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I. Introduction 

Let the integrable two-variable function K(x, y), a~_x, y~_b, serve as the kernel 
of the integral operator T given by 

(~r~o) (x) = f ~  K(x, y)~o(y) dy. (1) 

If  K(x, y) is square-integrable, then T is a Hilbert--Schmidt operator from L2[a, b] 
into itself, i.e. 

XL1 [~,(r)] 2 < ~.  

Here the s,(T) are the characteristic numbers ([9J, [16]; so-called s-numbers [12]) 
of T, defined to be the eigenvalues of the related compact nonnegative selfadjoint 
operator (T* T) ~/2, arranged in decreasing order and repeated according to multi- 
plicity, 

Some compact operators between Hilbert spaces have characteristic numbers 
which are 7-summable for exponents 7 smaller than 2. In the case 7 = 1 the operator 
is said to be nuclear or of trace class. Since the pioneering work of Grothendieck [13] 
on nuclear spaces (see also Gohberg and Krein [l 1], [12]; Gel'fand and Vilenkin [10]) 
it has been of interest to enquire under what various sorts of conditions compact 
operators are nuclear. 

For integral operators the following are amongst the known results (see [1], [2], 
[4], [5], [6], [9], [12], [21], [22], for example): 

Theorem A (Mercer): T is nuclear if  K(x, y) is continuous, Hermitian, and non- 
negative (nonpositive) definite. 

Theorem B (Chang): T is nuclear if  and only if  

K(x, y) =f2 K (x, z)K2(z, y)d  

where K1 and K2 are in L~[a, b]. 
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Theorem C (Smithies, Stinespring): T is nuclear i f  K(x,  y), as a function of  one 
o f  its two variables, is in Lip ~ for some ~ >  1/2. 

More generally, 

Theorem D (Smithies): T is nuclear i f  K(x,  y), as a function of  one o f  its two 
variables, is in Lip (~,p) with p>= l for some ~ > l / m i n  (2,p). 

Theorem E (Cochran): T is nuclear i f  K(x,  y), as a function of  one of  its two 
variables, belongs both to Lip (~,p) and to Lip (fl, q) for some l <=p<q with 

i) for ~<=/3, 
13 > 1/min (2, q); 

1 1 
ii) for fi < -</3-4 

P q 

/3 > 1/q <= 2 q 

~p(>q172)+flq(e-p) > q - p  p <= 2 < q 
2 < p ;  

1 1 
iii) and for/3 + - - - -  < ~, 

P q 
> 1/min (2, p). 

As a special case of this last result we have 

Corollary 1: T is nuclear i f  K(x,  y), as a function of  one of  its two variables, is 
relatively uniformly o f  bounded p-variation for some 1 <=p<2 and also in Lip (fl, q) 
for some q>=l, /3q>l. 

Readers will note that each of the above sets of sufficient conditions for nuclearity 
has a counterpart in the theory of absolutely convergent Fourier series. Indeed, it 
has been largely an exploitation of precise analogies with the classical Fourier series 
results of Bernstein, Zygmund, Hardy and Littlewood, Sz~isz, and others which has 
engendered most of these theorems (see the survey article [7]). 

Recently, amongst the continuing stream of papers concerning convergence 
questions for Fourier series there have appeared several in which the functions of 
interest are convolutions ([15], [19], [23]; also the earlier [3], [24]). Using the Fourier 
series analogue of Theorem B above as the starting point, the various authors show 
how the series for the convolution of the two given functions remains absolutely 
convergent when the conditions on one of the functions are relaxed, if simultaneously 
the conditions on the other are suitably strengthened. In this paper we show that 
many of these recent Fourier series results for convolution functions, in a sense, are 
special cases of comparable results for composite integral operators. In view of our 
earlier remarks, moreover, the operator results are also of some independent interest. 
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2. Composite Integral Operators 

Consider integrable two-variable functions K(x,y), a<=x,y<=b generating 
integral operators T according to (1). (Additional conditions, such as Zaanen's 
Property P [25], are generally needed so that T is well-defined in some appropriate 
sense.) We shall say that K, periodic in x with period b-a ,  is in Lip e if 

AK=--JK(x+h,y)-K(x-h,y)]  < Ih]~A(y) (0 < ~ <= 1) 

where A(y) is nonnegative and square-integrable. More generally, for p=> 1, K is 
said to be in Lip (~, p) if its L p modulus of  continuity satisfies 

[f2(aK) dx] sup <5~A(y)  ( 0 < a < = l )  

with comparable A. Analogous definitions are valid if the roles of x and y are reversed. 
Let K(x, y) be such that its induced integral operator T is compact on L ~ [a, b] 

and has the Schmidt expansion [12] (polar representation [20]) 

T = Z L 1  s.(T)(. ,  ~.)q~.. 

Here s.(T)~O as n - ~  and {9.}, {r are orthonormal systems in L~[a,b] 
satisfying the coupled equations 

soq,.(x) = K(x, y)~k,,(y)dy, 
n = 1,2, . . . .  

s,,$,,(x) = fb  K*(x, y)go,,(y)dy. 
If 

Z2=1 [sn(T)] p < co 

for some 0 < p <  ~, T is a member of the operator class Cp. The classes C1 and C2 
are the collections of all nuclear and Hilbert--Schmidt operators, respectively. 

In the sequel we will need the following results concerning the characteristic 
numbers of our integral operators: 

Property 1 ([9], [12], [16], [20]): s.(T*)=s.(T) n = l ,  2 . . . . .  

Property 2 ([8]): If  0<r<=2, then for arbitrary m=>l, 

Z 2 =  m [Sn (T)] r = inf ~'~= z fl T ~u.lf, 

where the inf is taken over all orthonormal bases {~P.} of the underlying Hilbert 
space. 

Property 3 ([18]): Let K(x,y) be such that KC~v,=, K * ~ q , =  for some 
l<=p,q~2, with max(p,  q ) > l ,  where KE~gp,, implies 

It KIf,..- {Jab IK(x. Y)l" dx] */0 dY} 1Is< o o .  
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Then the integral operator T generated by K is compact and belongs to Cr with r = 
2min (p, q)/(p + q -  2). 

Property 4 ([12], [14]): For any compact operators S and T, 

Z~=l[s , (Sr )]  r <= Z~=I [s,(S)s,(T)] r (r > o). 

We remark that, as far as the inducing kernels K, L, and M of S, T, and ST, respec- 
tively, are concerned, the composition of two integral operators involves nothing 
more than the usual kernel composition 

M(x, y) = f :  K(x, z)L(z, y)dz. 

Employing H61der's inequality, we can derive a useful extension of this last 
result, namely 

Property 5. Let p > l  and q=p/(p-1) be its conjugate. For any compact 
operators S and T, and any positive monotone (increasing or decreasing) function 2 

Z ~ : ,  [s.(ST)]" ~= {Z~'=, [s.(S)'t(n)]"r}~/P{Z:~=~ [s.(T)12(n)]q'} ~/q (r > 0). 

In the case 2_-= 1, we have as an immediate corollary 

Property 6 ([9], [14], [16]): If SECp and TEC~ for some 0<p, q< 0% then the 
composite operators ST and TS both belong to C~ with l/r= lip + 1/q. 

One direction of the earlier Chang result (Theorem B) is a consequence of 
Property 6; the other follows by explicit construction. A similar construction leads 
to the converse of Property 6. 

Theorem 1: Every operator R in C~, 0 < r <  ~, admits of decompositions into 
operators SCC~, TEC~ with R=ST, l/r=l/p+l/q, r<p,q<~o. 
Proof: Let R have the Schmidt expansion (polar representation) 

R = Z n S n ( R ) ( . , r  

For arbitrary p, q>r satisfying 1/p+ 1/q= 1/r form 

S --~ Zn[Sn(R)]r/P( . ,  ~,)q~n and T ~ ~,[s,(R)]"/q( ., ~,)~,. 

Clearly R= ST. Moreover, since R~Cr, it follows readily that S~Cp and TEC~. 

3. Nuclear Operators 

In the remainder of the paper we take a=0,  b=2rc, for convenience, and 
assume that all functions are extended periodically for argument values outside the 
fundamental interval. We also designate the classical orthonormal complex Fourier 
functions by 4,  (x), n = 0, _+ 1 . . . . .  
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We now note that our earlier Theorem D is actually a special case of  the follow- 
ing result, due essentially to Smithies [21], for which we provide a new and simpli- 
fied proof: 

Lemma 1: I f  the generating kernel K is in Lip (a,p) for some p>-_l, 0<e<_-l, 
with ~+ 1/2>lip, then the induced integral operator T belongs to Cr for all r> 
[0~+ 1 - 1/min (2, p)]-l. 

Proof" Expand K(x,y), as a function of its first variable, in a classical complex 
Fourier series, viz. 

K(x, y) ~ ~ .  ~.(x)C.(y). 

For 1 <_-p~2, it then follows (see McLaughlin [17], for instance) that for all O<fi<=q 
with q conjugate to p, and arbitrary real 7, 

Z .  ICn(Y)I ~ Inl ~ ~ const. Z.Inl~-e/q[co.(K, In/-i)] ~. (2) 

Using the fact that K is in Lip (a, p), the special case fl = 2 leads upon integration to 

Z.llC.IP Inl ~ -< const. Z ,  ln[r-~("+i-i/v). 

Now ~+l/2>l /p ,  so that 0- - - [~+l -1 /p] -X<2,  and thus, using Hflder 's  
inequality, the convergence of the RHS of this last expression for ~ ,<2~+1-2/ t7  
implies the convergence of 

Z.[If.IV 

for all o<r_-<2. Since [1(7.1[ =[IZ*O.II, Properties 1 and 2, and the obvious nesting 
relationship of the operator classes C v, then yield the desired result in this case. To 
complete the proof we merely need to note that Lip (~, p ) c L i p  (~, 2) for all p >2. 

Combining this lemma with our earlier Property 6 leads to 

Theorem 2: The composition of two operators generated by kernels in Lip (~, p) 
and Lip (fl, q), respectively, each of which satisfies the hypotheses of  Lemma 1, is 
nuclear. 

Proof" Obvious. 
Since, as is well-known, periodic difference kernels K(x, y ) = k ( x - y )  lead to 

normal operators with Schmidt functions (eigenfunctions, in this situation) which 
are the classical Fourier functions, i.e. {q~.}= {~kn}= {~.}, Theorem 2 contains as 
special cases earlier Fourier series results of  Cheng [3] (~ > 1/2p =fl) and Yadav [24] 
(p, q conjugate). 

A somewhat more interesting result is 

Theorem 3: Let the integral operator S be induced by a kernel K where KE.~ev, ~, 
K* 6 ~q,= with l<q<_-p<-2. Assume T is generated by a kernel L~Lip (a, 0) with 
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4=>1, 0<~<=1, and ~+1/2>1/~ .  Then the composite &tegral operators STand  TS  
both belong to C~ for all 

r > [3/2-  ( 2 -  p)/2q + ~ -  1/min (2, Q)]-2. 

In particular, whenever 2~+ 1-2 /min  (2, Q)>(2-p) /q  these composite operators 
are nuclear. 

Proof." Immediate by Properties 3,6 and Lemma 1. 
In view of the celebrated Hausdorff--Young inequality, as special cases Theorem 

3 contains Fourier series results both of the Izumis [15] (4 = q = p < 2 )  and of Onne- 
weer [19] (q=p, ~=oo). 

For our final theorem we will need the following very useful result closely related 
to Property 2: 

Lemma 2: I f  T is a Hilbert--Sehmidt operator, then for all r > 0  and arbitrary 
m>= l, 

Z~=2m-1 nr[sn(T)] 2 <- const. ~ ' L , .  n'l[T*~~ 2 

where {~p,} is any orthonormal basis for the underlying Hilbert space. 

Proof." Given a Hilbert--Sehmidt operator T we have, from Properties 1, 2 that 

Z~=~ [s.(T)] 2 -<- ~ f f = ~  IIr*~o, ll~ 

for any orthonormal basis {q~,}. Since the Sn (T) are nonincreasing as n ~+ 0% it follows 
that 

m[s~m-l(T)] 2 ~ Z~=m IlT*~~ ~, 

and hence, for positive r and m ~ 1, 

ZL2m--1 nr[Sn(T)] 2 ~ const. Z~~ k r-1Z~=k IIT*~~ ~ 

<= const. ~'~'=m nr[[T*q~,[[ ~" 

Theorem 4: Let the integral operator S be such that 

for some 1 <p_-< 2, 
continuity satisfies 

Z T =  1 [s. ( s ) y  n 1 -  ~/' < oo (3) 

and assume T is generated by a kernel K whose L p modulus of 

for the same p. Then the composite operators ST  and TS are both nuclear. 

(4) y~ tl_~/, f2~ [rap(K, t)]2dydt < oo ,/0 
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Proof." We again expand K(x ,  y), as a function o f  its first variable, in a classical 

complex Fourier  series. For  /3 = 2, 7 = 2 / P - l ,  the relevant equation (2) now be- 
comes, upon integration, 

~ ,  l] C,I] 2 In] 2/p-1 <= const. ~ ,  jnl4/p-~f~ ~ [cop(K, Inl-X)]2dY. 

In view o f  the monotonic i ty  o f  cop(K, t) as a function o f  t, however, the R H S  of  

this last relation is bounded  f rom above by a constant  multiple o f  the finite expres- 
sion (4). 

The case p = 2  is trivial. Fo r  l < p < 2 ,  we note  that  TEC~ and employ Lem- 

ma  2 with r = 2 / p - 1  and {~0,}= {~,}. The desired conclusion is then an obvious 
consequence o f  Proper ty  5 with 2 ( n ) = n  (v-2)/2p. 

We remark  that  this last result is in the style of  Theorem 1 of  the Izumis [15]. 
The condit ion (3) is slightly stronger than SCCq with q conjugate to p and (4) is 

slightly weaker than KCLip  (~, p) with ~ q +  1 >q/p.  Theorem 4 is typical, therefore, 
o f  the further  extensions o f  Theorem 3 which may  be obtained. 
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