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w 1. Introduction 

Let J be the family of intervals in R". We use the term interval in the n-dimen- 
sional sense for sets of  the form {(Xl . . . .  , x,); x~EI~, i=1 . . . . .  n} where I/, i=  
= 1 . . . .  , n are one-dimensional intervals. 

Consider the maximal function M ~ f  of  the function f defined by 

M~f(x)  = sup 1-~,~ fTIf(y)[dy. 
x E I E ~  

Here # denotes the Lebesgue measure in R". It was shown by Jessen, Marcinkiewicz 
& Zygmund [4] that 

(1) l~{Mjf (x)> o~} < CfRnlf(y)/~](l+log+!f(y)/~l)"-ldy , ~> O. 

If  we in the definition above replace J by the larger class R of  'rectangles' obtained 
by all orthogonal transformations of intervals in J ,  we get another maximal function 
Mar. It  is possible to find sets Es for every large N > 0  such that the following 
inequality holds for the characteristic function ZE~ 

(2) It{MRZEN(x) > +} > NIz(EN). 

A construction leading to such sets is the Perron tree. Perron [5] simplified an orginal 
construction of Besicovitch [1] and the construction has beert further simplified by 
Rademacher [6] and Schoenberg [7]. We will also refer to M. de Guzm~in's Lecture 
Notes [3] where this construction is described and also many other solved and open 
problems about different kinds of  maximal functions are considered. 

In this paper we will consider maximal functions on R 2 where the supremum is 
taken over all rectangles with certain given directions (containing the given point). 
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The set of permitted directions is countable and the direction will converge in an 
exponential way to a limit direction. 

The main result of this paper is a weak type estimate for this kind of maximal 
functions. These weak type estimates are slightly weaker (with some logaritms) 
than weak (2,2) and will thus imply that the maximal operators are bounded in L p 
for p larger than 2. 

In Section 2 we give the condition for the set of  directions and define the corres- 
ponding maximal function. The main result is stated in Sectio11 3 in Theorem 1 and 
Theorem 2. Theorem 1 is restricted to characteristic functions, and Theorem 2 follows 
from Theorem 1. For  the proof  of  Theorem 1 we use two geometric estimates which 
are proved in Section 4. The proof  of Theorem 1 is given in Section 5. In Section 6 we 
mention three applications. In Section 7 we state how the main result can be generali- 
zed to larger sets of  directions. In Section 8 we discuss the sharpness of  the estimates 
and mention some open problems. 

Finally, I would like to express my deep gratitude to Professor Lennart Carleson 
for the helpful discussions which led me to consider this problem, for his advice 
and interest. 

w 2. Preliminaries 

Let R(q~) be the family of rectangles S in R 2 such that the angle between the 
longest side of  S and the xt-axis is ~o. We call q~ the direction of S. 

Given a set �9 of directions we define the maximal function M ~ f  by 

1 
M r  = sup fs If(Y){dY , 

where the supremum is taken over all rectangles S in the families R(~o), ~oE4~, 
containing the point x. (# is the Lebesgue measure in R2.) 

Condition on the set ~.  We consider only countable 4~= {~pi}~~ where q~i 
converge to some direction ~p= as i - ~ .  Further we assume that {~pi}~=l satisfies 
the following condition: 

for some c>0 .  (In this paper C and e are used for constans that may differ from 
place to place.) We say that such sets 4~ are exponential. 

Remark. I f  ~o i converge monotonically to q~= and also [~o~_x-~o~] decrease 
as i~oo, then either (3) will hold, or it is for every large N > 0  possible to find 
sets E N such that (2) holds (with M• replaced by M~). 

We will in the following use the symbol Z for characteristic functions, with the 
corresponding set as an index. 
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w 3. Main result 

Let # be an exponential set of directions. Then we have the following weak type 
estimates for the corresponding maximal functions. 

Theorem 1. Let ZE be the characteristic function of  the measurable set E in R 2. 
Then 

#{Mozg(x) > ~} <= C~-~(1 + log  (1/~))~p(E) 

for all 0<~-<1. The constant C depends only on ~. 

Theorem 2. Let 8>0  and let f be a function on R 2. Then 

t~ {Mo f ( x )  > c~} <= C A  ~ If(y)/a]2 (1 + log + If(y)/~J) 4 +~ dy 

for  all ~>0,  i f  the integral is finite. The constant C depends only on e and 4~. 

Theorem 2 follows from Theorem 1: Set a = ~ T = o ( l + j )  -1-(~/~) and let 
Eo={]f(x)l<=~/a} and Ej={2J-lu/a<lf(x)l<=2J~/a},  0<j<~o.  Then the set 
{ M , f ( x ) > ~ }  is contained in the union of the sets {M~xE~(x)>2-Jj-I-(~:3)}. 
From Theorem 1 follows that the measure of  this union is tess than 
C ~ f = l  22J( 1 +J)+4+~l~(Ej) which is bounded by the right side of the inequality in 
Theorem 2. 

w 4. Two auxiliary geometrical estimates 

We shall in this section state two geometrical estimates which are needed in the 
proof  of  Theorem 1, The first one, Lemma 1 follows from a rather simple geometric 
observation. The second one, Lemma 2 is shown by means of  Lemma 2 and (1). In 
the final step of  the proof  we get Theorem 1 from Lemma 2 and (1). 

Let us first make some more assumptions on ~. By splitting the set ~ into 
finitely many subsets we can without loss of  generality assume that ~o= = 0, 0 <  ~o i<  

zr/4 and 21fl tg q~iC [19/20, 21/20] for  some 1 ~ f l < 2 .  We also assume that 
fl = 1 as fl has no important role in the proof. 

The following lemma concerns the intersections of rectangles with two different 
directions. 

Lemma 1. Let T be an interval and let ~o o be the direction o f  one o f  its diagonals. 
Further let 9i and ~oj be two different directions in �9 (we may also have j =  co), one 
of  which is close to ~oo; more precisely, [~oi-q~o[<gi/9 or Iq~j-~Ool<~oj/9. Further, 
let d~ and dj be the distanee from the lower left hand corner of  T along the ~o i (resp. ~oj) 
direction to one o f  the opposite sides. 
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Let SE R(epi) of  length >dJ64 and Fj be a union of  some S" E R(gj) of  lengths 
>dj/64. Then 

I~(Fj c~ S c~ T) <= C#(S)t~(Fj c~ 2T)/I~(T) 

(2T is the interval with same center as T but with doubled sides). 
The following lemma concerns the intersections of rectangles with infinitely many 

directions. 

Lemma 2. Let T be an interval with one diagonal in the direction q~iE 4, and let 
dj be the shortest distance between parallel sides of T in the 9~ direction for qg~ E 4. 

Let SER(q~ 3 with length >di/8 andFj, j # i ,  be theunions of some S'ER(gy ) 
of lengths >dfl8 and F be the union of the sets Fj, j # i .  Then 

#(F c~ S c~ T) <= C#(S)p(F c~ 2T)/#(T). 

Proof of  Lemma 1. We make a linear map ~ from R 2 to R ~ which 
maps 9~ and 9j into orthogonal directions such that d~ and dj correspond to the 
length 1. Now let us first show that #(o(T))<C. We can estimate #(T) by 
Cdidj sin max (~0i, ~oj) and since Q changes the area by [did j sin ] oi-r we 
get # ( e ( T ) ) < C  sin max ((p,, 9j)/sin ko,-~jl. From (3) we see that this quotient 
is bounded, and here is the only time in the proof of Theorem 1 where we really 
use that �9 is exponential. We observe that ~(S) and ~ ( F n 2 T )  consist of line seg- 
ments of lengths >1/64 which are orthogonal. From this we conclude that 
# (~ ( F n  T n  S)) ~ C/t (Q ( F n  2T)) # (~ (S)). Hence 

# ( r  c~ T n S) = #(o(F c~ T c~ S)) <= C~(o(F  c~ 2T))#(Q(S)) 
(s) (e (s)) (s)) 

<= C / ~ ( e ( r  n 2T)) # (F  ~ 2T) 
<=C .(e(T)) .(T) 

which proves Lemma 1. 

Proof of Lemma 2. We assume that j < i  (the case j > i  could be proved in the 
same way). 

Let I~ and I~. be the one dimensional intervals defined by T=I~• and let 
J ~  consist of intervals of the form Im=I~m• where I~m belongs to the dyadic 
decomposition of 2I~. in 2 m equal intervals. 

For a rectangle S '  in the union F~ with S'c~ T #  0 one of the following cases 
will occur 

Case 1. S" c~2T is contained in an interval I s" with It(IS')<=lOO#(S" c~2T), 

Case 2. S ' c ~ T c V S ' c s '  c~2T for some vS'ER(9~) with length >dfl8 such 
that vS ' c4 I  for every IEJ~_j intersecting V s'. We use the notation IS_'i for such 
a dyadic interval. 
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Case 1 will occur when the length of S '  in the q~ -direction is large, say larger 
than 2 ]-~-1 times the length of  I~. Otherwise Case 2 will occur. 

We will now split the rectangles in the union F into the following families R,n, 
m=>0: 

R0 consists of of those rectangles S '  for which Case 1 occurs, 
R.,, 0 < r n < i ,  consists of all rectangles in F~_~ with non-empty intersection 

with T for which Case 2 occurs, 
Rr,,, m>=i is defined to be empty for convenience. 
Now we shall define the subfamilies RmcR,. ,  m > 0 ,  

Set 
by induction over m. 

R'~ =- R1, 
* __ t V S, and for m > l  set Rm--{S ER= such that satisfies (4) below}; 

" U  ~ u 
5~ERv ~ 

We now consider the following unions of  rectangles 

Go= U IS', Gm= U VS', O < m < ~, 
S" E R o S" E R~m 

6 ~ =  U U 4I s'. 
0 < m < ~  S" E(Rm~R~m) 

We observe that the set F n  T is contained in the union of  these unions Gm, 0_~rn<= 
~,  and that each of  these G,. is a union of  rectangles with the same direction. 

Thus #(FnSnT)<=~' ,o~_m~p(SnTnG, . )  and applying Lemma 1 we get the 
desired estimate in Lemma 2 if we can show that 

(5) Zo<-,,~=r 12(Gm) <= CI2(F n 2T). 

Let us show (5). First we shall estimate #(G0). Since #(IS')~_lOO#(S'n2T) 
for S'ERo we observe that the union Go of  these intervals I s" is contained in the 
set where the maximal function M~,Zrn2r is not less than 1/100. Hence by (1) we 
get #(Go)<-C#(Fn2T). 

In order to estimate the sum ~0<m<~ p(Gm) we define the disjoint subsets 
H,, of Fn2T,  0 < m < ~ ,  by 

//1 = G1, 

Hm= Gm~( l < m < ~ .  

By (4) we get that I~(VS'nH,,)>(1/2)#(V s') for S'ER*, 0 < m < i .  Hence we 
conclude that the union G~ of  these rectangles V s" is contained in the set where the 
maximal function with rectangles in the q~_~ direction M~,,_,Zn,, is larger than 1/2. 
Since this is a maximal function with rectangles in only one direction, we can use (1) 
again to get #(G,,)<=Ct~(Hm), 0 < m < i .  Since Gin, i < m < ~ ,  is empty and //, ,  
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are disjoint subsets of Fc~2T we get by summation the estimate 2 0 < m < o o  [d(Gm)~ 
<-C#(Fn2T). 

It  remains now to show that # ( G )  <- Cp(Fn2T).  We consider a rectangle V s" 
with S'E(Rm\R*),  0 < m < ~ .  It does not satisfy (4), i.e. p(U~<m(G~c~VS'))>= 
>=(1/2)#(vS'). Thus we have 

p(GvnV s')_>_l for S'E(Rm\R*), O < m < o o .  
(6) Z,<m #(V s') - 2 

Let IS'EJ~, v<m, be the dyadic intervals containing I s'. Then V s' is contained in 
4I  s '  for every v<=m. Applying Lemma 1 to each term in the sum in (6) we get 

(7) .Z,<m #(G, n 8 I  s') > Z #(Gv n V s') > C < 0, 
/,(4is,); = C ,<,,- i,(VS, ) = 

S'E(Rm\R*~), 
Now we define the function r by 

e(~) = Zo<,<= Z,:,~ 

0 -~ D'/ -~ oo. 

~(Gv n 8L) 
#(4L) x~,~(x). 

Here the sum is taken over all dyadic intervals Iv in or for all v. From (7) we see 
that r is larger than a positive constant on I s' for S'E(Rm\R*),  0 < m <  ~. Thus 
the union G= is contained in the set {r for a constant e > 0  and we get 

, (G=)  <- p{O(x)=>c} <= cfR~r  <-- CZo~v.~oo Z , : ,  ~(G, n 810 

< C z~' # (G ) < C# (F  2T) 

By summation we get (5). The proof  of Lemma 2 is complete. 

w 5. Proof of Theorem 1 

As before we make the restriction 2 ] tg 9j  E [19/20, 21/20]. 
Let R],k j =  1, 2 . . . .  , k = 0 ,  +__ 1, +_2, ..., be the families of rectangles SER(~oj) 

with 2 -~ -1<  length of  S_-<2 -k, such that 

(8) # ( s  n E) > ~#(S). 
Then 

{M~z~(x) > ~} = U U s. 
j , k  SER],  k 

By a change of  scale it is enough to estimate the measure of  

(9) U U S 
0<j,k~N SERj, k 

for large N > 0 .  From now on N is fixed and j,  k =  1, 2 . . . . .  N. 
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Let rn = 1, 2, N 2 be an enumeration of the index pair ( j ,  k) given by rn = 
= N ( k - 1 ) + j ,  and l e t Jm  be a decomposition of R 2 in intervals for each of which 
one diagonal has length 2 -k and the direction is qgj. 

For  SE Rj, k one of the following two cases occurs 

Case 1. S is contained in an interval I s with p(lS)<= 10#(S). 

Case 2. S is contained in 41 for every interval I E J , ,  intersecting S. We use the 
notation I s for such an interval. 

Now we split up the rectangles in the following families Rm m = 0 ,  1, ..., N 2, 
R 0 consists of  those rectangles in Rj, k, all j ,  k, for which Case 1 occurs, 
Rm, O<m<-N ~, consists of  those rectangles in R],k, N(k--1)+j=m,  for 

which Case 2 occurs. 
As in  the proof  of  Lemma 2 we define some subfamilies JRmCRm, m > 0 ,  by 

induction over m. 
Set 

R~ = R:t, 

*--{SER~ such that S satisfies (10) below}; for m > l  set R m -  

(10) # { S n  F ( m ) } < - ~ # ( S )  where we have put F(m)= 

We now consider the following unions of  rectangles 

U U S. 
O-<v<m SER~ 

v~m rood N 

(11) a(Go)+ Z o < ~ N  #(Gj)+#(Goo) <= Ca-~(l +log(1/a))2#(E). 

Let us show (11). First we shall estimate #(Go). Since #(IS)<=p(S) for SERo 
we see by (8) that  #(ISnE)>(a/lO)#(IS), SERo. Thus the union Go of  these 
intervals I s is contained in the set where the maximal function MyZe is not less than 
a/10. Hence we get by (1) #(G0)~ C~-i(1 + l o g  (1/~))#(E). 

In order to estimate the sum ~o<j<=N#(Gj) we define the sets Hm, O<m<-_N 2 by 

H i = U S  
~ER~ 

Hm = ( U S ) ~  F(m), l < m <= N2. 
SER~ 

Go = U IS, Gj= U U s, O < j ~ N ,  
SERo O<m--~N2 SER~ 

m=j rood N 

G== U U 4Im s. 
O<m=<N 2 S, E (Rm~R~m) 

We observe that the union in (9) is contained in the union of the sets Gin, m =  

=0,  1 . . . .  , N 2, oo. Thus we get the desired estimate of  Theorem 1 if we can show that 
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Let Ej,  j =  1 . . . . .  n, be subsets of E defined by 

= U Ej E (~ [ 0<,~N~ Hm). 
\ m = j  ~nod N 

It is easy to check that the sets Ej are disjoint: If  x is a point in E~ then there is 
a least m such that x is in UseR,  S, and i f x  is in H,,,, then m ' = m  (mod N). As x is 
in Ej we must have m' = j  (mod N) which implies that Ej, does not contain x for 
j ' # j .  

Now we consider a rectangle SER* m and the set Ej,  m = j  rood N. The fol- 
lowing set inclusions yield 

S n Ej D S c~ 14, ~ E D ( S m  E ) \ ( S  n F~"~). 

Hence we get by (8) and (10) 

(12) p(Sc~Ej)>~/2 /~(S)  for S E R * , m = j m o d N ,  0 < r n < = N  2, 

O < j ~ N .  

Since a union Gj, O<j<=N consists of rectangles only in the direction ~0j we conclude 
by (12) that G~ is contained in the set where the maximal function with rectangles in 
this directio~l M~,sX~j is larger than cr Since this is a maximal function with rec- 
tangles in only one direction we can use (1) to get 

]2(Gj) <= C~-1(1 +log (1/~))p(Ej). 

By summation, using that E i are disjoint subsets of E, we get 

(13) [,_) #(Gj) ~ C~-1(1 +log (1/~))/~(E). 
O-~i<N 

Now it remains to estimate g(G=). We consider a rectangle S s  3, 
O < m N N  ~'. It does not satisfy (10), i.e. 

(14) #(F(") c~ S) > cr 
~(s) = ~ 

Now we shall use Lemma 2 with T replaced by 4In s and with the rectangle S and the 
union F ~m~ of rectangles S ' .  We observe that the directions of the rectangles S '  in 
F (") are different from the direction of S and that the lengths of the rectangles S'  
are large enough compared to the interval 4Ira s in order to fulfil the conditions in 
Lemma 2. We get the following inequalities 

(15) /~{8I s} => 4 #{4g} 

c u(s)  c 

for S6(R, , \R*,) ,  0 < m < ~. 
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In the first inequality of (15) we have only used that F (m) is contained in the union 
of the sets Gj, 0 < j <  0% for the second inequality we use Lemma 2 and also that 
S is contained in I s, the third inequality is (14). 

From (14) we conclude that G is contained in the set where the maximal 
function M.~ZUo<j<~a~ is not less than a/C, if the constant C is large enough. 
By (1) we now get 

p(G~) ~ Ca-a(1 +log  (l/a)) Z0<s< = #(Gj), 

and by (13) we now get 
(16) #(G=) <- Ca-2(1 +log (1/a))2#(E). 

By summation of (13), (16) and our estimate of p (Go) we get (11). 
This completes the proof of Theorem 1. 

w 6. Application 

We give one application concerning maximal functions defined by means of 
polygons. We also mention two applications given by A. Cordoba and R. Fefferman 
in [2], the second one also together with C. Fefferman. The main result of this paper 
is used to get two estimates for multipliers. 

I. Let P be a polygon in R 2 with infinitely many sides L i, j = 0 ,  __+ 1, +__2, ..., 
given by their endpoints (2 - j ,  2 -2j) and (2 - j - l ,  2-2(J+1)). Let Pt= {xEP; [x]<t}, 
t>O, and let da be the length measure on P. 

We define the maximal function Me f o f  the function f by 

Me f (x) = sup,>0 , [ f (x  + y)] da (y).  

Then we get the following estimate 

Theorem 3. p {MpxE(x) >a}<-- - Ca-~(1 +log  (1/a))#(E) for all 0<:a~  1 and all 
measurable sets E in R ~'. 

Proof" Let ~oj be the direction of Lj. Then �9 = {cpj}~ ~ is an exponential set of 
directions. Define 

1 
M~,f(x) = sup a-~j)fL, [f(x+y)[da(y). 

We observe that M e f  <- CM~,f. The middle points aj of the sides Lj are different 
from the origin. If  a 2 had been at the origin for all j ,  then M ~ f w o u l d  be domainted 
by M~fa.e. and Theorem 1 could be used directly. Now, however we have to take 
care of the translations of sets by aj in the proof of Theorem 1. It is to consider 
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inequality (1) and to restrict this inequality to those rectangles SCR((pj) which are 
very thin, in fact, approaching line segments of length a (L j), j =  0, 1, .... Then the 
first term of (11) vanishes and the sum is unchanged since the Lebesgue measure is 
translation invariant. In order to see how the translations effect the term /~(G=) we 
observe that the origin is contained in the interval 4I L~, where ILj is the interval given 
by the diagonal Lj.  Hence it is enough to replace 4I s by 8I s in the definition of G=. 
This changes the estimate of  /~ (G=) only by a constant. 

Since we are considering line segments instead of rectangles we can use the weak 
type (1, 1) estimate of  the one-dimensional Hardy--Li t t lewood maximal operator 
instead o f ( l )  to get a better estimate in (13). Because of that, the estimate in Theorem 3 
will be a factor 1/(1 + log( l /e ) )  better then the estimate in Theorem 1. 

IL Let D be a set in the (x, y)-plane, whose boundary OD is a polygon with 
infinitely many sides Z0, Zx . . . . .  Let Z 0 be on the line x =  1 and Zj ,  j =  1, 2, ... has 
the direction 2 - j  and the endpoints on the lines x = 2  l - j  and x = 2  - j .  

Let TD be the operator on L p defined on the Fourier transform side by 

( r ( f ) ) ^ ( ~ )  = Zo(~)f(~). 
Then TD is a bounded operator on L p, 4 / 3 < p < 4 .  (We refer to [2] for the proof.) 

IH. In R ~ denote by Oj the sector {zER2; 2-J-X<-arg (z)<2-J},  j =  1, 2 . . . . .  
Let the operator Tj be defined by 

( r j ( f ) ) ^ ( r  = 

Then 

1t(~;=1 [Tj(f)12)~/2][v ~ [l/lip 

for 4 / 3 < p < 4 .  (For the proof  we refer to [2]). 

w 7. Generalization to larger sets o f  directions 

We shall generalize the concept of exponential sets which we have used above. 
We say that a set of  directions �9 is exponential of  the O-generation if �9 consists of 
a single direction q~. We say that a set of directions �9 is exponential of  the m-generation 
i f  ..... ,m} ~,...,'m = 1 satisfy 

(i) .lim q)il ..... i,, 1,i,,=~~ ..... ~,. 1 where {q0il ..... ~,, )~,...,i,,_x=l is exponential 
t l r t ~  o o  - - -  - 

in the ( m -  1)-generation. 
(ii) There is a constant c > 0  such that for (ix . . . . .  im)r . . . .  ,j,,) the fol- 

lowing inequality holds 

k ~  ..... j m - - q ) i ~  .. . . .  > clio,. . . . . .  , . . - q , .  . . . . .  

where O<-k<m such that ( i  1 . . . .  , ik)=(Jl, ...,Jk) and ik+l~Jk+l. 
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We see that to say that a set is exponential of  the 1-generation is the same as to 
say that it is exponential. 

A generalization of Theorem 1 and Theorem 2 is the following 

Theorem 1'. Let m>=O, and let #) be exponential of  the m-generation. Let XE 
be the characteristic function of the measurable set E in R n. Then 

#{Mogn(x) > ~} <= C0~-1-"(1 + log  (1/~))l+m#(E) 

for all 0<0c<l .  The constant C depends only on ~. 

Theorem 2'. Let m ~0,  and let �9 be exponential of  the m-generation. Let e >0,  
and let f be a function on R ~. Then 

#{Mr  > o~} <-- C fR, ]f(y)/gl-m-l(1 +log  If(y)/el)~m+2+"dy 

for all c~>0, i f  the integral is finite. The constant C depends only on ~ and ~. 

Theorem 2' follows from Theorem 1' in the same way as before. We shall not 
give the proof  of Theorem 1'. We will only say that the method used in the proof  
of Theorem 1 can be repeated in such a way that Theorem 1' can be shown for 
exponential of  the m-generation, if  it is already shown for �9 exponential of the 
(m - 1)-generation. 

w 8. Some remarks 

I. There is no indication that the estimate in Theorem 1 is sharp. I f  we let the 
set E be a ball and let �9 = {2-i}~ ~ than we see that it is impossible to get an estimate 
better than 

(17) #{M~ze(x) > 0~} <_-- C~-X(1 +1o8 (1/00)~#(E). 

In fact, one does not know any example of a set E that violates (17). 
More generally the estimate in Theorem 1' is very likely not sharp. If  we let 

the set E be a ball again and let ~ =  {r ..... i,,} with 

cPil, .:., i,, = ~l~_k~_m exp (--k-~l~_l_~k it) 

then we see that it is impossible to get an estimate better 

(18) p{M~gr(x ) > ~} <-- C0~-1(1 + log  (1/~))I+"#(E). 

The author has not been able to disapprove (18) by any counterexample. 

IL It is an open problem to find weak type estimates when we have more general 
sets of  directions than those considered in Theorem 1'. An important condition 
for the sets of directions is the following condition proposed by P. Sj6gren (c,f, the 
condition in Theorem 1 of [8]): 
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There  is an  e > 0  with the  fol lowing p r o p e r t y :  A n y  segment  11 o f  the unit-  

circle conta ins  a subsegment  13 which is d is jo in t  f rom �9 such tha t  the ra t io  between 

the lengths o f  12 and  11 equals  s. 

The  condi t ion  means ,  rough ly  speaking,  t ha t  �9 is con ta ined  in a Can to r  set with 

cons t an t  ra t io .  I f  �9 does  no t  sa t isfy  this condi t ion  then i t  is poss ible  to  m a k e  the 

cons t ruc t ion  o f  sets EN giving the inequa l i ty  (2), i.e. 

I~ {M~ Z ~  (x) > 1/8} > N p  (EN) 
for  every large N > 0 .  

I t  is an  open p rob l em to find any  weak  type  es t imate  for  the max imal  funct ions 

when the set o f  direct ions is a C a n t o r  set with cons tan t  rat io.  

Added in p r o o f  Recent ly  A. C o r d o b a  and  R. Fef fe rman has p roved  a weak L 2- 

es t imate  for  the max ima l  funct ion  in Theo rem 2. Us ing  their  me thods  we can also 

get  a weak  L2-es t imate  in Theorem 3. Concern ing  Theorem 1' and  2 '  i t  is poss ible  

to p rove  a weak  L2-es t imate  for  all m using some add i t iona l  arguments .  
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