
On the instability of capacity 
Claes Fernstr6m 

w 1. Introduction 

Let E be a Borel set in the space R a. It is well-known that the Lebesgue measure 
m is unstable in the sense that 

lim m(B(x, 6))-lm(E c~ B(x, 6)) : 1 or lim m(B(x, 6))-lm(E n B(x, 6)) = 0 
6~0 6~0 

almost everywhere on R d, where B(x, 6) is the open ball of radius 6 with center at x. 
Vitushkin discovered that the continuous analytic capacity ~ has a similar property, 

namely lima_,oa-~o~(EnB(x, 6))=O or lima._,oa-lo~(EnB(x, 6))=1 with the 
exception of  a set of  zero area, where E is an arbitrary subset of  the complex plane (see 
[8]). In [6] Lysenko and Pisarevskii investigated the classical Newtonian capacity, here 
denoted by C~, 2, in this direction. They proved that lima._,0 6- ~ C~, ~ (E n B (x, 6)) = 0 
or lima_,oC~,~(B(x , 6))-IC~,~(EnB(x, 6))=1 almost everywhere on R 3, if E is 
a Borel set. See also in this connection Gonchar [3] and [4]. L. I. Hedberg discovered 
in [5] that many capacities C are unstable in a certain sense. He proved that for all 
Borel sets E the following two relations are equivalent: 

(a) C(Ens for all open sets 12, 
(b) 1-~6_. o 6- ' lC(EnB(x,  6))>0 almost everywhere on R d. 

The purpose of this paper is to generalize the theorem of Lysenko and Pisarevskii 
to R d and to more general capacities C~, q (see Section 2 for a definition of  C~, q). Our 
result can be found in Section 4, Theorem 4.1. In Section 4 we also prove that there 
is a similar gap, if we replace "almost everywhere" by "C,, q- -a .e ." .  See Theorem 4.2 
and Theorem 4.3. In Section 3, Theorem 3.2 we show that 

C,,~(B(x, 6))-~C~,q(enB(x, 6))-~I when 6-*0, 

if E is a Borel set and if x is a density point for E with respect to the Lebesgue 
measure. 

The subject of  this paper was suggested by Lars Inge Hedberg to whom the 
author is deeply grateful for generously given advice. 



242 C, Fernstr6m 

w 2. Preliminaries 

The underlying space in this paper is the Euclidean space R e. Let p and q be 
real numbers such that 1 < p < %  l < q < ~  and p - ! + q - l = l .  Let J / /be the set of 
all positive Borel measures/z such that p (R e) < ~ and let 

L"(R") = {S; JJsll.": f..fS(x)l"dm(x)<=}, 

where m denotes the d-dimensional Lebesgue measure. The set of all non-negative 
functions fELq(R d) is denoted by L~ .  

For  f~Lq(R  n) and ~ > 0  we define a potential 

U{(x) = f Ix- y l - af (y) d m (y), 

and for pEdt '  we similarly define 

Uff(x) = f Jx-yl~-adp(y).  

Definition 2.1. Let E be an arbitrary set and let ~>0.  Then C,,~(E) =in f  II fllqq, 
U~(x)= for all xEE. where the infimum is taken over all fC Lq+ such that s > 1 

The classical Riesz capacities are obtained by setting q--2. 
Let B(x, 6) denote the open ball of radius 6 with center at x. Various constants 

are denoted by A. The complementary set of  a set E is denoted by CE. 
It follows from Definition 2.1 that 

(2.1) C~,q(B(x, 6)) = A6 d-'q, 

where A is independent of 6 and x. It is easy to see that A > 0  if and only if c~q<d. 
We always assume in the rest of  this paper that the capacities are not identically 

equal to zero. 
The following theorem will be used several times. For  a proof  see Meyers [7, 

p. 273]. 

Theorem 2.2. Let E be a Borel set. Then 

C~,q(E) 1/q = sup v(Ra), 

where the supremum is taken over all vC~l, sueh that v is concentrated on E and 

II e~l[p=< 1. 

A property, which holds for all points on E \ E  1 with C,,q(E1)=0 (re(E1)=0), 
is said to hold C,,:a.e. on E (a.e. on E). 
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w 3. Density points 

Definition 3.1. Let E be a Borel set. Then x is a density point for E i f  

lim m ( E  n B(x,  3)) = 1. 
~o  m(B(x, 3)) 

The purpose of this section is to prove the following theorem. 

Theorem 3.2. Let E be a Borel set and let x be a density point for E. Then 

limC~,q(E n B(x, 3)) = 1. 
~-o C~,q(B(x, 3)) 

The following corollary follows directly from Theorem 3.2. 

Corollary 3.3. Let E be a Borel set. Then 

lim C~,q(E n B(x, 6)) = 1 a.e. on E. 
~o c~,~(B(x, 3)) 

Remark 3.4. Let K(r), r > 0  be a non-negative, decreasing, continuous function 
such that K(r)-+oo when r-+0 and K(r)-+O when r-+~.  For  xER d, x # 0 ,  we 
define K(x)=K(Ixl) ,  and we assume 

(3.1) f ,  xl< 1 K(x) d m (x) < oo. 

We call such a function a kernel. 
Let K be a kernel such that for all e > 0  there are 3 > 0  and 7, 1 > 7 > 0 ,  

such that K ( ( 1 - 7 ) x ) ~ ( l  +e)K(x)  for all x, [x]~3. Then Theorem 3.2 and Corol- 
lary 3.3 remain true if we replace [xt ~-d by K(x). For a proof  see [2]. 

Remark 3.5. Let Ha-a denote the classical Hausdorff measure with respect to the 
function t a-a. For  every fl, 0 < f l < d ,  there exists a compact set Ewi th  Ha_a(E)=  0% 
such that 

l i m C ~ ' ~ ( E n B ( x ' 3 ) )  = 0  fora l l  x. 
~_-~ c~,~(~(x, a)) 

The proof can be found in [2]. 

Proof o f  Theorem 3.2 Suppose that 0 is a density point for E. Let ~>0 and let 
0 < 7 < 1 .  Theorem 2.2 gives that we can choose paEd/, a>0 ,  such that /,a is con- 
centrated on B(O, (1--~) 3), ~ta(Re)=l and 

1 +~  ~l/q 
(3.2) II Vff,[l~ < = t C=,q(B(0,(1 - - 7 ) a ) )  J 
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Choose non-negative, continuous functions q)a such that 
1 

x, Ix[_->~ ~,,~, 
(3.3) q)a(x) ~ A?-d6 -a for all x, 

where A is independent of 6, and 

(3.4) f ~ (x) am (x) = L 

Put d?~(x)=(fq)o(x-y)dl~o(y))dm(x). Then voE~', v6 (Rg= l  
trated on B(0, 6). Now (3.3) gives 

v~(Ce ~ e(o, ~)) = fc.o.,o,~, (f~o~(x- y)dp~(y))dm(x) 

~=AmEE ~ B(o, 6))~,-"6 -~. 

If we use that 0 is a density point for E, we obtain 

v~(CE ~ B ( o ,  6)) -~ o w h e n  6 -~ o. 

Since ve is concentrated on B(0, 6) and v~(Ra)=l, we get 

(3.5) v~(E c~ B(0, 6)) -~ 1 when 6 ~ 0. 

From the definition of v~ we see that 

~oa(x)=0 for all 

and va is concen- 

~l v:<, = iJ f Ix-yl~-ddvo~y)l[~ = II f f Ix-  yl~-%~(y- z)d~(z)dm(y)llv. 

If we put y ' z = t ,  we find that 

liVe% = II f f I x -  z -  tl~-a~%(t)d~t~(z)dm(t)llp = II f V:~(x- t) q,~(Odm(t)[],. 

Minkowski's inequality and (3.4) now give 

(3.6) IIU~oll~ <=-IIu~"~ll~. 
From (3.2), (3.5), (3.6) and Theorem 2.2 we get that C~,,q(E~B(O, 5))>0. Choose 

fe 6L q such that 
(3.7) U~,(x) => 1 for all xCE n B(O, 6), 
and 

(3.8) I[f~llq <-- {(1 +e)C~,,q(E n B(O, 6))} l/q. 
Now (3.7) gives 
(3.9) f u~,(x)dv~(x) >= v~(E n B(O, 6)). 

The HOlder inequality, (3.6), (3.2) and (3.8) give 

f Uy~(x)dva(x) = f U~,(x)fn(x)dm(x) <= I[U~'i[p [IfoLtq -<- llU~'[[p[Ifatlq 

(1 +e)2C~,q(E c~ B(0, 6)) / x/q 
< 

J 
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Thus by (3.9) 
{ Ca,q(E ~ B(O, (~)) ! 1/q 

Using (2.1) we find that 

{ Ca'q(E f~B(0,5))~ 1]q 
(1 +s)2(1--V) ~q-d C~,,q(B(O, 5)) ] ~= v~(E ~ B(O, 5)). 

The theorem now follows from (3.5) and from the fact that e, ~>0, and 7, 0 < ~ <  l, 
may be chosen arbitrarily small. 

w 4. The instability of capacity 

In this section we prove the following three theorems. 

Theorem 4.1. Let  E be a Borel set. Then a.e. on R a one o f  the following relations 
holds: 

lira C~,q(E c~ B(x ,  5)) = 1 
5)) 

o r  

lim (7 (~_~,q,_ c~ B(x ,  5)) = O. 
6~0 5 d 

Theorem 4.2. Let  0 < f l ~ a  and let E be a Borel set, Suppose that h(6) is an 
increasing function such that 

h ( 6 ) ~ - l S - l d 6  < ~ .  

Then Cp, q-a.e, on R a one o f  the following relations holds: 

li--m C~,q(E c~ B(x ,  5)) _ 
~ o  h(5) C:,,q(B(x, 6)) -- 

or 
limC~,q(E ~ B(x ,  5)) = O. 
~ - o  5 d-#q 

Theorem 4.3. Let  0<fl_-<a and let E be a Borel set. Suppose that q > 2 - f l / d .  
Then Ca, ca.e. on R a one o f  the following relations holds: 

_ 

5)) J 5 
or 

lim C~,~(E n B(x ,  5)) = O. 
~ o  5 '~-~ 
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Remark 4.4. Let K be a kernel with the same properties as in Remark 3.4. 
Then Theorem 4.1 remains true if we replace Ix] ~-d by K(x). See [2]. 

Remark 4.5. Let K be a kernel. Suppose that there is a constant A such that 
K(x)~=AK(2x) for all x ,  Ix[<_-l. I f  we furthermore assume that K(r)r d-p is an 
increasing function for all r, 0<r_<-r0, we may replace Ix] ~-a by K(x) in Theorem 4.2 
and Theorem 4.3. See [2]. 

In order to prove the theorems, we need some lemmas. The first lemma, which 
can be found in Bagby and Ziemer [1J, is essential for the following. 

Lemma 4.6. Suppose that fE  L q (Ra). Then 

and 

�9 1 
(i) ~imo-~f~(~,~ I f ( y ) - f ( x ) l~dm(y)  = 0 a.e. on R e 

�9 1 
(ii) ~ ! ~ - ~ - w f ~ ( ~ , ~ l f ( y ) [ q d m ( y ) = O  C~,q-a.e. on R a. 

Before proving the next lemma we need some notation. Let E be an arbitrary 

set. Then we define 

L e m m a  4.7. Let fl > 0  and let E be an arbitrary set. Then E(C,, q; 6 ~) is a Borel set. 

Proof  Put 

E, = {x; ~ C,,q(E n B(x, 6)) 1 }  
~ 0  6p > for n = 1 , 2 , 3  . . . . .  

Let xEE~. 

(4.1) 

Put  

Choose 6i(x), i =  1, 2, 3, ..., such that 6~(x)~2 - i  and 

C , , q ( E n B ( x ,  6,(x))) > 1  for n = 1 , 2 , 3  . . . . .  
~(x)P n 

A(.') = U B(x, 6,(x)), a~ = ~ A'." and 8 = 0 8~ 
x E E  n ~=1 n = l  

Then B is a Borel set. I t  is enough to show that E(C,,q; 6P)=B. We have the fol- 

lowing chain of  implicatioils: 
zEE(C~,~; 6 p) =* zEE,  for some n => zEA(~0 for some n and all i =~ zEB,  
for some n =~ zEB. 

Thus 

(4.2) E(G,~; 6P) c 8. 
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On the other hand 
exists x~E~ such that z~B(x~, 6~(&)). 
function and (4.1), we get 

B(z, 26 , (x , ) ) )  _> 1 
{26,(xi)}a -- 2 # 

If  we use that 6~(x~)_-<2 - ' ,  we obtain 

lim C~,q(E n B(z, 6)) >0 .  
a+o 6# 

Thus 

and (4.2) gives B=E(C~,q; 6#). 

zEB gives that z6A~ ) for some m and all i. For every i there 
If  we now use that C,,q is an increasing set 

> - -  

2am �9 {a,(x,)}a 

If U]~(x)f (x)dm(x)--U~(xo)l = O. 

Uf(xo)<~,  it is possible to choose 0 > 0  such that 

f  (xo, o) ]X-Xoi~-af(x)dm(x) < ~" 

(4.5) 

Let ~>0. 

(4.6) 

Since 

Lemma4.8. Let E be a Borel set and let fELq+. Suppose that U{(x)=>I for all 
xE E. Then 

(i) U{(x)=>l a.e. on E uE(C, ,q;  64), 
and 

(ii) U{(x) ~ 1 Cp,q-a.e. on E ~ E(Ce,q; 6a-#q). 

Proof. The proof follows an idea used by L. I. Hedberg in [5]. We prove (ii). 
The proof of (i) is similar. The proof of (i) can also be found in the proof of Theorem 9 
in [5]. 

Let xoCE(C,,q; 6a-#q). It is no restriction to assume that U{(x0)< ~. Applying 
Lemma 4.6 we may also assume that 

1 
(4.3) lim ~--~g=-~--ao fB-x ~" if(x)[~dm(x) = O. ~ 0  ~ -aS d t 0, J 

Theorem 2.2. gives that we can choose voEJr that vo is concentrated on 
E ~ B (Xo, 6), va (R a) = 1 and 

{ 2 }1/4 

(4.4) []U2,l]p ~ C~,q(E r iB(x0,6))  " 

If  we use that U[(x)_-> 1 on E, we find 

1 <= f U~(x)dv,(x) = f U~e(x)f(x)dm(x). 

Thus it is enough to prove that 
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Let fi, 0 < 3 < 0 / 2  be arbitrary. Then 

I f  u:o (x) f (x) d m (x) - Uf(xo) [ <= f [ v : ,  (x) - ix - Xo I'- "l f (x) d m (x) 

< f B (  [ I~-df( )a  ( )+f.( ) U ~ ( x ) f ( x ) d m ( x ) +  : -  xo,Q) X - - X o  X Ptl X xo,26 

+ f 26~_Jx-xoJ<=e Ud6(x) f (x )dm(x)+ 

+ f.<<~-xo, [u:.(x)-tX-Xof=-~lf(x)dm(x) = I1+ I2+ I3+ I,. 

From (4.6) we get 

(4.7) 11 < e. 
The H61der inequality and (4.4) give 

{ f  lf( )l )}*/" /2 ~ IIU~ll, ~(xo,=6) X qdm(x 

23 a-aq 1 ]l/q 
<-- C , , q ( E  c~ B(xo, 6)) "-6-g=~f"(~o,26)If(x)lqdm(x)} �9 

Now (4.3) and the fact that  xo~E(C=,q; 3 d-aq) give 

(4.8) lira I2 = 0. 
6~0 

If  we use that  v 6 is concentrated on B(xo, 6), v6(Rd)=l and (4.6), we obtain 

Ia = f dr6 (y) f26~_rx-~ol_~e Ix-Y] =-af(x)dm (x) 

=< f dva(Y) f B(xo, Q)[(x - xo)/2!'-a f (x )dm(x)  

= 2a-~f~(~o,~)]X-Xol=-af(x)dm(x) < 2a-~e. 
Thus 
(4.9) la < 2a-~e. 

I f  ]X-Xol=>O, it is easy to prove that  U~(x)  tends uniformly to ]X-XoI "-a when 
6 tends to zero. Thus 

(4.10) lim 14 = 0. 
6+0 

Now (4.7), (4.8), (4.9) and {4.10) give (4.5). This finishes the proof. 

Lemma 4.9. Let E be a Borel set. 
(i) There exists for  all x E R d and for all 3 >0 a Borel set 0~, 6 such that m (0~, 6) = 0 

and 
C~,~(E ~ B(x, 3)) -- C~,~((e ~ (e(C~,~; 3")\O~,6)) ~ B(~, 3)). 

(ii) There exists for  all x<R d and for all 6 > 0  a set 0, ,6 such that Ca,q(O~,6)=O 
and 

C~,~(E ~ B(x, 3)) = C~,~((E ~ (e(C~,~; 3~-p~)\o~,6)) ~ B(x, a)). 
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Proof. We prove (i). The proof of (ii) is the same. Put E(C,,q; 6a)=E0 . Let 
6>0  and xER n be fixed. Choose f ,  EL~_ such that 

(4.11) U{.(z) =>1 foral l  z E E n B ( x ,  6), 
and 

(4.12) [[f,l[~<=C~,q(EnB(x,f))+l/n for n = 1 , 2 , 3  . . . . .  

Let yEEonB(x, 6). Then B(y, e)cB(x,  6) for small e. Now using yEE o we find 

li---m C,,q((E n B(x, 6)) n B(y, e)) = l ~  C,,q(E n B(y, e)) > O. 
~ 0  ~d 8~0 8 d 

Thus 

(4.13) Eo n B(x, 6) c (E n B(x, 6))(C~,q; 6 a) = (E n B(x, 6))o. 

Lemma 4.8 (i) and (4.11) give that there are Borel sets O. such that m(O, )=0  and 

U{.(z)=>l on ( E n B ( x , a ) ) w ( ( E n B ( x , a ) ) 0 \ O . )  for n = 1 , 2 , 3  . . . . .  

Now (4.13) gives 

(E ~ B(x, 6)) u ((E ~ B(x, 6 ) ) 0 \ 0 3  ~ (6  u ( 6 0 \ 0 , ) )  ~ B(x, a). 

Put O=U~~ Then m(O)=O and 

U{.(z)_->l on ( E w ( E o \ O ) ) n B ( x ,  6) for n = 1 , 2 , 3  . . . . .  

Using the definition of C.,q and (4.12) we get 

C~.q((E w ( 6 ~  ~ B(x, 6)) <-- C~,q(F~ ~ B(x, 6)). 

But (Ew (Eo\O)) n B(x, 6) D E n  B(x, 6). Thus 

c,.~((e ~ ( 6 0 \ 0 ) )  ~ B(x, ~)) = C~.q(E ~ B(x, 6)). 

Proof of Theorem 4.1. Lemma 4.7 gives that E(C,,q; 6a)=E0 is a Borel set. 
Let x be a density point for EwEo. It is enough to prove that 

lim C"a(E n B(x, 6)) >_ 1. 
,_---~ C~.,(B(x, 6)) 

Let 6~, i = l ,  2, 3, ..., be a sequence of positive numbers such that 6 t~0 when 
i ~ .  Lemma 4.9 (i) gives that there are Borel sets O~, m(O~)=0, such that 

(4.14) C,,,(E n B(x, 6,)) = C,,q((E w (Eo\O~)) n S(x, 6,)). 

Put O=U~=I Oi. Then m(O)=0.  Since x is a density point for E u E  o, x is 
a density point for Ew(Eo~O). Now (4.14) and Theorem 3.2 give 

lim C,,a(E n B(x, 6,)) ~_ lim C,,q((E w (Eo\O)) n B(x, 6,)) >_ 1. 
,_--= C.. .(B(x.  6,)) ~.--= C..~(B(x. 6~)) 

Since the sequence 6~ was chosen arbitrarily, the theorem follows. 
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Lemma 4.10. Let E be an arbitrary set. Suppose that 0<fl<_-~. Then 

Cp,q(e ~ B(x, 6)) <= A C~,q(E ~ B(x, 6)) 
6"-pq c,,q(B(x, 6)) ' 

where A is independent of x and 5. 

Proof." Let x be fixed. It is easy to see that there is a constant N independent 
of x and 5 such that 

1 
(4.15) {f.,,>=,,, [y[(~-a)*'dm(y)}"*' {2C,,q(B(x, 6))}I'g < -~-. 

Let 5, 0 < 5 < 1 ,  be arbitrary. Now choose f~EL~, such that 

(4.16) U~,(z) _-> 1 for all zEE n B(x, 6) 
and 

(4.17) Ilfollg <-- C,,q(g n B(x, 5))+eC,.q(B(x, 6)). 

If  we use the HSlder inequality, (4.17) and (4.15), we get 

f lyl~_Na ]Yl~-af~(z-y)dm(y) <= {flyl-~N~ [Yl(~-d)Pdm(y)}X/Pl[f a[]q 

1 
<-_ {f.,.~,. lyl,=-") , din(y)} 'h' {2C~,q(B(x, 6))} a" < -~. 

Now (4.16) gives 

f,,>_N, lYl~-a2f~(z-y)am(y) --> 1 if zEE n B(x,a). 
Thus 

f ,,~N, [Y]~-a[Yla-#]Y]#-a2f~(z-y)dm(y) ~ 1 if zEE n B(x, 6). 

I f  we use that r~-ar d-# is an increasing function for r > 0 ,  we find 

f ly : -d(N6)~-#2f~(z-y)dm(y)  _-> 1 forall- z E E n  B(x, 6). 

The definition of C#,q and (4.17) give 

C#,o(E n B(x, 6)) <- 2q NqC~-a) 6~q-aqllf~[l~ 

<= 2~N~c~-~)6~q-.~-~(c~,,(e ~ B(x, 6))+~c~,~(B(x, ~)). 

Since e may be chosen arbitrarily small, we find 

C#,q(E n B(x, 5)) <_ 2q Nq(~_#) C~,q(E n B(x, 6)) 
6d-#q 6d--~q , 

which gives the lemma. 
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that 
Lemma 4.11. Let E be a Borel set. Suppose that g is an increasing function such 

Then C#,ca.e. on E 

1~ g(8) ~,--1 as" 

li---m C#,q(E n B(x,  8)) = oo. 
a~o g(8) 

Proof. See L. I. Hedberg [5], Theorem 8. 

Lemma 4.12. Let E be a Borel set. Suppose that q > 2 - f l / d .  
on E 

p ~, c,,~(e ~ B(x, a)):  -~ a8 
d o  [" }T-~ J 6 - - 0o. 

Then C#,~-a.e. 

Proof. See L. I. Hedberg [5], Theorem 4 and Theorem 6. 

Proof o f  Theorem 4.2. Put E(C~,q; 8d-/~q)=E o. It is enough to prove that 
C#,ca.e. on EwEo.  

(4.18) li---~ c~,~(E n B(x,  a)) _ 
~-o h(a) c , ,~(B(x ,  a)) - ~ 

Let xEEwEo be fixed. The function g(8)=h(8)8  a-#q fulfils the assumptions in 
Lemma 4.11. Lemma 4.7. gives that E w E  o is a Borel set. Lemma 4.11 now shows 
that we may assume that 

(4.19) li-~ Cp,,((E u Eo) c~ B(x, 6)) = oo. 
~-o h (a) 6 d-#q 

Lemma 4.9. (ii) gives the existence of a set Oa such that C#,q(Oa)=O and 

(4.20) C~,q(E ~ B(x,  6)) = C~,q((E.w (Eo\Oa)) n B(x, 6)). 

Applying that C#,q(Oa)=0, Lemma 4.10 and (4.20) we get 

G,~((E ,-, Eo) ~ a(x ,  6)) = _C~.~((E ,o (Eo\O~)) ~ a(x ,  6)) 
ad-Pq 6a-Pq 

Thus 

< a c , , q ( ( e  ~ (eo \O~))  ,~ B(x,  a)) ac,,q(E n S(x, a)) 
C~,~(B(x; a)) = C~,~(B(x, a)) 

G , o ( ( E  v & )  ,~ s ( x ,  a)) ~ AC,,,(E n B(x, a)) 
6 a-#, - c~,q(a(x,  6)) 

Now (4.1 9) immediately gives (4.18). 
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P r o o f  o f  Theorem 4.3. Put  E(C,,a;  6d-Pq)=Eo . 

C # , : a . e .  on E • E o  

B x, "-1 
(4.21) d 0 t  C~,~(B(x, 5)) J 5 

Let  x C E u E o  be fixed. L e m m a  4.7 gives tha t  E w E  o 

L e m m a  4.12 we m a y  assume tha t  

(4.22) f :  { C~'o((E u E~ c~ B(x"~))} "-1 d6 - oo 

In  the same way  as in the p r o o f  o f  T h e o r e m  4.2 we have  for  all  6 

c#. ,((E ~ Eo) ~ B(x. ~)) ~_ A c . . , ( e  ~ B~x. ~)) 
,~d-#q - C~,.(B(x, ~)) 

N o w  (4.22) gives (4.21). 

I t  is enough to prove  tha t  

is a Borel  set. A p p l y i n g  
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