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O. Introduction 

Let G~=G~(C+)(a>0)  be the set of  all functions f ,  bounded and infinitely 

differentiable in the closed upper halfplane C+(C+der{tEC:Im t>0}), analytic 
in C+, and satisfying the inequalities 

/ I  

If(n)(z)l ~ Cy. a~. n!. n ~ (0.1) 

for all z, zEUS+, and n=0 ,  1, .... We call the set G~ the Gevrey class of order c~. 

Definition. A compact subset E of  the real line R is said tO be a set of uniqueness 
for G~ if there is no nonzero function f ,  fEG~, that vanishes on E together with all 
its derivatives. The system of  all sets of uniqueness for G~ will be denoted by ~ .  

The main purpose of this work is a complete description of d~ for all positive a. 
The results are stated in the next paragraph. Here we give a brief survery of  earlier 
results concerning uniqueness problems for G~. All results of  this article can be refor- 
mulated (via conformal mapping) for classes G~(D) of functions analytic in the 
unit disc D and analogous to G~(C+). We prefer the half-plane to the disc because 
the formulas are simpler in the case of  C+. 

The results of this article were announced in the note [1]. 

Acknowledgement. I am grateful to S. A. Vinogradov for helpful discussions and 
to V. P. Havin for the translation of  the Russian version of this article into English. 

0.1. It is well known that when a-> 1 every nonvoid subset of the real line is 
a set of  uniqueness for G~. In other words the class G~ is quasianalytic if a_- > 1. 
So if 0 < a < l  the class G~ is not far from being quasianalytic. This is the main 
obstacle in the problem of describing ~ for 0 < a < l  and influences the final 
result in an essential way. 

On the other hand the complete description of the sets of uniqueness for the 
class C a of  all C ~ (C+)-functions analytic and bounded in C+ has been known for 
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a long time ([2], [3], [4], [5]). E ( E c R )  is a set of uniqueness for C~ ~ if and only if 

fRlog ~(x, E) i-'+---~ d x = - ~ ,  (0.2) 

0 (x, E) being the distance from x to E. 
Moreover B. A. Taylor and D. L. Williams [6] have described the sets of unique- 

ness for a class of functions analytic in D somewhat larger then G,(D). This class 
?1 

arises when n ~ in (0.1) is replaced by exp (nP), p > l .  The subset E of the unit 
circle T is a set of uniqueness for this class exactly when 

2 
f-~" l~ Q(e i~ E-~ dO -- + 0% (0.3) 

1 1 
where - -  + - -  = 1. 

P q 
As to the classes G, ( 0 < , <  1) things are more complicated here. Simple neces- 

sary conditions for a set E not to belong to ~ ,  were pointed out by Carleson in the 
classical work [2]: 

E c R , r ~ r  = 0, Z~t~-~ < + ~ ,  

IE[ being the Lebesgue measure of E and (I 0 the sequence of lengths of all finite com- 
plementary intervals of  E. 

These two conditions can be rewritten as follows 

1 dx  < + o~. ( 0 . 4 )  L 
jK  0 (x, E) ~ 1 + x --------~ 

The necessity of (0.4) for E ~  can be proved in the following way. If  f~G~,, f ~ O ,  

then log l f i l L  ~ ~ this is to say fR  [l~ + x  ~ d x <  + . For xER the 

Taylor formula implies 

Ix-el" 
I/(x)l <- sup ]f(")(t)[ �9 n! 

t s  

c being the element of E nearest to x. Minimizing the right hand side with respect 
to n we conclude from the definition of the class G, that 

{ const. } (0.5) 
If(x)[ <= exp Q(x, E) ~' 

and so the proof is finished. 
The same method is applicable to obtain necessary conditions (for non-unique- 

ness) for other spaces of analytic functions. The proof of the sufficiency of such a 
necessary condition usually requires the construction of an outer function whose 



Sets of uniqueness for the Gevrey classes 255 

modulus (on R) behaves like the quantity corresponding to the right hand side of 
(0.5). That is why the efforts of  all succeeding authors were concentrated on the 
search for sufficient conditions approaching (0.4). The proofs followed the scheme 
sketched above. At first A. Chollet [7] showed that 

l + a  

E c = �9 < + ~  =~ E ~d~. 

Then Chollet [8] and Pavlov and Suturin [9], [10], obtained a weaker sufficient con- 
dition 

In these articles [9], [10], also a totally different sufficient condition was given, namely 
E r  if 

J rcz~ 1 dt < const. (0.6) 
O(t,E) ~ (x- - t )  ~" O(x,E) 1+~ 

for every x, x E R \ E ,  Cl x being the complement of  the complementary interval 
l~ o f  E containing x. 

Simultaneously Korolevi5 and Pogorelyi [11] showed that E~ ~ if [E I = 0  and 

~ v  l~ -~. 17 ~ -< + oo (0.7) 

for a positive number e. The article [11] differs from the preceding ones as to the 
construction of  the corresponding outer function. Its modulus on the interval 1 v [ 1] 
is here no longer exp O(x-]E); ; the more complementary intervals of  E are 

situated near lv the smaller this modulus is. 
The best (but unpublished) result in this direction is due to S. A. Vinogradov. 

Regularizing the choice of  the outer function by means of  a conformal mapping of 
D onto a suitable domain S. A. Vinogradov proved that E~d~ if  ]E[=0 and 

1 ~+~ 
~'v l~ -~ (l~ + ~-) < + ~ .  (0.8) 

for a positive e. 
In spite of  this progress the question of  whether the Carleson condition (0.4) 

is sufficient or not remained open. 
In this work this question is answered in the negative. We obtain a necessary 

and sufficient condition which is close to (0.6). Although more cumbersome than (0.4) 
our criterion is suitable to work with. In particular we are able to deduce from it 
that Vinogradov's result is almost best possible and to give another proof  of this 
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result. Our criterion enables us to construct two closed subsets of R with the same 
sequence of lengths of complementary intervals one of which belongs to ~ and the 
other does not. 

And to complete our survey we will mention interesting applications of the 
unicity theorems to the investigation of spectral properties of nonselfadjoint Scbr6- 
dinger operators with a decreasing complex potential. This approach was developed 
by B. S. Pavlov in [12], (see a brief exposition in [13], [14]). 

0.2. Now we list the principal symbols to be used in this article. 
R -  the set of all real numbers viewed as a subset of the complex plane C: 

R={~EC:  Im 4=0}; 
Z - -  the set of all integers; 
N - -  the set of all positive integers: N = Z n (0, + oo); 
R def.^ Z def +:LO, +oo); + = Z n R + .  

The letter E will be always used as a notation for a compact subset of the line R, 
(lv) will denote the set of all bounded complementary intervals of E. The length of 
the interval l will be denoted by the same letter L Let x E R \ E .  Then l~ will mean 

the complementary interval of E containing x. The symbol L 1 will denote 

the space of all complex measurable functions f on R with 

lf(x) l d fs 
If  a set E satisfies a condition (7) (or has a property (V)) we will write E E (7). The 
symbol Const. will denote a constant depending only on parameters which remain 
unchanged in the problem under consideration. The condition (0.4) (see above) 
complemented by the condition IE]=-0 will be noted by (C,) and will be called the 
Carleson condition. The condition (0.6) will be denoted by (PSo3 using the first 
letters of  its authors names. At last the condition (0.8) will be denoted by V~. 

1. Statements of results. Discussions 

Theorems stated in this paragraph are numbered by means of single figures. 
Their proof requires (as a rule) a whole paragraph (for each of them). 

Theorem 1. Let aE(0, 1). The set E is not a set of uniqueness: Eqg~ if and 

only if there exists a function f ~ , f~EL  1 such that 
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1 
(a) O(x,E) ~ ~= fE(x), xER; 

(~) 

f i+~- fg( t )  dt < const, f~(x) , xER.  (b) c;~ (t_x)--------~ ~- 

The condition (b) with f~ replaced by (O (x, E)) -~ becomes (0.6). 
This theorem is the main resu!t of the article. Its proof consists of two parts 

and occupies w167 2--4. In w 2 it is proved that 

Er e,  ~ E~(~). 

This implication is proved with the essential use of a property of functions of the 
class C~ (n times continuously differentiable in the closed unit disc and analytic 
in its interior) discovered by B. Korenblum in his well known work [15] (Lemma 4.3)*) 
Roughly speaking this property means that the rates of vanishing of ]f(ei~ when 
0 ~ d -  0 and 0 -~e + 0 are interdependent if f ( e  ~) =. . .  =f(") (e ~') = 0. The influence 
of this phenomenon on functions of the Gevrey class G~ is much more significant 
and is the cause of the non-sufficiency of the Carleson condition for G~. The proof 
of this part of Theorem 1 is a modification of Korenblum's lemma and uses the 
same ideas. 

In w 3 a more constructive reformulation of (e) is given. To every set E, EE(e) 
corresponds a solution U E of the non-linear equation 

1 UE(t ) 
U~(X) 1+-~ = fct~ (t__x)2 dt, x E R \ E ,  

1 
satisfying the inequality U E ( x ) > =  ( x E R \ E ) .  The reasoning of w 3 shows 

Q (x, E) ~ 
that in order to obtain Ug we have to increase the function x ~ ( o ( x ,  E))-'[/~, the 
rate of increase depending on the amount of complementary intervals of E neigh- 
bouring 1~. Thus we must construct an extremal function UE which will be called the 
equilibrium function (by analogy with potential theory). The paragraph is concluded 
by the investigation of the "regularity" properties of UE needed in the sequel. 

In w 4 we show that the outer (with respect to the upper halfplane) function 

t i ~ u ~ ( t )  _ i 
f (z)  = exp ]~-JR ~ ottO, zE C+, 

belongs to the Gevrey class G, and that its boundary values on E vanish together 
with all its derivatives. Clearly f ~ 0  ( f - I ( 0 ) ~ R = E )  and so E~g~. The extremal 

*) In [1] this lemma is erroreously called "Lemma 4.1". 
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property of  UE is easily reformulated in terms o f f .  If  gEG,, g(n3lE-O, nEZ+,  
then there is a constant 7 > 1 such that 

Ig(x)l [f(x)l, xER. 

Roughly speaking the outer function f corresponding to U E majorizes (on R) the 
moduli of all functions belonging to G, and vanishing on E with all their derivatives. 

Unfortunately it is not easy to apply the condition (00 to decide whether a given 
set E satisfies it. That is why most of the remaining part of the article is devoted to the 
study of this condition. 

The following result is obtained in w 5. 

Theorem 2. (S. A. Vinogradov). I f  IE[=0 and for some e, e>0,  

1 1] ~+" ~ , l ,  1-, og+~7 ) < + o o ,  

then E~g, .  
For the sake of simplicity we gave here a slightly weaker assertion then the 

theorem proved in w 5. The original proof of this theorem (reproduced here by the 
permission of  its author) displays a very interesting connection with the distortion 
estimates of conformal maps. 

In w 6 it is shown that Theorem 2 is almost sharp. 

Theorem 3. There exists a set E, IEI=0, EEg, ,  such that 

~ v  lv 1-~ l~ + < + to 

for arbitrary e, e >0. 
The set E can be chosen to be a Cantor type set with the non-constant ratio of 

dissection. 
Theorem 3 raises the question of whether the Carleson condition (C~) is sharp. 

In w 7 we give a positive answer to this question. 

Theorem 4. There exists a set E, Er162 such that for every e, e>0,  

The needed example is constructed as a countable set with single limit point. 
The last two theorems can be intuitively interpreted as follows. If  the set E is 

perfect (i.e. has no isolated points) then the condition of the non-uniqueness (E(~ 8~) 
is so to say attracted by the Vinogradov condition (V~). I f  the set E is countable then 
the gravitation center is the Carleson condition (C~). This interpretation is of course 
very vague and its more precise expression constitutes an interesting problem. 

At the end of w 7 the following theorem is proved. 
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Theorem 5. There exist two compact subsets of R whose Lebesgue measure 
equals zero with the same family of lengths of complementary intervals and one of 
which belongs to ~ and the other does not. 

This theorem exhibits a very interesting property of the non-uniqueness sets 
for G,. If the lengths of complementary intervals decrease rapidly enough (as for exam- 
ple in the condition (V~)) their mutual situation plays no role and E ~ .  But if 

Z v  log = + 

then the mutual situation of the complementary intervals becomes important. 
w 8 contains various conditions implying (e) and the analysis of their intercon- 

nections. These conditions involve the Hardy Littlewood maximal function. The 
aim of the investigation of w 8 is to estimate "'the amount" of non-uniqueness sets not 
satisfying (V~). Here we give a new interpretation of the condition (PSi) (Theorem 8.2). 

In w 9 we discuss the relation of the interpolation sets for G~ to the non-uniqueness 
sets and the connection between the condition (c 0 and the well-known condition of 
Muckenhoupt [16]. We show that an interpolation set Efor G~ is an interpolation set 
for G~+,, ~ being positive and sufficiently small (depending on E). This implies that 
the interpolation sets for G~ form a relatively small part of the class of all non- 
uniqueness sets for G~. For other details concerning the Muckenhoupt condition 
see in w 9. 

Finally in w 10 the non-uniqueness sets for the general Carleman classes are 
discussed. The proofs here are given in concise form. They are analogous to the cor- 
responding proofs for the Gevrey classes. The mai nresult generalizes Theorem 1 to 
Carleman classes satisfying usual regularity requirements. 

w 2. Theorem 1. Proof of the necessity 

Suppose that E~g~. Then there is a tUnction f, fEG~, such that 

f~")lE--- O, n~Z+. 

Without loss of generality we may assume the constant C r to be arbitrarily small and 
Q: to be arbitrarily great (see (0.1)). We are going to show that the function 

fE(x) - - - Z ' l o g  If(x)[, xCR, 

satisfies the conditions (a), (b) of Theorem 1 if L is large enough. The Jensen inequality 
implies 

dx 

Let us verify (a). 



260 S.V. Hrug~ev 

Lemma2.1. For every pair (7, y) of positive numbers there exists a number 
n, n ~ Z+ , satisfying the inequalities 

1 = y .  1 
- - -  < �9 < e x p  - e x p  owy:' = 

and 
1 1 

Proof. Straightforward computations show that the minimum of the function 

t ~ y t . t  tl~ on the half-axis (0, + ~ ) e q u a l s  exp/-n--~Tv~ } and is attained at the 

1 1 1 1 +-2" has the point t= eY ~" It is easy to see that the integer rn, mE eY ~ 2 ' ey ~ 

necessary properties. 
Let x s  Considering the Taylor series o f f ( a s  we have done in w 0 (see [2]) 

and using the Lemma 2.1. we obtain 
1 

If(x)] <= C~" e ~ ' e x p  ~eQ}.e (x ,E) ,  (2.1) 
1 

Without loss of generality we can assume c s. e2~< 1. The condition (a) is obviously 
satisfied if L=eeQ}.  

To verify (b) apply an analogue of the already mentioned Lemma 4.3 by Koren- 
blum (see [15]). Let 

def ~ --log ]f(t)[dt,  x E R \ E  
aS(x) ~--Jctx (t__x)2 

The inequality I f t < l  implies a f>0 .  

Lemma 2.2. Let fEG~ and cs_<-I (see (0.1)). Then there is a constant c1>0 
such that 

}f(x)] <- e 1+ e~ .exp - q .  as(x) 1+~ . (2.2) 

Proof. Let x E R ~ E  and fix the point z = x + i y ,  y > 0 .  We will proceed as 
follows: using the partial sums (with variable number n of terms) of the Taylor 
series o f f  with center at z we obtain an estimate of I f(x)l. Then employing rough 

f(~)(z) 
estimates of the Taylor coefficients - -  and minimizing with respect to n and y 

k! 
we come to the assertion of the lemma. Thus we begin with the inequality 

if(x)l = .-1 Ifq')(z)[ y,,. " < .~k=o k! yk+Q}.  ~ (n~N). (2.3) 
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Let T~ be the circle centered at z with radius y/2. The Cauchy formula implies 

2* 
If (k) (z) l -<_ -~--  k ! .  max~er= [f(0l .  (2.4) 

Now we are going to estimate the maximum in the right side of (2.4) Using the 
Jensen inequality for the upper half-plane we obtain 

1 Imr ( - l o g  If(t)l)dt. log [f(r <= - - -TfR (Rer162 = 

We can replace here by fc,  because [f[<=l. 

letting y satisfy 
0 < y < O(x,E) 

elementary estimates of the Poisson kernel give 

Taking this into account and 

(2.5) 

Y log If(0] ~ - -~a , r ( x )  ((CT=). 

This inequality and (2.4) lead to an estimate of the Taylor coefficients in (2.3) which 
in turn gives 

-" 

If(x)] "<= 2" exp -- ay(x + . y ' .  n ~ (2.6) 

Here nEZ+, and y satisfies (2.5). It is clear that (2.6) is correct when n = 0  (for 
t / (x ) l<  1). 

Taking infimum in the second term of (2.6) (with respect to n) and using Lemma 
2.1 we obtain 

1 1 

{ y __1~ { ae~Q1 } (2.7) If(x)1 <= 2Texp --~--~ar(x) + ~ ]  + eTg exp 

Now it is natural to choose y as a root of the equation 

yay(x) = y-~. 
1 1 

If  0 < a  r a+~< 0 we can set y=[ay(x)] 1+~ in (2.7). Without loss of gene- 
1 iog2 1 

rality we may suppose Qj. to be sufficiently large so that say - ~ -  + eQ~ 187z 

Then we have only to put r = min 9-~ eQ} ' c~ 
1 

If Q<-[a1-(x)] 1+~ then we employ, the inequality (2.1) replacing 9 -~ by 

[a~-(x)] 1+~, This yields the required inequality. 
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And now we can deduce (b). Taking logarithms in (2.2) we obtain 

c lay(x)  T M  ~ - - l o g  ]f(x)l  + 1 + �9 

1 1 + - -  
2~ 

Without loss of generality suppose that cf. e < 1 so that 

and 

a f (x) 1+~ ~= - 2 l o g  [f(x)l 
r 

fE( t )  dt L 1:~ 
ctx (t--x)2 = asl+~(x)  <= 1 

C1 LI+~ 

- -  f ~ ( x ) .  

w 3. The equilibrium functions UE 

In this paragraph we give an equivalent reformulation of the condition (~) and 
show that to every set E satisfying (~) corresponds a function U E defined on R and 
behaving regularly enough. In w 4 we will prove that the outer function with the 
modulus exp ( -  U40 (on R) belongs to G~ and vanishes on E with all its derivatives. 

Let E be a compact subset of  the line R, [E I =0.  Define the linear operator 

TE mapping the space L 1 into the space of all functions (Lebesgue) measur- 

able on R: 

T ~ f ( x )  = f ,x f(t~) dt' x E R ~ E .  
( t - x )  ~ 

Lemma 3.1. Let U o ( x ) : [ Q ( x , E ) ]  -~ (xER) and suppose Uo6L 1 ~ .  

Then for every x, x C C E = R \ E ,  

[TEUo(x)] 1+~ > Uo(x). (3.1) 

Proof. Let x ~ l ~ : ( a ,  b). We suppose that the interval (a, b) is bounded, the 
case of  b = + ~  or a = - ~ o  being analogous. For every tqlx we have Q(t, l~)= > 

Q(t, E). Therefore 

1 d t  t '+  1 dt  
TFUo(x) ( t - -X)  2 ( a - - t )  ~ q-Jb ~ ( t_X)2  ( t - -b )  ~ 

(1 + t)~t ~ " 
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It is easy to see that the function ~ ~ f o  m 

for every ~C(O, 1) 

and 

dt 

(1 + t)~t ~ 
is increasing on [0, 1) so that 

dt dt 
fo ( l + t ) ~ t  , > fo (1 +t)-----~- 1, 

(1 1} 
[TEUo(X)] l+:t > max ( x _ a ) l + , ,  (b_x) l+d = Uo(x). 

Now we want to give a criterion enabling us to verify the non-constructive 
condition (c 0. We begin with the following remark. With no loss of  generality we 
may assume the constant C in (c0 is equal to one. Let indeed p = Q -f~, where the 
choice of the number Q will be made a little Tater (fE being a function satisfying 
(a) and (b) of  (e) with Cons t=  C >  1). Clearly 

1 
- -  < p(x), x E R \ E ,  
O(x, E y  

and 

[TEp] 1+~ "<= C . Q  1+, 

1 

Now we only have to put C- Q 1+, = 1. 
Let (as above) Uo(x)=o(x ,  E ) - "  and 

.p. 

for n~Z+,  [E I=0. 

~t 

Un+ 1 ---- [TEUn] l+~t (3 .2)  

Lemma 3.2. I. The set E satisfies (~) if and only if 

f U.(x) . T U ~ a x  = 0 0 ) ,  n - ~ + = .  (3.3) 

II. If  EE(c 0 there exists a function U~ such that U~>-Uo, U~CL 1 and 

UE = [r~ UE] i - ~ '  (3.4) 

Proof. The assertion II will follow automatically from the proof  of I. Suppose 
that EE (a). According to the remark preceding the statement of  the lemma we 
may assume that the constant in (a) is equal to one. If  U, <fE the Tg-transform of 
this inequality gives 

U,+I = [T~U,] 1+~ < [T~ f~] 1+~ < f ~ .  
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Because Uo<fn (see (~)) induction shows that 

U, < fr ,  n~Z+, 

and (3.3)is true because fE~LI(1-~x~]. 

If (3.3) is fulfilled we will verify (e) constructing the function UE whose existence 
is asserted in II. Note that the sequence (U,),e0 is increasing, i.e. 

U, <= U,+I, nEZ+. 

This was already proved for n = 0  in Lemma 3.1. Applying TE to the n-th inequality 

and taking its -th power we pass from n to n + 1. Using the B. Levi theorem 
1+~  

( dx d e f . � 9  
we conclude that the function u r =  llm,_~ U, belongs to L x / /, 
limit in (3.2) gives (3.4). 1,1 + x  ~ ) Taking the 

The equality (3.4) shows the analyticity of UE on every complementary interval 
of E. We will prove below that many "regularity" properties of U0 are shared by Ur. 

Lemma 3.3. The function U E is convex (i.e. U~>0) on every complementary 
interval of E and 

lim Ur (x) = + 
as e(x, E)~0 .  

Proof. The convexity of UE is verified by explicit computation of the second 
derivative: 

4~ (TRUE) ~+~ dt + U~(x) -- (1 +~)2 ctx (t_x)3 

1 UE(t) 
+ .(T~U~) 1+~ "fct~ (t_x)4 dt 

and the condition U~(x)>0 is equivalent to the inec~uality 

2 ( f  c Ur(t) )2 Ur(t ) Ur(t) dt 
3(l+ct) t~ ( t_x)3 dt < fCtx (t_x)2 dt ' fc t~ (t_x)4 

implied by the Cauchy--Bunyakovski inequality (I am grateful to E. M. Dynkin for 
this remark) applied to the product of functions 

t-~C-Or(t).(t-x)-l, t - , V u r q ) . ( t - x )  -2 

The last assertion of the lemma follows from the inequality U E > Uo. 
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Lemma 3.4. Let xEl~=(a, b), l~ being a bounded complementary interval of E 
and denote by x* the middle of the interval (a, x) or (x, b). Then 

U s (x*) < 417~. Us (x). (3.5) 

a+x 
Proof Suppose that x * -  . The equality (3.4) becomes. 

2 

".<'> ,,+:;- ,,}'+'. 
(x* -- t) '  (t-- x*)' 

t 

If  t>b then t - x * > t - x .  If  t<a then x*- t>-~  (x- t ) .  Using these inequalities 
A the last formula gives (3.5). 

Lemma 3.5. Let x C R \ E  and let c denote the point of E nearest to x. Then 

f x Us(t)dt <- Const. O(x, E). Us(x). 

Proof Let Ix=(a,b), c=a. Consider the sequence (x.)n_~o 
interval (a, x) defined by 

a+Xn (n>O). Xo = X, x , + l -  2 

By the Lemma 3.4 we have 

(3.6) 

of  points of the 

n ~  

Us(x ) < 41+" Us(x 1) < "< 41~-~ Us(x) 

The convexity of Us on (a, b) implies 

(n+l)~ 

us(t)  4 . Us(x), x.]. 
Therefore 

(n+l)~t 
x ~ x n = f2 Us(t)dt = 2,=of~.+lUs(t)dt < Us(x) 2 & o 4  x+~ (x,-x,+O. 

x--a O(x,E) 
On account of the equalities x,-Xn+a= 2,+1 - 2 , + ~  we obtain 

f ~' Us(t)dt <- 0(x, E)Us(x) ~ = 1 2  -nT~;= Const. O(x, E)Us(x). 

defz e ~ L  
Lemma 3.6. Let x ~ R \ E ,  o~x~x--o, x+6) ,  where 5 e(x, E). Then 

us( t )  
fs~\,~ (t_x)~ dt <- Const. Us(x) . (3.7) 

Proof Suppose first that l~= (a, b) is bounded. Assume for the sake of sim- 
plicity that x--a=o(x, E). Clearly lx\~O~=(a, x - f ] u [ x + 6 ,  b) Estimate now the 
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contribution of  the interval (a, x - 5 )  in the integral (3.7): 

f2_  u , ( t )  . _ _ 2 5  f2*u~(t)dt  <_- Const. Ug(x) 
( t -  x) 2 dt <- 0 (x, E) ~ 0 (x, E) 

1 
1 + - -  

--<_ Const. Ug(x) 5 

(here we have used Lemma 3.5 and the inequality UE> U0). 
Turn now to the contribution of ( x+  6, b). Let y denote the middle of  ( x +  3, b). 

It is clear that b - y < y - a ,  t - x > b - y  if tE[y, b]. Therefore 

1 

Ug(t) 1 fbyu~(t)dt < Const. UE(y) I+T 
(t_x)2 dt <: O(Y, E) ~ 

(see Lemma 3.5). Consider now themid-point  y~ of (x, b), and the mid-point Y2 of 
(Yl, b). Obviously y~(x,  Y2). It follows from Lemma 3.4 that 

if tE(x, y2). Thus 

Ug(t) <- 161u Ug(x) 

5 5 1 

(t--x) 2UE(t ) = 161+~ f z  dt l + a  dt < "UE(x) ' < 5 .16  . x ,  I+TU_('~ 
+~ ( t -x )~  - 

Putting all these estimates together we obtain the inequality (3.7) 
Finally consider the case of the unbounded interval lx. Suppose for instance 

that Ix = (a, + o~). The function U~ decreasing on Ix we have 

v (t) 5 
( t_x)2 dt ~ UE(x) f+~+~ dt _ _ _  ( t-x)  o(x, E) 

The integral over ( x - b ,  x) is estimated in the same way as above. The lemma is 
proved. 

Lemma 3.7. For  every x, x C R \ E ,  the function UE admits a complex-analytic 
1 

continuation to the open disc D~, centered at x with radius 6x=6=-~O(x ,  E), 
and (z~Dx) 

5 

~ I + 5  

U,(z) = uE(O dt j  , (3.8) 
( t -  z) 2 

5 5 

(1/3) 1+5. UL(X ) <= lUg(z)] <~ (5/3)l-+sUE(x), (3.9) 

5 

Re U E (z) > (2/3) �9 ('1/3) 1 + ~ f E (x) �9 (3.10) 
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Proof Elementary computations show that for z~D~, tECI~ 

where 
2 

[ ~ t - -  l ]  <:  - - .  Thus 
3 

1 1 
-- ~ )~t-x'Z" (t, (t-z)~ 

Refczx UE(t) dt = fclx UE(t) >-1 UE(t ) (t-- z)Z (t__x)'-------T Re(tdt-- "~" f c,x (t_x)2 dt. 

This shows in particular that the function 

u(z)  = fc,x v~(t) (t_z)~ dt 

has no zeros in D~, and so we can continue U E analytically using (3.8). The same 
inequality implies the left inequality (3.9). The right inequality (3.9) is deduced by 
carrying the modulus under the integral sign and using the estimate ](t[<5/3. 
Observe now (turning to the proof of (3.10)) that the function U]Dx takes its values 

2 
in the angle [argzl<00--arc s i n~  (because of the inequality larg ~t[<00). Thus 

R e g E ( z )  ~ IS~(z)l  cos  00 > tg~(z)l" > Ig~(z)l  

1+6 

w 4. Theorem 1. Proof  of sufficiency 

Let the set E satisfy (a). Consider the auxiliary function U E (defined on R) con- 
structed with the aid of Lemma 3.2. Set 

{ i UE(t) dt} (zEC+) (4.1) f(z) =exp  ~-fR t--z 

d e f .  
and define f(x)--~ hmr_~0+ f(x+iy), xER, (this limit exists almost everywhere 
on R because l f I< 1 in the upper half-plane). 

We begin by showing tha t f i s  analytically extendable across every complemen- 
tary interval of E. Consider the contour F consisting of two rays of the real axis 
and of the lower half of the circle centered at x(x~R\E)  with the radius 6x= 
1 ~(x ,  E) (fig. ~). 
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The function UE being analytically extendable into D~ (see Lemma 3.7) we have 

f(z)=exp{i fr UE(~) d~} (zED~) (4.2) 777 
This implies in particular that the function x - * f  (x) belongs to C = ( R \ E ) .  

(a, b) = Ix 

a x b 

Fig. 1 

Lemma4.1.  There is a positive constant Q such that for every x, x E R \ E ,  
and nEZ+ 

If(") (z)[ -<_ Q"- n !. g~(x) ~-exp - ~ UE (x) . (4.3) 

Now we will finish The proof of Theorem 1 admitting this lemma to be true. 
Consider the function Fdefined on R by the following equalities: FIE--  0, F I ( R \ E )  = 

f [ ( R \ E ) .  The estimate (4.3) and the equality limo(~,~)_~0 UE(x)= + ~ (Lemma 3.3) 
imply FEC~(R),  F ( ' ) ]E :0 ,  nEZ+.  But F = f  a.e. (recall that [E[=0, see (~)) 
a n d f i s  bounded in the upper half-plane and therefore coincides there with its Poisson 
integral: 

1 fa Y F(t)dt ,  z = x + i y ,  y > 0. (4.4) f ( z )  = -~ ( x _ t ) 2 + y  2 

This equality shows that f =  F everywhere on R and the continuous extension o f f  
from the open upper half-plane onto its closure belongs to C = (C2+) and is analytic 
in the half-plane C+. 

Taking the supremum in (4.3) with respect to x we obtain 

] f ( , , ) ( x ) [ ~ Q . . n t s u p y " e  ~ = . . n t . n  ~. 

2 ]1/~ 
Set Q s = Q . [ - ~ )  . 

for every z, Im z=>0 

y > 0  

Then by the maximum principle (see (4.4)) 

n 

[f~")(z)[ <= O}. n t.  n ~ 

and nEZ+.  It is clear that f~O,f(n~[E=O, nEZ+ Hence 
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Proof o f  Lemma 4.1. Fix x, x 6 R \ E .  We have already remarked tha t f i s  analytic 
in Dx. Let r > 0  and denote by C~ the circle centered at x with the radius r. If  

1 
r<6x=--;- ~(x, E) then 

3 
CrCDx and by the Cauchy formula 

n! f(~) d~' f(n)(x) = T-~i f c~ (C-x)  .+1 

and 

if ]z-xl<r. 
Now if there exists a number e, 0 < e <  1/5, such that 

8 n 
la.] ~ <-- 2 -" - l .U~(x)  (n~N) 

- -  ( 4 . 6 )  
U~(x) �9 

then (4.5) is proved. But we are going to prove a stronger inequality 

( 5 / n-1 1+ .-~1 
ta, l ~ const, i,~(--~-7~,E)) .U~(x) ~ (nCN) (4.7) 

which implies (4.6) for all sufficiently small positive (it is useful to remark once more 
that Ue(x)>(O(x,E))- O. Clearly 

(logf)(n) (x) i f UE (~) d~ 
n! (~ -x) .+  1 T e e -  

logf (z )  = logf(x)+~Y,,__> 1 an(z--x)" 

log [f(z)l ~ - U e ( x ) + ~ ,  m [anJ" rn 

Here (a,)n~ is the sequence of  the Taylor coefficients of  log f at x. 

whence 

n! 
lf(n)(x)l <= - 7 .  max lf(~)f. 

~Cr  

Consequently the required estimate will be proved if we show that 

max log ]f(~)I <= - 1 U~(x) (4.5) 
~ Cr Z 

for every r-1/L O < r < 8 ( U E ( X ) )  -11~, w h e r e  e is a small positive number (we will choose 
it later). Let us remark now that inclusion CrCD x is ensured by the requirement 
e < l / 5  (remember that U~(x)>(O(x, E)) -~, see Lemma 3.2). 

We begin the proof of  (4.5) by remarking that the function log f is analytic in 
D x and log [ f  I = Re log f. This and the well known formula 

z r "  u~(t) ctt logf (x)  = - U E ( x ) + - ~ ( p . v . ) j  R 
t - - x  

shows that log I f ( x ) ] - -  UE(x ). 
For zCD~ the Taylor tbrmula implies 
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(in this connection see (4.2)). Therefore 

1 + ~  1 

(see (3.9)). Further, using the important equality (3.4) and Lemma 3.6 we obtain 

UE(t) dt < l { f  c U~(t) UE(t) } 
lt_xi.+  = ~ z~ (t_x)2 dt+f,~\~,~ (t_x)2 dt 

a 1+il 
<_- 6-~ =71 ~UE[ (x)~+-~ + Const. U~(x) ~ J. 

Thus, 

Const. a+~ ~ [5/1+~ 
la, I <- 6~_-----x-'UE(x) + �9 .g~(x). 

The inequality (4.7) now follows by means of elementary transformations (we have 
to take in to account 5 6x=~(x, E) and (~(x, E ) ) , ' <  UE(x)). 

w 5. The restriction imposed on the complementary intervals. 
Proof of Theorem 2 

Consider an increasing unbounded function co defined on the half-axis [0, + ~o) 
and such that o)(0)>0 and 

f l.lZ ~ dx < + co ( 5 . 1 )  

Theorem 2". Let E be a compact subset of R, such that [E[ = 0 and 

Then E~g~. 

Remark. It is easy to see that if co(x)=(max (1, log x)) 1+~ (x->_0) then (5.2) 
is equivalent to (V~) with a corresponding e, e>0. The method of S. A. Vinogradov 
can be used to prove this theorem (stronger than Theorem 2). 

Lemma 5.1. Let E, be a compact subset of R, EE (C~), and T~ the operator 
corresponding to it (see w 3). Suppose there exists a constant C, C>0,  such that 

l+xZ dx <= C JR f [f(X)ll+x z dx (5.3) 

for every f, f E L  1 ~ , i.e. Te is of strong type 1, -i-'+--ff " Then Eqg, .  
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Proof. Use Lemma 3.2 (assertion I) and Theorem 1. Let (U.).=~o be the sequence 
from w 3 and set for the sake of brevity 

Then 

= : l / ( x ) l  dx 
Ilfl[  d R l + x  ~ " 

. . . .  ( ~ )~ : .  ii ( " ) ,  IIU.+lll = II(TEU.)IT~II <= CIV~IIU.Ifi-4-s <= CI~-~ + T-4g -1 Tg7 

But 

Hence 

and E~e~ 

( , ) ,  ( ~ )~ ( , ) o + 1  
<=C 1 T ~ + ~  + " + ~  "llU01l 

1+~  t- + . . . +  < ~  and lirn = 0 .  

IIu, ll = O(1), n -~ + co, 

(by Lemma 3.2, see (3.3)). 
Define now the auxiliary operator SE: 

S E f ( x )  d~f Q(x ,E)  
co 1 

where f E L  1 ~ and x E R \ E .  

Ll f  dx ] Lemma 5.2. If  SE is continuous in the space (1--~x2j and EE (5.2), then 

Proof. We will prove that condition (5.3) of the preceding lemma is satisfied. 
l + e  

Apply the H61der inequality with the exponents p =  , q = l + e .  We have 

:. . {+)l ,+. .x 
l+xZ  = ISgf(x) l  1+~ �9 co . l+xZ  

dx 11u 
= [Tco tTJJ l--~f 

The integral in the second bracket is finite because of  (5.2). The lemma is proved. 
f T ~ 

Proof of Theorem 2. I t  is snf~cient  to  p r o v e  t h a t  S / ~ f E L I /  a x  I fo r  every non { l+x  o) 
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negative 

identity: 

function f fELl{1 + d - ~ )  

s. v. Hru~ev 

(see Lemma 5.2). We have the following obvious 

f R  S~ f ( x )  dx 1 ~ (x, E) dx (5.4) , +x= = A s ( ' ) " ' L , ,  (t_x)=" ( , )'l-f-x, 

For the sake of brevity we denote by g(t) the interior integral in the right side of 
(5.4); The set E being compact it easy to see that 

Let tElt=-(a, b). Then obviously 

1 0 (x, E) dx 
1+" =: ,+x .  

Itl-~+~o. (5.5) 

1 Q (x, E) dx 

~ l+x  
(5.6) 

Estimate now the first integral in (5.6) (the second is estimated analogously). Note 
that ~(x, E ) < x - - b ( x > b )  and so ~o-1(0-1(x, E))<oJ-~((x--b)-l) .  Thus this integ- 
ral does not exceed 

+ ~ dx = I(b) < § ~ .  

It is clear that the function b +I(b) is continuous. The compactness of E implies ("x / 
supt~E I ( t )<  + ~ and gELS(R). This, (5.5) and (5.4) prove that SEfEL ~ ~ . 

We finally give S. A. Vinogradov's proof of Theorem 2. This proof is interesting 
in itself since it exhibits the connection of the problems under consideration with 
distortion problems for conformal mappings. The proof is published with the per- 
mission of its author. 

Let 6 be an increasing bounded function defined on R+ such that 

a(0) = 0; 

a(t) dt < + ~ ,  (5.7) 

0 ~ 6 ( y ) - 6 ( x )  <= 6 ( y - x )  if 0 < x ~ y, (5.8) 

lim t6'(t) _ O. (5.9) 
,~o+ a( t )  
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- 1  

Remark .  According to previous notations ~ (x) . If  we only want 

( l ' l - l - e  
to prove Theorem 2 then we may choose 6 so that / , for 
all small values of  x. ~ x )  

Now we will construct an auxiliary domain G containing the lower half-plane 
Im z>0 .  We define G as the subgraph of  a non negative function A n vanishing 
exactly on E. We will seek A E in the form 

= O(t )d t .  

Set 0 ] E = 0 .  Let l be a bounded complementary interval of E and let F the three- 
point set consisting of the end-points and the mid-point of l. Set ~ (x)= 8(0 (x, F)) 
if x belongs to the left half of l, 0 ( x ) =  - 8 ( 0 ( x ,  F)) if x belongs to the right half 
of l. It is clear that 0 [l is continuous, that its integral taken over I is equal to zero 
and that the continuity modulus of  011 does not exceed the function 8 (verifying the 
last assertion one must use (5.8) and the symmetry of  0]l). On both the half-bounded 
complementary intervals we define 0 so as to preserve the mentioned properties. 
The graph of  A E is represented on the figure 2 below (in the case when E consists of 
four points). 

Fig. 2 

Lemma 5.3. Let w be the conformal homeomorphism of  the upper half plane 
onto G. Then w is smooth up to the boundary and is distortion-free, i.e. 

clw(J) l  <= lYl ~ c lw(J ) l ,  c, c >  o, 

for every interval J, J c  R. 

Proof. The continuity modulus of A~ does not exceed the function ~. It is easy 
to see that the angle formed by the tangent to the boundary 0G of  G and the line 
R considered as a function of the arc-length parameter on 0G has a continuity modu- 
lus with the same estimate. The lemma now follows from the Kellog's theorem [17], 
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p. 411 (remember that 6 satisfies (5.7)). Strictly speaking this theorem is proved in 
[17] only for 6(t)=t ~, 0 < e < l ,  but the proof is easily generalized to the general 
case (see [18]). 

clef x 
Lemma 5.4. Let eE(0, 1) and A(x)~f~6( t )d t ,  x~-O. Then 

fo ~ dt x A,(t--- ~ ~ (1--ct) -1 , x ~ 0 + .  A (x) 

Proof. Use de l'Hospital's rule twice and apply (5.9). 
The proof of Theorem 2. Let W be the inverse of the mapping w (Lemma 5.3). 

Set E * =  W(E) and construct the function A~,. Consider the outer function f0 in 
the upper half-plane which is defined by 

1 

log tfo(t)l--  (A~,(t)) ~, tER, ~E(0,1). 

Then f = f o o  WE G, (in the lower half-plane) and vanishes with all its derivatives on E. 
Indeed if (EOG and (* is the point of E nearest to ( (with respect to 0G) then 

= exp -- A ( IW(O- �9 ~ exp - A ( [ ( -  ~*[- Const.)" 

where A(x)=fo6( t )d t  (see Lemma 5.4). If  now x E R \ E ,  then by the Cauchy 
formula (n-> 1): 

n! f ( O  n!  I / ( 0  
[f(")(x) ]= ~ foo (r d( <= -~--~. Const..  sup [ 

n! 
<-- 2---~" Const. �9 sup I~-xI-C"-x) "exp [ - ( A  (I~-~*t �9 Const.)) -~] 

~EO~ 

-~ n!. (Const.)". sup exp [ - ( A  (l(-~*t)" Const . )- ' ]  
- 2rc ~oG (Const.)"-l(A(!~--~*])) "-I  

_-< (Const.)" �9 n ! sup t - " -  exp ( - t -~) =< (Const.)" �9 n !. n" . 
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w 6. Cantor sets. Theorem 3 

Let (1.)._--0 be a decreasing sequence of positive numbers such that 

~'~=0 2"/, = 1. (6.1) 

Remove the open interval of length 10 centered at 1/2 from the segment [0, 1]. 
Denote by E0 the union of two remaining segments. Remove from each of them the 
concentric interval of length/1. The union of the four mutually disjoint remaining 
segments is denoted by El. Condition (6.1) makes it possible to continue this proce- 
dure indefinitely. The union of the 2 "+1 closed mutually disjoint segments arising 
at the n-th step (we call them "the segments of the rank n") will be  denoted by E,. 
The open intervals of length l, removed at the n-th step will be called "intervals 
of the rank n". The set 

E=AE. 

is called the Cantor type set corresponding to the sequence (/.)._->0. It is obvious that 
[E I =0. In this paragraph we will prove 

Theorem3'. There is a sequence (I.),,_> 0 of positive numbers satisfying (6.1) and 
such that the Cantor type set E corresponding to it has the following properties: 

a) EEg~; 
( 1 )~-~ 

b) ~+=~ 2nzj - , [ iogTI  < +oo 
\ t l /  

for an arbitrary e>0.  
The proof of the theorem will be preceded by two lemmas. 

Lemma 6.1. There is a sequence (1.)._> 0 of positive numbers such that: 

( i ) / .> / .+1 ,  n6Z+ ; 
(ii) the identity (6.1) holds; 

(iii) there is a constant C>O for which 

Z~=,+12klk<C'2"l , ,  nEZ+;  

(iv) there is a eonstant a > 0  for which 

1 1 v ~ 2kp-2 ~k= ,+ l  k > a l o g / . - -  2,+111-~ 

Proof. Let ,4~be a large positive integer. We define 1, by means of the equation 

1 
" P-  ~ (6.2) 

- n  - -  n l + ~  
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if n > ~ .  It is possible to choose the values /0>/1>.. .  > I  u satisfying (6.1) (because 
f 1% 

of 2 " 1 , , = o 1 1 1 ,  n - - , -+~) .  Then conditions ( i )and (ii)will be satisfied. For n > X  
k - - ]  

we have 

2",+1l',+1 l',+___..~1 1 n+l  l+a  n l+e  1 

2 " l ~  - 2  l, = 2  a - ~ . ( n + l )  1 - ' . 2 1 - ~ . n 1 - ' < 2 . 2  ~ - ' < 1 .  

Thus (iii) holds also. Let us verify (iv). Suppose n >X.  Then 

1 = 2 k l  1 - a  1,/1 + 7 l I I1+~ f n ~  
9",+111-e ~ k = n + l  2 " 2 k = n + l  k l + e  :> - ~ "  d x  - -  vn ~-~ 1 X I + ~  

But (6.2) implies 

i _ o 

25 (n+ l ) "  25 ( n + l )  

1 log  2 I + 5 
l o g ~ =  1--5 " n +  l---i-z-~l~ 

1 - - 5  
Therefore we can take a =  -if .APis sufficiently large. Such an a satisfies 

45 log 2 
(iv) for all n > ~ .  Diminishing a if necessary we obtain (iv) for all n, n~Z+.  

Lemma6.2. Let (C,)',~0 be an increasing sequence of positive numbers and 
suppose the function f satisfies 

f (x)  _--> C .  

for every x from every interval o),, of rank n. Then 

for all x, x609",. 

1 4 ~  1+,~ " 1 ""1+~ 1 

[ T e f ( x ) ]  1+~ > �9 C', �9 log " l~ 

P r o o f  Let A, be the segment of rank n neighbouring co', by the property (iii) 
we have 

because Io).l=l', and 

1 
1A,,I < 2 - " - 1 . C . 2 n . l ,  = - ~ C . l , ,  

1 
IA,[ = 2,+1 "Z~'=,+I 2klk �9 
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Thus for xEeg. and tEA. 
2 

( t - - x )  2 <: 1+ I. < 2 2 

because without loss of  generality we may assume C>2.  Consequently for all x, 
xEo)., 

f ( t )  1 
T e f ( x ) ~  f,aa dt >: (t_x)----~ C21-----~fa f ( t )  dt. 

Estimate the last integral from below. It equals the sum of integrals taken on all 
intervals of rank > n  which are contained in A.. Inequality (6.3) being true for all 
intervals of  rank n we have 

1 c~ 
f a f ( t )  dt >-- 2.+1 Z~--.+I 2klk'"~- k " 

Using the monotonicity of  the sequence (C.).=>0 and property (IV) we obtain the 
inequality 

1 1 1 
T~f(x)  > C--- 7 �9 p+~ �9 C . .  a . log 5- 

t .  

for every xEco.. All that remains now is to take the 
of the last estimate. 1 + 

-th power in both parts 

Proof o f  Theorem 3". 
sequences (C.,i).~o. Let 

Note that for X E O )  n 

Define by induction the family i-*(C.,i).>=o, iEZ+ of  

C.,o = 1, nEZ+. 

1 1 
v 0 ( x )  = - -  

~(x ,E)~  > ~ .  
Set for i > 0  inductively 

" a . l ~ t "  / - v l + c t  

C., i = �9 log " '--.,i-a 

It is obvious (see Lemmas 6.2 and 6.4) that 

C , ,  
U,(x) > ' 

for every xEw..  The equality (6.5) implies 

log�88 

(6.4) 

(6.5) 
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Since the function U majorizes every Ui we have 

1 f a 1 "l ~ 
U(x) >: 

Consequently 

(~ ( r  �9 ~ ' ~  9 , , l t -~  log ~U.x.a,:= ~ ~.=o-~. 

But the series to the left diverges because 

9,11- �9 Const. 
~ - -  n - ~ +  oo. - . ,  log n 

Therefore E ~  by Lemma 3.2. On the other hand it is easy to see that condition b) 
of Theorem 3 holds. 

Unfortunately we do not know whether E ~  or not, if 

Z l~ -~ log < + co. 

w 7. C o u n t a b l e  se t s  w i th  a s ing le  l imit  po int  

Let the decreasing sequence (x,),~ 0 of positive numbers tend to zero and consi- 
der the compact set E =  {0, x0, xl . . . .  }. We number its complementary intervals as 
follows: 

dcf . A_~. ~ ( - -  o% 0), A + ~ = ( x 0 , +  ~), 

A dcf .~- - (x , ,x ,_O,  n~N. 

The length I .=l , (E)  of  the interval A, (nEN) equals X , _ l - X . .  Suppose that the 
sequence (I,) satisfies the following conditions 

0 < t.+l <-- I. (n~N), (7.1) 

li__mm n~lX, -~ >,0,  (7.2) 

li.._m__m 12n > .~+~ T~ 0, (7.3) 

~'n=l I, ~-" < + oo. (7.4) 

T h e o r e m  4'. E~g , .  

Remarks I. Conditions (7.1) and (7.3) require that the sequence (l,) tends to 
zero with a certain regularity while the condition (7.2) restricts the rapidity of con- 
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Vergence (from above). If /,a-==0(n-2), then E~8= by Theorem 2. However the 
method of  proof  of  Theorem 4 does not allow to drop condition (7.2). 

2. Since conditions (7.2) and (7.3) being purely technical the following assertion 
seems to be true. 

Conjecture. A countable set E with the single limit point does not belong to ~ 
if and only if EE (C=). 

Now we are going to deduce Theorems 4 and 5 from Theorem 4'. 

Proof of Theorem 4. Construct the set E so that for every n, n ~ N, 

1 i~-~= 
n log (1 + n) (log log(2 + n)) 2" 

It is easy to see that (7.1)--(7.4) hold and thus E{E, .  Moreover 

1 1 
log-~, ~ 1 - c~ log n, n -~ + co. 

Therefore for every e, e >0,  we have 

Z~--1 l, 1-~ log = + ~ .  

Remark. Let p ~ N and p log x ~ log .,. log x. Then for an arbitrary p there 
p times 

exists a set E, E~i~,  such that 

Z2=1 11-= p log-~, = + oo 

for every  5, 5>0.  The proof  requires only obvious modifications of  the formula 
defining the sequence (lnl-=),_~l. 

Proof of  Theorem 5. Let E1 be the Cantor type set constructed in w 6 and denote 
by m, the length of  interval of rank n. If n is large enough then 

2". m, a-~ = n-(1+~) (7.5) 

(see (6.2)). Set l,=mk for 2k<--_n<2 k+l (kCZ+) and construct the set E~ with a 
single limit point such that l,(E~)=l,, nEN. We have E~Eg, by Theorem 3". It is 
clear that E~ and E= have the same family of  lengths of  complementary intervals 
(counting multiplicities). We have only to prove that E ~ g , .  To do this we check 
conditions (7.1)--(7.4) with:respect to (/,)n_~l. The condition (7.1) obviously holds 
and (7.4) follows from (7.5). I f  now 2k=<n<2 k+l then 

n21~-= >_ 2am~'= = 2 k �9 k-(l+=) 
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and 

1 

= 

I n m k  

l+ct 

which implies (7.2) and (7.3). 
The remaining part of  the paragraph is devoted to the proof  of Theorem 4' 

which consists of  verifying the condition (e). Define the auxiliary function 

f~(x)= 

Sat 

max 1 ,0 (x ,E)  if x < 0  

/ 0(x ,E)  -~ if 0 < x < x 0  

[max(l, q(x,E)- 9 if Xo < x 

and show that for every x, x~R\E, 
1 + !  

TE fE(x) <= Const. fr(x) (7.6) 

Then E(g~ will follow from theorem 1 because fE (x )~o(x ,E)  -~ and fEC 

L e m m a  7.1. The inequality (7.6) holds if x < 0 .  

Proof. It  is sufficient to prove (7.6) near the origin and near infinity because 
( -  co, 0) c~ E =  0. If  x-~ - ~ then 

l + !  
l i m T e f E = 0 ,  l imf~(x) " = 1 .  

Let now x ~ 0 - - .  Then 

TEfE(x) = f+= i t ( t )  
(t--x) ~ - - d t  <= O(x,E) 2 f r ( t )d t  + +~ fr(t)t 2 dt 

1 

1+ 1 

It  remains only to notice that f r  (x) ~ = 0 (x, E)-2  if - 1 < x <  0. 
Consider now x > 0 .  Estimate first the contribution of the interval A _~ to the 

integral T E f  n. 

Lemma7.2. I f  x > 0  then 

1 f~ ~f,(t) = 1+- .  (t_x)~ dt < Const.f~(x) 
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Proof. Elementary computations show that 

fo_  f~(t) dt f l  o dt + 1 dt Const. 
i = f d  ( t+x)~ ~- 2~ 

1+ l + a  ( t-x)~ (t+x)~t 1+~ x 

if  0 < x < x 0 +  1. If  x~=xo+ 1 then the required inequality becomes obvious, because 
1+{ 

in this case fg(x) _= 1. It is therefore sufficient to show that 
2a 

- 1 - - -  
x 1+, ~= Const. 0(x, E ) -  1-~ (0 < x < x0+ 1). (7.7) 

If  xo<-x we can obtain (7.7) by choosing Const. sufficiently large. Suppose now 
xCA, (n~N) It is then obvious that 

,~k>n Ik < X and I ;  1-~ < O(x,E) -1-~. 

Consequently (7.7) is implied by the inequality 

2a 
1+ 1+~ 

l~ +" =< Const. (Zk>./k) (hEN). (7.8) 

Condition (7.3) implies 

Zk>n lk > Z~"=,+llk >- Const. nl, 

and (7,8) follows from the estimate 
1+ 2a 

.,P+~ <= Const.(nl,) 1+~ 
which holds because of  (7.2). 

So we only have to prove that for every x, x > 0 ,  

f~(t) dt < Const .f~(x) 1+{- +\,~< (t_x)a = , (7.9) 

The proof  of (7.9) is an easy matter if xEA=. Therefore we will assume that 0 < x <  
<Xo. We recall that in this case 

f~ (x) = 0 (x, E ) -  ~. 

The next lemma allows us to estimate the above integral over a bounded com- 
plementary interval of  E. 

Lemma 7.3. Let A =(a,  b) be a complementary interval of  E, l = b - a ,  x~A. 
Denote by d=d(x) the distance from the point x to the interval A. Then two positive 
numbers C1, C~ exist, depending only on e, and such that 

/ ('~"11-~ } SA ~ f f / / 1 - - l /  cl < e(t, E)  -~ 
dl+, min 1, (t_x)2 dt <= rain 1, = d ( I , d )  J" 
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Proof. Without loss of generality we may assume A =(0, I), x<0 .  Denoting 
the integral to be estimated by I(x) we have 

I (x) >- ftl2 dt 1 fz/za dt 
=,t  o t~(t+d)2 = -di--~d o t~(l +t2)" 

It  is also obvious that l (x)  does not exceed the integral in the right side of the prece- 
ding inequality multiplied by two. Now the completion of the proof is an elementary 
task. 

Let xEA,  (hEN). Lemma 7.3 implies that 

f ~  f~(t)  <= Const. 
.+_1 ( t - x )  "----'----~dt e(x,  E) I+~ 

def A (we assume here Ao=:_~,. First we discuss a finite family of intervals 
Ak ( k = n - 2 ,  ..., 0)and estimate their contribution to the integral TEf  E. By Lemma 
7.3 we have 

n ~ 2  ~:~ Jn  x--,k=o f k f t ( t )  n-2 1 
~'k=o (1.-1+... + Ik+01+" ( t - x )  2 dt <= Const. = 

t rl--2 1 = Cons "~Y~=o l~+~ 
1 Const. 1 

fl._l+ + 1k+111+  
1, "'" -~ -~  ) 

(see (7.1)). Since the inequality 

exceed 

Finally we estimate the sum 

L 
O(x, E) ~ ~ holds on A, this contribution does not 

2 

Const. Q(x, E)-1-% 

S.r A(t) dt. ( t - x )  2 
It follows from lemma 7.3 that 

l[-~ 
S,(x) ~ Const. ~k> ,+ l  ( lk_l+., .+l ,+Oz , 

because the length of Ak is less than the distance from x to A k if k > n + l ,  Divide 
the last sum into two parts and estimate each of them separately. Using (7.3) we have 

2n 2n 

[' lk-1 + + l"+z'12 

Const. 1 Const. 
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And 

l~- ~ l~- ~ 

Z k > 2 .  (lk_ 1 ~_ , , ,  ~_1n+1)2 = Zk>2n 12n [ Ik-l +. . .  + l,+~]2 t--u -L-.) 
Const. Const. 1 Const. Z I-~<: _ _  

n ~1.2 " k > 2 n ' l k  = "nll+~ n 21~-~ <= -,11+~ " 

(the first inequality depends on (7.3) and the last depends on (7.2)). The proof of 
the theorem is now finished. 

w 8. Sufficient conditions 

We have already seen that the testing of the condition (~) is not an easy matter. 
It is natural therefore to sacrifice the generality and seek simpler sufficient conditions. 
This is partly done in w 0 and w 5. Here we give some sufficient conditions expressed 
in terms of the maximal function of  Hardy and Littlewood. On the other side this 
will enable us to estimate the gap between conditions (C~) of Carleson and (V,) of 
Vinogradov. Moreover we will give a new interpretation of the condition (PS2) 
of Pavlov and Suturin (see w 0). For technical reasons it will be convenient here to 
replace the half-plane by the disc. Now G~ will stand for the Gevrey class in the open 
unit disc D, T for the unit circle, m for the normalized Lebesgue measure on T. 
We will identify T with the group R/2rcZ and use symbol x to denote the identity 
map of R/2nZ. Let K ( t ) = t  -~ (lt[=<n) and continue K 27r-periodically onto the 
whole axis R. For fCLI(T), f->0, we consider 

= :(.),. 

the Hardy--Littlewood maximal function. The symbol f*  will be used to denote the 
non-increasing rearrangement of a non-negative function f .  Recall that f *  is defined 
on the segment [0, 1] and is decreasing there and that for every 2, 2_->0, 

m { f  ~_ ).} = sup{ t : f* ( t )  >- 2}. 

In the case of  the circle the condition (cr gets the following form: 
There is a functionfE, fECLI(T), such that 

(i) p ( x , E )  -~ _<-f~(x); 
(~) 

(ii) f c,. K ( x -  t) fE(t)  dm (t) <: Const. fE(X) 1+7 
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A well known estimate of the Poisson integral (see [19], p. 77--80) shows that 

0 (x, E).  fclx K ( x -  t ) f  E (t) dm (t) ~ Const. MfE (x). 

Using this inequality we can weaken (00 to (~*): 
There is a function fe,  feEL1(T) and fe~-O such that 

1 

/lifE(x) <= Const. Q(x, E).f~(x) 1+-; (~ *) 

Notice that the inequality fE(x)_-->Const. ~(x, E) -~ follows from (cz*) and from the 
trivial estimate fe<=d/CfE> and so (~*)=~(~). 

Replacing o~(x, E).fE(x) 1/~ by one in the right side of (~*) we obtain the 
condition (0~**) which obviously implies (7"): 

There is a funct ionfe,  fEELI(T), such that 

(i) 0 (x, e ) -  ~ ~ fE (x); 

(ii) dgfE(x ) <= Const. f~(x). (~**) 

Our first aim is to show that (V,)=~(~*). Let/7o be the decreasing rearrangement 
of  the function x~o(x ,  E) -~, E~={tET:Q(t, E)_<-5} and co the function from w 5 
satisfying the condition (5. l). 

Theorem 8.1. Each of the following conditions: 

�9 co dm < + ~  (8.1) 

1 

"mE~" '1+~ 
- -3 -  < + ~ ( 8 . 3 )  

implies EE(~*) (and consequently E~g~). 

Remark. It is easy to see that (8.2) and (8.3) are equivalent. Moreover (8.1)=~(8.2) 
(see the proof  of  Lemma (5.2)). It is therefore sufficient to prove that (8.2)=*EE (~*). 

It will be convenient to divide the proof  of  the theorem into two lemmas. 

Lemma 8.1. The inclusion EE(~*) holds if  it is possible to find a decreasing 
function F defined and summable on (0, 1] and such that 

i" , . , ~ / l  . 1 + ~  

[Fo(t).'7-JOF(S)dS j =F(t) (tE(0, 1]). (8.4) 
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Proof. It is easy to see (compare with Lemma 3.2) that EE (cC) if and only if 
the sequence (f.)._~0: 

d e f  a " - -  fo(x)~- ~(x ,E)-  , f n + l d e f [ f l / = ' J / l f n ]  1+~ (nEZ+) (8.5) 

is bounded in L I(T). It is well known (see [20]) that 

and 
( f  .g)* <=f*.g* 

9 ( f )  * =  9 ( f* )  

for an arbitrary increasing function ~0. By the theorem of Hardy and Littlewood 
(see [20]) 

(d//f)*(t) ~ 2 f~f*(S)dS. 

Using the definition of the sequence 
conclude that 

1 + 6  

::-~F:), f*+,(t)=[Fo.2 fJ*(S)dS] . 

The function F decreases and so 

(f.)._~0 and the facts mentioned above we 

1 t F(t) ~= ~- (~ + F(S)dS. 

(8.6) 

Thus it follows from (8.4) that F~<=F. From this and (8.6) we deduce inductively 
that 

f*  ~ 2~F (nEZ+). 
Hence 

f+ foam = f2f.*dt <- 2= f~  F(t)d,. 

Lemma8.2.  The equation (8.4) admits a decreasing solution F, FELt(O, 1), 
if and only if 

fg Fo 1-4~ (t). t 1+~ dt < + co. (8.7) 

Proof It follows from (8.4) that 

F(t) 

[faF(s)as] 
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Integrating this equality from to to t (O<to< l )  we obtain 

at= f 
0 O~ 

1 1 

= (1 +0 0 ( f l  F(S)NS)I+~ +oO{fo o F(S)dS) 1+~ " 

Therefore 
! / 1+~ 

fo F(S)dS = (f~ F(S)dS) 1+" 1 , 

Hence the summability of  F implies (8.7). Suppose now that (8.7) holds. Differen- 
tiating formally the equality (8.8) we define F by means of  the formula 

{ 1 t 1+~ / 1+~. 
•(t) = 1 - -~ f~  (8.9) 

The function F is obviously summable and satisfies (8.4). T o  prove that F is dec- 
reasing notice first of  all that F is continuous on (0, 1]. This follows from (8.9) and 

T M  

from the continuity of  Fo. The function t ~  decreases on (0, 1]. Thus 

F ~  - -  /~,  and consequently (8.9) implies the inequality 1 + c~ 

lim F(t) = + ~. 
t ~ 0 +  

Suppose F is not decreasing. Then two values q ,  G, 0 < t l < t 2  exist such that 

F(q) < F(t2). 

Without loss of  generality we may assume that 

F(tl)--- inf F(t). 
0 < t < t ~  

Since F is continuous it is possible to find for every y, F(q)<y<F(t2), numbers 
ay, ay<h, and by, by,>tl, such that 

F(ay) = F(by) and F(t) < y 

for every t, r by). But F 0 decreases and F satisfies (8.4). Hence 

l_l_ f .~  F(S)dS <= ~-~--f f~" F(S)dS 
a y  , l  y 
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and so 

~T f o ~ 1  f]" F(S)dS < y. ~ F(S)dS <= b , - a ,  y 

If now y ~ F(tl) then % f a, a<-tl. Therefore 

1 fg  F(S)dS <= r(tl).  

But this is impossible because F(S)>=F(ta) if SE(O,a), and F(S)>F(tl), if S 
is small enough. This contradiction completes the proof of the lemma. 

Corollary. (V=)=~(=*). 

Proof. Set co(x)=(log x) l+~ (~>0) in (8.1). 
The following example shows that (~*) does not follow from (=). 

Example. Let E be the set with a single limit point constructed in w 7 and let 

Ci 
l~-~= n(log(l+n))l+=, hEN, 

where the constant C1, Cx>0, is defined by the equality 

Z,_~i 1, = ~. 

Denote the image of the set E under the standard map R ~R/2rtZ by the same letter. 
It is not hard to see that 

C2 -<_ _ _ 1  (8.10) 
x [ log_~)  1 + ~ -  ~(x, E) ~ 

(Q>0)  if 0 < x < r t  (mod 2~)., It follows from Theorem 4" that E~g,.  We have 
to prove now that E~ (e*). This will be shown if we prove that 

lim f f ,  dm= + 
n~+~d  T 

(the definition o f f .  is given in (8.5)). Using (8.10) and the definition offa it is easy 
to verify that 

C2 
A ( x )  = > 

From this we deduce inductively that 
c~ 

fn(x) ~ nEN. 
{ 2r~] l+='(~-g=)" ' 

2x l o g - ~ j  
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It remains only to notice that 

f o  dx 
27r 

x l o g - -  
x 

_ _  -- ~_o~. 

In conclusion we will discuss the condition (PSi). Remember that EE(PS,)  
(see w 0) if for every x, x E R \ E ,  we have 

J r c ~  1 dt < Const. (PSi). 
( t - -x)  2 Q(xt, E) ~ - Q(x, E) 1+~ 

Here it will be convenient to return again to the case of the half-plane. 

Theorem 8.2. Let E be a compact subset of  the real line R. A function f ,  )rE G,, 
with the property 

1 *)  
- l o g  l/(x)l ~ ~o(x, E)  --------~ (8.11) 

exists if and only if EE (PSi). 

Proof. If EE(PS~) then the existence of an outer function f~G~, satisfying 
(8.1,1) is proved in [10] (or can be deduced from Theorem 1). The inverse follows 
from Theorem 1. 

w 9. Condition (ct**), the Muckenhoupt condition and interpolation 
sets for Gevrey classes 

9.1. The Muekenhoupt condition. Let W, 0 <  W -< + %  be a measurable func- 
tion on the circumference T and let LP(W,T) be the space of all func t ionsfwhose  
p-th power is summable with the weight W: 

fT If[" Wdm < + ~ .  

Consider a linear (or even sublinear) operator T in the space LP(W, 1") defined 
on a dense set. Condition (Ap) we are dealing with in this section turns out to be 
necessary and sufficient for T to be of strong type (p, p) provided T belongs to 
a suitable class of  operators (for instance T is the Hilbert transform or the H a rd y - -  
Littlewood maximal transform). 

This fact was first discovered by Muckenhoupt  in [16] for the Hardy--Li t -  
tlewood maximal transform. Following Muckenhoupt we say that the weight W 

*) The symbol a~b means that there are numbers C1, C2 > 0 such that Cl.b =~ a~ C2.b. 
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satisfies condition (Ap) ( l < p < + ~ )  if there exists a constant Cp, Cp>O, such 
that for every interval/ ,  I =  T, the following inequality holds 

) (.~_f[ 1 )p--1 

In the case p = 1 this condition becomes 

1 
7-i-c,~ f , Wdm <= C1. ess infW(x). (A1) 
i / i  v x ( l  

It is easy to see that (AO is equivalent with 

~W(x)  <= Cl. W(x) 

for almost all x, xET (may be with another constant C~, C1>0). We will use 
(As) in this last form. 

By the Minkowski inequality (Ap)=,(A~) if r>p. Muckenhoupt found the 
highly nontrivial and deep result that (Ap)=~(Ap_~) for a positive e, ~>0, if p > l  
(more precisely: for every WE(Ap) there is a positive number e such that WE(Ap_,)). 
We need two main lemmas of the article [16] (see Lemma 3 and 4 respectively). 

Lemma A. Let l<=p< + ~ ,  W_->0, 1 be a fixed interval, 1 c T ,  such that for 
every interval J, J = / ,  

Wdm 1 W p--1 dm ~ K. 

Then for every S, 0<  S< [I] we have 
20 

f s  o W*(t)dt ~- 20 K3p-I SW*(S) 

(recall that W* denotes the decreasing rearrangement of the function W [I). 

Lemma B. Let h, h_->0, be a decreasing function defined on (0, l) and suppose 
there is a constant D, D > 1, such that 

f s  h(t)dt <= DSh(S) 

for every S, 0 - < S < ~ .  Then 
20 

D 
if l<=r< 

D--1 

+1 ~l/r 
f~hr(t)dtJ <- 

20 1 z 
{1-- D - 1  ]a]r " T f o  h(t)dt 

r D ) 
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9.2. Conditions (C~+,) and (~**). Let U, 0 <  U <- + co be a measurable function 
on the circumference T. 

Theorem 9.1. A majorant W, W>=U satisfying (A0 exists if and only if 
UELP(T) for a p , p > l .  

Proof. Suppose such a majorant exists. Apply Lemma A to the function W and 
to the interval /, I - -T,  and then Lemma B to the function h, h-- W*, and to the 
interval (0,1). Hence W (and U) belongs to L p (T) for a p, p > 1. 

Suppose now that U6LP(T), p > l ,  and let 

~ f  IIf[lp wT If[~dm) alp 

be the standard norm in L p (T). By the theorem of Hardy--Littlewood on the maxi- 
mal function (see [19], p. 15) 

[Id/fll, < = Cp IIfllp 

for every f ,  f6LP(T). Define the sequence of elements of LV(T) inductively: 

f 0 d e f  - d e f  _ = U ,  U,+I n~Z+.  MU,,, 

Consider the function W, 

~_%fy 1 
w - -  ~ . _ ~ o  (2c~)----7 u . .  

This function belongs to L p (T) (because of the inequality I] U.IJ <= C~l[ UI[) and more- 
over 

1 
deW < 7,.=~o (2C~)" "XUn = 2Cp(W-  U) 

whence 
U <- W ~  dr 2CpW 

i.e. Wmajorizes Uand  W6(AO. 

Corollary. The set E satisfies (~**) if and only if E6(C,+~) for a positive e. 

Proof. Notice that E((a**) if and only if there exist W, WE(AO, majorizing 
the function x~(Q (x, E)) -"  and we only have to apply the preceding theorem with 
this function playing the role of U. 

9.3. Interpolation sets for the class G~. Let fr be the set of all C~-functions on 
T satisfying the inequalities 

lf(">(x)l <= Cs.Q"I.n!.n ~, n~Z+.  

Clearly ~, D G,. 
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Definition. A closed set E, E c T ,  is said to be an interpolation set for G~. if 

G=[E=fg~IE. 

Interpolation sets for G= and for other Carleman classes were described in the articles 
[21], [22]. 

Denote the class of all interpolation sets for G, by J=. It turns out that E<J= 
if and only if for every interval I, IcT,  the following inequality is valid: 

1 dm 
"~-fx  O(x, E y  ~ Const. j t  -~. (9.1) 

Thus the inclusion E6Y= implies EE(~**) and so E~g~ (the last being inciden- 
tally obvious). 

The following theorem shows that the part of the class of all non-uniqueness 
sets for G= occupied by J= is not too large. 

Theorem 9.2. For every EEJ~ there is a positive number e such that ECJ~+~. 

Remark. It is not hard to deduce from (9.1) that or if cr Thus the 
theorem asserts that for every closed set E, E c T ,  there is a number ~E, ~e ~ 0  
such that {~: ECJ~} = (0, ~ ) .  

Proof of the theorem. Let fod~-~fo(x, E) -~, W:fo[I and apply lemmas A and B. 
Notice that in the case under consideration the constant K occurring in Lemma A 
does not depend on I but is determined only by the constant from condition (9.1). 
Hence there is a number r, r > 1, such that 

1 ~l/r _~ f lo~l W,~ dt I 1 ,,t <= Const . -~-fo  I W*dt, 

o r  

whence 

1 \ l / r  1 

~ll f , f~dmJ <= Const.-~ f , fodm, 

l ~ rd Const. -~JJ;  m <= 117 
= ( r -  1)~. 

In conclusion we indicate a simple proposition characterizing the interrelation 
between conditions (Av), (PSi) and EE(I=). 

Proposition 9.1.1. If  ECJ~, then fo=(~(x,  E))-~(A1). 
2. I f f0E(A1) then  EE(PS~,). 
The proof is not hard and we leave it to the reader. 
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w 10. Carleman classes 

In this paragraph we prove the analogue of Theorem 1 for the general Carle- 
man classes CA {M.}, i.e. the set of  all functions f infinitely differentiable in the 
closed upper half-plane Im z=>0, analytic in the open half-plane Im z>O, and 
such that 

sup If(")(z)[<=Cf.Q~.n!.M,,, nEZ+,  
Irnz=>0 

(M.).~ o being a preassigned sequence of  positive numbers. Suppose that (31/.).=>o 
satisfies the usual regularity conditions: 

(1) the sequence (M;,).=>0 is increasing; 
X n 

(2) l im.~+~M ----0 for every x, x_>l; 

(3) the sequence (log M.).~= o is convex; 
(4) M0-<_e-1 

(the last condition is introduced only for technical reasons). 
The sequence (M.)._~0 generates a function ~0u (the so called characteristic of 

(M~).~0) defined on (0, + ~), namely 

The sequence (M.).~_ o grows faster than every geometric progression (see (2)) and so 
~0M(X)< + ~ for every x, x>O, and the supremum occurring in the definition of  
q~M(x) is attained at a point n=n(x)EZ+. Note that q~t is non increasing, 
lim~_.0+ (PM(X)-=- + oo and 9M_-->l (see (4)). 

We have to impose two supplementary conditions on the sequence (M.).-~0: 
(5) there exists a constant C, C>O, with 

f o  q~M(t)dt<-- C'x'q~M(X), X > 0 ;  

(6) the function x ~ x .  ~0 u (x) is increasing in a neighbourhood of the origin, and 

lira x-q~M(x) = 0. 
x ~ 0 +  

The condition (6) is not restrictive, for if f0 ~ q~M(t)dt= + ~  then the class CA {34,,} 
is quasianalytic. As to the condition (5), it restricts our consideration to the Carle ~ 
man classes containing some Gevrey class G~ with c~< 1. Thus we don't  succeed in 
describing the sets of  uniqueness for the non-quasianalytic classes CA {M.} satisfying 

(] a~ D Ca{M.} D Ol. 
0 < ~ < 1  

Note that a necessary and sufficient condition for the quasianalyficity of  the class 
CA {M~} was obtained in [23]. 
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It is possible to reformulate conditions (5) and (6) in terms involving the sequence 
(M,),~0 only. We will use the following condition equivalent to (6): 

1 log M.  log M,, + 1 
(6a) All sufficiently large positive integers n satisfy - - + - - < , -  

n n n + l  

Remarks. 1. If  0 < ~ < 1  and M,=n "/~, n>=l, then Ca{M,}=G~ and ~ou(x)~ 
,-,x'~ -~, x ~ 0  + .  It is not hard to see that all conditions (1)--(6) hold. 

1]q 
t Ogx/, , 2. Set p > l  and M,=e , n~=l. Then ~og(x)~ ( x ~ 0 +  where 

P 
q = p - 1 Conditions (1)--(6) hold again. 

Now we are going to construct an auxiliary function ~M that will occur in the 
statement of the theorem below. The function 

~ou(x) 
x 

is strictly decreasing from infinity to zero when x is increasing from zero to infinity. 
This function being continuous has the inverse function, kv~ say. It is clear that 

7Ju ( ~M~(xx) ) = x, x > O, (10.1) 

Let now ~M(Y) ae___ry. TiM(y), y>O. 
The following elementary identity will be useful in the sequel 

�9 ~ ( y )  = ~oM(%,(y)), y > 0. (10.2) 

This identity follows from (10.1)(we only have to put y -  - ~p~(x)) and is equivalent 
to the equality 

~M (Y) -- cPM (x), y = r (x____)) 
x 

Let us discuss tile simplest properties of ~M. The function qg~t being constant in 
a neighbourhood of infinity, so ~ u  is constant in a neighbourhood of zero. Moreover 
~ u  is not decreasing on the half-axis (0, + ~)  and limr_~+~ ~M(y)= + ~ .  Further, 
if Q > I ,  then ~M(Qy)=QyT~u(Qy)<QyTu(y)=Q.~u(y)  (we must take into 
account the monotonicity of ~u)  and so 

~u(QY) < Q~u(y), Y > 0, Q > 1. (10.3) 

Definition. A compact subset E of the real line R is said to be a set of uniqueness 
for the class Ca{M,} if there exists no nonzero function f, fECa{M,}, satisfying 
fc")lE =__ O, n=0 ,  1 . . . . .  The collection of all sets of uniqueness for the class C a {M,} 
will be denoted by 8 {M,}. 
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Theorem 6. A set E, E c R  is not a set of uniqueness for Ca {Mn} if and only 

such that 

xER. 

if there exists a function fn, f ~ L 1  [1 +d~Xx2 }, 

(a) 9M(O(x,E)) ~=fE(x), x~R; 

(f rE(t) dt) -< Const. fE(x ), (b) OM Ct~ (t_X)2 = 

Remark. Condition (a) implies that 

(M) 

1 + x  2 

Let us now ask under what condition imposed on q~M, (CM) is equivalent to Er {M}? 
It turns out that such a condition is 

9M(X) = O(~0M(]/X----)), x --~ 0+ .  (10.4) 

We will prove this supposing that Theorem 1 has been proved. Let fE = q~M (Q (X E)). 

It follows from (CM) that fEEL 1 ~ . Clearly, 

f fE(t....._.~) d t <  = Const_- 
ctx (t_x)2 O(x, E)2 

and so the inequality (M), (b) follows from the estimate 

x o+. 

1 ~0. (t) 
Now change the variable: - - -  Then 

x 2 t 

But ~OM=>I and therefore ]/7_->]/? t . Now we have only to use the monoto- 
V (PM (t) 

nicity of 9M and to apply the estimate (10.4). 
If, in particular, Mn=e rip, p > l ,  then q~M obviously satisfies (10.4) and we 

obtain the result of Taylor and Williams mentioned in the introduction. 

10.1 The proof of the necessity of (/14) follows the scheme exposed in w 2. 
We retain here the notation from w 2. 
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Suppose 
but f~O.  For every x, xER, we have 

E~.g{M} and take a function f ,  fCCa{Mn}, f(")]E----0, n=0 ,  1, 2 . . . .  

If(x)l <= 2"exp{-- f -~.ay(x)}+(Qyy) 'M ~ 

(see (2.6)). 
The following lemma is analogous to Lemma 2.1. 

Lemma 10.1. Let m be an integer satisfying 

x'~M,n = inf x"M, = exp ( -  9u(x)). 

Then m _  <- ~o u (x) for all sufficiently small positive x. 
1 

Proof. We see, letting y = l o g - - ,  that the supremum 
X 

(10.5) 

We recall that (10.5) is proved under the assumption 0<y-<e(x ,  E). Let us forget 
this restriction for a moment and pick a number y to make both exponents in the 

It remains to apply condition (6a). 
Taking now the infimum (with respect to n) in (10.5) and using the lemma we 

have just proved we obtain 

If(x)t < exp { =  - 9-~-. as (x)+  (I o g2) ~PM (Qor Y)} + ex p{ - q~M (Q~Y)}- 

M(y) = sup (ny- log 3//,) 
n ~ 0  

is attained for m=n. The function y.--,-M(y) is convex being the upper envelope 
of a family of linear functions. It is easy to see (using the convexity of the sequence 
(log M.)~_~o) that 

M(y) = n y -  log M, 
if 

log M, , - log  M,_I  < y < log M , + l - l o g M , ,  

1 
Thus m is the positive integer n satisfying the above inequality for y = - - .  

x 
To finish the proof we only have to verify the inequality 

m ~ M(y). 

But this inequality obviously holds if 

m < (m (log M,,--log Mm_l)- Iog Mm) , 
o r  

1 log M ~ _  1 log Mm 
- -  -~ < - -  

m--1 m--1 m 
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right hand part of the last inequality equal: 

whence 

If the inequality 
admissible and we obtain 

{ ( a :  /1 If(x)I <= 2exp - ~ M  9~(log2e)Q: 

If, on the other hand y>o(x, E) then we apply a simpler estimate 

If(x)] <= exp {-~oM(Q:Q(x, E))}. 

But Q:.O<Q:y and so -~oM(Q:O)<-~o~(Q:y ), whence 

{ ( a: }} 
[f(x)l-<-- exp --~M "9~(log-2e)Q: " 

Let 
fE = CQ:. ( - l o g  If I) 

here C denotes a constant from (5) and . We have 

1 
--log tfl =~" ~~ ~) => ~ cP~t(9) 

(see (10.7) and (5)). Thus 
~0M(O(x,E)) <=f~(x), xER, 

i.e. fg satisfies (M), (a). We may assume without loss of  generality that 

--log 1 [fl <fe. 

This inequality and (10.6) imply 

o r  

- f • a :  (x) = (log 2e)- y) (Q: cPM 

af 
Q: y = 7s~t { 9n(log72e)Q: }. 

y<-Q(x, E) turns out to be true such a choice of y will be 

9rc(log2e)CQ~ C. Q:. a:) <=f~ 

#M t~ (t--x)2 dt <= 9re(log 2e). C.Q}f~. 

(10.6) 

(10.7) 
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10.2. To prove the sufficiency of (M) for E~g we will use the scheme of rea- 
soning of w167 3--4. However the consideration of general Carieman classes, unlike 
the Gevrey classes, is connected with some technical difficulties. In w167 3--4 replaced 

the function ~M (34, =nn/~) by the function y ~ y l + ,  with the same order of 
growth at infinity. After that we used the analytic continuability of the latter function 
into the right half-plane and some properties of the continuation. Thus we begin 
the general sufficiency proof with the construction of a function �9 analytic in the 
right half-plane and such that ~ ( Y ) ~ t ( Y ) ,  y>0.  Recall that ~M was defined by 
means of ~0 M. It is natural therefore to find a suitable analytic substitute for CpM. 
Let 

- -  + 9M(t)dt ,  R e z > 0 .  0 ( z )  ~~ ~ z 
- -  f o  z~+t  2 

Lemma 10.2. The function 0 is analytic in the half-plane Re z>0. The ine- 
qualities 

4 qgM(X) < O(X) <= 2Cq~M(X) 

x 
hold for every x, x>0,  (C is the constant occurring in (5)). If [z-xl-<_~then 

[0(z)[ <= 60(x). 

For every x, x>0,  and n, nEZ+ we have 

10<"~(x)l <- 6 . 2 " . n ! .  O(x) 
X n 

The proof of the lemma is elementary and we leave it to the reader. See an 
analogous assertion in [22]. 

To build an analytic equivalent for 7JM we have to construct the inverse function 
O(z) dof 

of the function z . . . .  ~(z). 
z 

Lemmal0.3. The function z ~ O ( z )  is analytic and univalent in the angle 
larg z] < ~r/8. 

7~ 
Proof  The analyticity of 0 in the right half-plane is obvious. If largzKl<-g-, 

k = l ,  2, z l# z2 ,  ~(Zx)=~(z~) then o 

f ~  1 (t2 + z~)(t~ + z~) q~M(t)dt = O. 

But 
Re(t ~+ z~)-~(t2 + z~) -x = It ~ + z~l-~ It ~ + z~t-~. Re(t ~ + z{~)(t  ~ + z ;  ~) > 0 

and the proof is finished. 
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Now we are able to define the function q~ on the ,9-image of the angle 

8 ~ , ( ,9(~))  = O(z). 

Iarg zl < 

Its analyticity follows from the identity @(w)=w. O-l(w) .  We have to prove 

that the set0__[{z:largzt<8}) contains the angle [arg z j < e l  for a sufficiently 

small positive el. We are going to apply the distortion theorem of Koebe. 
Koebe's one quarter theorem: Let f be a conformal and univalent mapping of 

  mage  o~ 

See [24] p. 455 for the proof. 
Put f= ,9 ,  R = e . x ,  where C , C > O ,  is chosen so that the disc D(x ,  cx) is 

contained in the angle larg z ] < ~ .  Then 
8 

2 + ~ x t=sx 
lO'(x)l = fo (x~+t~)2 q ~ M ( t ) d t  = 

2 +~ 1 .(pM(SX)d S > 2 1 dt 
= • f ;  (1+$2) 2 = -Z~o~,(x).f2 (1+t2)2 �9 

By Koebes theorem the ,9-image of D (x, cx) covers the disc centered at 
radius not smaller than 

O(x) 1 2 fX dt > Const. O(X) _ e l ~  
-~ c x .  --~ q)u (x) 1 + t ~ = x x 

O(x) 
with 

x 

(lO.8) 

Since the function ,9 maps the real axis onto itself it is possible to find a positive el 
such that 

{w:largwl < el} ~ 0 z : l a r g z  I < y . 

The function �9 is therefore analytic at least in the angle [arg w l < 81. 
Note that �9 is increasing on the half-axis R+,  l i my _ . . q ~ ( y ) = + ~  and 

lim,_,0 ~ ( y ) = 0 .  

Lernma 10.4. Let y > 0 ,  let cl be the constant from (10.8) and let w C D ( y ,  cly).  

Then 
Const. ~(y)<_- Re~(w)  ~ ]~(w)l <= Const. ~(y) .  (10.9) 

Proof. Let y=0(x ) .  We have seen that ,9(D(x, c x ) ) D D ( y ,  q y ) .  The equality 
~ (,9 (z)) --- 0 (z) shows that it is sufficient to prove the following chain of inequalities 

const. O(x) <- Re  O(z) <= [0(z)] <_- const. O(x) 

in the disc D (x, cx). This is not hard to do using the integral representation of 0. 
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Remark. Lemma 10.4 is a substitute for Lemma 3.7. 
We can now proceed to the construction of the equilibrium function U~ fol- 

lowing the scheme of w 3. For the convenience of the reader recall that the roles of  
at 

the functions y-~yi~at, x~x-at are now played by * and 0 respectively. The function 
UE was defined as the limit of  the recurrent sequence (Un),_~ o whose monotonicity 
was the consequence of  Lemma 3.1. Put 

Uo(x) = ~o(o(x, z)), 
where e, e>O, is chosen so that 

�9 (TEUo) > U o. 

Such a choice of ~ is indeed possible. It is easy to see (compare with the proof  of  
Lemma 3.1) that 

O(S) dS, T~Uo(x) >= e l .  (~+s) ~ 
1 

where 3 = ~o(x, E). The above integral is not smaller than ~- 0(6) (restrict the 

integration to (0, 6) and apply the monotonicity of 0). Thus 

�9 (T~Uo) >= * ( 2 0 ( 6 ) )  (10.10) 

( 0  is increasing). We will prove below that 

for every a, a >  1. Putting x =  

Hence 

*(ax) < l/a*(x) 

1 
if e < - - .  

2 
Now we put, of course, 

2 
and a = - -  ( a > l  if ~<2) we obtain 

2 e 

O(~) =*(ax) < / ~ *  (2 0(~) ). 

v , + l  = * ( T E U , ) ,  n = 0,  1, . . . ,  

and the last inequality shows that U~ is increasing with n. Using (10.10) we verify 
(as in w 3) that without loss of generality we can take Const = 1 in (M). Thus there 
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exists a function UE, UE> U0 such that 

aO( TEU~) = UE, 

this equality implies the analyficity of UE on each complementary interval of E. 
The convexity o f  U~ on these intervals was used in the earlier variant of  the 

proof only to prove that UE has exactly one minimum on every bounded complemen- 
tary interva! and is monotone on the unbounded ones. But now it is easy to deduce 
these properties directly by considering Tp. UE and using the monotonicity of ~ .  

The following proposition will be needed to reproduce our reasonings used in 
the proof of lemmas 3.4--3.6. 

Thereis a number fi, f i~ (0 ,~ ) ,  such that Proposition.  
~ 2 ?  

@(ay) <-- aaa~(y), y > O, 
for every a, a > 1. 

Proof. The identity @(x)=x .O- l (x )  shows that the inequality we want to 
prove is equivalent to the following estimate 

a~-a8-~(ay) <= 8-1(y) 

which is in its turn equivalent to 

aO(O => 

we set 
1 

b 1+~ = a  reduces our inequality to the inequality 

1 

O(x) <= b I-~ 8(bx) 
o r  

O(x) <= b~O(bx) 

y=O(t)  and use the monotone decreasing of 8). At last putting t=xb, 

6 6 
where b > l ,  7=  . The function 6 ~  

1 - 6  1 --fi 

(10.11) 

maps(0, 1 ) o n t o  (0, 1). Thus it is 

sufficient to prove the existence of a number ~, 7E(0, 1) such that (10.11) 
holds for every b, b <  1, and x, x>0 .  We have (using the integral representation 
of 0 and condition (5), see (10.0)). 

1 2t dt O(x) = fo at= f o  (fo*(xS)dS}-i--4- V (lo.12) 

(here we omit the index M of q9 for the sake of simplicity). On the other hand con-  
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dition (5) implies that 

1 <_ C .  ( p ( x )  

x f o  9 ( t ) d t "  

Integrating this inequality (we use here a reasoning of [16], see Lemma B) we obtain 

xlIC 
< _ _  

Now put xx = tx,  x2 = tbx. Then 

f o 2 (p dt 0 < x l  < Xz. 

f o 1 ~o dt ' 

b.C fo x ~ (S) aS <= fibx ~ (s) as  
or changing the variable, 

b'C fo ~ (xS) as  <= b f i  ~ (bxS) aS. 

Substituting this inequality into the expression (10.12) for 0 we obtain (10.11) with 
? = 1 - 1/C (note that the constant C in (5) is greater than one because of the mono- 
tonicity of ~p). 

The analogue of Lemma 3.6 in the present situation is 

Lemmal0.5. Let xCCE,  and ~o~,d~r(x-6, x + 6 ) ,  where 3 = c a ~ ( x , E )  
(0< e~< 1, ca the constant from the inequality (10.8)). Then 

UE(t) 
f , ~ \ ~  ( t _ x ) 2  at <= Const. O-I (UE(x) ) .  

Proof. See w 3 and the preceding proposition. Define the sought func t ionfby  the 
formula (4.2) (now D~ = D (x, Cl 0)). 

Lemmal0.6.  There is a constant Q, Q>0,  such that for every x, x ~ R \ E ,  
and n=0 ,  1, ... 

. O_l(Ur(x))  e x p -  U E ( x ) .  

P r o o f  See the proof of Lemma 4.1. 
It remains only to deduce the inclusion fE CA {M,} from the preceding lemma. 

B u t  

1 ( 1 )  
sup If(")(x)l ~= Q " . n !  sup,-2g, ex p - O(y) . 
x~R y o Y 

1 ~ 1 
Note that - ~ -  0~  - ~  9M~ - ~ -  9M and hence 

< ~ ,  , 1 { 1 ( 1 ) } = Q , . n ,  ~An/3 
SUPxER [f(")(X)l = ~ . n .  sup-2g,, ex p r  0 Y ---~- 3nlog --logM3, �9 ~,~3, �9 
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Thus fECA{M~}. The transformation (Mn)n~_o-*(M~ 3) does not change the cor- 
responding Gevrey class but it is not true for general Carleman classes, Nevertheless 
it is not hard to finish the proof  of Theorem 6. Let us state the above result as follows. 

Proposition. E~g (M~n/3) i f  EC (M). 

Thus it is sufficient to construct a sequence N=(Nn).=-o such that EE(N) 
and N~3=M. for n=O, 1 . . . . .  Put logN.=31ogM K if n=3k and continue 
the function n-*log Nn onto Z+ linearly. For ~o~ the supremum 

is attained at n = 3k and is thus equal to 

~u. (~,o~ x~-~o~ ~ / =  3 su./~,o~ ~ -  ~o~ ~.~/-- ~ ~(-~ �9 
K=~0 K~0 

Hence E~(N), and Theorem 6 is proved (it is trivial to verify that the sequence 
(N,).~0 satisfies conditions (1)--(6)). 

Let 2 be a function increasing on [1, + ~), 2(1)= I .  Suppose that )~ satisfies 
the following natural conditions concerning its regularity and growth: 

(a) the function y-~log2(e  y) is convex on [0, + ~ ) ;  

(b) the function x~x  l o g 2 ( 1 )  is increasing near the origin and 

l !mx log2  ( 1 } =  0; 

(c) f~log2[1)dx<=B6log2(-~)forallsufficientlysmallpositive 6. 
X e 

(d) lim~_~+= 2(x-----) = 0  for every e, e>0 .  

Consider the class A (3,) of all functions analytic in D and satisfying the estimate 

~(~=o(~(1_-~l/l, Iz,~l-0 
The norm [[NI[a=supz~D lf(z)l.2-1((1-lzl) -1) makes A(~) a separable Banach 
space. The well-known duality between uniqueness and approximation gives the 
following 
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T h e o r e m  7. L e t  E - - - E c T .  T h e n  t h e  se t  o f  al l  r a t i o n a l  f u n c t i o n s  w i t h  p o l e s  o n  E 

is d e n s e  in  A ( 2 )  i f  a n d  o n l y  i f  E ~ 8 ( A )  w h e r e  

X n 
A = ( A , ) ~ = > 0 ;  A , = s u p - - ,  n - - 0 , 1  . . . . .  

~_~ 2(x) 
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