seems to be a fairly 
recent paper of  Hedberg, [30, p. 542]. We shall make use of  this result again in 
Section 5 in connection with the completeness problem for crescents (cf. Th. 5.7). 

Lemma 4.1. Let f2 be a bounded simply connected domain and let ~o be a con- 
formal map o f  f2 onto the open unit disk. I f  d(z)=dis t  (z, Of 2) there exists a con- 
stant C>O, which depends only on the diameter o f  f2 and on d(q~-l(0)), such that 

l-I~o(z)] ~ C I/d--~ 
for every zEf2. 
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Suppose now that k(t) is a function defined for 0 < t <  oo. With f2 and 9 
as in the lemma put ~=(p-1  and consider a weight w of  the form 

w(z) = exp {--exp k(1 -lop (z)t)}. 

Since w(0 ) is constant on every circle ]~[ = r ( r <  1), w has property Ap for every p. 
Thus, if each point of  0* ~2 can be joined to 0~2= by a rectifiable arc lying entirely 
in 0* ~2 it follows from Theorem 3.4 and Lemma 4.1 that HP(f2, wdA) =LP, (g2, wdA) 
if  k( t )= lit  ~. Earlier Keldyg, [36] obtained the analogous result for an arbitrary f~ 
with k ( t )= l / t  4+", e>0.  

By making use of  a theorem of  D~rbagjan (cf. [17] & [40, p. 133]) one can also 
construct examples in which the weight approaches zero only at points in the closure 
of  the inner boundary and still completeness occurs. 

5. Approximation with respect to area 

We have, thus far, been concerned with only one aspect of the completeness 
problem, namely, with weighted approximation. In this context the domain Q is 
fixed and one asks: for which weights w is HP(Q, wdA)=LP,(Q, wdA)? We now 
abandon that point of  view and shift our attention to the domain O and we ask: 
for which domains f2 is HP(O, dA)=L~(O, dA)? In particular, we shall want 
to know which non-Carath6odory domains have this property. At first we shall 
consider a rather general setting and return later to the subject of crescents. 

We begin by describing a general metric criterion for completeness, which gen- 
eralizes a theorem of Mergeljan [42]. This criterion will allow us, for instance, to 
consider domains with boundary cuts (cf. Cor. 5.3). Mergeljan's theorem and our 
generalization of  it are as follows: 

Theorem 5.1 (Mergeljan). Let f2 be a bounded simply connected domain and let 
S be a circle containing ~ in its interior. Thepolynomials are complete in LP(f2, dA) 
for every p i f  there exists a sequence of  points {(n}~=l having the following prop- 
erties: 

(1) the closure of  the point set {(,} contains Of 2; 
(2) eachpoint (~ canbejoinedto S by arectifiablearc F of length L such that 

meas f~t (F) < exp { - e x p  (5L/t)}, (5.1) 

where f2t(F)={zEf2 : dist(z, F)<~t}. 

Theorem 5.2. Let f2 be a bounded simply connected domain. The polynomials are 
complete in L~(f~, dA) for every p i f  there exists a sequence of points {(,}~'=1 having 
the following properties: 
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(1) the closure of  the point set {~,} contains 0~2; 
(2') each poin t  ~, can be joined to Of 2= by a rectifiable arc F such that 

(a) meas fJt(F)<= V(t) for some regular majorant V; 
1 

(b) f0 log log dt : + ~. 
v(0 

Remark 1. By requiring that the estimate (5.1) be satisfied along curves which 
actually protrude into Qoo, Mergeljan has put an unnecessary restriction on 012=. 
We are able to avoid this assumption by making use of potential theoretic properties 
of  the Cauchy transform such as those described in Section 2. In addition we can 
replace (5.1) by the weaker estimate (b) of Theorem 5.2. 

Remark 2. Prior to the publication of Theorem 5.1, Mergeljan and Tamadjan 
jointly [44, p. 85] obtained a result which suggested that, in order for completeness 
to occur, the estimate (5.1) is nearly sharp. They showed that the right hand side 
of (5.1) cannot be replaced by exp { -exp  (c/t~)} for any 2<1.  Their example is 
fairly complicated and for that reason we shall give another (cf. Th. 5.4) which is 
stronger and somewhat easier to visualize. Both examples, however, require precise 
estimates for the harmonic measure of certain sets. 

Before giving the proof of Theorem 5.2 it will be instructive to indicate its 
relationship to the completeness problem for domains with boundary cuts. In so 
doing, we obtain a generalization of still another theorem of Mergeljan and Tamad- 
jan  [44, p. 80] : Let E be a perfect nowhere dense set of points on the circle ]z I = 1. 
For each x~E let Sx={Z: a r g z = a r g x ,  1--Q<_--lz]=<l (0<0<1)}  and p u t  SE= 
=Ux~ESx.  Assuming 0 is fixed, set OE----(IzI<I)\SE. Thus, f2 E is a bounded 
simply connected domain and 0f2 e consists almost entirely of cuts. Put CE= 
= ([z[ = 1 ) \E ,  A t (x) = {e i~ : [0 -- arg x] =< t } and denote 1-dimensional Lebesgue meas- 
ure by As. The following is an immediate consequence of Theorem 5.2: 

Corollary 5.3. The polynomials are complete in L~(E2n, dA) for every p if 
there exists a countable set E', everywhere dense in E, such that for each xEE" 

(1) Ax(At(x) c~CE)<=V(t) for t<=t(x) and some regular majorant V," 

1 d t = + ~ o .  (2) fo log log V(t) 

Proof of Theorem 5.2. Let gELq(O, dA) and suppose that f QgdA =0  for 
every polynomial Q. 

To achieve our objective we shall first prove that ~--0 on each arc F described 
in the statement of the theorem. Since the points ~, are dense in 0f2, this implies 
that the Borel set E =  {x : ~(x) =0} cannot be thin at any point of 0f2. In particular, 
if  x 60f2 and A r = A (x; r) is the disk with center at x and radius r then Fq(A, c~ E)>= 
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~CFq(Ar) a n d  

Fq(A, n E )  }P-l dr + ~ .  
f o [ 7 ~  ' -7-= 

On the other hand, ~ is pseudo-continuous at Fq quasi-every point of  0s and 
therefore ~ = 0  q.e. on 0s 

To see that ~---0 on a fixed F we proceed as in Theorem 3.4. We set 6 (z )=  
= dist (z, F) and we prove 

( dA )l[p 
l y o n /  : = ' < - '  

I 
(ii) Z[=I n(M.)ll(,,+l) = oo. 

n=O,  1,2,.. .; 

The proof  consists in writing (i) as a Stieltjes integral and then integrating by parts: If  
p ( t ) = m e a s  f2t(F ), 

dA ,1 f ~  # ( t )  
f ~  6(z),~ -- f o  ~ d!a(t) = np .t o ~t p+l dt. 

Since #(t)<_ - V(t), it follows that 

f ~  a(z)"= <-- cn  max l, t ("+1)")" 

V' (t) 
Furthermore, if Z ( t ) = t  the maximum on the right hand side occurs when 

v(t) 
t=z~l (p(n+ l)) and 

~-z-.-----~:'~)j <-- c Z-x(p(n + l)) "+1" 

Therefore, condition (ii) will be satisfied if we can prove that 

27_-, z - l ( P ( n +  1)) _ ~ .  
/-/ 

This is done exactly as in Theorem 3.4. 
As a consequence of (i) we conclude that ~,CC=(F) and that ~(")(x0)=0 

for all n at the point Xo where F meets 0f2=. Then, by virtue of  (ii), ~=-0 on F. 
Q.E.D. 

The fact that Theorem 5.2 establishes very nearly the correct order of  magnitude 
on meas Ot(F ) in order for completeness to occur is confirmed by the following 
theorem. 
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Theorem 5.4. I f  in Theorem 5.2 the majorant V(t) is replaced by 

exp { - e x p  t ( lol l / t )z  .} 

for any 2>1  then the polynomials may fail to be complete in LP(t2, dA). 

Proof. Fix ,~ > 1. In order to establish the theorem we shall construct a crescent 
shaped domain f2 having the following properties: 

(i) Each point of  the bounded component of  C \ O  can be joined to 0t-2 by 
a rectifiable arc F in such a way that 

meas g2t(F) = exp - exp t(logl/t) ~ 

for all t sufficiently small; 
(ii) HP(t2, dA)r dA) for any p. 
The construction is actually quite simple: Let O(t) denote the expression on 

the right side of (5.2). Choose an integer k so that 2 > l + l / k  and put  O ( x ) =  
=xk+le -11~. For O<=x<=xo consider the two curves y =  +__O(x) which together 
form a single arc or cusp in the (x, y)-plane with vertex at the origin. Join the ends 
of the latter so as to form a simple closed rectifiable curve 7 lying in the right half 
plane and containing the line segment 0<x<=x0 in its interior. Let ~2 be any 
crescent satisfying the following conditions: 

(a) I2 has a unique multiple boundary point at the origin and ~ is otherwise 
contained entirely in the half plane Re z > 0 ;  

(b) F o r  It l sufficiently small the horizontal lines y = i t  meet O in two 
segments each of which is bisected by 7 and each of which has length 1 ' ~q, (t); 

(c) Except for the origin, 7 is entirely contained in g2 and separates xo 
from 0% 

(d) x0 belongs to the bounded component of  C \ D .  
With f2 chosen in this way property (i) is clearly satisfied: If  ~0 is a point in 

the bounded component of  C \ ~  choose an arc F, also in that component, so 
that F joins ~0 to (0, 0). We may assume that F coincides with the positive real 
axis in a neighborhood of  the origin. Then, by virtue of  (b), 

f t  ~b'(t)dt = ~(t) measf2t(F ) = o 
for t sufficiently small. 

Verification of  property (ii) is a more delicate matter. With this as our goal let 
/~=/~x0 be the harmonic measure on 7 which represents the point xo and for 
zCy let tS(z) be the distance from z to 0f2=. We shall prove that 

f~  log 6(z) dl~(z) > - ~ .  (5.3) 
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Having done so, we can then infer as in [6, p. 184] that every sequence of polynomials 
which is bounded in the L p (Q, dA) norm is also a normal family inside 7- In fact, 
if {fj}~o=~ is such a sequence, i.e. if I[f~[IL,(m=K for all j ,  then by the area mean 
value theorem 

cl c~ 
[/j(z)l <-- ~(z)~_2/q II/illL~r <= ,~(z)~_2/q 

for all j and all z~ 7. Here we have made use of  the fact that near the origin 7 
is approximately midway between the two components of C \ O .  The constants 
C1 and C~ are, of  course, independent of  j .  Since f~ log f i ( z )d# ( z )>-~ ,  we 
can find a bounded nonvanishing function h, analytic in the region bounded by 7, 
and satisfying Ih(z)l=b(z) 2-2/q almost everywhere with respect to arc length and 
hence almost everywhere with respect to harmonic measure on 7- Thus, ]fjh[<=K 
a.e. on y. It  follows that I f jh I~K everywhere inside 7 and so fjh, j = l ,  2 . . . . .  
is a normal family there. Because h is nowhere zero, the sequence f j ,  j =  1, 2 . . . . .  
is itself a normal family in that region and we have established our claim. This 
clearly implies that HV(s dA)r dA) (cf. [6, p. 182]). 

To complete the proof  of the theorem it remains to show that the integral in 
(5.3) converges and, since the integrand is bounded on sets away from the origin, it 
is enough to prove that 

f,o log fi (z) d#(z) > - 

where 70 is the intersection of  7 with {z: Rez<x0}.  We proceed as follows: 
Let o(x) denote the harmonic measure of that part of  7 which lies to the left of 
the line R e z = x .  For  eachpoin t  z=(x, +_O(x)) in 7 let 6(x) be equa l to  6(z). 
Inasmuch as 6(x)_->const. ~'(O(x)) =>const-~(O (x)), 

1 "~o 1 1 
= < C ~0 0 (O (x)) f~ol~ Jo l og f i~ -~dco(x )=  fg log do(x). 

I f  we now integrate by parts on the right we see that 

f,0 log d. (z) <= c.  + c4 f0 o(x) 
~'(o (x)) 

d- ~ ~,. 

(iv-) O'(O (x)) < K t) (O (x)) - O (x) a exp {Cx kx-k-1 exp 1/xk}. 

A bound for the latter can then be obtained by utilizing these two facts: 

(iii) o)(x) ~ Kexp  - O(r) d <- K e x p { - C e x p  1/Xk}; 
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Estimate (iii) follows from a well known theorem of Carleman [45, p. 76]; (iv) is just  

a straightforward calculation. It is easy to see that co(x) ~k'~6)(x))'~ is bounded 
" " ~ , ( o ( x ) )  

as x + 0 ,  since k 2 - k - 1  > 0  by choice of k. Therefore fr01og (1/6(z))d#(z)< +o= 
Q.E.D. 

The crescent is the simplest and the first non-Carathrodory set to be studied 
in connection with the completeness problem for the polynomials. Traditionally 
it was understood to be a domain 12 topologically equivalent to the region bounded 
by two internally tangent circles. As we have seen in Theorems 5.2 & 5.4, the polyno- 
mials may or may not  be complete in L~(O, dA) depending on the thickness of  t2 
near them multiple boundary point. That  fact, of  course, was discovered by Keldy~ 
in 1939. About ten years later and with additional restrictions on the domain f2 
a condition was found that  is both necessary and sufficient for completeness to 
occur. That  was due to the combined efforts of  M. M. D~rba~jan, who established 
sufficiency, and A. L. ~aginjan, who established necessity. Their contribution was 
this (cf. [40, p. 158]): 

Theorem 5.5. Let f2 be a crescent with multiple boundary point at the origin 
such that f2 is situated between the two circles I z - l l = l  and Iz-1/21=1/2. Denote 

by l(r) the linear measure of ( [ z ] = r ) n f 2  and assume that r I'(r)t+~- as r~O. 
l(r) 

Then in order for H p (f2, dA)=L~(O, dA) for any p it is necessary and sufficient that 

f 0  log l(r) dr . . . .  (5.4) 

By requiring f2 to lie between the two circles I z - l r = l  and Iz-1/21=1/2 
one precludes the possibility of  a cusp at the multiple boundary point. This is essential 
to the theorem and cannot be omitted. If, for example, f2 is the region described 
in Theorem 5.4 then 

(a) ~2 has a cusp at the origin, 
(b) f0 log l ( r ) d r  = - 0 %  

but H ~ (f2, dA) ~L~ (12, dA) for any p. The difficulty can, of  course, be circumvented 
by replacing (5.4) with a more severe restriction. The following is a corollary of 
Theorem 5.2 and is in that spirit. We shall return to an idea of this kind later in 
Section 7 when we take up the question of harmonic approximation on higher dimen- 
sional crescents. 

Theorem 5.6. Let f2 be a crescent with multiple boundary point Xo. Suppose 
further that there exists a line segment L from )Co into the bounded component of 
C \ O  so that d i s t ( z ,L)~Cdis t ( z ,  Xo) k for some k > 0  and every zEg2. Denote 
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by l(r) the linear measure of ( f z -xo l=r)nO.  I f  

l'(r) 
(1) rT~r~ ~+oo as r~O; 

k ~ 1 (2) fo r - l o g l o g / - ~ - d r  = +oo 

then HP(f2, dA)=L', (f2, dA) for every p. 

Remark. Although Theorem 5.6 applies to situations in which 12 has a cusp at  
the multiple boundary point the hypothesis dist (z, L)~=C dist (z, Xo) k restricts the 
rate at which such a cusp may pinch together. 

During the past few years Havin and Maz'ja [25] & [28] and the present author 
[6] have examined the question of  polynomial completeness in L~(f2, dA) for  
domains similar to, but more general than, the traditional crescent. It is our inten- 
tion here to continue that study. The setting is as follows: X will denote a compact 
set with connected complement and U will be a domain (also connected) which is 
contained in X. We assume that C \ U  is connected and we put ~2=(X\U)~  
the interior of X \ U .  For lack of a better terminology f2 will once again be called 
a crescent and, unless otherwise stated, our subsequent usage of that nomenclature 
will be in this generalized sense. 

We shall state and prove two theorems concerning completeness in this setting. 
The first is quite general and includes the sufficiency portion of both Theorems 5.5 
& 5.6 as special cases, provided l ~ p < 3 .  The second is less general, but provides 
greater information in those cases to which it applies. 

T h e o r e m  5.7. Let f 2 = ( X ~ U )  ~ be a crescent with X and U as above. Fix a 
point x0E U and let # be the harmonic measure on OU representing Xo. HP( I2, dA)= 
=L~(f2, dA) for l ~ p < 3  i f  

f~  u log fi (z) dp (z) = - ~o, (5.5) 
where ~ (z) =dis t  (z, 0Ooo). 

Theorem 5.8. Let f 2 = ( X \ U )  ~ andput 6(z)=dis t(z ,  0f2~). Assume that OU 
is a Jordan curve of at least class C 1 and for each zEOU let n(z) be the unit exterior 
normal to O U at z. 

(1) I f  ]n(zO-n(z2)l~_Clzl-z~l ~ for all Z1, z2EOU and some ~ > 0  then 
HP(f2, dA)~L~(f2, dA) for every p i f  fovlog fi(z)Idzl . . . .  

(2) I f  cr in (1) then in order for HP(12, dA)=L~(f2, dA) for any p it is 
necessary and sufficient that fovlog ~(z) ldzI=-o~.  

Remark 1. The divergence of the integral in (5.5) does not depend on the par- 
ticular choice of x0E U, since if a, b are any two points in U the corresponding 



144 James E. Brennan 

harmonic measures Pa, #b are mutually boundedly absolutely continuous (el'. [11, 

p. 172]). 

Remark 2. Results similar to Theorem 5.7 were discovered several years ago 
by  Havin and Maz'ja ([25, p. 66] & [28, p. 562]). Assuming that OU is a Jordan curve 
they proved that H;(f2, dA)=L~(f2, dA) whenever l<=p~2 and f0vlog  I<pld/t= 
= -  oo for every ~0 belonging to a certain infinite family o ~. Only by imposing 

additional smoothness restrictions on O U were they able to translate this into a 
single "metric criterion" such as (5.5) (el. [28, p. 563]). Thus, Theorem 5.7 has two 
main advantages: (i) It  express completeness in terms of  the divergence of a single 
integral; (ii) It  applies to more general domains. 

Remark 3. Suppose that f 2 = ( X \ U )  ~ is a crescent of  the kind described in 
Theorem 5.6. I f  the remaining hypotheses of that theorem are satisfied and, in 

particular, if 

f0 r k-1 log log ~ dr = + oo 

then necessarily fovlog 5(z)d#(z) . . . .  To see this it suffices to consider a domain 
f2' obtained by doubling f2 across 0U in the vicinity o f  the multiple boundary 
point  x0. Thus, Q c  Q" and 0Q lies approximately midway between the two bound- 
ary components of O" near x0. Relative to f2' the assumptions of Theorem 5.6 
are still satisfied. Hence, Hv(~2 ", P " dA)=La(f2,  dA). I f  we were to assume that 
fovlogg(z)dl~(z)>-~o we could then argue as in Theorem5.4 to obtain the 
.opposite conclusion. Therefore, that assumption cannot be made. In this connec- 
tion one should also see the example of Havin and Maz'ja [25, p. 67] concerning the 

case k =  1. 
Proof of  Theorem 5.7. Assume that f~vlogg(z)d#(z) . . . .  Fix p < 3  a n d  

let kELq((2) have the property that f 9  QkdA = 0  for every polynomial Q. Thus, 
fr in f2 . To prove that HV(f2, dA)=LV,(f2, dA) it suffices to show that fc=-0 

in U. 
For  this purpose we choose a sequence of  smoothly bounded domains U i ,  

j - l , 2 , . . . ,  so that 

(i) x0C Uj and U j c  Uj+~ for every j ;  

(ii) U =  ~ U~. 
j = l  

We shall prove that f0v~log I/cldt9 - - ~ - ~  as j - ~ ,  where t9 is the harmonic 
measure for xo on OUj. Since log [f~l is subharmonic in U, these integrals form 
a nondecreasing sequence in j and therefore 

l o g  Ik(x . ) l  <-- l o g  = - 
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for all j .  Consequently, k(x0)=0.  Hence k = 0  in Uj, j = l ,  2 . . . . .  since x 0 is 
an arbitrary point  of  U. 

In order to relate the integrals of  the preceding paragraph to the one in the state- 
ment  of  the theorem we multiply and divide Ik(z)l by 6(z) ~, where e > 0  is to be 
specified later. This yields the identity 

�9 r 1 ( I f , ( z ) l ]  fOUs log ]/7:(2)[ d/l t = e fovs log 8(z) d/l t + Ja t l j  og [ 3 - ~ - J  d/ij. 

As j -*  co we shall see that  the first integral on the right approaches - o0 and that, 

for suitable e, the second is uniformly bounded above. The result is that  

lims~oo f~vslog ]fc[d/i s = - c o  as claimed. 
The first assertion is the easiest to prove. Since [[pjll~ar = 1 , j =  1, 2 . . . . .  we may, 

by passing to a subsequence if necessary, assume that  the sequence /i t converges 
weakly to a measure which is evidently supported on OU. That  measure is easily 
seen to be /i, the unique harmonic measure for xo on tgU. Suppose now that  N > 0  
is fixed. By hypothesis, we can choose t />0  so that  

f o v  log (,~(z) + ~l) @ < - N. 

On the other hand, log (6 (z) + r/) is continuous on U and so according to our 
remarks 

f .vj log(8(z)+q)d/ij ~ f ovlog(8(z)+rl)d/i 

as j ~ , o .  Therefore, f log(3(z)+rl)d/is<-U and hence f log6(z)d/is<-N for 
J>=Jo. In other words, f log ,~(z)d/ij--,- - ~ as j -~  oo. 

The p roof  can now be completed by indicating the choice of  e that will make 

syp f log 

In this regard we shall consider the cases 1 ~ p < 2  and 2 ~ p < 3  separately. 
I f  l ~ p < 2  then kELq(O, dA), q > 2 ,  and k satisfies a HNder  condition 

Ik(za)-k(z~)l <= CIz~-z~l', 

where 0 < c t < l  and z a, z 2 are any two complex numbers. I f  q = ~  any c t< l  will 
do; otherwise we take a=(q-2)/q. Hence, Ifc(z)]<=C6(z) ~ for all z and the su- 
premum in (5.6) will be finite as soon as e<=e. 

I f  2 ~ p < 3  then kCLq(f2, dA), q<=2, and ~: need not satisfy a H61der con- 
dition. However, there is a substitute, namely, the estimate of  Lemma 2.2. Also, 

vj ~ ~(z) ~ ) a(z) ~ @s 
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and so we may direct out efforts toward finding a bound for the larger of the two 
integrals. In that endeavor some additional notation will be used: Gj will denote 
Green's function for Uj with pole at x0, V will be the gradient operator and 
O/On will stand for differentiation with respect to the outward normal on appropriate 

boundary curves. Since 0U~ is smooth, d p j -  OGj Idz]" 
On 

By removing a small disk Iz-x01<_-0 from f j  we obtain a domain U~ on 
which Ik(z)la(z) -~ is Lipschitz and on which G i is uniformly well behaved. We 
shall assume hereafter that Q is fixed and that tZ-Xol<=O is contained in every 
Uj. The divergence theorem can then be applied in the following form: 

Ik(z) l OGj 
Idzl = f< v [ v a ,  dA. 

K 

f 

In this way we obtain constants C1 and C2 for which 

Idzl <= cl f u i IV G j] dA -= a (Z)I+ ~ + c 2 f v ;  [V(l~l)1 dA 

= C, /1+ C212. 

Thus we have the problem of finding bounds for /1 and /2 that are independent 
of  j .  We shall carry this out for I2 and then indicate the necessary modifications 
in the case of  /1. 

It  is a consequence of H61der's inequality and the Calder6n--Zygmund theo- 
rem on the continuity of singular integral operators (cf. [8] & [28, p. 564]) that 

( I VG P ~llp 
h = Cllkll~ v;. 

I f  6(z) is replaced by 6j(z)=dist(z, OUj) in the expression on the right we retain 
an upper bound for 12 and the resulting integral is estimated as follows: For  each 
j let ~oj be a conformalmap of  Uj onto [w[<l with ~oj(x0)=0; put  ~ki=~o~ -a. 
The following inequalities are satisfied with all constants independent of  j .  

(a) 1-l~oj(z)l ~ c l @ ( z )  for all zE Uj; 
(b) IVajl <= c I,;o~.l on u~; 
(c) [~-(w)l--> c(1-1wl) .  

(a) is simply a reaffirmation of Lemma 4.1 and (c) is a well known estimate, due to 
Pick and Nevanlinna [45, p. 91], for the distortion associated to a conformal mapping 
of  the open unit disk onto a bounded domain. The remaining inequality (b) can be 
derived from the equa t ion  Gj=-log ]gjl- Since Gj is real, 

[VGj] = 2 OGj qg: 
-O-7-z = -~. , j = l , 2 , . . . .  
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We must, therefore, find a lower bound for I~pj[ on Uj which is independent of j .  
As an aid in that undertaking we let ~p be a conformal map of U onto [w]<l 
with ~P(x0)=0. When properly defined at x0, the function cp/q~j is analytic in Uj, 
continuous on Uj a n d  ]~ofipy[_<-I on OUj. Thus, by the maximum principle, 
[q~/~o~[~l throughout U s a n d  

l~(z) t  --> rain I~ol > 0 u; 

for every zE U]. This is the desired lower bound. Taken in concert, inequalities (a), 
(b) and (c) have the following implication: 

v c j  " 
,I~f <- c~ f u, t ~ l  dA 

I~ojl'- ' c.ju c (1-1 ojl).. [q,}[' dA  

= c2flwl<l j l  1 [ff'[P-~ (1--[wl) ze~ dA (5.7) 

1 

The last integral is evidently independent of j and, moreover, can be made finite 
by choosing e so that p - 2 + 2 p e <  1. Since p < 3 ,  that choice is possible in a manner 
consistent with the requirement that e>0.  

The estimation o f / 1  can be carried out along similar lines, in this case we write 

Ire(z)[ IVGj[ f dA 
Jv~ ~ (z)~-~ ~ (z)~, 

and apply H61der's inequality to obtain 

If ,,(Z) lqdA]i/q{fu,~G,[ p }X/p. 
/~ <= .),~(z)('- '>~ --J ~ ,5(z)':  aA 

By the reasoning used earlier, we can choose e > 0  in such a way that the  second 
factor admits a bound which is independent of  j.  With e fixed in this way it follows 
from Lemma 2.2 and a short calculation (cf. [6, p. 178]) that the first factor is majorized 
by a quantity of the form C(s)Ilkl[q. 

Thus, we have shown that 

--f0~,  Ik(z)l OGj Ik(z)] OG t 
,~(z)" On ldz1+f~,_~of=, ,~(z)~ an ldzt < = K 

where K is a constant that is independent of j. On the other hand, it is easily seen 
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that the integrals over [z-x0[=O are also uniformly bounded for j = l ,  2 . . . . .  
Hence, the same is true of the remaining integrals and the theorem follows. Q.E.D. 

The apparent breakdown of  Theorem 5.7 for p=>3 raises several questions. 
One wonders, for instance, if p = 3 is the correct Upper bound or if the theorem is 
perhaps true for all values of  p. Of course, if 0 U is sufficiently smooth these ques- 
tions are answered by Theorem 5.8. However, before commenting on the proof  of  
that result we prefer to mention two others which are essentially corollaries of Theo- 
rem 5.7. In connection with these the reader should also consult the paper of Havin 
and Maz'ja [28, Lemma 3.3]. 

We assume that  f2, X, U and 6 (z) have the same meaning as before; /~ will 

again be harmonic measure on 0 U. 

Corollary 5.9. Let p be fixed and assume that fovlog6(z)d#(z)  . . . .  I f  
~9 is a eonformal map o f lw l<l  onto O and i f  

flwl<l 1 ir ~ d A  < 

for some 2>0 ,  then HP(f~, dA)---L~(f2, dA). 

Remark. The fact that f [ 0 ' [ 2 -PdA<~  for p < 3  seems to have been first 
noticed by T. A. Metzger (Amer. Math. Soc. Proc. 37 (1973), 468--470), who used 
it in connection with another approximation problem. 

Proof. We may assume that p=>2. Also, it is helpful to choose a sequence of 
domains {Uj} which invade U by letting Uj be the image of the disk ]w[< 1 - 1/j 
under the map ~k , j=2 ,3  . . . . .  Evidently, ~kj(z)=~((1-1[i)z) maps [wl<l onto 
Uj conformally. Repeating the argument in the proof  of  Theorem 5.7 we eventually 
reach a point where we must estimate an expression of the form (5.7). In this case it 
is easy to see that 

f wt<l I~jI'~-P (1 - [wl)-~P~dA ~ cf~,~< 1 I~'I~-P(1 - t w l ) - ~  d ~ ,  

where C is independent of j. For any pair of conjugate indices r and s the 
expression on the right is <=Cll(~')2-p]l,[l(1-[wl)-zP~[]~. The latter can be made 
finite by selecting r so that r ( p - 2 ) < = p - 2 + 2  and then adjusting e accordingly. 

Q.E.D 

Corollary 5.10. I f  9 U is a class C 1 Jordan curve and t f  f ~ v log 6 (z) d/~ (z) = - o, 
then HP(f2, dA)=L~(g2, dA) for every p. 

Proof. Let ~k: (]wl< 1)-~U conformally. By a theorem of Warschawski [56, 
p. 254] f~w~<l l~'! - k d A < ~  for all k=>0, since 9UEC ~. Hence, the assertion fol- 
lows from Corollary 5.9. Q.E.D. 
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Proof of  Theorem 5.8. Part (1) follows from Corollary 5.10. Under the restric- 
tions imposed on OU harmonic measure d# is boundedly equivalent to Idz[. 
Part (2) was proven in [6]. Q.E.D. 

Our efforts thus far have been largely directed at establishing the completeness 
of the polynomials in LP,(f2, dA) for various domains f2. Another line of inquiry con- 
sists in starting with a domain for which it is known at the outset that HP(f2, dA)# 
#LP,(f2, dA). The object then is to give a complete description of the functions in 
L~(f2, dA) which admit approximation by polynomials. That  approach was taken 
by Havin in [23] and he succeeded there in carrying out such a program for a certain 
special class of crescents. Using his ideas, some unpublished work of Carleson 
(cf. Section 6) and results described earlier in this section it is now possible to obtain 
a similar characterization for a wider class of domains. 

For  the remainder of this discussion f 2 = ( X \ U )  ~ will be a crescent. We assume 
that OU is a Jordan curve of at least class C ~ so that the harmonic measure p~ 
on OU for xE U is boundedly equivalent to ]dz[. We further assume that 

fou l o g   (z)IdzJ > - (5 .8 )  

where 6 ( z ) - d i s t  (z, 0(2=). Thus, according to Theorem 5.8, HP(f2, dA)#LP,(f2, dA) 
for any p. With some additional assumptions on f2 (principally on OX) we shall 
characterize, by means of a certain auxiliary function Q, those functions in L~ (g2, dA) 
which belong to HP(f2, dA). Q is defined as follows: Let 

v (z) = fo r  log 6 (t) d#z (t), 

let w(z) be the harmonic conjugate of v and put  Q=e v+iw. It is easy to check 
that Q is analytic in U, continuous on U and IQ(z)l=6(z) for each zEOU. 
A function F analytic in U is said to belong to the class EP(U) if there exists 
a sequence of rectifiable Jordan curves C~, C2, ... in U, tending to 0U, such that 

f c, Ir(z)  f Idzl < =" sup 

Additional information concerning the space EP(U) can be found in [15]. 

Theorem 5.11. Let 12=(X',,.U) ~ be a crescent whose interior and exterior bound- 
aries (i.e. OU and OX, respectively) are Jordan curves of  class C ~+~. Assume that 
(5.8) is satisfied. I f  fELl(f2, dA) the following are equivalent: 

(1) fEHP(f2,  da); 
(2) f can be extended to a function f which is analytic in X ~ and so that 

fQ~lp EE.(U). 

Remark 1. A curve ~ is said to belong to the class C 2+~, 0 < ~ < 1 ,  if it has a 
parametric representation V(s) in terms of  arc length s such that 7"(s)ELip=. 
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Remark 2. Suppose that the hypotheses of Theorem 5:11, and hence those of 
Theorem 5.8, are satisfied. One of the implications of the earlier theorem (cf. [6, 
pp. 182~184]) is that every fEHP(f2, dA) extends analytically to X~ the proof is 
based on an idea of gaginjan (cf. [40, p. 121]). What is being asserted now is that the 
extension f(z) is subject to a specific growth restriction as z approaches a multiple 
boundary point from within U. In certain cases results of this kind were known 
to Keldyg (cf. [36, p. 4] & [40, p. 135]) as early as 1939. He proved that if 120 is 
the region bounded by the two tangent circles Izl=l and 1z-1/21=1/2 then 
every fEH2(f2o, dA) has an extension f which satisfies an inequality o f  the form 

K 
if(x)t--< ( l - x )  3 / ~  for 1 / 2 < x < 1 .  

More recently, Shapiro [50, p. 293] extended this by proving fCE~([z - 1/21< 1/2) 
for every 2 <  1/2. He also raised the question of determining precisely those func- 
tions which can be approximated by polynomials in the L2(~20, dA) norm. The  
answer was given by Havin in [23] and is also contained in Theorem 5.11. More- 
over, as Havin pointed out, everyfE H ~ (~20, dA) has, as a consequence of these results, 
an extension f which belongs to E~([z-1/2[<l/2) for 2<2/3.  This is because 
we may take Q(z)=(z-1) ~ and 

1 idzl)2,3 f iz[,lazl <-{i  Izl" Jz-lJ~ < = 

provided 32/2< 1. The integration is over ] z -  1/21 = 1/2. 
The proof of Theorem 5.11 proceeds generally along the same lines as the 

proof of the corresponding theorem of Havin, [23, Th. 1]. In this case, however, 
there are more serious technical difficulties which must be overcome and that some- 
times required the use of quite sophisticated tools. Among these are two theorems 
of Carleson. The first is a generalization of the Pr iva lov lZygmund theorem [58, 
p. 121] on the modulus of continuity of the conjugate function and is unpublished. 
Since it is used here in an essential way, we include a proof in Section 6. The second 
concerns the following problem: For which measures v carried by the open unit 
disk [w[< 1 does there exist a constant C > 0  such that 

{f,w,< I/l"av} ' / "  <= C ta f" r~=o l f(e'~ dO} ' i" 

for every f belonging to the usual Hardy space HP(dO)? A complete description 
was given by Carleson, [10, Th. 1] (cf. also [15, p. 157]). In short, it is necessary 
and sufficient that there be a constant A > 0  with the property that 

v(S) <= A.  h (5.9) 
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for every set S of the form S={rei~ 1 - h ~ r < l ,  Oo<=O<=Oo+h}. If  A ~ I  one 
may take C=4(80)4A 2 (of. [15, p. 163]). 

A function F analytic in a Jordan region, such as U, is by definition in the 
Nevanlinna class N(U) if  there exists a sequence of Jordan curves 71, 72 . . . .  in 
U, tending to O U, such that 

sup log + IF[ dp, < 0% 
n = n 

where each /z, is the harmonic measure on 7n for a fixed point xoE U. One can 
easily check that the definition is independent of the particular invading sequence 

}'1, 72 . . . . .  I f  FEN(U) and 

log IF(z)[ = f a u  log 1Ft d/~z 

for every zE U then F is called outer. In this sense the function Q of Theorem 5.11 
is outer. We shall make use of the following fact: If  F is an outer function in a 
region U with a class C 2 boundary and if f~u IF(z)[ p[dz[<~~ then FEEV(U). 
The p r oo f  is left to the reader. 

Proof of Theorem 5.11. (1)~(2).  Since for log 6(z)[dz] > -  ~,  it follows that 
f extends to a function f which is analytic in X ~ Thus, in order to verify (2) we 
need only prove that fQ1/VEEP(U). 

We begin by constructing a family Of Jordan curves {7c}, O<=c<-e, in the fol- 
lowing way: Let  y(t), 0 ~ t ~ l ,  be a parametric representation for OU such that 
7( t )EC 2+" and 7'(t) is nowhere zero. For  each zEOU let n(z) be the unit out- 
ward pointing normal. As in [6, p. 183] select a field of unit vectors N(z) which is 
C = along 0U and has the property n(z).N(z)>=l/2. The notation here denotes 
the usual inner product and the bound on n(z). N(z) implies that, at each zEOU, 
the vectors n(z) and N(z) make an angle of  not  more than n/6 radians. Since the 
field N is Lipschitz and transverse along 0U, the vectors eN(z), attached to 0U 
at z, fill out a tubular neighborhood T~ around 0U in a one-to-one manner, 
provided e is sufficiently small (of. [57, Th. 1.5, p. 157]). Thus, the curves 7c, 
O<=e<=e, parameterized by 

7~(t) : 7(t)+c6(y(t))N(7(t)), 0 <: t <-- 1, 

are simple closed Jordan curves lying in ~2. Since 0X6 C 2+~, it is a consequence 
of the implicit function theorem that 6(z) is a function of  class C 2+" in t2 n W 
for some neighborhood W of  OX. We may assume without loss of  generality that 
OUc W. Each 7~ is then a curve of  class C 2+~. 

For  reasons that will become apparent in the next paragraph it is advantageous 
to express the y~'s as the level sets of  a single function u. This can best be done by 
considering the map ~ : T~c~U which associates to each zET~ its projection ~(z) 
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onto cgU along the unique vector N(~(z)) passing through z. I t  is easily checked 
that  ~ satisfies a Lipschitz condition of order 1 in a neighborhood of  0 U. The func- 
tion u is defined as follows: 

u(z) -  Iz- (z)l 
" 

Evidently, uELipl away from the zeros of  fi and ?c={z:  u(z)=e}. Also, for 
almost every c sufficiently small, c<=e say, ]Vul~K/3(z) along ?c with K inde- 

pendent of  c. 
Suppose now that  fEHP(O, dA). We must  prove that fQ1/PEEP(U). By 

hypothesis, there exists a sequence of  polynomials f i ,  J =  1, 2 . . . . .  with 

]f j- f lPdA ~ 0 as j -~ ~ .  

Let Qc be an outer function in the region bounded by 7c with IQc(z)l-=6(z) 
for all zE?c. The construction is the same as for Q. I f  T=O0~c_<, 7c then accord- 
ing to the co-area formula (cf. [19, pp. 426--427] & [20]) 

f o (f ,o lf J-f[PIacl Idzl) dc = f If.i--fl p 6(z) lVul dA <= const ,  f If j--fl" dA 

and the latter tends to zero as j - .oo.  Hence, for almost every c_-<e, 

Ifj-flPlaclldz]--,-o as j ~ oo. 

We shall prove that  for a sufficiently small fixed c 

I f j - f l  p [QI tdz[ ~ KI fou I f J - f l  p 10cl ]dzl ~ K2 ]fj--fl p 10cl [dz[, (5.10) 

where K~ and /(2 are constants that  do not  depend on j or c. I f  we assume for 
the moment  that  this has been done it follows by an appropriate choice of  c that  
f~Qa/p._,.fQ1/t, in LP(OU, ]dzl). On the other hand, U is a Smirnov domain and 
QllpEEP(U) and so Q~It, can be approximated by a sequence of  polynomials in 
the LP(OU, [dz[) norm (cf. [15, p. 173]). Consequently, fQl[p is the limit of a se- 

quence of polynomials in LP(OU, ldzl) and therefore fQi/p~EP(U). 
The proof  of  the implication (1)=*(2) can now be completed by verifying the 

inequalities (i) and (ii) of  (5.10). The first of  these follows f rom Theorem 6.1. We 
assume that  c is small enough so that  7c lies entirely in T,. Thus, for each xEOU 
the vector N(x) meets ?c exactly once before leaving T,. Call that  point of  inter- 
section x*. Since ]QclEC~+~(?c), it follows f rom Theorem 6.1 via a conformal 
mapping that  Q, ELipx with respect to the interior of  Yc- Here we use the fact 
that  a conformal map of ]w]< 1 onto int (?c) is necessarily bi-Lipschitzian and 
has a C T M  extension to Iwl<_-l, since ?cEC 2+~ (cf. [55, p. 73]). In any case, 
we have 

[Oc(x)-O~(x*)I <= glx-x*l  
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for a suitable constant K. Moreover, K is easily seen to be independent of c. 
Thus, when c is sufficiently small we obtain the following: 

1Qc(x)] => [Qc(x*)]-Klx-x*l >= 6(x*)-l/26(x*). 

Therefore, ]Qc(x)]->const [Q(x)] if e is small and inequality (i) is clear. 
Suppose now that e is fixed. The second inequality (ii) can be obtained from 

our remarks concerning Carleson measures. Because ot the smoothness of ?~ and 
OU the problem can be transferred to the unit disk by mapping int (?c) onto ]w]< 1. 
Condition (5.9) can then be verified directly with v equal to arc length on the image 
of  0U. There is no difficulty in making this transition, since the derivative of the 
mapping function is bounded away from 0 and ~. 

Proof of Theorem 5.11. (2)~(1).  The proof  will be given in two stages. In 
particular, we shall prove the following two assertions: 

(iii) I f  fQ'/PEEP(U) for some ~<1 then fCHP(f2, dA); 
(iv) If  fQI!oEEP(U) then f is the limit in LP(~2) of functions belonging to 

LP, (~2, dA) and satisfying the assumptions of  (iii). 

For  the purpose of this discussion it will again be assumed that OX and 0U 
are of  class C 2+~. The distance from a point z to OU will be denoted by if(z). 
Since OUCC 2+~, the function ~ C  T M  at points of  f2 near OU. We assume 
without loss of generality that OX lies close enough to OU so that ~ is class C 2+~ 
along the entire length of  0I". 

Suppose now that f~LP,(O, dA) and that fQllPEEP(U). Since 

for  log 6(z)ldz ] > - 0% 
it is easy to see that 

fax log Q(z)]dz] > - ~,. 

It is possible, therefore, to define in X ~ an outer function G so that IG(z)l=~(z) 
on OX. This function has two important properties: 

(a) fG ~'/p ~ L", (~, dA); 

(b) (fG~/V)Q(1-~)/VEEP(U) for e < 1. 

The first is clear since G is bounded. The second can be obtained from Theorem 6. I 
by means of conformal mapping. For  each zCOU let z* be the point where n(z) 
first meets 0X. By assumption, ]G]EC2+'(OX) and therefore by Theorem6.1,  

]G(z)[ <= Klz-z*i+lG(z*)l <= KIQ(z)[ 

for a suitable constant K. Since G/Q is an outer function in U, it follows from 
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our  in t roduc tory  remarks  tha t  G/Q is bounded  there. To  obta in  (b) we simply 
write 

fG~/p Q(1-~)/p = fQ1/p (G/Q),/p 

and  use the fact  tha t  fQ~/~'EEP(U). 
Evidently,  fG~/P~f pointwise a lmos t  everywhere as ~-~0 and  IfG*lpl<=Clfl. 

Hence,  by the Lebesgue domina ted  convergence theorem 

tfG~/P--flPdA -" 0 as e -~ 0. 

I f  we assume (iii) then, o f  course, fG"/I'EHI'((2, dA) for  all ~ <  1 and  so fEHP(f2, dA) 
as asserted. 

Turning  now to the p r o o f  of  (iii) we suppose tha t  fQ'/PEE~'(U) for  some a-< 1. 
Le t  kELq(f2) be a funct ion which is o r thogona l  to  the po lynomia l s  and pu t  q~=~:. 
By L e m m a  2.3, q~El~lq(X~ tha t  is, there exists a sequence ~o, EC =, each of  which 
is compac t ly  suppor ted  in X ~ and so tha t  

flve.-V~ol"dA-~O as n - ~ .  (5.11) 

I f  we can prove  tha t  f e  f 0~ dA = 0 then (iii) will follow, since - - =  oq~ - 7~k. 
05 

In order  to accompl ish  this we utilize Green ' s  theorem in the following way:  

O(p, dA = 1 "z.  

Since the % ' s  were chosen so as to satisfy (5.11), 

f . Ocp, dA 

as n ~ co. Our  goal is to prove  tha t  

1 - for fq~" dz 

f . Oq) dA 

1 
~ N f ~v f~o dz 

(5.12) 

as n - ~ .  Here  is where we need to assume tha t  fQ~/PEEP(U) for  some ~ < 1 .  
By means  of  H61der 's  inequali ty we have 

- ,5 ( z )  ~q,p 

In  view o f  the a forement ioned  hypothesis ,  the first integral  on the r ight  is finite. 
T o  see tha t  the second approaches  zero as n ~ o o  we assume tha t  the % ' s  have 
been selected as in [33, L e m m a  4]. Al though  rp, will no longer be smooth ,  it is 
quas i -cont inuous  and Green ' s  fo rmula  (5.12) is still valid, since the mollifiers o f  
~p, converge pointwise and boundedly  quasi-everywhere back  to % (cf. [1, p. 262]). 
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The construction in [33] also ensures that [%[<= [q~] and hence 

ko.-~ol q I~olq 
6(z) ~q/p <= 2 6(z) "q~---'---~' n = 1, 2, .... 

Furthermore, since a < l ,  the function on the right belongs to L~(OU, ]dz[); this 
follows from the argument in [6, pp.  185--187]. Now, q~,~0 pointwise quasi- 
everywhere relative to Fq and therefore (cf. [27, Th. 7.1]) almost everywhere on 
OU with respect to Idz]. As a result, the dominated convergence theorem im- 
plies that 

f [dzl ~ 0 as n ~  

and consequently 

f n f -~--f d A = 1 &dz. 

The demonstration of Theorem 5.11 can now be concluded by proving that 
Soy fqMz=O. Thus, by a theorem of Smirnov (cf. [15, p. 170]), it suffices to show 
that fq~EEI(U). This is most easily accomplished by expressing fq~ in the form 

Qr~ l p " 

By hypothesis, fQ~IpEEv(U) and, as we have seen, q~EEq(U). Since Q-~Ip is 
outer, the product f~o belongs to a class N + which is defined in an obvious way 
through conformal mapping (cf. [15, pp. 25--28]). Inasmuch as f0~: ]f~o] [dz]< co by 
our earlier remarks, fq~EEI(U) (cf. [15, p. 28]). 

Oq~dA We have shown that f ~  f -o~  =0  and therefore fEHP(O, dA). Q.E.D. 

The following is an offshoot of the preceding argument and generalizes a theo- 
rem of Havin [23, Th. 2]. Since we are considering regions with a large number 
(possibly infinitely many) multiple boundary points we must avoid local hypotheses 
such as condition (28) of  Havin's paper. 

Corollary 5.12. Let f 2 = ( X ~ U )  ~ be as in Theorem 5.11 and put 6 ( z ) :  
=dis t (z ,  0X). I f  F is analytic in X ~ and FQllPEEP(U) then 

lF l '6 ( z ) Idz l  <= g IFI" dA 

for some constant K not depending on F. 

Proof. If  f o  I F f d A = ~  there is nothing to prove. If, however, this integral 
is finite then FEHP(f2, dA) and inequality (5.10) holds with /s and /s inde- 
pendent of c<=e. If  we integrate both sides of this inequality from 0 to e and 
apply the co-area formula we obtain the desired conclusion. Q.E.D. 
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6. Functions whose boundary values have a smooth modulus 

Let D denote the open unit disk. Suppose that  F is analytic in D and con- 
tinuous on /5. In the preceding section (cf. Theorem 5.11) we encountered the 
following problem: To what extent is the behavior of  F on 15 influenced by the 
"smoothness"  of  IF[ on 0O? The purpose of  this section is to describe a result 
which the author became aware of  in a conversation with Lennart  Carleson and 
which provides an answer to this question in case F is an outer function. We recall 
here that  F is outer in D if it can be written in the form 

[ 1 r ~  ei~ } 
F(z) =/o  exp ]~ -n j  0 e/-FO_z log [F(0)I dO., 

where 2 is a constant with 121 = 1. I t  can be assumed here that  2 =  1. 
For  economy in notation we shall make use of  the following terminology: 

A function k (defined on either /9 or 0D) will be said to belong to the class A, 
(i.e. A,(/5) or A~(OD), respect ively) i f  

(i) kELip~ in case 0<~<_-1; 
(ii) k t'a E Lip,_ E,1 in case ~ > 1 and [~] < c~. 

Here [c~] denotes the greatest integer <_-c~ and k t~l is the H - t h  derivative of  k. 
Note  that  A1 now denotes the class Lip1 and not  Hausdorff  measure as in previous 
sections. 

Theorem 6.1. Let F be analytic in the open unit disk D and continuous on /5. 
I f  F is an outer function and i f  [F]E A~(OD) then 

(1) FEA,/~(D) if  0 < ~ < 2 ;  
(2) FEA~(/5) i f  ~ > 2. 

Remark 1. In case a > 2  one can actually conclude more than is asserted in 
Theorem 6.1. However, since we are primarily interested in knowing when FE A~ (/5), 
we have chosen to omit further discussion of  this point. 

Remark 2. The Lipschitz constant associated to F on /5 depends only on 
the Lipschitz constants and bounds for the derivatives of  IF[ on 0D. This fact was 
used implicitly in the proof  of  Theorem 5.11. 

Suppose for the moment  that  0 < a < l .  I f  we assume that  IFIEA~(OD) and 
that  F does not vanish on /5 it follows directly f rom the Pr iva lov- -Zygmund 
theorem [58, p. 121] on the modulus of  continuity of  the conjugate function that 
FE A~ (/5). However, if  F is allowed to have zeros on 0D then FE A~/2(D) and 
the exponent a/2 is, in general, best possible. This result was first obtained by 
Jacobs in his thesis [35], unpublished. Later, Havin [24] rediscovered and strengthened 
it to include functions which vanish in D provided their zeros do not  accumulate 
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tangentially at any boundary point. We, of  course, are interested in the result for 
outer functions, but with ~ > 1. 

The proof  of  Theorem 6.1 is patterned after the proof  of  a similar theorem in 
[12, p. 223]. As in that paper, we shall work principally in the upper half plane rather 
than in the disk. By transferring the problem in this way we do not have to distinguish 
between derivatives with respect to arc length and derivatives with respect to z 
when studying the behavior of  F on the boundary. We shall need the following 
simple lemma on Cauchy integrals (cf. [12, p. 224]): 

c~ dt <~. I f  Lemma 6.2. Suppose that Ik(+_t)l<-co(t) a.e. and that f~ t 

Z(z)=-fa_, ~(~_t)zdt , then for zESo(f)=-{z=x+iy: Ixl<y, Izl<~}, 

Iz(z)-z(0)l < c f ~z~ co(t) d t+Clz l  P co(t) dt 
d o t d l z l  t 2 " 

I f  instead Ik(+t)l<=ttl"co(t), then 

f ,  co(t) ]Z(.)(z)_z(~)(O)[ <= C.nl flzl co(t) dt+C"n! [zl I ~ J - - ~ d t  
"do t 

for zE So(6). 

Proof of Theorem6.1. Suppose that IFfEA~(OD). We shall prove that 
FEA~/~(OD) if  1 < ~ < 2  and FEAI(OD) if  ~>2.  Having done so, we can then 
conclude that F belongs to the same Lipschitz class on D as on OD. If, for ex- 
ample, FEAI(OD) this follows easily from a well known theorem of  Privalov 
(cf. [15, p. 42]). I f  FEA,I2(OD ) with ~ < 2  we can argue as in [35, p. 31]. In this 
ease for each fixed (EOD the function (z-O-~/~EHI(OD, dO) and so 

Vl (z) = r(z) -- F(O 
(z-~)~l~ 

also belongs to H~(OD, dO). Since FE A~/2(OD), there is a constant M which is 
independent of ~ and for which IF l[ ~ M almost everywhere on OD. Thus, [F~[ <= M 
everywhere in the interior of  D and it follows that 

IF(z) -F(~)I  <-- M I z - ( I  "/2 (6.1) 

for all zE/)  and (EOD. I f  we now take (ED the function 

u (z)  = I f ( z ) -  r (r  

is subharmonic and has a removable singularity at ~. By (6.1), lu(z)[<=M for all 
zEOD and so by the maximum principle [u[<=M everywhere on /). Thus, we have 
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shown that 
IF(z)-- F(r <= MJz-r  ~/2 

for all z , ~ O ,  i.e. FCA~/2(D ). 
Suppose now that 1 < ~ < 2  and that [FIEA,(OD). Fix an arbitrary point 

rEOD. If  F(T)=0 then dearly 

1F(a)--F(z)l = IIF(a)I-IF(T)II <= KJa-TJ 

for all a~0D. If  IF (~) [=m>0 we shall prove that there are positive constants K 
and C which do not depend on m and which have the property that 

]F(a)-F(~)l--< KIcr-z l  =/2 (6.2) 

whenever [a-zl<=Cm 2/~. Since 

1F(cr)-- F(z)} <= ]lF(a)]- IF(z)I] + 2m <= K' ]tr- zl ~/2 

if  [a-z]>=Cm 2/~, it can then be inferred that FEA,/2(OD). 
In order to establish (6.2) we may assume that z = -  1 (otherwise, we could 

replace F(z) by F(r for a suitable constant Q to obtain a function with the /z// 
desired property). The function f ( z )=F  ~ is therefore outer in the upper 

half plane, [fl belongs to A s on the boundary and If(O)l=m. We shall see that 

I f (x ) -  f(O)] <= K[x[ ~/2 (6.3) 

for all real x with [xl<Cm 2/~. This is evidently equivalent to (6.2). 
We begin by modifying f in the following way: Let g(t)=If(t)] and put  

a=g ' (0) ,  differentiation being along the real axis. By assumption 

and consequently 
[ I f ( t ) l - m - a t  I ~ KItt ~ 

]logl l f ( t )J-at  < K 
m = m l t t"  

if It]~Cml/~; the constants K and C are independent of m. 

f l f ( t )I-at ,  ltl <= Cm 1/~ 
k(t) I [f(t)l, Itl >= Cml/= 

and define a new outer function fo(z) by setting 

1 f 1 +tz log [k(t)t dt 
logf0(z) = ~-~, 7= t-----'---z- l + t  2 " 

With this C let 
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Verification of assertion (6.3) can now be accomplished by proving that 

(i) Ifo(z)-fo(O)l <= Klz] "/2 

f (  f (  g lzl=/~ (ii) z ) -  0) <= ~-  

for every z in the sector S0(q), where q=Crn "1~. From these two facts it fol- 
lows that 

, f (z)- f(O),  <= ,f0(z)] f ~ ( z ) - f ~  ( 0 ) +  f~  (0)Ifo(z)-fo(O), 

< Kllf~ + l] Izl=/Z < = 

provided zCSo(q). Likewise, a similar estimate is valid in each sector Sx(q) i f  

Ix] <Cm2/'.  An appropriate choice of z* in Sx(q) c~ S0(q) then yields the in- 
2 

equality Iz*'xl~/~+ Iz*i~/~=<2 Ixl ~/2 and we see that 

'f(x)--f(O)[ <-- glxl=/Z 
C 2 

for l x l<- -m/~  with K and C independent of rn. 
2 

A s  soon as we have established inequalities (i) and (ii) part (1) o f  the theorem 
will follow. We prefer to carry out the proof of (ii), since it is the more difficult of  
the two. Here we can actually obtain a better estimate than the one stated. This is 
n o t  true w i th  regard to  (i), however .  

With 6=Cm write 

f (z) 1 ~ + 1 +tz  f 
= ~ ( f _ .  f,.,~.) t_--s~log ~ ( t )  - -  log 

Since IIf( t ) l - Ifo( t) l l  <= [atl 
erty that 

dt 
1 + t z - Z(Z) +2(z), respectively. 

for all real t, there is a constant C with the prop~ 

log t) <-- ml t l  

provided ]tl<Cm. Hence, by Lemma 6.2 

g p 

Iz(z)-z(0)J ~ ~ lzl ]log Izll (6.4) 

if zCSo(q). 
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To obtain a similar estimate for 12(z)-2(0)] we consider the following two 
possibilities: 

(iii) ff(t)l >= m/2 whenever Itl < Crnl/~; 

(iv) If(to)] < m/2 for some to, It0[ < Crn 1/~. 

In the first case, since ]fo(t)I>=Am if [tl<=Cm 1/~, we have 

fCml/. I1ogm] < K K 
I,~(z)-,~(0)l <-- Klzl a c .  t2 dt = --m II~ m] Izl <-- ~- tz l  ]log Iz]] (6.5) 

for every zESo(q). Thus, we may suppose that If(to)]<m/2 with [tol<Cm 11~ and 
this enables us to estimate the size of the derivative of g =  [fl at the origin. Either 
]f(t)l is always <m/2 when lt0]< It [< Cm al" or it is not. In both cases, however, 
there is a point t* such that ]to[<]t*l<Cm 1/~ and so that Ig'(t*)I<=Cm (~-1)/~. 
Inasmuch as 

Ig'(O)-g'(t*)[ <_- C]t*[,-1 <__ Cm(,-1)#,, 

we conclude that l a[ = I g'(0)[ <= Cm (~-1)/~. Therefore, if It [< Cm ~/~ we have 

if• lal c 
( t ) - 2  = IfTt) l  [tl <_- ~ n - [ t l  

and it follows that 

I t -~ It[ = T h - ~  

for essentially the same values of t. Consequently, by Lemma 6.2. 

K Cml'~ K K 
I~(z)-~(O)l <= ~-~  Izl fc,. + dt -<_-~Tg llog m] IzI -<=~-~7; ]z I [log [zl[ (6.6) 

if zE So(r/). 

From the inequalities (6.4), (6.5) and (6.6) we readily conclude that 

log (z)--log (0) ~_ m lzl [log Iz[[ 

whenever zE So(r/). Thus, 

f f K K',z[~/2 
( z ) -  (0) <- m Izl [log Izt[ <- m 

for every zESo(q) and so we have established assertion (2) of the theorem. 
Suppose now that IF[EA~(OD) for some ~>2.  In order to prove that 

FEAt(OD) we can proceed as before. In particular, it is sufficient to prove that if 
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IF(z)l=m>O and if f is the corresponding outer function in the upper half plane 

with If(0)[ =m,  then 
]f(x)-f(O)[ <= Klx[ 

for all real x with [xl<Cm. On the other hand, this will follow if we can show 
that ] f ' ]~K  on some open rectangle R={x+iy:  ]x[<Cm, O<y<e}.  For, in this 
case, if Ix l<Cm we can choose an arc 7CR joining 0 to x and having length ~ 2  Ix[ 

and thereby obtain 

]f(x)--f(0)[ ~ f, [f '(z)l [dzl <= 2K[xl. 

Let g=lfl. Put a=g ' (0) ,  b=g"(O)/2 and form the polynomial Q(z )=  
=m+az+bz ~. If  B(z) is the Blaschke product associated to the zeros of Q in 

the upper half plane, then 

1 1 +tz log IQ(t)[ 
log (z) = =-7 fT= t--------~ 1 + t ~ 

because Q has no singular part. Consequently, 

B'(z) 1 f 1 f (o f" (z) Q" (z) § _ _ _  dt. 
f(z) Q(z) B(z) zci (t_z)~ log 

We shall prove that [f'(z)/f(z)l<=K/m in some rectangle R by estimating all 
remaining terms in this equation. 

Clearly, [Q'(z)/Q(z)l<-K/m. Also, since B(z)r if Izi<Cm, we see that 
C 

lB'(z)/B(z)[<=K/m if  [z I < - - m .  To obtain a bound for the integral we proceed as 
2 

follows: with 6 = Cm 112 and with C to be specified later we write 

(t-~)~l log = f~_# ~(t_z)Z log (t) d t+2 (z )  = x (z )+2(z) .  

(6.7) 

The function 2(z) is analytic and bounded in a disk lzl<Cm 11~ and so 12(z)[<= 
~K/rn. Furthermore, K can be shown to be independent of m. 

Since l f [  E A~ on the boundary, 

[If(t)l-Q(t)l < = Kit?. 

If  [f(t)l~_m/2 for every t satisfying Itl<Cm ll" this yields 

Q(t) 11 < K K 
f(t)l - = If(t)} lt? ~ --m ttl= (6.8) 
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provided [t[<C'm 1/~. Conversely, if lf(to)l<m/2 for some point  to' with [t0l< 
< Cm 1/~, then 

If(t)[ 1 <: K __K [t!~ (6.9) 
Q ( / ) - -  IQ(t)----7 Itl~ ~ m 

if It]<Cm II~, since Ial<=C'm ~-1)I~, Ibl~:C"m ~-2S1~ and ~>2.  If  we choose 
C in (6.7) so that (6.8) and (6.9) are satisfied for It[< Cm a/z we have in both cases 

ll~ I f  (t)tt < --m K't''~' 

whenever [tl<Cm a/2. It follows that tZ(z)l<_K/m if z6So(rl) with rl=Cm. Sim- 
ilarly, the same estimate holds in a union of sectors S~(r/), lx]<C'm, and hence in 
some rectangle R. 

In summary, we have shown: If'/fl:~K/m and so [f't<:K in R and that 
completes the proof  of the theorem. Q.E.D. 

Remark. Suppose that F is an outer function in D which is continuous on 
/9. Let o~(3) denote the modulus of continuity of F on 0D. If  IFIEC~(OD) 
the preceding argument shows that ~o (6)= O (6 log 1/3); but  it will not give ~o (6)= 
::  O (6). 

7. Approximation by harmonic polynomials 

Many of the questions that occupied our attention in previous discussions can 
easily be rephrased in terms of harmonic polynomials. Let us assume, for instance, 
that f2 is an arbitrary plane domain. For  each p, l ~ p < ~ ,  the spaces H~(f2, dA) 
and L~(f2, dA) are defined as follows: HP(O, dA) consists of those functions 
that can be approximated in the LP(f2, dA) norm by a sequence of harmonic 
polynomials and L~(O, dA) denotes the set of all functions in LP(f2, dA) that 
are harmonic in Q. By the area mean value theorem, H~(O, dA)cL~(f2, dA) 
and so one is led to ask: For which domains f2 is H](~, dA)=LVA(~?, dA)? When- 
ever this occurs the harmonic polynomials are said to be complete in L~(F2, dA). 

The first results which the author is aware of  in connection with the complete- 
ness problem for harmonic polynomials were obtained by ~Saginjan in 1954 (Akad. 
Nauk Armjan. SSR Dokl. 19, 97--103). He proved that every bounded harmonic 
function on ~2 belongs to H~(O, dA) if O satisfies either of the following two 
conditions : 

(i) O is a Carathdodory domain; 
(ii) f2 is a "crescent" and HP(~2, dA)=LP,(F2, dA). 

There the matter stood until, in 1966, 'Sinanjan [51] succeeded in proving that 
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H~(~?, dA)=L](f2, dA) for every Carath6odory domain f2. We shall now state 
two theorems which follow easily from our  earlier results and which together suggest 
that for crescents there is a close relationship between the completeness of the analytic 
and harmonic polynomials. 

' theorem 7.1. Let g2 be a crescent. I f  HP(~2, dA)=L~((2, dA) then H~(~2, dA)= 
= L~ (~, dA). 

Theorem 7.2. Let ~ ? = ( X ~ U )  ~ be a crescent. Assume that OU is class C 1 
and that n(z), the unit exterior normal to OU at z, satisfies a Lipsehitz condition 
ln(zl)--n(z2)[<=C[zl-z21. Let 6(z)=dist(z,O~?=). In order that H](Q, dA)= 
=L](f2 ,  dA), for any p, it is necessary and sufficient that 

for log 6 (z) IdzI . . . .  

Remark. If Q = ( X \ U )  ~ with OU sufficiently smooth it follows from Theo- 
rem 7.2 that H~(Q, dA)=L~(O, dA) if and only if HP(O, dA)=L~(O, dA). At 
the present time we do not have an example of a crescent for which the first of these 
holds, but for which the second fails. In connection with this cf. [63] & [64, p. 157]. 

Proof of  Theorem 7.1. Suppose that HP(Q, dA)=LP,(O, dA) and let h be any 
function in L+(Q, dA) with the property that f QhdA=O for every harmonic 
polynomial Q. Thus, the potential 

I 
H(z) = f log ~ - ~  h(~) dA+ 

is identically zero in ~2 . In order to prove that H~(~, dA)=L~(f2, dA) it is suffi- 
cient to show that H belongs to the Sobolev space 174q(f2 ) and, since C \ ~  has 
only two components,  we need only verify that H - - 0  in the bounded component U. 
These assertions follow from results of Hedberg and Polking (cf. [34, Thms. 3 & 4] 
& [46, Thm. 2.9]). 

As a distribution OH/Oz = - ~ / 2 ,  where h is the Cauchy transform of  h. 
Evidently, then; ~ z 0  in ~2= and, because HP(~, dA)=LP,(f2, dA), it  follows 
that OH/Oz= =h/2-=0 in U. Similarly, OH/O2=O there, since h, as well as h, 
is orthogonal t o  the harmonic polynomials. This implies that H is constant 
in U. On the other hand, H is known to be continuous and so H(z)+O as z 
approaches a multiple boundary point from within U. Therefore, H = 0  in U and 
H~(K2, dA)=L~(Y2, dA). Q.E.D. 

Proof of  Theorem 7.2. The proof  here is analogous to that of the corresponding 
result in the analytic case--Theorem 5.8. We first construct a Jordan curve ? lying 
in f2 and surrounding the bounded complementary component U. This is done 
in such a way that there is a fixed constant e > 0  and so that for each z0~ ? the 
disk with center at z 0 and radius eg(z0) is contained in ~2. Thus ,  if F is harmonic 
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(1) 

(2) 
(3) 

then 

in s it follows from the Poisson integral formula that 

~__(Z0)[ ~ / C / (2/p) +1 
I, ~-(~o)) IIF]ILP(~,d.4) 

(Cf. [26, Lemma 6, p. 103]). Assuming that f0vlog ~(z)ldz] > - ~ ,  there is a func- 
tion h which is analytic and nowhere zero inside ~ and so that ]h(z)] =6(z) (2/p)+1 
for every zq ~. Hence, if {Qj)~=I is a sequence of harmonic polynomials and Qj ~ F  
in LP(f2, dA), then 

OQj sup h-)- 7 -<K, j = 1 , 2 , . . . .  

0 
th QJ} is a uniformly bounded sequence of analytic functions Consequently, [ --~-z ]j=l 

inside ~ and so in that region some subsequence converges uniformly on compact 
subsets. This implies that OF/Oz extends analytically to U. In particular, F can- 
not be one of the functions log ]z-a[, aEU. Therefore, H~(f2, dA)r163 dA) 
if f ~v log 6(z)Idz[ > - ~. 

If we suppose that foulogt(z)Jdzl=-~ then HP(O, dA)=LPa(I2, dA) and 
H~(O, dA)=L~(s dA) by Theorem 7.1. Q.E.D. 

With regard to the harmonic polynomials questions concerning approximation 
in the plane have natural analogues in higher dimensions. These often lead, how- 
ever, to more serious difficulties than those encountered in the planar case and, con- 
sequently, very little has been published in this area. 

By a crescent in R" we shall mean a domain topologically equivalent to the 
region bounded by two internally tangent balls. Lebesgue measure will be denoted 
by dV. In keeping with previous notation L~(O, dV) will stand for the set of func- 
tions in LP(f2, dV) which are harmonic in s and H~(I2, dV) will designate 
the closure of the harmonic polynomials in the Lv(f2, dV) norm. The following was 
announced in [26]: 

Theorem 7.3. (Haviu & Maz'ja). Let s be a crescent in R" with its multiple 
boundary point at the origin. Assume, moreover, that U, the bounded component 
complementary to s lies entirely in the half space R~ ={x=(x l ,  ..., x,): x,>0} 
and that (Ixl<o) nU=(lx t<o)  c~R"+ for every sufficiently small but positive ~. I f  
the interior and exterior boundaries of  s are class C 2 surfaces and i f  there exists 
a function W(O) such that 

w "  ( e )  . ~o 
Q--W~ ~ + as 0~0; 

meas {s n (Ix]< 0)} <= W(q); 
fo log W(o) d e  = - o o  

H~(I2, dV)=LPA(Q, dV)/ for every p > l .  
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The requirement ([xl<o)mU=(lx[<e)r~R"+ simply means that OU is flat 
near the multiple boundary point. One wonders, therefore, to what extent this rather 
severe topological restriction can be relaxed without destroying compleneteness. 
This seems to be a very delicate question and it is still far from being settled. How- 

l 
ever, if (3) is replaced by the stronger assumption fo log log ~ de = + ~ then 

completeness will occur whenever there is a two sided cone with vertex at the multiple 
boundary point and which, otherwise, lies entirely in C \ ~ .  The proof  is based 
on ideas introduced in Sections 3 & 5 and will be omitted. We mention the result only 
to establish a connection between our work and the more general problem. 

The question of  approximation on crescents by harmonic polynomials is closely 
related to an older more important uniqueness problem. The connection arises in 
the following manner: Suppose that t2 is a crescent in R" and fix p=>l. Let 
krLq(f2, dV) be any function with the property that f,~ QkdV=O for every har- 
monic polynomial Q and form the appropriate potential U k (i.e. the logarithmic 
potential in the plane and the Newtonian potential in higher dimensions). Since k 
is orthogonal to the harmonic polynomials, U k vanishes identically in g2~, (cf. 
[14, p. 105]). In order to prove that H~(f2, dV)=L~(f2, dV) one must first verify 
that Uk--0 in the bounded complementary component U. I f  we assume that 
0f2 is smooth, q>n]2 and fov log6(z)dS=-~,, where dS denotes surface 
area, then 

(a) UR(x)+O as x approaches any multiple boundary point from inside U; 
(b) fay log [VUkIdS . . . .  

One is therefore led to ask whether or not  (b) is sufficient to imply that U k is con- 
stant in U. The results of  Havin and Maz'ja, [26], are based on a partial answer 
to this question, the details of  which recently appeared in [29]. In this connection 
the reader should also consult the works of Mergeljan [43] and Rao [47]. 
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