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1. Introduction 

For differential operators P(D) with constant coefficients there is a rather 
complete theory on existence and regularity of solutions of the equation P(D)u=f 
There exists a solution in every relatively compact open subset of  R n for an arbitrary 
right hand side fEe ' (R")  (semi-global existence theorem). In an open set 12cR" 
the equation can be solved with u E C = (12) for every fE C ~ (12) if 12 is P-convex 
and with uE@'(f2) for every fEe ' ( f2)  if 12 is strongly P-convex. These results are 
exposed in H6rmander [4, Ch.III]. 

The class of differential operators of constant strength with variable coefficients 
(Definition 2.2 below) is closely related to operators with constant coeffcients. An 
operator P(x, 1)) of constant strength defined in an open set 12cR" can be con- 
sidered as a bounded perturbation of the operator P~0 (D) with constant coefficients 
obtained by freezing the coefficients of P at a fixed point x 0 E 12. Peetre [9] proved 
that the equation 

(t.1) e(x,D)u = f  

can be solved locally for any f (c.f. H6rmander [4, Ch. VII]). Also theorems on 
differentiability of solutions can be extended to differential operators of constant 
strength. The operator P(x, D) is hypoelliptic in 12 if it has constant strength and 
for every xE12 the operator P:,(D) is hypoelliptic (H6rmander [4, Theorem 7.4.1]). 
M. Taylor [11] has prove d that conversely if P is hypoelliptic and of constant 
strength then Px(D) is hypoelliptic for every x. 

However a semiglobal existence theorem is not valid for all operators of constant 
strength. In fact by Pli~ [10] there is an elliptic operator P0 of order 4 in R s such 
that there is a function ~o E Co with 

tPoq~ : O. 
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A necessary condition for solvability of the equation Pou=f in a neighborhood 
of  supp ~0 is then that ( f ,  @ = 0 .  There are operators P of constant strength 
such that no finite number of linear conditions on f are sufficient for solvability 
of  the equation (1.1) in a relatively compact open subset f~" of the set f2 where 
P is defined. One example of such an operator is the operator P0 above considered 
as an operator in R a independent of  the last variable. The adjoint of this operator 
has infinitely many linearly independent solutions with support in a fixed compact 
set. On the other hand if P is hypoelliptic of constant strength then 

N = {(p C g ' ;  tP~o = 0} c Cg ~. 

Standard compactness arguments give that N c~g'(K) is finite dimensional for 
every compact set K in s and one can show that the equation (1.1) can be solved 
in a neighborhood of  K if 

( f ,  9)  = O, q~EN~o~'(K). 

In Section 3 below we shall give a condition which is sufficient for solvability 
of the equation (1.1) in an open set ~2'~ ~ 2  when P has constant strength and 
the right hand side satisfies a finite number of linear conditions (Theorem 3.1). 
The condition involves so called localizations of P at infinity. If  P has constant 
coefficients then a localization of  P at infinity is a differential operator Q(D)r 
which is a limit of  

ajP(D+ ~) 

when ~ in R n and a j aR  +. Localizations at infinity can be defined even 
for operators of constant strength (Definition 2.3). The condition of Theorem 3.1 
is that for no localization Q of  P at infinity there should exist wEb'(O), w#O, 
such that tQw=O. This is also necessary for existence with finite codimension in 
open relatively compact sets if the solution is required to have the same regularity 
as in the constant coefficient case (Theorem 3.7). After Theorem 3.7 we give a result 
which clarifies somewhat the meaning of the condition of Theorem 3.1 (Theorem 3.9). 

From Theorem 3.1 it is easy to deduce that if O is P-convex then there exists 
a solution uEC ~ (~2) of the equation (1.1) for any f in a space of  finite codimension 
in C~(Q) (Theorem 3.6). Then it follows from Theorem 1.2.4 in H6rmander [7] 
that the same is true with C ~ ((~) replaced by ~'(fk) if f2 is strongly P-convex. 
But to be able to decide if a domain is strongly P-convex one needs theorems on 
singularities of  solutions. 

In Section 4 we prove some results on existence of singular solutions, which 
imply certain necessary conditions for ~ to be strongly P-convex. These are gener- 
alizations of  the following theorem of H6rmander [6]. 
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Theorem 1.1. Let P(D) be a differential operator with constant coefficients and 
let Q(D) be a localization of  P at infinity such that A'(Q), the orthogonal space of  

A(Q) = {q6R"; Q ( ( §  O(~), all ~ER", tER}, 

is different from {0}. Then there exists a solution uE~ ' (R ' )  of the equation P(D)u=O 
such that sing supp u = A'(Q). 

The definition of the space A (Q) can be generalized to operators of constant 
strength (Definition 2.5). When P(x, D) is of  constant strength in an open set 
f2cR"  it is natural to replace A'(Q) by a component 2;o of Z n f2  where 2~ is 
an affine subspace parallel to A'(Q). With a method of  proof  similar to the one 
used in the constant coefficient case one can obtain a result which shows that the 
statement of Theorem 1.1 with A'(Q) replaced by 27o is valid for an operator P 
of  constant strength if f2 is small (Theorem 4.2). This gives a new proof  of the 
result of Taylor [1 1] mentioned above. A global version of Theorem 1.1 is true for an 
operator of constant strength if some additional conditions hold (Theorem 4.4). We 
do not know if these are satisfied in general but if P has analytic coefficients 
they are fulfilled. 

I would take the opportunity to thank nay teacher, Professor Lars H6rmander,  
who suggested these problems to me and has given much vaiuabte advice during 
the work. 

2. Definitions and notations 

First we recall the definition of  an operator of constant strength. If  P(D), 
D = -iO/Ox, is a differential operator with constant coefficients the function /% is 
defined by 

P(O = (Z= 

/3 belongs to the class J f  of positive functions k such that 

(2.1) k (~+q)  ~ ( l+Cl~j)Uk0/) ,  all ~,*/ER" 

for some positive constants C and N. The functions 

(2.2) h,({) = (X + t{l=) s/2 

belong to JC and are much used. 

Definition 2.1. Let P1 and P2 be differential operators with constant coeffi- 
cients. Then PI-KP2, i.e., Pa is weaker than P=, if there is a constant C such 
that /3a(~)//%~(~)<_-C for all ~ER', and PI~Pz,  i.e., P1 and P~ are equally 
strong, if PI-< Pz and P2-~/)i. 

If  P=P(x,  D) is a differential operator with variable coefficients defined in 
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an open set E2~R" then for each fixed xtf2 one can consider the operator Px 
with constant coefficients obtained by freezing the coefficients at x: 

Definition 2.2. A differential operator P defined in an open set f 2cR"  is of  

constant strength if P~,,P~, for arbitrary x, x '~f2.  
In this paper all differential operators will be assumed to have C ~~ coefficients. 

The letters P and Q will always denote differential operators of  constant strength 
assumed to be defined in an open set f 2cR"  although that  is not  stated each time. 

A localization at infinity of  an operator P of constant strength should as in 

the constant coefficient case be defined as the limit of 

ajP(x, D + Ilj ) 

when the sequence t / j~oo in R" and a jER + are normalizing constants. In view 

of Definition 2.2 it is natural to take a fixed x0~f2, define /~=/~o '  set aj=l/ag(// j)  

and thus consider 
(2.3) e(x, D + @/P(~j). 

There is a subsequence of the sequence //j such that the limit of  (2.3) actually exists. 
For  if R has constant coefficients and is weaker than P~o then the order of  R is 

at  most  equal to the order of  Px ~ so {R; R <  P~0} is finite dimensional. Let P1 . . . . .  PN 
be a basis of  this vector space. We can write 

P(x, D) = ZNv=I c~(x)Pv(D) 

where c~CC ~~ Since Pv-<Po the coefficient of D ~ in Pv(D+t/j)/P(t/j) is a bounded 
function of t/i for v =  1, .. . ,  N and all multiindices c~. Thus there is a subsequence 
r/jk, which we for simplicity assume is identical with the sequence t/j, such that the 

coefficient of  D ~ in 
P~(D+@/P(@ 

has a limit for v = l  . . . .  , N and all •. Then it is clear that  there is a differential 
operator  Q(x, D) with C ~ coefficients such that  for all cr the coefficient of  D ~ 
in (2.3) tends to the corresponding coefficient in Q(x, D) in the C~(E2) topology. 
I f  another point x~ is chosen to define P then Q will just  be replaced by a constant 

times Q. Now we can state 

Definition 2.3. I f  P is a differential operator of  constant strength let L ( P ) =  
= { Q ( x ,  D); Q(x, D ) = l i m  P(x, D+t/yP(t/j) for some sequence t/jER", t/~_~oo}. 

The elements of  L(P) are called localizations of  P at infinity, 
An operator Q E L(P)  has constant strength for 

0~(~) = l i ra /~(~ +ns)/P(ns). 

A localization R of  Q at co is a localization of  P at 00 for if 0j is the sequence 
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defining R then it is easily seen that  there are subsequences t/j~ and 0jr such that 

~v=l~jv+Ojv .--~~176 and 
R(x, ~) = lim P(x, r + r 

The adjoint tp of  P has constant strength if P has and (tP)x(D)~Px(--D) for 
every x (H6rmander  [4, Lemma 7.1.2]). Clearly we have 

tO(x, D) ---- lim tp(x, D -  ~j)/POlj) 

so the adjoint of a localization of P at oo is after multiplication by a positive con- 
stant a localization of tp at o~. 

The following proposition shows that  one need not consider all sequences t/j 
in order to obtain all localizations of  P. 

Proposition 2.4. Let QEL(P). Then there is a polynomial in t 

(2.4) ~l(t):~j=oOjtJ, OjER", ~ l ( t ) - ~  as t - ~ ,  

a number a > 0  and an integer a>=O such that 

Q(x, 4) = lin2~ P(x, ~ +rl(t))/at ~. 

Proof. Let Q be defined by a sequence ~/j. After possibly passing to a sub- 
sequence we may assume that  P~(~+~/j)/ff(~/j) has a limit Q, for all Pv in a basis 
of  {R; R~(Pxo }. I t  is sufficient to prove that  there exist r/(t), a, a such that  Qv(r 
=l im  P~(~+rl(t))/at ~ for all v. But that  is just Proposition 2.2 in H6rmander  [6] 
applied to the vector valued function ~-+(PI(()  . . . . .  Ps(~)). The proof  of  that  
proposition is valid with obvious modifications for a vector valued function. 

I f  P has constant coefficients we define A(P) as in the introduction. I f  P~(P~ 
then A (Pz) c A (P~). For  let ~/E A (P2). Then 

[?~(~+t~/)] --<- P~(r +tq) <= Cff2(~ +ttl) = Cff2(~). 

Hence P l ( r  must be independent of  t. Thus the following definition is inde- 
pendent of  the point x0 chosen. 

Definition 2.5. I f  P has constant strength let A(P)=A(Pxo ). The orthogonal 
space of A(P) is denoted by A'(P). 

The class of  operators of  constant strength is invariant under linear changes 
of  coordinates. Therefore we can choose the coordinate system so that 

A'(P) = {x; xk = O, k = j + l  . . . . .  n}. 
Then obviously 

P(x, D) = .~,  a~(x ", x")D~,,, 

where x'=(x~ . . . . .  xj), x"=(x j+~  . . . . .  x,) and D~, is a partial derivative which 
does not contain O/Oxk for k = j + l  . . . . .  n. Consider a. fixed x"  and let 
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Z =  {(x', x") ;  x'ERJ}. The restriction of P to 2: defines an operator of constant 
strength in the open set 2:n~2 in R i. We write Pz for that operator. 

It is immediate from the definitions that A'(Q)cA'(P) if  QEL(P). More- 
over dim A' (Q)<dim A'(P) if  the sequence ~/j defining Q tends to ~o modulo 
A(P). For if 0 s is the coefficient of the largest power of  t in (2,4) and t / ( t ) ~  
mod A (P) then we may assume that 0j r A (P). But Os E A (Q) since 

~l(t+stl-s/J) = tl(t)+sOj+O(1/t ) 
so that for every real s 

Q(x, 4) -=" lira P(x, ~ § ~ : O(x, ~ +sOs). 

If  the sequence r/j. is bounded mod A(P) then Q is clearly of the form 
P(x,~+~o)/ff(~o) for some ~0ER". For  all QEL(P) we have dim A'(Q)<n for 
either t / j ~  modulo A(P) and then dim A ' (Q)<dim A'(P)<=n or the sequence 
qj is bounded modulo A(P) and then dim A ' (Q)~dim A'(P)<n. 

These remarks show tha t i f  Q is a localization of  P at infinity rood A(P) then 
Q is somewhat simpler than P. If  we take a localization R of  Q at infinity 
mod A (Q) we get a still simpler localization of  P, and so on. When proving an 
extension of  Theorem 1.1 one should first look at the simplest localizations of  
o rder#0 .  Therefore we state 

Definition 2.6. A differential operator Q of constant strength is of local type 
if A'(Q) ~ {0} and all localizations of Q which are defined by a sequence t/j which 
tends to infinity modulo A (Q) are of  order 0. 

Let Q be of local type and choose the coordinate system so that A'(Q)= 
: {(x', x") ;  x"= 0}. The definition implies that Qx is then a hypoelliptic polynomial 
in the 4" variables for all x, that is 

QC~(x', x", r x", ~') ~ 0 
when ~ ' -*~  if ~#0 .  

The following proposition will imply that in order to prove an extension of  
Theorem 1.1 it is sufficient to consider localizations of local type. 

Proposition 2.7. For every QE L(P) there is an operator Q" E L(P) of local type 
such that A'(Q')c A'(Q). 

Proof. If Q is of local type there is nothing to prove. Otherwise one can find 
Q1 of  positive order which is a localization of Q at infinity modulo A'(Q). Then 
A'(QO~A'(Q) and dim A' (QO<dim A'(Q). I f  Q1 is of local type the proof  is 
finished, otherwise there is a non constant Q~ which is a localization of  Q1 at 
infinity modulo A'(QO, and so on. We get a QN of local type after a finite number 
of  steps, for the dimensions of  the spaces A'(Q), A'(QO, ... are strictly decreasing. 
The operator QN belongs to L(P) so the proof  is complete. 
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3. Existence theorems 

As before let P be a differential operator of constant strength in an open set 
f 2 c R  n. In this section we prove some existence theorems for the equation P u = f  
on compact subsets of 12. 

First we introduce suitable Banach spaces. Let k E ~  and 1 =<p_<- ~o. The space 
~]p,k is the set of  temperate distributions u such that t~ is a function and ~kEU'.  
It is a Banach space with the norm 

Ilul1,.k = f 
and if p r  its dual space is Mp',k', where 1 / p + l / p ' = l  and k ' ( r  
If p ~  then C o is dense in Np, k. I f  k, klEO,~ and kl(O/k(r when ~-+~, 
then a sequence which is bounded in Nv, k and has supports in a fixed compact set 
has a subsequence which converges in Mp, h" For the proofs of  these facts see 
H6rmander [4, section 2.2]. Let f2' be open and relatively compact. In the study of  
the equation P u = f  in ~2" we use the quotient spaces 

Np, k (~') = ~p, k/Np, k (Q') 
where 

Np, k(f2') = {uENp, k; u = 0 in 0'}. 

If  p r  the dual space of ~p,k(~ ')  is Vf ,k , (~ ' ) ,  the annihilator of N~,k(FY) 
in ~p ' , r -  It  is obvious that Co(O')cgp, ,k , (~ ' )C, :U(O" ). 

A differential operator P of constant strength in f2 D D 12' induces a con- 
tinuous linear map 

e :  ~ , ,  k, (~')  -+ N,, ~ (~').  

The space Np, k~(~') is clearly independent of  the point x0 chosen to define /~' 
The following theorem gives a sufficient condition for the image of  P to have finite 
codimension. 

Theorem 3.1. Let f2 be an open set in R ~ and let P be a differential operator 
o f  constant strength in 12. Assume that 

(3.1) QEL(P),  wEg'(f2), tQw = 0 =, w = O. 
Then 

N =  {w~e'(O); few = 0}cC0~(a).  

Let f2" be open, f2" c c f2. Then N'=Nc~o~' (~  ')  is finite dimensional, l f  fENp, k(O') 
and ( f ,  @ = 0  for all (pEN" there exists some uENp, k~(~') such that P u = f  
i n O ' .  

Theorem 3.1 applies to hypoelliptic operators of  constant strength, for if P ,  (D) 
is hypoelliptic for all x then every QEL(P)  is a nowhere vanishing function. 
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In this case the result is of course very well known. Operators P with analytic 
coefficients also satisfy the condition (3.1). In fact every localization Q of P has 
analytic coefficients. Let wEr and tQw=0. Denote the principal part of Q 
by q. One can find vER" such that q(x o, v)#O and then q(x, v)#O for all x r f2  
since Q has constant strength. Holmgren's uniqueness theorem now implies that 
w = 0  in a neighborhood of an affine hyperplane parallel to {x, (x, v)=0} if this 
is true on one side. Hence w is identically 0. This also shows that the space N is 
{0} when P has analytic coefficients. More generally if each Q~L(P)  has the 
unique continuation property over all hyperplanes parallel to {x; (x, v)=0} for 
some v then (3.1) holds. We have that situation for example if L(P) only contains 
operators of order 1, for a first order operator of constant strength has constant 
coefficients in the principal part after multiplication by a C ~ function and a suit- 
able local change of coordinates. For a proof of this see for example Duistermaat-- 
H6rmander [3]. 

Proof of  Theorem 3.1. First we show that N c C  o.  So let wEr o 
and tpw=0.  In order to make use of (3.1) we take a point 4ER" and observe that 

(3.2) 0 = exp ( -  i ( . ,  ~)) tp( . ,  D)w/ff(-- 4) = t p ( . ,  D + 4) (exp (-- i( -, 4)) w)/ff(-- ~.). 

Suppose that there exists a sequence 4jER" and constants t j r C  such that ~ j ~  
and t j e x p ( - i ( . ,  ~j)) w converges in 8 '  to a distribution w0#0 when j~oo.  
We may assume that 

t p ( . ,  D + 4j)/P(-- ~i) ~ tO ( ' ,  D) 

for some QEL(P). Then by multiplying (3.2) with t i and letting j tend to infinity 
it follows that tQwo=O. But that contradicts (3.1) so the following lemma will 
complete the proof that N c  C o .  

Lemma 3.2. Let w E ~"~C o .  Then there is a sequence ~j ~ co in R ~, constants 
tjEC and a distribution WoE~" not equal to 0 such that tj exp ( - i ( . ,  4j>) W~Wo 
in g'. 

Proof. It is sufficient to show that there are constants C and N and a sequence 
4j-~*o such that 

(3.3) jr~(~+~j)/~(~s) I <- C ( I +  [~l) N, V~ER ~. 
In fact this means that the sequence exp ( - i ( . ,  4j)) w/~(4j) is bounded in ~ , h _ ~  
where h_ s is defined by (2.2). Then there is a subsequence 4j~ of 4j such that 

exp ( -  i ( . ,  ~Jk>) w/ff~ (~ju) 

has a limit w0 in N~,h_,,_x. It is clear that w0#0 for ff0(0)=l. To prove (3.3) 
note that since w 6 8 " \ C  o there is a number M such that 

I~,(01 <-- C1(1 + I~l) ~'+~/~ 
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for some C1>0 and 
f (R)  = sup Iff(r + R )  -M 

I~I=R 

is not a bounded function of  R. Then f(R)<=CI(1 +R)  1/2 so 

Sj = sup ( f (R ) - R / j )  < 
R~O 

and is attained at a point Rj.  The numbers Sj tend to infinity for if they were 
bounded then f would be bounded. Then Rj must also tend to infinity. For R =~ - Rj 
we have 

(3.4) f ( R  + Rj)/f(Ri) <= (Si+(R + Ri)/j)/f(Rj) = (f(Ri)+ R/j)/f(Rj) ~_ 1+ [R[ 

if j is large enough. Let ~j be a point where 

]~j] -~ R j ,  f ( R j )  "~ i~(~j)l(l+Rj) -u.  

--Rj<=R and ]R]<=I~I. The defini- For given ~ER" put R=I~+r i. Then 
tion of f gives that 

]w(~-r ~j)l ~ f(]~+~j])(1-4-[~ + ~jt) M =f(Rj+R)(1  +Rj+R)  M. 
Thus 

+ (r j)l <= f ( gj + R) O + gj + /(f  ( gj) o + Rj) <= (1 + [gl)o + 

The last inequality follows from (3.4) and the fact that 

(1 + R i + R ) ~ / ( 1  +Ri) u <= (1 + IR]) ~1. 

Hence (3.3) is valid and the lemma is proved. 
Now it is easy to obtain that the space N '  in Theorem 3.1 is finite dimensional. 

For N '  is a dosed subspace of  L ~. The injection N '  ~J/g(1) is everywhere defined 
so by the dosed graph theorem 

]lq~[l<l) ~ Cli~ollr q~EN'. 

A sequence in 8 ' ( ~ ' )  which is bounded in ~r has a subsequence which converges 
in L ~ so this inequality implies that N" is locally compact. A Banach space which 
is locally compact is finite dimensional so it follows that N '  is finite dimensional. 

We shall complete the proof of Theorem 3.1 by applying the Hahn--Banach 
theorem. For that we need the estimate in the following lemma. 

LemIna 3.3. Let the hypothesis of Theorem 3.1 be fulfilled. For all kE~g{" and 
pE[1, ~o] there is a constant B such that i f  h=kP" then 

(3.5) Ilvllp,~<=B[l'Pvllp, h if vEVv, k(~2" ) and (v, cp)=0, VcpEU'. 

The same B can be used for all k satisfying (2.1) with fixed C and N. 
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Proof  Assume that the statement of the lemma is not  true. Then for all positive 
integers j there exists vjE Vp, k(O') orthogonal to N '  and k~ satisfying (2.1) 
such that 

(3.6) 1 = [I vj[lp, kj > J []tPvjl[p, hj, 

where h j=k jP ' .  It  is easiest to get a contradiction from (3.6) if p =  ~ so we con- 
sider that case first. One can then find ~j such that 

(3.7) ej (r kj (~j) ~ 1. 

Define wj by 
�9 j (r = kj (~j)~j (~ + ~j). 

By the equality in (3.6) and (2.1) we have 

I~j(~)l <- (1 +c1~1)" 
so there is a subsequence which we also denote by wj which has a limit w in s  
Obviously w r  for (3.7) means that r~j(0)~1. By the remarks before Definition 2.3 
any sequence r in R" has a subsequence which defines a localization of  P. I f  Cj 
does not tend to o~ then the localization is just a constant times a translation of  P. 
Thus after possibly passing to a subsequence 

a j ( . ,  r = tp(  ", r q_ ~j)/ f f(_ C j) _,. tO( ", 4). 
Note that 

Oj w i = tpvj ( .  -[- ~j) kj ( r  Cj). 

From the inequality in (3.6) it follows that Qjwj tends to 0 in the space N=,h,s 
if s is the constant occurring instead of N in the estimate (2.1) for h and h_~ 
is defined by (2.2). Hence tQw--=O. Then the sequence ~j cannot tend to infinity 
because (3.1) is valid, so we may assume that ~j has a limit ~0ER n. Then 

tQ( . ,  ~) = t p ( .  ~_~_~o)/p(_~o)" w = A v o e x p ( - - i ( . ,  40)) 

where v 0 is a limit of vj in 8 '  and A is a limit of kj(~j). Clearly v 0 is orthogonal 
to N '  and not equal to 0. But the fact that tQw=O implies now that tPvo=O, 
that is, voEN'. This is a contradiction so Lemma 3.3 is proved in the case p=oo.  

To be able to use the same idea of proof  if p r  one needs a lemma. 

Lemma 3.4. Let kEoff and p < ~ .  For ~IER" define a function k~E~f" by 

(3,.8) k,(~) = (1 + [r162 CER". 

Let K be a compact set in R". I f  M is sufficiently large the function ~-~llull~,~. 
belongs to L p and the norm Ilull~,~ is equivalent to the norm 

IlluG,~ = ( f  Ilull"=,~~ @)~'" 
for uEg'(K) n~,k. 
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Proof. It is clear that ftuIt=,k, >- la(r/)k(r/)l so 

Ilull~,k ~ f IIullS,k. dr. 
To prove the opposite estimate choose Z E Co  such that X= 1 in a neighborhood 
of  K. Then a=(2.)-"a.2 if uEg'(K). If  M is large there is a positive constant 
(7, such that 

k(~)<= Cl(i+l~-OI)~k(O) for all r  

and for M > 0  we have 

( l+ l~-n t )  -~-<_ ( I+I0-~ ' ) -M(I+I~-01)  ~ for all 4, r/ ,0ER n. 

From these estimates, the fact that a = ( 2 r c ) - ' a .  2 and H61der's inequality it 
follows that 

[k(r + 14 -~l)-~'a(~.)l <-- Clll~(1 + l .  I)~ll. ,(f [a(0) k(0)(1 + [O--~ll)-M?dO) ~/'. 

If  Mp>n we obtain by integrating with respect to r/ that there is a constant C 
independent of uE#'(K)nM,,k such that 

f IlullS, k,,dn <= Cllull~,k. 
The proof is complete. 

End of the proof of Lemma 3.3. Recall that h=kP'.  Define k, by (3 .8 )and  h, 
in the same way. By Lemma 3.4 one can choose M so large that [lull~,~ and [llulll~,~ 
as well as I[ul[p,h and lllultl~,h are equivalent for uE#'(D') .  The functions k,  
satisfy the estimate (2.1) with the same constants for all ~. Thus it follows from the 
first part of the proof  that 

Ilvll-,k. <-- nll 'evll~,h,  if vEVv, k(D' ) and v • N'.  

Now (3.5) follows by integrating with respect to r/. This completes the proof of 
Lemma 3.3. 

End of the proof of Theorem 3.1. Let fEMp, k(D') and VECo(D" ). The estimate 
(3.5) gives 

I(,L v)[ <= Bllf[lp, k [l'evllp,, (k~)' 

if v_I_N'. If  f •  this inequality is in fact valid for all vECo(~ '  ) for v can 
be written v=v,+v2 with v , •  v2EN" and when v~EN" both sides are 0. 
The linear form 

is thus continuous on a subspace of Vv, ' (kV),(D'). By the Hahn--Banach theorem 
it can be extended to a continuous linear form u on Vv, ' (kV),(O') such that (u, tPv) = 
= ( f ,  v) for all VECo(~').  That  means P u = f  in D" and uE~v, kV(O" ) if p ' ~ o .  
This completes the proof  of Theorem 3.1 in case p # 1. 
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From the estimate (3.5) one call obtain the following result which contains an 
existence theorem for the C ~~ case and the statement of Theorem 3.1 for p =  1. 
The method of proof  is well known. 

Theorem 3.5. Let f2 be an open subset of R" and let P be an operator of  
constant strength in f2. Assume that (3.1) is fulfilled. Let 

o o  

F =  J(-] ~p,,k,, FI = ~ Mp,,k,~, 
j = l  1=1 

where l_<-pj<~ and kjEo~ r. I f  ~ ' c  c ~ , f E F  and ( f ,  ~o)=0 for all q~<Co(~') 
such that 'P~p=0 then there exists u~F1 such that P u = f  in ~'. 

Proof F and /'1 are Fr6chet spaces and so is 

F 0 = { f E F ; f = 0  in a '} 

and the quotient space Fq=F/Fo. The dual space of F~ is 

F~ = {w; wE~r for some j, (w, f )  = 0 if f~F0}. 

This is of course a subspace of g ' ( ~ ' )  containing C o ( ~ ' ) .  We have to show that 
the image of P:  F~-+F~ is the annihilator of 

N '  = {~o < F~ ; 'P~p = 0}. 

That follows if the range of tp is weakly closed in Ff (see e.g. Dieudonnd--Schwartz 
[2, Th. 7]). By a theorem of Banach (see Bourbaki [1, Ch. III, Th. 5]) this means 
that the intersection of the range of tp and the unit ball in ~,~,(k s ~), shall be 
weakly closed for every j. The weak topology is metrizable on the unit ball since 
it is equivalent to the weak topology on the unit ball of a dual of a separable Banach 

space. Let us therefore consider a sequence 

WEFt, tpv~ = w~, ]}w~llp,j,(,ks ), <= 1 

and suppose that w~ tends to a limit w weakly in Fs We may assume that v~ • N 
so the estimate (3.5) gives that 

Then there is a subsequence of v, which has a weak limit v in F ' .  Clearly vE F~ 
and tPv = w so the proof  is complete. 

The following global existence theorem in a P-convex open set is proved in 
the same way as Theorem 3.5. As usual ~ ( O )  is the space of uE~' (O)  such 

that ~ouEg~p,~ for all ~oECo(O). 
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Theorem 3.6. Let s be an open set and let P be a differential operator of 
constant strength in f2. Assume that (3.1) is fulfilled and that f) is P-convex, that 
is, for each compact subset K of f2 there exists a compact subset K" of f2 such that 

supp t p w ~  K, wEg'(s =* supp w c K'. 
Let 

~ l o c  / ~r-~X loc 

j=a  j=x 

where kjE~ff and l<=pj<~ for all j. For every f ~ - f  which is orthogonal to the 
finite dimensional space 

N --- {q~ E C~ (12); tPq9 = 0} 

one can then find u such that uE~ and Pu=f.  

Proof. That N is finite dimensional follows from the P-convexity and Theo- 
rem 3.1. ~ and ~ are Fr6chet spaces. The dual space of ~- is 

~-" -- {w ~ 6"(O) ; w q Mp~, k~, some j} 

and the dual space -~' of , ~  is defined in the same way except with (kiP) '  instead 
of kj. We have to prove that the range of P in ~ is the annihilator of N. As 
in the proof of Theorem 3.5 it follows that this means that the intersection of the 
range of tp in ~ '  and the unit ball in g'(K)c~p'j,(ks~ ), is weakly closed in 
~ '  for every j and every K c  c f2. Let ~ be a filter in this intersection. Thus 

wEg'(K), w = tpv for some vC~' ,  []W[]p~,(kj~), <= 1 

for every element w of a set in ~? We may assume that v is orthogonal to N. 
The P-convexity condition and Lernma 3.3 give then that vES'(K')  for some 
compact set K '  in O and 

The ball of radius B in ~p's,k'j is weakly compact in ~ ' .  The inverse image by tp 
of ~r therefore has a cluster point v 0 weakly in ~- ' .  Then tpv o is a cluster point 
of ~/F so the proof  is complete. 

We shall now prove a converse of Theorem 3.1 by first showing that estimates 
of the type (3,5) must be valid and then deducing such estimates for tQ when 
QEL(P). 

Theorem 3.7. Let s and f2" be open sets such that f2" c c:_ f2cR" and let P 
be a differential operator of constant strength in O. Let p ~ 0o and assume that 
P(~p,k~(O')) has finite codimension in ~p,k(O') for all k6:Cg. Then for all k~:g" 
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and all QEL(P) there is a constant C such that 

(3.9) Ilvllp,,k,O. <= C[ltQvllp,,k, vECg(~2"). 

I f  wEg'((2"), QEL(P) and tQw=O then w=0. 

One example of an operator such that the condition (3.1) is not fulfilled was 
given in the introduction. Another can be constructed in the following way. Let 
Po(x, D) be the operator of Theorem 2 in Plig [10] considered as an operator in R ~. 
Denote the last variable in R 4 by y. I f  

P(x, y, D) ---- D~Po(x , Dx)+DyQ~(x , D:,)+Q~(x, Dx) 

where Q~ and Q2 are of order =<3 then P has constant strength. Since 
Po(x, Dx)EL(P) the condition (3.1) is not satisfied. Thus Theorem 3.7 shows that 
the conclusion of Theorem 3.1 cannot hold fo r  this P. 

Proof of  Theorem 3.7. Let ko be any function in sC and set ho-~ko/P. Let 
91 . . . .  , q~s be representatives for a basis in ~p, ho(~')/P(~p, ko(~')). The space 
C = ( ~  ' )  is dense in N~,h0(~' ) since p#~o,  and P(Mp, ko(~') ) is closed as it has 
finite codimension and P is continuous. Therefore ~0t,, ..., ~o~ can be chosen in 
C=( ~ ' ) .  Define a continuous linear operator T from ~p, k0(O') |  N to 

~P, ho(~') by 
T(v, al, ..., aN) = Pv+,~y=a a~o, 

The adjoint tT of T is a continuous linear operator from Vp,,h; (~ ' )  to Vp,,k~ (~') �9 
| C N and 

'T(v) = (tpv, (q~, v) . . . . .  (q~u, v)). 

Since T is surjective tT is injective and its image is closed. Then by the closed 
graph theorem it has a continuous inverse so 

(3.10) Ilvllp,,h~ =< c(II 'P~Np,,~+Z~=I/v, ~o,,)l), ~ v~,,h~(~'). 

From this inequality we are going to obtain (3.9) for given QEL(P) and kEdC. 
For  some sequence ~j ~ to we have 

'Q ( . ,  ~) --- lim tp( .  , ~ + ~j)/p(_ ~j). 

To get tQ instead of tP in (3.10) it is natural to replace v by exp (i(x, ~j))v and 
divide both sides by P ( - ~ j ) .  Indeed, J[tPv[Jf,k, o is then replaced by 

(3.11) IttP(., D + 4j) v /P ( -  ~j)ll p', kj 
where 

kj(~) = 1/ko(- ~ - ~ ) .  
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The term I[vllp,,h~ is replaced by 
(3,12) 
with the notation 

The sum is replaced by 

!IvlI~',~,k, 

Pj(r = P ( -  ~ Cj)/P(- ~j). 

N A 
Z~=I lq%v( - ~j)/e@ Cj)]. 

Now let j tend to infinity. Then the sum obviously tends to 0 since vq),EC~ if 
v~Co (f2" ). The functions 

tp ( . ,  D+ Cj) v/P(-- ~;) 

tend to tQv in ~ Clearly Pj-+t 0 uniformly on every compact set and P; is 
uniformly bounded by a power of (1+1r Assume that kj(~) tends to k(~) 
uniformly on every compact set and is uniformly bounded by a power of (1 + I~I). 
Then if p ' # ~  it follows by dominated convergence that the limits of (3.11) and 
(3.12) as j ~ o o  a r e  [ltQvllp,,k and ][Vllp, kt ~ respectively. If  p ' = ~  it is also clear 
that we obtain (3.9) when j~oo .  Thus the following lemma applied to k'  will 
complete the proof of (3.9), 

Lemma 3.8. Let ~jER ~, ~ j ~  and kEgg. Then there is a subsequence r 
of  ~; and afunction koEOff such that k0(r uniformly on every com- 
pact set. 

Proof. Take a sequence rkER , rk-*Oo , and a subsequence ~jk of ~j such that 
the sets Mk={r  l~--~&[=<2rk} are all disjoint. To shorten notations we assume 
that ~'~=~k. Let Ak={~;rk<=I~--~k[<=2rk} and mk={~; I~--~kl<=rk}. For ~EAk 
define ~ by 

1 ~ 

The point ~ is the reflection of ~ in the tangent plane of Om k where the line through 
~k and ~ cuts Om~. Geometrically, or by writing down the lengths of ~ - t /  and 
~-g/  by the cosine theorem one easily sees that I~-~/[~ l~-r/[ if 4, ~/~A~. Define 
a positive function k0 by 

k0 ( r162  when ~Cmk 

ko(r  when ~(Ak 

k0(~) = k(0) when ~ C R n \ w M k .  

If C and N are the constants occurring in the estimate (2.1) for k it is clear that 

(3.13) ko(~) <= (1 + CI~ -tll)N ko(rl) 
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if both ~ and ~/ belong to the same m k or the same A~. I f  ~Em k and flEA k 

take a point ~oEOm~ such that f~-~ol<=[~-t/I and [~/-~ol<-I~-t/I. Then by 
applying (3.13)first to ~ and 4o then to ~o and t/ we get 

ko(r -< (1 + C l~ --ql)2N ko(t/). 

If  ~EMk~ and tiEMk~ we obtain in the same way by taking a point ~o on OMkl 
and applying this estimate twice that 

k0(O --< (1 + c l ~ - . J k 0 ( . ) .  

Thus this last inequality is valid for all ~, qER" and the proof  of the lemma is 
complete. 

End of the proof of Theorem 3.7. To obtain the last statement of the theorem 
we just have to note that Co(f2 '  ) is dense in gt(~'~t)('~p,,ktO if p ~ l .  Hence 
(3.9) can be extended by continuity to vEg'(f2')nY)p,,k,0. Since any vEg'(~2') 
belongs to some Mp, k space with p r  co it follows that the equation tQw=O 
cannot have any nontrivial solution in r  This completes the proof  of Theo- 
rem 3.7. 

The following theorem shows that in order to verify that the condition (3.1) 
is fulfilled it is sufficient to consider C o densities in certain subspaces. 

Theorem 3.9. Let f2 be an open set in R" and let P be a differential operator 
of constant strength in O. Assume that for all QEL(P) and all affine subspaces 27 
parallel to A'(Q) 

(3.14) ~ E C ~ ( Z n O ) ,  tOsq9 = 0 =~ ~o = 0. 

Then for all QEL(P) we have 

(3.1 5) tQw = O, w E ~'(0) =~ w = O. 

Recall that Qr is the operator Q considered as a differential operator in the 
open set s  of 2;. 

Proof of Theorem 3.9. The theorem is proved by induction over the dimen- 
sion n. 

1. When n =  1 all localizations of P at infinity are nowhere vanishing func- 
tions so (3.15) is trivially valid. 

2. Assume that the theorem is true for all differential operators in open sets 
of R i when j < n  and let P be an operator in f2cR"  satisfying the hypothesis 
of the theorem. Let QEL(P). Then dim A'(Q)<n. Let 27 be parallel to A'(Q) 
and consider the operator Qz in the open set 27 n O c R  j. If  REL(Q) then REL(P). 
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Hence all REL(Qz) satisfy (3.!4) and then the induction hypothesis gives that the 
conclusion of  the theorem is valid for Qz, that is 

REL(Qs), wEC'(OnZ), tRP; • 0 ::~ W -~- O. 

Here g'(f2 c~Z) denotes distributions of compact support in the open set f2 n Z c R  J 
and not a space of  distributions in R". Thus Qr satisfies the condition (3.1) and 
therefore Theorem 3.1 and (3.14) imply that tQ$ has no non trivial solution in 
g'. Then Lemma 3.3 gives that if f2' = c I2 and k E ~ l  there is a constant C such that 

(3.16) [l~P[12,kt0 =< C[l'Oz~oll2,~ for all ~oECC(O'c~Z). 

We will prove such an estimate for functions �9 E Co  (O) with tQ instead of  tQz. 
Then (3.15) will follow easily. Choose coordinates (x', x") so that 

A'(Q) = {(x', x"); x" = 0}, S = {(x', x"); x" = x~'}. 

Now t o depends only on the 4' variables. Let f2' be relatively compact in g2 
and choose ~ECo( (2  ) so that (x', x0' ) E S n f 2 '  if (x', x") E supp ~. Then the 
function ~" ( . ,  4") given by 

~"(x', ~'~) = f exp ( -  i(x", ~")) q~ (x', x") dx" 

belongs to C~(~'c~Y.). Take k~ and k 2 E ~  such that k~ only dependson the  4" 
variables and k~ only depends on the ~" variables. If  we apply (3.16) to ~"(x', ~"), 
multiply by k~(~") and integrate it follows that 

(3.17) II~lJ.,.k,O ~ c IItQ(x ', xo', D~,)q~[t~,k, 

if k=k~k2. To obtain tQ(x', x", D~,) in the right hand side note that since Q has 
constant strength we have 

tQ(x', x", O~,)- tQ(x' ,  xo, o~,) : ,~ j cj(x', x")Q~(D~,) 

with some Q~ ~( tQx0, cj C C" such that cj (x', x0')= 0. If  the support of �9 is suffi- 
ciently near 27 this shows that 

(3.18) [[tO (x', x0", O~,) q~ i} 2, k <-- lltQq~l} ~, k + 1/(2C)II ~b l[ 2, k'O. 

The estimates (3.17) and (3.18) imply that 

(3.19) [l~112,kt0 <= 2Cl/tQ~bll~,k 

if the support of 4~ belongs to 

(3.20) {(x', x")Ef2; Ix"-x0'l < e and (x', x~)EXnf2'} 

and e is sufficiently small. The estimate (3.19) can be extended by continuity to 
wEg~2,k,O with support in the set (3.20). Now let wEg'(O) and t Q w = O ,  There is 
a partition of  unity in t2 consisting of functions ~(~ depending only on the x" 
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variables such that an estimate of the form (3.19) is valid for each Zvw. Since Q 
contains only derivatives in the x '  variables we have tQ(xvw)=O. It follows that 
w = 0  so the proof  is complete. 

We shall end this section by considering operators P of constant strength 
defined in an open set f2cR"  such that A ' ( P ) ~ R  n. Then P is a localization of 
itself at infinity. Thus (3.1) cannot hold if the adjoint of some P~ with 27 parallel 
to A'(P) has a non trivial solution in 8 ' .  Clearly a necessary condition for solvability 
of the equation P u = f  is in general that the restriction of f to each S parallel 
to A'(P) satisfies a number of  linear conditions. Examples of  operators with A" CR" 
are the non-hypoelliptic operators of local type. For  these operators we shall prove 
an existence theorem which will be used in the next section. 

First we introduce some convenient notations. For  an operator Q of local 
type there are coordinates 

(x', x") ( . . . . . .  ) X 1~ . . . ,  X n,~ Xl~ . . . ,  Xn" 

such that 
A'(Q) = {(x', x"); x" = 0}. 

It is natural to assume that Q is defined in a product domain 

o c  = lx'fl < c}  

for some f2 open in R"' and c>0 .  For [x"[<c we denote the operator Q(x', x", D~,) 
in f2 by Q~,. 

Theorem 3.10. Let Q be of  local type defined in a product domain (2 c as above 
and let co be relatively compaet in f2. I f  ~ is small enough there is for each x" 
with [x"]<e defined a linear operator E~,, from @'(f2) to ~ ' (0 )  such that i f  
fE  C= (f2~) and 

(3.21) u ( - ,  x") = Ex,,(f(.,  x")) 

then uEC=(O,).  In addition Q u = f  near NX{x";  Ix"l<e } i f  for certain finitely 
many functions aa . . . .  , a ~ E C ~ ( 0 3  such that a~( . , x" )ECo(O)  for all x", j 
we have 

( a i ( . , x " ) , f ( . , x " ) ) = O ,  j = l  .... ,M,  ]x"l<e. 

I f  there is a neighborhood of  ~ where the equation Qo U= F can be solved for all F 
then Ex. can be chosen so that all aj vanish. 

Proof. By Theorem 4.2 in H6rmander [5] there is for all x"  a properly supported 
pseudo-differential operator A~. in f2 which is a parametrix of  Q~.. The con- 
struction of  Ax. shows that its symbol is a C *~ function of  (x', x", 4'). Thus 

(3.22) Qx,,A~.G = G+Tx.G , GEm'(O) 
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where T,, is a properly supported integral operator in (2 with a kernel which is 
a C ~ function of x"  with values in C~(OXI2).  I f  T~,, is replaced by Kx,,= 
=xT~,,, where zCCo(O ), X=I  near N, then (3.22) is still valid near c~. Since 
T~, is properly supported the kernel of  K~, has support in a fixed compact set in 
f2Xf2 for all x"  near 0. The equation G+K~,,G=F can be solved by classical 
Fredholm theory. For  the sake of completeness we give a proof. 

Lemma 3.11. I f  g is sufficiently small then there exists for all x" with [x"l<g 
a properly supported integral operator R~, with a kernel which is a C ~ function of 
x" with values in Co(f2Xf2),  such that 

( i +  &,,) (I+ = 1 -  

where 
F = ZY=I {aj(-, x"), F} oj, 

~ojECo (f2 ) and a~ are as in the statement of Theorem 3.10. 

Proof. Ko is a compact operator from ~/g(s) to oY'(s ) for all s so it follows 
that I+Ko is a Fredholm operator in all the spaces o~g(s). Note that FE-=gf(,) if 
and only if F+KoFEOff(s). Since 0 + t K 0 0 = 0  implies that O ~ C o ( O  ) there are 
finitely many linearly independent functions ~1, ..., ~/M~Co(O ) such that 

F 6 l m  ( I +  K0) *:~ (F, O~) = 0, j = 1 . . . . .  M. 

The operator 1+1(o is bijective from the orthogonal complement of its null 
space in L 2 to its range in L 2. By the dosed graph theorem it has a continuous 
inverse Y between these spaces. Denote the orthogonal projection in L 2 on the 
null space of I +  *K~o by H o and the orthogonal projection in L ~ on the null space 
of I+Ko by P0. Note that 

11o F ~a = 2;;.,=1 <F, 

if qq, ..., q*M are chosen orthonormal in L 2. If I + R 0 =  Y( I -Ho)  then 

( I+Ro)(I+ Ko)F = F - P o F ,  ([+ Ko)(I+Ro)F = F--HoF 

for all FCL 2. After multiplication of  the first identity by Ko from the left we 
obtain 

KoRo + Ko2 + KoRoKo + KoPo = Ro + Ko + KoRo + H o. 

It follows then that 
Ro = --Ho-- Ko + KoPo+ Kg + KoRoKo �9 

This shows that go is an operator with C *~ kernel of  compact support in f2X(2 
for Ko, H o and Po have this property, 

Put (K~,,-Ko)(I+Ro)= V~,. Since I1o=0 there exists e > 0  such that the 
operator I +  V~,, has an inverse I+S~,, in L 2, say, when lx"l<e. This inverse is 
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a C ~ function of x" with values in L(L 2, L2). A computation similar to the one 

carried out for R 0 above gives that 

sx . . . .  vx.+v~,,+vx.sx.v~,,, 

so it follows that S~,, is in fact an operator with a kernel which is a C = function 
of x"  with values in C o ( f 2 •  f2). Thus the statement of  the lemma holds for 
I+R~,,=(I+Ro)(I+S~, ) and H~,,F=Z((I+S~,,)F, Oj)~j, so the proof  is com- 
plete. 

End of the proof of Theorem 3.10. I f  we do not require that all the functions aj 
vanish then Lemma 3.11 shows that  E~,,=A~,,(I+R~,,) has the desired properties. 
The proof  of  Lemma 3.11 shows that  if K0 is 0 then H will be 0 so all the func- 
tions aj vanish in that case. I f  the equation Q0 U =  F can be solved for all F in 
an open set co'D D co then Ax,, can be modified so that  K0 becomes  0. In fact by 
the closed graph theorem there is a continuous linear operator B from L~(~o ' )  

to ~ 2 , ~ ( ~ ' )  such that  QoBF=F. Let ~kECo(o)' ), ~k=l near ~. The operator 
OBTx,, is properly supported and it has C ~ kernel since Q0 is hypoelliptic. I f  

X~,,=A~,-~BT~, then 

Qx,,(g~,,6) = G+ T~,,G-Qx,,(OBTx,6) = G + T~,G, 

where the latter equality is a definition. We have ]r 0 G = 0  in the open set where ~ = 1. 
Thus if )~ has support  in this set and K~,=)~T~,, then Ko=0. This completes the 
proof  of  the theorem. 

4. Solutions with singularities in affine subspaces 

In this section we prove extensions of  Theorem 1.1. Let P be of  constant 
strength, defined in an open set ~2, Q~L(P), Z an affine subspace parallel to A'(Q) 
and I~ 0 a component  of I; c~?. The first step is to rephrase the negation of the 
statement of  Theorem 1.1 as an inequality. For  a positive integer m let 

o~ = {u ~ C ~ (~);  u ~ C= (~ \Z0) ,  Pu ~ C ~ (~)}. 

o~ is a Fr~chet space with the weakest topology making the maps 

continuous. From the closed graph theorem one easily obtains the following lemma. 

Lemma 4.1. Let V be open, relatively compact in f2. I f  

{u; uCg,  uCCm+l(V)} 
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is o f  the second category in ~ then there exist vEZ +, K ~ c  f2 and K z c c  f2\27 o 
such that 

Zl~l=,,+l sup !D~ut ~ C{Zl~l~=m sup [D~t , l+Zl~l~  sup ID~(Pu)J+ZI~I~=~ sup tD~ul} 
r K~ /q K~ 

(4.1) 

for all u~C=+~(P)n~. 
I f  we prove that (4.1) is always false when V is a neighborhood of a point in 

2:0 then there exists a function u E ~  such that u is not in C m+l in a neighborhood 
of any point in I: 0. For  if uEo~ and uEC m+* in a neighborhood of  some point 
in 270 then 

u E ( U  C~+l({x;  lx-x01---- r } ) ) n ~  
X o ,  r 

where the union is taken over a countable dense set of  points x0 in Z0 and countably 
many r > 0 .  Since a countable union of sets of  the first category in Y is of  the 
first category the assertion follows. This also shows that  it is sufficient to consider 
Q of local type. For  by Proposition 2.7 there exists some Q" of local type such 

that A ' ( Q ' ) c A ' ( Q ) .  I f  x0E2 0 is a given point one can therefore find a component  
! 

2 0 of X'c~f2 for some 27 parallel to A'(Q')  such that x0EX0c2; 0. I f  we prove 
that (4.1) cannot be valid for any K ~ c c  f 2 ~  o then it cannot be valid for any 
K2 c c  O \ 2 :  0. Hence it is no restriction to assume that Q is of  local type. 

By Proposition 2.4 we may assume that 

Q(x, D) = lira P(x ,  D + o ( t ) ) / a t  ~ 

where t/(t) is a polynomial in t, a > 0  and a is a positive integer. Note  that 

Rt(x  , 1)) = Q(x, D ) - P ( x ,  D+t l ( t ) ) /a t  ~ 

has coefficients which are O(t-1). To prove that  (4.1) is false one should construct 
functions u* such that the derivatives of  u t of order m + 1 are large compared 
with those of  order <=m, Pu t is small and u t is 0 in K2. I f  uoEC ~ the function 

u t = exp ( i ( . ,  tl(t)))uo/at ~, 

or just u for short, satisfies the first requirement if t is large. We have 

Pu = exp ( i ( . ,  t 1 (t))) P ( . ,  D + t 1 (t))Uo/at ~ 

so if Qu0=O then Pu will be equal to - e x p  ( i ( . ,  t l ( t ) ) )Rtu  o and thus the supre- 
mum of [Pu[ over /(i is O(t-1). To get a still better approximation we try to 
solve 

exp ( - i ( . ,  ~?(t)))P(ul exp ( i ( . ,  ~( t ) ) ) /a t  ~) = Rtuo. 
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Since the left hand side is approximately Qul and we only have an existence theorem 
for Q we replace this equation by 

Qul = Rtuo. 

The coefficients of  R t are O(t -1) so Ul should be O(t-1). We have 

P((uo+Ul) exp ( i ( . ,  tl(t)))/at ~) = -- exp ( i ( . ,  t / ( t ) ) ) R t U  1 . 

I f  we could solve Qu2=Rtul so that u2=O(t-2),  Qua=Rtu2 so that ua=O(t-a),  
and so on we could define 

N ut = z~j=0 uj exp ( i ( . ,  ~l(t)))/at ~. 

Now the supremum of ]Pu[ t over /(1 decreases as t - ~  as t - ~ .  By multiplying 
u0 with a cutoff function which depends only on the variables of  A (Q) and is 0 in 

K2 we could achieve that  u t = 0  in /(2. 
This idea of  proof  is easiest to carry through if the equation Q u = f  can be 

solved near. 27 0 caK~ for an arbitrary right hand side, so we consider that  case first. 
Then the equations Qu~--Rtuo, Qu2=Rtu 1, and so on, can be solved successively 
if there is just one function u0 such that  Quo=0 to start with. 

Theorem 4.2. Let (2 be open in R" and let P be a differential operator o f  con- 
stant strength in f2. Let QE L(P)  be of  local type, let 27 be an affine subspace parallel 
to A'(Q) and 1;o a component o f  1; n (2. Assume that 

(4.2) vEg'(27o), tQ~v = 0 =~ v = O. 

Denote by S the set o f  all xE270 such that for all cocC1;o and all neighborhoods 
V of  x there exists UoEC~(270) such that QxUo=0 in co and Uo~O in Vn27o. 
Then for  all positive integers m there exists uEC"~(O) such that PuEC~(O)  and 
S c  sing supp u c Zo- 

Proof. We have to prove that  the inequality (4.1) is false for any neighborhood 
V of  a point xoES and given K~, K2, v. We shall construct functions u t as indi- 

cated above. Choose an open set ~ '  such that  /(1 u K ~ O ' c c  ~ and an open set 
co c c  270 such that I;0 n ~ '  c c  co. The coordinates x = (x', x"),  x '  E R"', x" E R"" can 

be chosen so that  I ; =  {x; x"=0}.  Put 

co~ = {x; x ' ~  co, Ix"l < ~} 

and define Q~. as before Theorem 3.10. I f  e is small then co, c c  s K~ n o , = 0  and 
the intersection of ~ '  with the boundary of  co, is contained in {x; [x"l =e}. The 
condition (4.2) implies that the equation Qz U =  F can be solved for any F in an 
open relatively compact  subset of  27o. Then Theorem 3.10 gives that  if e is suffi- 

ciently small one can for any f E C ~ ( Q )  find uEC~(O)  such that  Q u = f  in co~. 
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We need a function u0~O such that Qu0=O in O'. Since xoES there is 

some UoEC=(S0) such that QxUo=O near N and U0~O in V n S  o. Choose a 
function ZECo(R"") such that z = l  near {x; x"=O}, z=O when Ix"l>e/2, 
and a function OECo(S0) such that ~ = 1  near N and QxU0=O near supp~k. 
Let uEC=(Q) be a solution of  

Qu = ~Q~,, uo 

in ~o,. Since u ( . ,  x") is a linear function of ~Q~,Uo we have u( . ,  x")=O when 

x"=0 .  Thus if Uo=0 when Ix"] >~ and Uo(X', x")=(~(x;)Uo(x ' ) -u(x ' ,  x"))Z(X") 
when [x"l-<e, then UoEC=(f2),Quo=O in f2 ' ,u0=0 when [x"I>e/2 and u0=U0 

in S0 n ~o. 
Now one can find u~, u2, ... such that Quo=Rtuo, Qu~=Rtu~, and so on. 

Since 

Rt(x, D) = . ~ 1  t-kRk( x, D), 

where Rk are operators with C ~ coefficients, we just solve Qu~,k----Rkuo for each 

k and set 

U~ = d ~ K : l t - - k U l ,  k . 

The next right hand side, Rtut~, will also be a sum of powers of t with some func- 

tions as coefficients. For each coefficient function c k we take a solution U2,k of 

the equation QU2,k=Ck and then define u~ as a sum of powers of  t with the coeffi- 
cients U2,k such that t _  t Qu2-Rtu r In this way we continue with the following equa- 
tions. Thus we take Igj, k~C~(~'~) such that 

Qul ,  k = Rkt t  o k = 1 . . . . .  K 

QU2, k = Z i + j , = k  Riul,, k = 2, ..., 2K 
(4.3) . . . . . . . . . . . . . . . . . . . .  

QuN, k = Zi+~=k RIUN-I,U k = N, ..., NK 

in ~o~. Since u0=0 when [x"[>e/2 we can choose uj, k such that uj, k=O when 
lx"[>e/2 for all j, k. Thus the equations (4.3) are valid in I2' if we set Uj, k=O 
outside c~,. For  j----l, 2, ... let 

jK Utj = ZJk=j t--kUj, k 

and write u ot--uo" Then we have 

Qu~ = Rt u~_ 1 
for all j. Now put 

ut = ~'~=0 exp ( i ( . ,  r/(t)))u~/at ~. 

The functions u ~ belong to C a (f2). They are constructed so that 

Pu t = --exp ( i ( . ,  ~l(t)))Rtu~ 
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in s and RtutN is a sum of powers of t where the highest power occurring is 
t -u-a. Recall that the highest power of t in the expansion of q(t) is t J. Now 
look at the terms in (4.1) with u=u t. The last term in the right hand side is zero and 

for some C1, C2 and C > 0  we have 

Z,~I~ sup ID~u't <_- c l t  s~-~ 
KI 

~I~l<_v sup ID~Pu '] <= C2t s~-(u +l) 
gl 

Zl=t=,,+~ sup ID=u'I = Csup [Uo]tJ(m+a)--~§ 
V V 

If  N is so large that J v - ( N + l ) < J ( m + l ) - a  we get a contradiction when t+o~ 

for supv lu01 0 since uo= Uo in 2: 0. This proves the theorem. 
In general (4.2) is not fulfilled for an operator of  local type. However if the 

domain f2 is small enough (4.2) holds and the set S in Theorem 4.2 is not empty. 
That  gives a new proof  of the following corollary which was proved with other 
methods by Taylor [11]. It is a converse of Theorem 7.4.1 in H6rmander [4]. 

Corollary 4.3. Let P be a differential operator of constant strength in an open 
set f2cR".  Assume that sing supp u=sing supp Pu for all uE~'(f2). Then Px is 
a hypoellipticpolynomialfor all xEf2, that is P(9(~)/Px(~)~O when ~ o ~  if ~ 0 .  

Proof. If P~ is not a hypoelliptic polynomial for some xE f2 there exists some 
QEL(P) of positive order. The proof  of Proposit ion2.7 shows that Q can be 
chosen of local type. We have to verify that  (4.2) is fulfilled for ~0 = ~ c~ co when 
X is parallel to A'(Q) and co is small enough and that the set S in Theorem 4.2 
is non-empty. Theorem 7.3.1 in H6rmander [4] shows that if co is small there is a 
linear mapping E: g '(R"')-+g'(R "') such that EtQ~v=v in ~0 if vEg'(~0). 
This implies (4.2). That  S is non-empty follows from Lemma 4.7 below which states 
that there are infinitely many linearly independent UEY(X0) such that Qz U = 0  
if w is small. Since Qs is hypoelliptic it follows that UE C =. Now Theorem 4.2 
shows that there exists uE~'(co) such that sing supp u ~ 0  and PuEC ~. This 
completes the proof. 

Let Q be any operator of local type and as before 27 o a component of ~ c~ f2 
for some 27 parallel to A'(Q). We know that (4.2) is in general not valid and we 
wish to prove that (4.1) cannot be true for any K ~ c c f 2 ,  K 2 ~ c f 2 \ 2 7  0, vEZ + 
if V is a neighborhood of x0E2;0, even if the hypothesis (4.2) is omitted. In order 
to deduce a contradiction from (4.1) as in the proof  of Theorem 4.2 one must first 
have a function u0 such that Qu0=0 and supv luo] ~ 0  and then be able to solve 
the system of equations (4.3). In the following theorem we will show that if we omit 
(4.2) but assume that the equation Qr U = 0  has infinitely many solutions which are 
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linearly independent in ~0 n V, instead of just one, then it is possible to find such a 
function u0. 

Theorem 4.4. Let P be a differential operator of  constant strength in an open 
set f2cR".  Let  QEL(P)  be of  local type and let ~o be a component of  ~n ~2  
where ~ is an affine subspace parallel to A'(Q). Let '  S be the set of  all XE~o such 
that for all neighborhoods Vo o f  x in Zo and all co c c ~  o the space 
{U[vo; uEC=(I~0), Qzu=O in co} has infinite dimension. Here Ulv ~ denotes the restric- 
tion of  u to Vo. Then for all positive integers m there exists uECm(y2) such that 
PuEC=(Y2) and S c s i n g  supp UCZo. 

Proof. It is sufficient to show that for all V={x;  lX-Xol<=r}, xoES the in- 
equality (4.1) is not valid for any /(1, /s v. Assume that (4.1) is true for some 
neighborhood V of xoES and some /s K~, v. A contradiction will follow as in 
the proof  of Theorem 4.2 if we show: 

(4.4) For all coCCEo, NEZ + and ~>0 there exists u0EC~(co~) such that 
supv [Uo[~0, Quo=0 in co,, Uo=0 near {(x ' ,x") ;  lx"l=e} and there are 
uj, kEC=(co~) vanishing near {(x', x");  [x"l=e} which are solutions of (4.3) 
in r 

Here the coordinates and co, are as in the proof  of Theorem 4.2. Thus let co, N 
and ~ be given. Take an open set co' such that c o c o  c o ' c c  Zo. Recall that 
Theorem 3.10 gives a number e '>0 ,  which we may assume is equal to e, and 
functions al , . . . ,aMEC=(co ") such that ai ( . , x" )ECo(co"  ) for all i and x". 
If  fE  C~ (co~) and satisfies 

( a i ( ' , x " ) , f ( ' , x " ) ) = 0  when Ix" I < ~ ,  i = l  . . . . .  M 

then there is a solution uEC=(s ' )  given by (3.21) of  the equation Q u = f  in co,. 
We have to find a function u0 which satisfies the conditions (4.4). Let 

/_/1, U2 . . . .  E C = (S0) be solutions of the equation Q0 U j=0  in co' which are linearly 
independent in ~on  V. Any linear combination 

u (x', x") = ~s  c ~ "" U ~x'" ~ j=~ A x )  ~t ) 

with c jEC=(R "') is a solution of Qu=O in co 'nZo.  If  we could find a solution 
of Qu'-=Qu in co~ which vanishes when x"---0 we could define Uo=U-U" and 
thus obtain a non trivial solution of Quo=O in co~. This is possible if 

(4.5) (a i ( . ,  x"), Qu( , x")) J �9 = ~,~:1 cj(x")(a~(.,  x"), Qx,,Uj) = 0 

when [x"]<e, i=1  . . . . .  M. I f  cl . . . . .  c s satisfy this condition we can in view of 
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(3.21) let 

(4.6) u0(-,  x") = ~ ]=1  cj(x")(&~.-Ex,,Qx, Uj). 

This function u0 belongs to C~(o)~), Qu0=0 in co, and Uo=U in co c~2; o. 
Now we will find what conditions the functions cj have to satisfy in order that 

(4.3) can be solved. Consider the first row. Define Rk for k =  1, .. . ,  K as in the 
proof  of  Theorem 4.2. We can write 

R k  ~ ~ a  ~"k x" 

where R~ are differential operators not  containing Dx,,. In view of (4.6) we have 

(4.7) Rk Uo = Z, j  ~ ,  f~  ~,, i (x', x") (D~,, ci) 

for some functions fk],,~EC~(co~). Thus the first row of (4.3) can be solved if 

(4.8) (Rkuo(. ,  x"), a i ( . ,  x")) i = X ~ = I A I ~ , j c j  = O, 

l x " l < e ,  i = 1  . . . .  , M ,  k = l  . . . .  ,K ,  

where A~,i, j are differential operators with C = coefficients. The order of  AI~,j 
is less than or equal to the order of  P. I f  (4.8) is fulfilled let 

(4.9) Ul, k( ' ,  X") = Ex,,(RkUo(., x")), k = 1 . . . .  , K. 

We have Ua, k~C~(CO ") and the u~, k are by (3.21) solutions of  the first row of (4.3) 
in co,. To solve the second row we note that  the expression (4.7) for RkU o combined 
with (4.9) shows that  

(4.10) .~i+~,=k Riul, u = Z j  Z ~  f~  ~,j(x', x")(DI,,cj) 

for some fk~,jEC~(co~). In the same why as above we see that the functions (4.10) 
satisfy the conditions for the existence of solutions u2, k E C ~ ((o~) of  the second row 
of(4.3) in co, if  

(4.11) J ~j=~A~,,i, j c~=O when I x " I < ~ ,  i =  1 . . . .  , M ,  k = 2  . . . . .  2K, 

for certain differential operators A 2 with C = coefficients. In this way we con- k, i, j 

tinue with the following rows in (4.3). Thus if the functions cj satisfy (4.5), (4.8), 
(4.11) and the corresponding conditions arising from the later rows, then for u0 
defined by (4.6) there exist Uj, kCC~(CO~) which are solutions of  (4.3) in co,. We 
rewrite the conditions on cj as 

(4.12) ~ = l A i j c j  = 0 for i = 1 . . . . .  I when Ix"[ < e. 

All A,j are differential operators of  order less than a fixed number  G which only 
depends on N and the order of  P. The number I depends only on N and K. 
The following lemma shows that it is possible to solve (4.12) if J is large enough. 
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Lemma 4.5. Let Ai, j, i= 1, . . . , / ,  j =  1, 2, 3, ..., J be differential operators 
with C ~ coefficients in an open set s such that order Aij<=G for all i and j. 
I f  J is larger than a certain number which only depends on I and G, then in every 
neighborhood of a point Xo E s one can find a point xl and C~ functions bl . . . . .  bs 
in a neighborhood of Xl such that bl(Xx) . . . .  , bs(xa) are not all 0 and 

(4.13) 

/ f  supp Z belongs to a 

Proof I f  

~ = l  Au(bJx) = O, i =  1 . . . . .  I, 

sufficiently small neighborhood of xl .  

.~]=lbi tAi j=O in s i =  1 . . . . .  /, 

then (4.13) is valid for all zE~'(s For  some C = functions d~.~,j we have 

J 2~=1 bSAig = ZI,I~G (•s=l  bjd~,i,g) D~" 

Label (~, i) for  i = 1  . . . . .  /, [a[<-G as a sequence with indices a = l ,  ..., S. I t  is 
thus sufficient to find bg such that  

(4.14) J d = . . . ,  .~ j= l  a, j b j  0 for a : 1, S 

where S is a number  which depends only on I and G. The rank of  the matrix 

(d~,j(x)) is <=S in s In  a given ne ighborhood s o f  x0 there is a point  xl 
such that  

rank (d~, j (x0) = max rank (d~, j (x)) = r. 
xED i 

Then we can assume that  
D (x) = det (d~, j (x))~, j =1 ~ 0 

in a ne ighborhood  of  xl .  Assume that  J > S .  Let b , + l = l ,  b,+~ . . . . .  bs=O and 

define bl, . . . ,  br so that  the equations (4.14) are satisfied for  a = l  . . . . .  r. Then 
all bj are C = in a ne ighborhood  o f  Xl. For  all x near xl the later equations 

are linear combinat ions  o f  the first r equations since the rank was maximal at  

x~. Hence (4.14) is valid also for a = r + l  . . . . .  S in a ne ighborhood  o f  xl .  The 
p r o o f  is complete. 

End of the proof of  Theorem 4.4. We have to find solutions o f  (4.12). I f  Y is 
larger than a certain number  we can by Lemma 4.5 choose a sequence x~'-~0 and 
functions b~, ., b~, ~ b ~ . . . . .  , bx, . . . ,  s . . . .  E C ~  such that  

J 
. ~ = l  Aij(b~x) = O, i = 1 . . . . .  I, 

if supp Z is contained in a sufficiently small ne ighborhood of  x~. For  all v some 
v H bj(x~) is equal to 1. Let  c~=b~)~ where x~ECo(R""), X~(x~)=l and supp Z~ is 

contained in the permissible ne ighborhood  of  x~'. Then for  all v the equations 
(4.12) are satisfied for ej=c~. 
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We claim that the function 

J Uo(', x") = ~j=l  c}(x")(Ug-Ex"Q="U~) 

satisfies (4.4) if v is chosen large.  Since the functions e~. satisfy the conditions 
(4.12) we have Quo=0 and there exist uj,~CC=(co~) which are solutions of (4.3) 
in ~o~. We may choose Zv such that c~=0 when ]xl">e/2 and then clearly Uo 
and uj,~ vanish near {(x', x") ;  Ix"l=e}. To prove that supv lu0]#0 if v is chosen 
large note that 

Ex;Q~,~U j ~ 0  in L2(o~) when v ~  ~ .  

In fact Q0 Uj = 0  and the norm of the operator E~  is bounded independently of  
t! j t! x~. We may assume that [b~(x~) I = 1 for j =  1 . . . . .  J and all v and therefore take a 

subsequence which we also denote by x~" such that bj(x~)~ " ~ B  i when v ~  ~. One 
Bj must be different from 0. Hence 

Y j t,, _ _  , J Zj=l  cv(x,)(Uj E~.~Qx;U i) ~ Xj=I BjUj 

in L2(co) when v ~ .  The limit is not  identically 0 in Vc~$ o since the functions 
Uj were linearly independent in Vn2: 0. It follows that uo is not identically 0 
in V if we choose v large. The proof  of Theorem 4.4 is thus complete. 

What remains in order to extend Theorem 1.1 to all operators of constant strength 
is to show that the set S in Theorem 4.4 is equal to 2: 0. This is easy to prove if 
Q has analytic coefficients. However in that case we always have (4.2) so we would 
only need to verify that for each XEXo and (9 such that x ~ o J c c 2 :  o there exists 
u0 C C~ ($0) so that Q~ u 0 = 0 in ~o and x E supp u0. But since it follows by prac- 
tically the same proof  that S is equal to Zo we will prove that. 

Theorem 4,6. Let Q be a differential operator of constant strength with analytic 
coefficients. I f  (2 and 121 are open sets such that Q is defined in a neighborhood 
of ~ and (2~cc  ~ 2 c c R ' ,  n > l ,  then the space {ulna; uE~2,0(~), Qu=O in ~} has 
infinite dimension. 

I f  Q had constant coefficients the theorem would be trivial for then Q has 
infinitely many different exponential solutions and these are linearly independent 
in any open set. In the following lemma we prove by means of  a perturbation argu- 
ment used in H6rmander [4, Ch. VII] that there are infinitely many linearly inde- 
pendent solutions in (21 if (2~ is small. Lemma 4.7 also completes the proof  of 
Corollary 4.3. 

Lemma 4.7. Let Q be a differential operator of constant strength defined in a 
neighborhood of a point x o. I f  Y21 is a sufficiently small neighborhood of  Xo then the 
space {uC~2,o(Ox); Qu=0} has infinite dimension. 
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Proof. We can write 

Q (x, D) = Qxo (D) + ,~j cj (x) Qj (D) 

with some Qj-<Qx o, cjEC ~ and ej(Xo)=O. Let -,-~-2,Q~7c~1~ be a fundamental solu- 
tion of Qxo" If  uEL2(f21) let u 0 be the function which is equal to u in f21 and 
vanishes elsewhere. Denote by E 0 the linear operator 

L2(f21))u ~ restriction of (E.uo) to g21E~2,~(~l), 

As in the proof of Theorem 7.2.1 in H6rmander [4] we find that if f21 is sufficiently 
small there is for all f~L2(f2~) a unique gEL2((20 such that 

(4.15) g+ ~ j  cj(x)QjEog = f. 

The operator Q~0 has infinitely many different exponential solutions va, v~ . . . . .  
Let gk be the solution of(4.15) for 

f = - Q v  k = - ~ j  cj(x)Qj(D)vg. 
The functions 

U k = vk+EogkEgdZ, O(Q1) 

satisfy Quk=O in (2~. They are linearly independent since 

vk = uk-- EoQxo uk 

and the functions Vk are linearly independent. This completes the proof of the 
lemma. 

Proof of  Theorem 4.6. We will prove that there are infinitely many linearly 
independent solutions in f21 which can be extended to solutions in I2. The method 
of proof is well known (see Malgrange [8, Ch. 3, Th6or~me 1]). Note that f21 may 
be replaced by a smaller subset. Let 

U = {uE~2,~(~); Qu = 0}, N~ = {uE~2,~(~l); Qu = 0} 

and let R be the restriction operator ~2,O(~)-~N~,~(~). If  we prove that the 
annihilator of R(N)  is equal to the annihilator of  N, then the Hahn--Banach 

theorem implies that R(N)=N1.  The space Na is infinite dimensional by Lemma 4.7 
so then it will follow that R(N)  is infinite dimensional. The image of the map 

Q : N2,~(~1) -~ N~,1(~1) --- L=(f20 

is equal to ~ , ~ ( ~ )  by Theorem 7.3.1 in H6rmander [4]. Hence the annihilator of 
N~ is the image of tQ, that is 

U o = {tQv<V2,0,,(~,); v<Ve,,(~0}. 

Here V2,1(0,) is the space of functions in L2(R ") vanishing almost everywhere 
outside f21. The annihilator of N is given in the same way with f2, replaced by s2. 
The annihilator of R(N)  consists of those elements in V2,o,(~) which annihi- 
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late  N when they are considered as elements  o f  V2,0, (~1) so we have 

R ( N )  ~  {tQvEV~,o_,(Ol); v~V2,1(O)}. 

Le t  w E R ( N )  ~ Then w : t Q v  for  some vEV2,1(O)cg ' (~)  and  s u p p w c ~ .  

Ho lmgren ' s  uniqueness  theorem now implies,  i f  01 is chosen convex, t ha t  supp v c  ~1, 

for  a hyperp lane  which is non-charac ter i s t ic  a t  one po in t  in f2 is non-charac ter i s t ic  

everywhere since Q has cons tan t  strength.  N o w  i t  fol lows tha t  w E N ~ for  v E V~, 1(~) 

and supp v c ~ means  tha t  v E V2, z (O1). 

F r o m  Theo rem 4.6 and  Theorem 4.4 (or Theorem 4.2) we now ob ta in  an ex- 

tens ion o f  Theorem 1.I to opera to r s  o f  cons tan t  s t rength with analyt ic  coefficients. 

Theorem 4.8. Let P be a differential operator o f  constant strength with analytic 

coefficients in an open set f 2 c R " .  Let QEL(P)  be o f  positive order, Z parallel 

to A'(Q) and Z o a component o f  Zc~f2. Then there exists uE~'(f2) such that 

Pu E C= (f2) and sing supp u :  S 0 . 
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