On exceptional sets at the boundary for subharmonic functions

Björn E. J. Dahlberg

1. Introduction

In this paper we shall discuss the following problem. Suppose u is subharmonic in a domain $D \subset R^{n}, n \geqq 3$. Let $E \subset \partial D$ be a closed set and suppose that $\lim \sup _{P \rightarrow Q} u(P) \leqq 0$ for all $Q \in \partial D-E$. In what way must the growth of u near ∂D be related to the size of E in order that it should follow that $u \leqq 0$? In the case when E consists of a single point this is answered by the Phragmén-Lindelöf theorems (for a treatment of these, see [6]). In the case when u is bounded from above it follows from [4] that if D is a Lipschitz domain and E is of vanishing ($n-1$)-dimensional Hausdorff measure then $u \leq 0$. The case when $n=2$ can by the conformal mapping technique be reduced to a study of the situation in the unit disc, for which more can be said, see [5]. Therefore we assume from now on that $n \geqq 3$.

We recall that a bounded domain $D \subset R^{n}$ is called a Lipschitz domain if to each point $Q \in \partial D$ there is a coordinate system $(\xi, \eta), \xi \in R^{n-1}, \eta \in R$, a Lipschitz function φ in R^{n-1} (i.e. $\sup _{x \neq y}|x-y|^{-1}|\varphi(x)-\varphi(y)|<\infty$) and a neighbourhood V of Q such that $D \cap V=\{(\xi, \eta): \varphi(\xi)<\eta\} \cap V$. If $E \subset R^{n}$ we denote by $\omega(\cdot, E)$ the harmonic measure of the set $E \cap \partial D$ with respect to D. For the properties of ω see [8, Chapter 8]. If $Q \in D$ we put

$$
\Lambda(\varrho)=\sup \left\{\omega(Q, B(P, \varrho)): P \in R^{n}\right\} .
$$

(Sometimes we will write $\Lambda(\varrho, Q, D)$). Notice that if $K \subset D$ is a compact set then it follows from Harnack's inequality that there is a number $C_{K}<\infty$ such that $\sup \left\{\Lambda\left(\varrho, Q_{1}\right) / \Lambda\left(\varrho, Q_{2}\right): Q_{1}, Q_{2} \in K\right\} \leqq C_{K}$ for all $\varrho>0$. In $\S 4$ we give estimates of Λ. Let $d(P)$ denote the distance from P to ∂D. If u is a function in D we define

$$
M(\varrho)=\sup \left\{u^{+}(P): d(P)>\varrho\right\},
$$

where $u^{+}=\max (u, 0)$.

Theorem. Let D be a Lipschitz domain in $R^{n}, n \geqq 3$, and let $F \subset \partial D$ be a closed set of vanishing α-dimensional Haudorff measure, where $0<\alpha<n-1$. Let u be subharmonic in D and suppose $\lim \sup _{P \rightarrow Q} u(P) \leqq 0$ for all $Q \in \partial D-F$. If

$$
\begin{equation*}
\Lambda(\varrho) M(\varrho)=O\left(\varrho^{\alpha}\right) \quad \text { as } \quad \varrho \rightarrow 0 \tag{1.1}
\end{equation*}
$$

then $u \leqq 0$.
We remark that for sufficiently regular domains (see §4) we have the estimate $c_{1} \varrho^{n-1} \leqq \Lambda(\varrho) \leqq c_{2} \varrho^{n-1}$ where $c_{1}>0$. Hence in this case condition (1.1) equivalent to the condition $M(\varrho)=O\left(\varrho^{\alpha+1-n}\right)$ as $\varrho \rightarrow 0$.

In this case the theorem is sharp as the following proposition shows.
Proposition. Let B be the unit ball in $R^{n}, n \geqq 2$. If $0<\alpha<n-1$ and $E \subset \partial B$ is a closed set of positive α-dimensional Hausdorff measure then there is a harmonic function u in B such that $u(0)=1, \lim _{P \rightarrow Q} u(P)=0$ for all $Q \in \partial B-E$ and

$$
M(\varrho)=O\left(\varrho^{\alpha+1-n}\right)
$$

2. Technical preliminaries

We start with the following observation. There is a number $C=C(n)$ such that each ball in R^{n} of radius 2ϱ can be covered by $C(n)$ balls of radius ϱ. From the definition of Λ it follows that

$$
\begin{equation*}
\Lambda(2 \varrho, Q) \leqq C A(\varrho, Q) \quad \text { for all } \quad Q \in D \tag{2.1}
\end{equation*}
$$

We will need the following elementary estimate for harmonic measure.
Lemma 1. Let D be a Lipschitz domain in $R^{n}, n \geqq 3$. Then there is a number $C=C(D)>0$ such that if $P \in \partial D, \varrho>0$ and $Q \in B(P, \varrho) \cap D$ we have $\omega(Q, B(P, 2 \varrho)) \geqq C$.

Proof. Since D is a Lipschitz domain there are numbers R and $\alpha, R>0,0<\alpha<$ $<\pi / 2$ such that to each point $P \in \partial D$ there exists a cone K_{P} with vertex at P, congruent to $K=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{1} \geqq(\cos \alpha)|x|\right\}$ with the property that $K_{P} \cap$ $\cap \overline{B(P, R)} \subset R^{n}-D$. For $0<\varrho<\frac{1}{2} R$, let $D(P, \varrho)=B(P, 2 \varrho)-K_{P}$. If ω^{\prime} denotes the harmonic measure of $\partial D(P, \varrho) \cap B(P, 2 \varrho)$ with respect to $D(P, \varrho)$ then the maximum principle implies that $\omega^{\prime}(Q) \leqq \omega(Q, B(P, 2 \varrho))$ for all $Q \in B(P, \varrho) \cap D$. A change of scale shows that $\inf \left\{\omega^{\prime}(Q): Q \in B(P, \varrho) \cap D(P, \varrho)\right\}$ is independent of P and ϱ and hence the lemma follows.

We shall need an estimate for the Green function of D.

Lemma 2. Let D be as in Lemma I and let G be the Green function of D. If $P^{\prime} \in D$ there is a number $C=C\left(P^{\prime}, D\right)$ such that if $0<\varrho<\frac{1}{3} d\left(P^{\prime}\right)$ then

$$
\varrho^{n-2} \sup \left\{G\left(P, P^{\prime}\right): d(P) \leqq \varrho\right\} \leqq C A\left(\varrho, P^{\prime}\right)
$$

Proof. Put $B^{\prime}(P)=B\left(P, \frac{1}{2} d(P)\right)$ for $P \in D$. Since $G(P, Q) \leqq|P-Q|^{2-n}$ it follows that $d(P)^{n-2} \sup \left\{G(P, Q): Q \in \partial B^{\prime}(P)\right\} \leqq 2^{n-2}$. Pick a point $P^{*} \in \partial D$ such that $d(P)=\left|P-P^{*}\right|$. Since $B\left(P^{*}, 2 d(P)\right) \supset \overline{B^{\prime}(P)}$, there is by Lemma 1 a number $C_{1}=C_{\mathbf{1}}(D)>0$ such that $\omega\left(Q, B\left(P^{*}, 4 d(P)\right)\right) \geqq C_{\mathbf{1}}$ for $Q \in \overline{B^{\prime}(P)}$. The maximum principle now implies $C_{1} d(P)^{n-2} G(P, Q) \leqq 2^{n-2} \omega\left(Q, B\left(P^{*}, 4 d(P)\right)\right.$) for all $Q \in D-\overline{B^{\prime}(P)}$ and the lemma follows.

We will need estimates for the harmonic measure of certain sets, which we shall now describe. For $m>0$ let $L(m)$ be the set of all functions $\varphi: R^{n-1} \rightarrow R$ such that $\varphi(0)=0$ and $|\varphi(x)-\varphi(y)| \leqq m|x-y|$. For $a>0, r>0$ let $\Sigma=\Sigma(\varphi, r, a)=$ $\{(x, y): \varphi(x)<y<\varphi(x)+a(|x|-r), \quad r<|x|<2 r\} . \quad$ Let $\quad \Gamma=\Gamma(\varphi, r, a)=\partial \Sigma \cap$ $\cap\{(x, y):|x|=2 r\}$.

Lemma 3. If $m>0$ and $a>0$ are given, then there are numbers $C=C(a, m)$ and $\lambda=\lambda(a)$ with the following properties. If $\varphi \in L(m), r>0$ and $r<\varrho<2 r$ then

$$
\sup \{\omega(P): P=(x, y) \in \Sigma(\varphi, r, a) \text { and }|x|=\varrho\} \leqq C\left(\varrho r^{-1}-1\right)^{\lambda}
$$

where ω is the harmonic measure of $\Gamma(\varphi, r, a)$ with respect to $\Sigma(\varphi, r, a)$. In addition $\lim _{a \rightarrow 0} \lambda(a)=\infty$.

Proof. Since the assertion is invariant under changes of scale, it is sufficient to prove it for the case $r=1$. We extend ω to all of R^{n} by putting $\omega=0$ outside Σ. Let S be the unit sphere in R^{n-2}. We now define

$$
m(s)=\int_{-\infty}^{\infty} \int_{S} \omega^{2}(s \theta, y) d \theta d y
$$

We claim there is a function $\lambda^{\prime}:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\begin{equation*}
m(s) \leqq A(s-1)^{\lambda^{\prime}(a)}, \quad 1<s<2 \tag{2.2}
\end{equation*}
$$

where A is the area of Γ. We will show (2.2) by using the Carleman method, see [6]. We first make the assumption that φ is C^{∞} in $\{x:|x|<3\}$. From [1] follows that $\omega \mid \Sigma$ has a smooth extension across $\partial \Sigma-\bar{\Gamma}$. Hence we can differentiate m and we find by the Green formula:

$$
\begin{aligned}
m^{\prime}(s) & =2 \int_{-\infty}^{\infty} \int_{s}[(\partial / \partial s) \omega(s \theta, y)] \omega(s \theta, y) d \theta d y= \\
& =2 \int_{1}^{s} \int_{-\infty}^{\infty} \int_{s}|\nabla \omega(t \theta, y)|^{2} d \theta d y d t
\end{aligned}
$$

Here $\nabla \omega$ denotes the gradient of ω. Therefore

$$
\begin{gathered}
m^{\prime \prime}(s)=2 \int_{-\infty}^{\infty} \int_{S}|\nabla \omega(s \theta, y)|^{2} d \theta d y \\
\geqq 2 \int_{-\infty}^{\infty} \int_{s}[(\partial / \partial y) \omega(s \theta, y)]^{2} d \theta d y+ \\
+2 \int_{-\infty}^{\infty} \int_{S}[(\partial / \partial s) \omega(s \theta, y)]^{2} d \theta d y=B_{1}(s)+B_{2}(s)
\end{gathered}
$$

From Hölder's inequality we obtain $\left(m^{\prime}(s)\right)^{2} \leqq 2 m(s) B_{2}(s)$. Since the function $y \rightarrow \omega(s \theta, y), \quad 1<s<2, \quad \theta \in S$, equals zero outside an interval of length $a(s-1)$, it follows from Wirtinger's inequality [7, Chapter 7] that $B_{1}(s) \geqq 2 \pi^{2}(s-1)^{-2} a^{-2} m(s)$. Using these estimates we find $2 m^{\prime \prime}(s) / m(s) \geqq 4 \pi^{2} a^{-2}(s-1)^{-2}+\left(m^{\prime}(s) / m(s)\right)^{2}$, which implies

$$
m^{\prime \prime}(s) \geqq 2 \pi a^{-1}(s-1)^{-1} m^{\prime}(s), \quad 1<s<2 .
$$

We notice $\lim _{s \rightarrow 1} m(s)=0$ and $\lim _{s \rightarrow 2} m(s)=A$. Hence $m(s) \leqq A(s-1)^{\lambda^{\prime}(a)}$, where $\lambda^{\prime}(a)=1+2 \pi a^{-1}$ and inequality (2.2) is proved for the case when φ is C^{∞} in $\{|x|<3\}$.

If $\varphi \in L(m)$ and not assumed C^{∞} we can pick functions $\varphi_{i} \in C^{\infty}\left(R^{n-1}\right)$ such that $\sup \left\{\left|\nabla \varphi_{i}(x)\right|: x \in R^{n-1}, \quad i=1,2, \ldots\right\}<\infty, \quad \varphi_{i}(0)=0$, and φ_{i} converges to φ uniformly on compact sets. If A_{i} is the area of $\Gamma\left(\varphi_{i}, 1, a\right)$ and ω_{i} denotes the harmonic measure of $\Gamma\left(\varphi_{i}, 1, a\right)$ with respect to $\Sigma\left(\varphi_{i}, 1, a\right)$ then $A_{i} \rightarrow A$ and $\omega_{i}(P) \rightarrow \omega(P)$ for each $P \in \Sigma(\varphi, 1, a)$. Hence (2.2) follows.

Let $M(s)=\max \{\omega(x, y):(x, y) \in \Sigma$ and $|x|=s\}$ where $1<s<2$. We notice that we find a number $c^{\prime}, 0<c^{\prime}<1 / 2$, only depending on m and such that if $\xi \in R^{n-1}$ and $1<|\xi|<3 / 2$ then $B_{\xi}^{\prime} \subset \Sigma(\varphi, 1, a)$, where B_{ξ}^{\prime} is the ball with center in $P_{\xi}=$ $=(\xi, 1 / 2 a(|\xi|-1))$ and radius $c^{\prime}(|\xi|-1)$. We next choose a number $c, 0<c<c^{\prime}$ such that $D_{\xi}=\{(x, y):|x-\xi|<c(|\xi|-1), \varphi(x)<y<\varphi(x)+a(|x|-1)\}$ is star-shaped with respect to P_{ξ}. This number can be taken to depend only on a and m. Hence it follows from [9, Lemma 2] that there is a number C, only depending on a and m such that if u is a non-negative harmonic function in D_{ξ}, with vanishing boundary values on $\partial D_{\xi} \cap\{(x, y):|x-\xi|<c(|\xi|-1)\}$ then $\sup \{u(\xi, t): \varphi(\xi)<t<\varphi(\xi)+$ $+a(|\xi|-1)\} \leqq C u\left(P_{\xi}\right)$.

Letting $1<s<3 / 2$, let us now choose $\xi \in R^{n-1},|\xi|=s$, such that $M(s)=$ $\omega(\xi, \eta)$ for some $\eta, \varphi(\xi)<\eta>\varphi(\xi)+a(s-1)$. From the reasoning above it follows that $m(s) \leqq C \omega\left(P_{\xi}\right)$, where C can be taken to depend only on a and m. Let B_{ξ} be the ball with center P_{ξ} and radius $c(|\xi|-1)$. Then $\bar{B}_{\zeta} \subset D_{\xi} \subset \Sigma$.

Since ω^{2} is subharmonic in Σ, it follows there is a constant $C=C(a, m)$ such
that

$$
\begin{gathered}
M^{2}(s) \leqq C(s-1)^{-n} \int_{B_{\xi}} \omega^{2}(P) d P \\
\leqq C(s-1)^{-1} \int_{|t-s| \leqq c(s-1)} t^{n-2} m(t) d t \leqq C(s-1)^{-n+\lambda^{\prime}(a)+1}
\end{gathered}
$$

and the lemma is proved.

3. The main result

We can now prove our main result.
Proof of the theorem. Let u and D be as in the theorem. We start with the following observation. Since D is a Lipschitz domain we can find a finite number of open sets V_{1}, \ldots, V_{N} such that $\partial D \subset \cup V_{i}$ and to each i there is an coordinate system $(\xi, \eta) \quad \xi \in R^{n-1}, \eta \in R$, a Lipschitz function φ_{i} in R^{n-1} such that $D \cap V_{i}^{\prime}=$ $\left\{(\xi, \eta): \varphi_{i}(\xi)<\eta\right\} \cap V_{i}^{\prime}$ where V_{i}^{\prime} is an open set such that $V_{i}^{\prime} \supset \bar{V}_{i}$. For $Q \in \partial D$ we let $I(Q)$ denote the largest index j for which $Q \in V_{j}$. If $I(Q)=i$ we define for $a>0, r>0$ the open set $N(Q, r, a)$ in the following way. Let $Q=\left(\xi_{0}, \varphi_{i}\left(\xi_{0}\right)\right)$. We now put $M(Q, r, a)=\left\{(\xi, \eta):\left|\xi-\xi_{0}\right| \leqq 2 r, \quad \varphi_{i}(\xi)+a\left(\left|\xi-\xi_{0}\right|-r\right)^{+}<\eta<\varphi(\xi)+a r\right\}$. Under our assumptions there is a number r_{0} such that $M(Q, r, a) \subset D$ for all $r, 0<$ $r<r_{0}=r_{0}(a, D)$. For $0<r<r_{0}$ we define $N(Q, r, a)=D-\overline{M(Q, r, a)}$. For an integer $m \geqq 2$ we also define $E(m)=E(m, Q, r, a)$ as the set $\left\{(\xi, \eta): 2^{-m-1} r \leqq\right.$ $\left|\xi-\xi_{0}\right|-r<2^{-m} r, \varphi(\xi)+a\left(\left|\xi-\xi_{0}\right|-r\right)$. Finally, let ω_{m} denote the harmonic measure of $E(m)$ with respect to $N(Q, r, a)$. We claim that if $P_{0} \in D$ then there are numbers $C=C\left(a, D, P_{0}\right), r_{1}=r_{1}\left(a, D, P_{0}\right)$ and a function $\sigma: R^{+} \rightarrow R^{+}$such that

$$
\begin{equation*}
\omega_{m}\left(P_{0}\right) \leqq C 2^{-m \sigma(a)} \Lambda\left(r, P_{0}\right) \quad \text { for } \quad 0<r<r_{1}, \quad \text { and } \quad \lim _{a \rightarrow 0} \sigma(a)=\infty \tag{3.1}
\end{equation*}
$$

To prove (3.1) we note there is no loss of generality in assuming $\xi_{0}=0$ and $\varphi_{i}(0)=0$. We put for $r<|\xi|<2 r, Q_{\xi}=\left(\varphi_{i}(\xi), a(|\xi|-r)\right)$. An inspection now shows there are numbers $c=c(a, D)$ and $r_{2}=r_{2}(a, D)$ such that if $0<r<r_{2}$ and if $Q_{\xi} \in E(m, Q, r, a), r \geqq 2$, then $B\left(Q_{\xi}, 2 c r 2^{-m}\right) \subset N(Q, r, 2 a)$. Letting G^{\prime} denote the Green function of $N(Q, r, 2 a)$ we now see there is a number $C=C(a, D)$ such that if $\left|P-Q_{\xi}\right| \leqq c r 2^{-m}$ then

$$
\begin{equation*}
C r^{n-2} 2^{-m(n-2)} G^{\prime}\left(P, Q_{\xi}\right) \geqq 1 \tag{3.2}
\end{equation*}
$$

If h denotes the harmonic measure of $B\left(Q_{\xi}, c 2^{-m} r\right) \cap \partial N(Q, r, a)$ with respect to $N(Q, r, a)$ it follows from (3.2) and the maximum principle

$$
\begin{equation*}
h\left(P_{0}\right) \leqq C r^{n-2} 2^{-m(n-2)} G^{\prime}\left(P_{0}, Q_{\xi}\right) \tag{3.3}
\end{equation*}
$$

From Lemma 3 follows $G^{\prime}\left(P_{0}, Q_{\xi}\right) \leqq C 2^{-m \lambda(a)} m(r)$ where $\lambda(a) \rightarrow \infty$ as $a \rightarrow 0$ and $m(r)=\sup \left\{G^{\prime}\left(P_{0}, Q\right): Q \in \Gamma\left(\varphi_{i}, 2 r, a\right)\right\}$. Since $G^{\prime} \leqq G$, where G is the Green func-
tion of D, it follows from Lemma 2 that $r^{n-2} m(r) \leqq C A\left(r, P_{0}\right)$ for r sufficiently small. We note there is a constant C, such that to all $m \geqq 2$ we can find points $\xi_{i}, 2^{-m} r \leqq$ $\left|\xi_{i}\right|<2^{1-m} r, \quad 1 \leqq i \leqq C 2^{m(n-2)} \quad$ such that $E(m, Q, r, a) \subset \cup B\left(Q_{\xi_{i}}, c 2^{-m} r\right)$. This yields (3.1).

We can now complete the proof of the Theorem. Our assumptions mean that to all $\varepsilon>0$ we can find points Q_{1}, \ldots, Q_{M} in F and numbers $\varepsilon_{i}, 0<\varepsilon_{i}<\varepsilon$ such that $F \subset \bigcup_{1}^{M} B\left(Q_{i}, \varepsilon_{i}\right)$ and

$$
\begin{equation*}
\sum_{i=1}^{M} \varepsilon_{i}^{\chi} \leqq \varepsilon \tag{3.4}
\end{equation*}
$$

We put $D^{\prime}=\bigcap_{1}^{M} N\left(Q_{i}, \varepsilon_{i}, a\right)$ and let $P_{0} \in D$, where we will choose a later. If ε is sufficiently small then $P_{\mathbf{0}} \in D^{\prime}$. It is now convenient to split ∂D^{\prime} into different parts. Let for $m \geqq 2, \quad 1 \leqq i \leqq M, \quad A_{m, i}=\partial D^{\prime} \cap E\left(m, Q_{i}, \varepsilon_{i}, a\right), \quad A_{1, i}=\partial D^{\prime} \cap$ $\cap M\left(Q_{i}, \varepsilon_{i}, a\right)-\left(\bigcup_{m=2}^{\infty} A_{m, i}\right)$. We put $\mu_{m, i}=\sup \left\{u^{+}(P): P \in \dot{A}_{m, i}\right\}$ and let $h_{m, i}$ denote the harmonic measure of $A_{m, i}$ with respect to $N\left(Q_{i}, \varepsilon_{i}, a\right)$. Since u is bounded from above in D^{\prime} the maximum principle gives

$$
\begin{equation*}
u^{+}\left(P_{0}\right) \leqq \sum_{i=1}^{M} \sum_{m=1}^{\infty} \mu_{m, i} h_{m, i}\left(P_{0}\right) \tag{3.5}
\end{equation*}
$$

It is easy to see there is a number $c=\beta=\beta(a, D)$ such that the distance between $A_{m, i}$ and ∂D is greater that $\beta 2^{-m} \varepsilon_{i}$. From Lemma 2 and (3.1) follows the existence of a constant $C=C\left(a, D, P_{0}\right)$ such that $h_{m, i}\left(P_{0}\right) \leqq C 2^{-m \sigma(a)} A\left(\varepsilon_{i}, P_{0}\right)$, Using (2.1) we find $h_{m, i}\left(P_{0}\right) \leqq c^{m+1} 2^{-m \sigma(a)} \Lambda\left(\beta 2^{-m} \varepsilon_{i}, P_{0}\right)$. From this and our assumption on u we obtain

$$
\begin{gathered}
u^{+}\left(P_{0}\right) \leqq \sum_{i=1}^{M} \sum_{m=1}^{\infty} c^{m+1} 2^{-m \sigma(a)} M\left(\beta 2^{-m} \varepsilon_{i}\right) \Lambda\left(\beta 2^{-m} \varepsilon_{i}, P_{0}\right) \\
\leqq C \sum_{i=1}^{M} \varepsilon_{i}^{\alpha} \sum_{m=1}^{\infty} c^{m} 2^{-m \sigma(a)-m \alpha}
\end{gathered}
$$

We now pick a so small that the last sum converges. With this choice of a it follows from (3.4) that $u^{+}\left(P_{0}\right) \leqq C \varepsilon$ for all $\varepsilon>0$. Since P_{0} was arbitrary in D it follows that $u \leqq 0$ and the theorem is proved.

We shall now prove Proposition 1.
Proof of Proposition 1. Let B be the unit ball of R^{n} and let $P(\cdot, y)$ be the Poisson kernel for B with pole at $y \in \partial B$. If $x \in B-\{0\}$ let $x^{*}=\frac{x}{|x|}$. From the explicit representation of P, see [8, Chapter 1] if follows that

$$
P(x, y) \leqq C d(x) /\left(\left|y-x^{*}\right|+d(x)\right)^{n}
$$

If $E \subset \partial B$ is a closed set of positive α-dimensional Hausdorff measure, $0<\alpha<n-1$, if follows from [3, p. 7] that there is a probability measure μ with support in E such that $\mu(B(x, r)) \leqq C r^{\alpha}$ for all $x \in R^{n}$ and $r>0$. Let $v(x)=\int P(x, y) d \mu(y)$. Then
v is non-negative and harmonic in B, and $\lim _{P \rightarrow Q} v(P)=0$ for all $Q \in \partial B-E$. If $x \neq 0$ then

$$
u(x) \leqq C d(x) \int\left(\left|y-x^{*}\right|+d(x)\right)^{-n} d \mu(y)
$$

Putting $g(t)=\mu\left(B\left(x^{*}, r\right)\right)$, an integration by parts shows

$$
\begin{gathered}
u(x)=C d(x) \int_{0}^{\infty}(t+d(x))^{-n-1} g(t) d t \leqq C d(x) \int_{0}^{\infty}(t+d(x))^{-n-1} t^{\alpha} d t \\
=C(n, \alpha) d(x)^{\alpha-n+1}
\end{gathered}
$$

and the proposition is proved.

4. Concluding remarks

In this section we shall discuss estimates of $\Lambda(\varrho)$. To begin with we notice that if D is a Lipschitz domain, then to each $P \in D$ there is a constant $c=c(D, P)>0$ such that

$$
\begin{equation*}
\Lambda(\varrho, P) \supseteqq c \varrho^{n-1}, \quad 0<\varrho<1 \tag{4.1}
\end{equation*}
$$

For otherwise $\lim \inf _{\varrho \rightarrow 0} \varrho^{1-n} \Lambda(\varrho, P)=0$. Letting σ denote the surface measure of ∂D it is easity seen that there is a $c>0$ such that if $Q \in \partial D$ and $0<r<1$ then $\sigma(B(Q, r)) \geqq c r^{n-1}$. Hence we would have $\liminf _{r \rightarrow 0} \frac{\omega(P, B(Q, r))}{\sigma(B(Q, r))}=0$ for all $Q \in \partial D$. Arguing as in [10, Theorem 14.5] this would mean $\omega=0$. This contradiction establishes (4.1).

Let $0<\theta<\pi / 2$ and put $K_{\theta}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{1} \geqq|x| \cos \theta\right\}$. We say that a Lipschitz domain is θ-regular if for all points $Q \in \partial D$ there is a cone Γ_{Q} congruent to K_{θ} and with vertex at Q such that $\Gamma_{Q} \subset R^{n}-D$. Let $\lambda_{\theta}(r)=\omega\left(e, B(0, r), R^{n}-K_{\theta}\right)$, where $e=(-1,0, \ldots, 0)$. From Lemma 2 and the maximum principle it now follows that $\omega(P, B(Q, r), D) \leqq C \omega\left(P, B(Q, 2 r), R^{n}-K_{\theta}\right\}$ for all $Q \in \partial D$ and all $P \in D$. Harnack's inequality now shows that

$$
\begin{equation*}
\Lambda(\varrho, P, D) \leqq C \lambda_{\theta}(\varrho) \tag{4.2}
\end{equation*}
$$

where C can be taken to depend only on P, D and θ. Estimates for λ_{θ} can be read off from the estimates for Green functions for cones in [2]. We omit the details but it follows there is to each $\theta, 0<\theta<\pi / 2$ a number $h(\theta)<n-1$ such that

$$
\lambda_{\theta}(\varrho)=O\left(\varrho^{h(\theta)}\right) \quad \text { as } \quad \varrho \rightarrow 0
$$

and $h(\theta) \rightarrow n-1$ as $\theta \rightarrow \pi / 2$.

If there is a number $R>0$ such that to each point $Q \in \partial D$ there is a closed ball B_{Q} with the property that $B_{Q} \subset R^{n}-D$ and $B_{Q} \cap \partial D \supset\{Q\}$ we find, using the arguments leading to (4.2)

$$
\Lambda(\varrho, P, D) \leqq C \lambda(\varrho)
$$

where $\lambda(\varrho)=\omega\left(e, B(0, r), B^{\prime}\right), e=(-1,0, \ldots, 0), B^{\prime}=\{P:|P+e|<1\}$. Since $\lambda(\varrho) \leqq$ $C \varrho^{n-1}$ it follows that

$$
\begin{equation*}
\Lambda(\varrho, P, D) \leqq C \varrho^{n-1} . \tag{4.3}
\end{equation*}
$$

References

1. Agmon, S., Douglis, A., Nirenberg, L., Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions, Com. Pure Applied Math. 12 (1959), 623-727.
2. Azarin, U. S., Generalization of a theorem of Hayman on a subharmonic function in an n-dimensional cone (Russian), Mat. Sb. (N. S.), 60 (108) (1965), 248-264.
3. Carleson. L., Selected problems on exceptional sets, Van Nostrand, Princeton, N. J. 1967.
4. Dahlberg, B. E. J., On estimates of harmonic measure, to appear in Arch. Rational Mech. Anal.
5. Dahlberg, B. E. J., On the radial boundary values of subharmonic functions, to appear in Math. Scand.
6. Halliste, K., Estimates of harmonic measures, Ark. Mat., 6 (1965), 1-31.
7. Hardy, G. H., Litilewood, J. E., Polya, G., Inequalities, Cambridge University Press, London 1952.
8. Helms, L. L., Introduction to potential theory, Wiley-Interscience, New York, 1969.
9. Hunt, R., Wheeden, R. L., On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307-322.
10. Saks, S., Theory of the integral, Hafner Publishing Company, New York, 1937.

Björn E. J. Dahlberg Department of Mathematics Chalmers University of Technology and University of Göteborg Fack
S--402 20 Göteborg SWEDEN

