On exceptional sets at the boundary for subharmonic functions

Björn E. J. Dahlberg

1. Introduction

In this paper we shall discuss the following problem. Suppose u is subharmonic in a domain $D \subset \mathbb{R}^n$, $n \geq 3$. Let $E \subset \partial D$ be a closed set and suppose that $\limsup_{P \to Q} u(P) \leq 0$ for all $Q \in \partial D - E$. In what way must the growth of u near ∂D be related to the size of E in order that it should follow that $u \leq 0$? In the case when E consists of a single point this is answered by the Phragmén—Lindelöf theorems (for a treatment of these, see [6]). In the case when u is bounded from above it follows from [4] that if D is a Lipschitz domain and E is of vanishing (n-1)-dimensional Hausdorff measure then $u \leq 0$. The case when n=2 can by the conformal mapping technique be reduced to a study of the situation in the unit disc, for which more can be said, see [5]. Therefore we assume from now on that $n \geq 3$.

We recall that a bounded domain $D \subset \mathbb{R}^n$ is called a Lipschitz domain if to each point $Q \in \partial D$ there is a coordinate system (ξ, η) , $\xi \in \mathbb{R}^{n-1}$, $\eta \in \mathbb{R}$, a Lipschitz function φ in \mathbb{R}^{n-1} (i.e. $\sup_{x \neq y} |x-y|^{-1} |\varphi(x) - \varphi(y)| < \infty$) and a neighbourhood Vof Q such that $D \cap V = \{(\xi, \eta) : \varphi(\xi) < \eta\} \cap V$. If $E \subset \mathbb{R}^n$ we denote by $\omega(\cdot, E)$ the harmonic measure of the set $E \cap \partial D$ with respect to D. For the properties of ω see [8, Chapter 8]. If $Q \in D$ we put

$$\Lambda(\varrho) = \sup \{ \omega(Q, B(P, \varrho)) \colon P \in \mathbb{R}^n \}.$$

(Sometimes we will write $\Lambda(\varrho, Q, D)$). Notice that if $K \subset D$ is a compact set then it follows from Harnack's inequality that there is a number $C_K < \infty$ such that sup $\{\Lambda(\varrho, Q_1) | \Lambda(\varrho, Q_2) : Q_1, Q_2 \in K\} \leq C_K$ for all $\varrho > 0$. In § 4 we give estimates of Λ . Let d(P) denote the distance from P to ∂D . If u is a function in D we define

$$M(\varrho) = \sup \{ u^+(P) \colon d(P) > \varrho \},\$$

where $u^+ = \max(u, 0)$.

Theorem. Let D be a Lipschitz domain in \mathbb{R}^n , $n \ge 3$, and let $F \subset \partial D$ be a closed set of vanishing α -dimensional Haudorff measure, where $0 < \alpha < n-1$. Let u be subharmonic in D and suppose $\limsup_{\mathbf{P} \to Q} u(\mathbf{P}) \le 0$ for all $Q \in \partial D - F$. If

(1.1)
$$\Lambda(\varrho)M(\varrho) = O(\varrho^{\alpha}) \quad \text{as} \quad \varrho \to 0$$

then $u \leq 0$.

We remark that for sufficiently regular domains (see § 4) we have the estimate $c_1 \varrho^{n-1} \leq \Lambda(\varrho) \leq c_2 \varrho^{n-1}$ where $c_1 > 0$. Hence in this case condition (1.1) equivalent to the condition $M(\varrho) = O(\varrho^{\alpha+1-n})$ as $\varrho \to 0$.

In this case the theorem is sharp as the following proposition shows.

Proposition. Let B be the unit ball in \mathbb{R}^n , $n \ge 2$. If $0 < \alpha < n-1$ and $E \subset \partial B$ is a closed set of positive α -dimensional Hausdorff measure then there is a harmonic function u in B such that u(0)=1, $\lim_{P\to O} u(P)=0$ for all $Q \in \partial B - E$ and

$$M(\varrho) = O(\varrho^{\alpha+1-n}).$$

2. Technical preliminaries

We start with the following observation. There is a number C = C(n) such that each ball in \mathbb{R}^n of radius 2ϱ can be covered by C(n) balls of radius ϱ . From the definition of Λ it follows that

(2.1)
$$A(2\varrho, Q) \leq CA(\varrho, Q) \text{ for all } Q \in D.$$

We will need the following elementary estimate for harmonic measure.

Lemma 1. Let D be a Lipschitz domain in \mathbb{R}^n , $n \ge 3$. Then there is a number C = C(D) > 0 such that if $P \in \partial D$, $\varrho > 0$ and $Q \in B(P, \varrho) \cap D$ we have $\omega(Q, B(P, 2\varrho)) \ge C$.

Proof. Since D is a Lipschitz domain there are numbers R and α , R>0, $0<\alpha<<\pi/2$ such that to each point $P\in\partial D$ there exists a cone K_P with vertex at P, congruent to $K=\{x=(x_1,...,x_n)\in R^n: x_1 \ge (\cos \alpha) |x|\}$ with the property that $K_P \cap \cap \overline{B(P,R)} \subset R^n - D$. For $0<\varrho<\frac{1}{2}R$, let $D(P,\varrho)=B(P,2\varrho)-K_P$. If ω' denotes the harmonic measure of $\partial D(P,\varrho) \cap B(P,2\varrho)$ with respect to $D(P,\varrho)$ then the maximum principle implies that $\omega'(Q) \le \omega(Q, B(P,2\varrho))$ for all $Q \in B(P,\varrho) \cap D$. A change of scale shows that $\inf \{\omega'(Q): Q \in B(P,\varrho) \cap D(P,\varrho)\}$ is independent of P and ϱ and hence the lemma follows.

We shall need an estimate for the Green function of D.

Lemma 2. Let D be as in Lemma 1 and let G be the Green function of D. If $P' \in D$ there is a number C = C(P', D) such that if $0 < \varrho < \frac{1}{3} d(P')$ then

$$\varrho^{n-2} \sup \{ G(P, P') \colon d(P) \leq \varrho \} \leq C \Lambda(\varrho, P').$$

Proof. Put $B'(P) = B\left(P, \frac{1}{2}d(P)\right)$ for $P \in D$. Since $G(P, Q) \leq |P-Q|^{2-n}$ it follows that $d(P)^{n-2} \sup \{G(P, Q) : Q \in \partial B'(P)\} \leq 2^{n-2}$. Pick a point $P^* \in \partial D$ such that $d(P) = |P-P^*|$. Since $B\left(P^*, 2d(P)\right) \supset \overline{B'(P)}$, there is by Lemma 1 a number $C_1 = C_1(D) > 0$ such that $\omega(Q, B(P^*, 4d(P))) \geq C_1$ for $Q \in \overline{B'(P)}$. The maximum principle now implies $C_1 d(P)^{n-2} G(P, Q) \leq 2^{n-2} \omega(Q, B(P^*, 4d(P)))$ for all $Q \in D - \overline{B'(P)}$ and the lemma follows.

We will need estimates for the harmonic measure of certain sets, which we shall now describe. For m>0 let L(m) be the set of all functions $\varphi: \mathbb{R}^{n-1} \to \mathbb{R}$ such that $\varphi(0)=0$ and $|\varphi(x)-\varphi(y)| \leq m|x-y|$. For a>0, r>0 let $\Sigma=\Sigma(\varphi, r, a)=$ $\{(x, y): \varphi(x) < y < \varphi(x) + a(|x|-r), r < |x| < 2r\}$. Let $\Gamma = \Gamma(\varphi, r, a) = \partial \Sigma \cap$ $\cap \{(x, y): |x|=2r\}$.

Lemma 3. If m>0 and a>0 are given, then there are numbers C=C(a, m)and $\lambda=\lambda(a)$ with the following properties. If $\varphi \in L(m)$, r>0 and $r< \varrho < 2r$ then

 $\sup \{ \omega(P) \colon P = (x, y) \in \Sigma(\varphi, r, a) \text{ and } |x| = \varrho \} \leq C(\varrho r^{-1} - 1)^{\lambda},$

where ω is the harmonic measure of $\Gamma(\varphi, r, a)$ with respect to $\Sigma(\varphi, r, a)$. In addition $\lim_{a\to 0} \lambda(a) = \infty$.

Proof. Since the assertion is invariant under changes of scale, it is sufficient to prove it for the case r=1. We extend ω to all of \mathbb{R}^n by putting $\omega=0$ outside Σ . Let S be the unit sphere in \mathbb{R}^{n-2} . We now define

$$m(s) = \int_{-\infty}^{\infty} \int_{S} \omega^{2}(s\theta, y) d\theta dy.$$

We claim there is a function $\lambda': (0, \infty) \rightarrow (0, \infty)$ such that

(2.2)
$$m(s) \leq A(s-1)^{\lambda'(a)}, \quad 1 < s < 2,$$

where A is the area of Γ . We will show (2.2) by using the Carleman method, see [6]. We first make the assumption that φ is C^{∞} in $\{x: |x| < 3\}$. From [1] follows that $\omega | \Sigma$ has a smooth extension across $\partial \Sigma - \overline{\Gamma}$. Hence we can differentiate m and we find by the Green formula:

$$m'(s) = 2 \int_{-\infty}^{\infty} \int_{S} \left[(\partial/\partial s) \omega(s\theta, y) \right] \omega(s\theta, y) d\theta dy =$$
$$= 2 \int_{1}^{s} \int_{-\infty}^{\infty} \int_{S} |\nabla \omega(t\theta, y)|^{2} d\theta dy dt.$$

Here $\nabla \omega$ denotes the gradient of ω . Therefore

$$m''(s) = 2 \int_{-\infty}^{\infty} \int_{S} |\nabla \omega(s\theta, y)|^2 d\theta dy$$
$$\geq 2 \int_{-\infty}^{\infty} \int_{S} [(\partial/\partial y) \omega(s\theta, y)]^2 d\theta dy +$$
$$+ 2 \int_{-\infty}^{\infty} \int_{S} [(\partial/\partial s) \omega(s\theta, y)]^2 d\theta dy = B_1(s) + B_2(s).$$

From Hölder's inequality we obtain $(m'(s))^2 \leq 2m(s)B_2(s)$. Since the function $y \rightarrow \omega(s\theta, y)$, 1 < s < 2, $\theta \in S$, equals zero outside an interval of length a(s-1), it follows from Wirtinger's inequality [7, Chapter 7] that $B_1(s) \geq 2\pi^2(s-1)^{-2}a^{-2}m(s)$. Using these estimates we find $2m''(s)/m(s) \geq 4\pi^2 a^{-2}(s-1)^{-2} + (m'(s)/m(s))^2$, which implies

$$m''(s) \ge 2\pi a^{-1}(s-1)^{-1}m'(s), \quad 1 < s < 2.$$

We notice $\lim_{s\to 1} m(s)=0$ and $\lim_{s\to 2} m(s)=A$. Hence $m(s) \leq A(s-1)^{\lambda'(a)}$, where $\lambda'(a)=1+2\pi a^{-1}$ and inequality (2.2) is proved for the case when φ is C^{∞} in $\{|x|<3\}$.

If $\varphi \in L(m)$ and not assumed C^{∞} we can pick functions $\varphi_i \in C^{\infty}(\mathbb{R}^{n-1})$ such that $\sup \{ |\nabla \varphi_i(x)| : x \in \mathbb{R}^{n-1}, i=1, 2, ... \} < \infty, \varphi_i(0) = 0$, and φ_i converges to φ uniformly on compact sets. If A_i is the area of $\Gamma(\varphi_i, 1, a)$ and ω_i denotes the harmonic measure of $\Gamma(\varphi_i, 1, a)$ with respect to $\Sigma(\varphi_i, 1, a)$ then $A_i \rightarrow A$ and $\omega_i(P) \rightarrow \omega(P)$ for each $P \in \Sigma(\varphi, 1, a)$. Hence (2.2) follows.

Let $M(s)=\max \{\omega(x, y): (x, y) \in \Sigma \text{ and } |x|=s\}$ where 1 < s < 2. We notice that we find a number c', 0 < c' < 1/2, only depending on m and such that if $\xi \in \mathbb{R}^{n-1}$ and $1 < |\xi| < 3/2$ then $B'_{\xi} \subset \Sigma(\varphi, 1, a)$, where B'_{ξ} is the ball with center in $P_{\xi} =$ $=(\xi, 1/2a(|\xi|-1))$ and radius $c'(|\xi|-1)$. We next choose a number c, 0 < c < c'such that $D_{\xi} = \{(x, y): |x-\xi| < c(|\xi|-1), \varphi(x) < y < \varphi(x) + a(|x|-1)\}$ is star-shaped with respect to P_{ξ} . This number can be taken to depend only on a and m. Hence it follows from [9, Lemma 2] that there is a number C, only depending on a and msuch that if u is a non-negative harmonic function in D_{ξ} , with vanishing boundary values on $\partial D_{\xi} \cap \{(x, y): |x-\xi| < c(|\xi|-1)\}$ then $\sup \{u(\xi, t): \varphi(\xi) < t < \varphi(\xi) +$ $+a(|\xi|-1)\} \leq Cu(P_{\xi})$.

Letting 1 < s < 3/2, let us now choose $\xi \in \mathbb{R}^{n-1}$, $|\xi| = s$, such that $M(s) = \omega(\xi, \eta)$ for some $\eta, \varphi(\xi) < \eta > \varphi(\xi) + a(s-1)$. From the reasoning above it follows that $m(s) \leq C\omega(P_{\xi})$, where C can be taken to depend only on a and m. Let B_{ξ} be the ball with center P_{ξ} and radius $c(|\xi|-1)$. Then $\overline{B}_{\zeta} \subset D_{\xi} \subset \Sigma$.

Since ω^2 is subharmonic in Σ , it follows there is a constant C = C(a, m) such

308

that

$$M^{2}(s) \leq C(s-1)^{-n} \int_{B_{\xi}} \omega^{2}(P) dP$$
$$\leq C(s-1)^{-1} \int_{|t-s| \leq c(s-1)} t^{n-2} m(t) dt \leq C(s-1)^{-n+\lambda'(a)+1}$$

and the lemma is proved.

3. The main result

We can now prove our main result.

Proof of the theorem. Let u and D be as in the theorem. We start with the following observation. Since D is a Lipschitz domain we can find a finite number of open sets $V_1, ..., V_N$ such that $\partial D \subset \bigcup V_i$ and to each *i* there is an coordinate system $(\xi, \eta) \ \xi \in \mathbb{R}^{n-1}$, $\eta \in \mathbb{R}$, a Lipschitz function φ_i in \mathbb{R}^{n-1} such that $D \cap V'_i = \{(\xi, \eta): \varphi_i(\xi) < \eta\} \cap V'_i$ where V'_i is an open set such that $V'_i \supset \overline{V}_i$. For $Q \in \partial D$ we let I(Q) denote the largest index *j* for which $Q \in V_j$. If I(Q) = i we define for a > 0, r > 0 the open set N(Q, r, a) in the following way. Let $Q = (\xi_0, \varphi_i(\xi_0))$. We now put $M(Q, r, a) = \{(\xi, \eta): |\xi - \xi_0| \le 2r, \varphi_i(\xi) + a(|\xi - \xi_0| - r)^+ < \eta < \varphi(\xi) + ar\}$. Under our assumptions there is a number r_0 such that $M(Q, r, a) \subset D$ for all $r, 0 < r < r_0 = r_0(a, D)$. For $0 < r < r_0$ we define N(Q, r, a) as the set $\{(\xi, \eta): 2^{-m-1}r \le |\xi - \xi_0| - r < 2^{-m}r, \varphi(\xi) + a(|\xi - \xi_0| - r)$. Finally, let ω_m denote the harmonic measure of E(m) with respect to N(Q, r, a). We claim that if $P_0 \in D$ then there are numbers $C = C(a, D, P_0), r_1 = r_1(a, D, P_0)$ and a function $\sigma: \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$(3.1) \qquad \omega_m(P_0) \leq C \, 2^{-m\sigma(a)} \Lambda(r, P_0) \quad \text{for} \quad 0 < r < r_1, \quad \text{and} \quad \lim_{a \to 0} \sigma(a) = \infty.$$

To prove (3.1) we note there is no loss of generality in assuming $\xi_0=0$ and $\varphi_i(0)=0$. We put for $r < |\xi| < 2r$, $Q_{\xi} = (\varphi_i(\xi), a(|\xi|-r))$. An inspection now shows there are numbers c = c(a, D) and $r_2 = r_2(a, D)$ such that if $0 < r < r_2$ and if $Q_{\xi} \in E(m, Q, r, a), r \ge 2$, then $B(Q_{\xi}, 2cr2^{-m}) \subset N(Q, r, 2a)$. Letting G' denote the Green function of N(Q, r, 2a) we now see there is a number C = C(a, D) such that if $|P-Q_{\xi}| \le cr2^{-m}$ then

(3.2)
$$Cr^{n-2} 2^{-m(n-2)} G'(P, Q_{\xi}) \ge 1.$$

If h denotes the harmonic measure of $B(Q_{\xi}, c2^{-m}r) \cap \partial N(Q, r, a)$ with respect to N(Q, r, a) it follows from (3.2) and the maximum principle

(3.3)
$$h(P_0) \leq Cr^{n-2} 2^{-m(n-2)} G'(P_0, Q_{\mathcal{E}}).$$

From Lemma 3 follows $G'(P_0, Q_{\xi}) \leq C2^{-m\lambda(a)}m(r)$ where $\lambda(a) \to \infty$ as $a \to 0$ and $m(r) = \sup \{G'(P_0, Q) : Q \in \Gamma(\varphi_i, 2r, a)\}$. Since $G' \leq G$, where G is the Green func-

tion of *D*, it follows from Lemma 2 that $r^{n-2}m(r) \leq C\Lambda(r, P_0)$ for *r* sufficiently small. We note there is a constant *C*, such that to all $m \geq 2$ we can find points $\xi_i, 2^{-m}r \leq |\xi_i| < 2^{1-m}r, 1 \leq i \leq C2^{m(n-2)}$ such that $E(m, Q, r, a) \subset \bigcup B(Q_{\xi_i}, c2^{-m}r)$. This yields (3.1).

We can now complete the proof of the Theorem. Our assumptions mean that to all $\varepsilon > 0$ we can find points $Q_1, ..., Q_M$ in F and numbers $\varepsilon_i, 0 < \varepsilon_i < \varepsilon$ such that $F \subset \bigcup_{i=1}^{M} B(Q_i, \varepsilon_i)$ and

(3.4)
$$\sum_{i=1}^{M} \varepsilon_i^{\alpha} \leq \varepsilon_i$$

We put $D' = \bigcap_{i=1}^{M} N(Q_i, \varepsilon_i, a)$ and let $P_0 \in D$, where we will choose *a* later. If ε is sufficiently small then $P_0 \in D'$. It is now convenient to split $\partial D'$ into different parts. Let for $m \ge 2$, $1 \le i \le M$, $A_{m,i} = \partial D' \cap E(m, Q_i, \varepsilon_i, a)$, $A_{1,i} = \partial D' \cap M(Q_i, \varepsilon_i, a) - (\bigcup_{m=2}^{\infty} A_{m,i})$. We put $\mu_{m,i} = \sup \{u^+(P) : P \in A_{m,i}\}$ and let $h_{m,i}$ denote the harmonic measure of $A_{m,i}$ with respect to $N(Q_i, \varepsilon_i, a)$. Since *u* is bounded from above in *D'* the maximum principle gives

(3.5)
$$u^+(P_0) \leq \sum_{i=1}^M \sum_{m=1}^\infty \mu_{m,i} h_{m,i}(P_0).$$

It is easy to see there is a number $c=\beta=\beta(a, D)$ such that the distance between $A_{m,i}$ and ∂D is greater that $\beta 2^{-m} \varepsilon_i$. From Lemma 2 and (3.1) follows the existence of a constant $C=C(a, D, P_0)$ such that $h_{m,i}(P_0) \leq C 2^{-m\sigma(a)} \Lambda(\varepsilon_i, P_0)$, Using (2.1) we find $h_{m,i}(P_0) \leq c^{m+1} 2^{-m\sigma(a)} \Lambda(\beta 2^{-m} \varepsilon_i, P_0)$. From this and our assumption on u we obtain

$$u^{+}(P_{0}) \leq \sum_{i=1}^{M} \sum_{m=1}^{\infty} c^{m+1} 2^{-m\sigma(a)} M(\beta 2^{-m}\varepsilon_{i}) \Lambda(\beta 2^{-m}\varepsilon_{i}, P_{0})$$
$$\leq C \sum_{i=1}^{M} \varepsilon_{i}^{\alpha} \sum_{m=1}^{\infty} c^{m} 2^{-m\sigma(a)-m\alpha}.$$

We now pick a so small that the last sum converges. With this choice of a it follows from (3.4) that $u^+(P_0) \leq C\varepsilon$ for all $\varepsilon > 0$. Since P_0 was arbitrary in D it follows that $u \leq 0$ and the theorem is proved.

We shall now prove Proposition 1.

Proof of Proposition 1. Let *B* be the unit ball of \mathbb{R}^n and let $P(\cdot, y)$ be the Poisson kernel for *B* with pole at $y \in \partial B$. If $x \in B - \{0\}$ let $x^* = \frac{x}{|x|}$. From the explicit representation of *P*, see [8, Chapter 1] if follows that

$$P(x, y) \leq Cd(x)/(|y-x^*|+d(x))^n$$
.

If $E \subset \partial B$ is a closed set of positive α -dimensional Hausdorff measure, $0 < \alpha < n-1$, if follows from [3, p. 7] that there is a probability measure μ with support in E such that $\mu(B(x, r)) \leq Cr^{\alpha}$ for all $x \in \mathbb{R}^n$ and r > 0. Let $v(x) = \int P(x, y) d\mu(y)$. Then

310

v is non-negative and harmonic in B, and $\lim_{P\to Q} v(P)=0$ for all $Q\in\partial B-E$. If $x\neq 0$ then

$$u(x) \leq Cd(x) \int (|y-x^*|+d(x))^{-n} d\mu(y).$$

Putting $g(t) = \mu(B(x^*, r))$, an integration by parts shows

$$u(x) = Cd(x)\int_0^\infty (t+d(x))^{-n-1}g(t)dt \leq Cd(x)\int_0^\infty (t+d(x))^{-n-1}t^\alpha dt$$
$$= C(n,\alpha)d(x)^{\alpha-n+1}$$

and the proposition is proved.

4. Concluding remarks

In this section we shall discuss estimates of $\Lambda(\varrho)$. To begin with we notice that if D is a Lipschitz domain, then to each $P \in D$ there is a constant c=c(D, P)>0such that

(4.1)
$$\Lambda(\varrho, P) \ge c \varrho^{n-1}, \quad 0 < \varrho < 1.$$

For otherwise $\liminf_{\varrho \to 0} \varrho^{1-n} \Lambda(\varrho, P) = 0$. Letting σ denote the surface measure of ∂D it is easity seen that there is a c > 0 such that if $Q \in \partial D$ and 0 < r < 1 then $\sigma(B(Q, r)) \ge cr^{n-1}$. Hence we would have $\liminf_{r \to 0} \frac{\omega(P, B(Q, r))}{\sigma(B(Q, r))} = 0$ for all $Q \in \partial D$. Arguing as in [10, Theorem 14.5] this would mean $\omega = 0$. This contradiction establishes (4.1).

Let $0 < \theta < \pi/2$ and put $K_{\theta} = \{x = (x_1, ..., x_n): x_1 \ge |x| \cos \theta\}$. We say that a Lipschitz domain is θ -regular if for all points $Q \in \partial D$ there is a cone Γ_Q congruent to K_{θ} and with vertex at Q such that $\Gamma_Q \subset \mathbb{R}^n - D$. Let $\lambda_{\theta}(r) = \omega(e, B(0, r), \mathbb{R}^n - K_{\theta})$, where e = (-1, 0, ..., 0). From Lemma 2 and the maximum principle it now follows that $\omega(P, B(Q, r), D) \le C\omega(P, B(Q, 2r), \mathbb{R}^n - K_{\theta})$ for all $Q \in \partial D$ and all $P \in D$. Harnack's inequality now shows that

(4.2)
$$\Lambda(\varrho, P, D) \leq C\lambda_{\theta}(\varrho)$$

where C can be taken to depend only on P, D and θ . Estimates for λ_{θ} can be read off from the estimates for Green functions for cones in [2]. We omit the details but it follows there is to each θ , $0 < \theta < \pi/2$ a number $h(\theta) < n-1$ such that

$$\lambda_{\theta}(\varrho) = O(\varrho^{h(\theta)})$$
 as $\varrho \to 0$

and $h(\theta) \rightarrow n-1$ as $\theta \rightarrow \pi/2$.

312 B. E. J. Dahlberg: On exceptional sets at the boundary for subharmonic functions

If there is a number R>0 such that to each point $Q \in \partial D$ there is a closed ball B_Q with the property that $B_Q \subset R^n - D$ and $B_Q \cap \partial D \supset \{Q\}$ we find, using the arguments leading to (4.2)

$$\Lambda(\varrho, P, D) \leq C\lambda(\varrho)$$

where $\lambda(\varrho) = \omega(e, B(0, r), B')$, e = (-1, 0, ..., 0), $B' = \{P : |P+e| < 1\}$. Since $\lambda(\varrho) \le C\varrho^{n-1}$ it follows that (4.3) $\Lambda(\varrho, P, D) \le C\varrho^{n-1}$.

References

- AGMON, S., DOUGLIS, A., NIRENBERG, L., Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions, *Com. Pure Applied Math.* 12 (1959), 623-727.
- AZARIN, U. S., Generalization of a theorem of Hayman on a subharmonic function in an n-dimensional cone (Russian), Mat. Sb. (N. S.), 60 (108) (1965), 248-264.
- 3. CARLESON. L., Selected problems on exceptional sets, Van Nostrand, Princeton, N. J. 1967.
- 4. DAHLBERG, B. E. J., On estimates of harmonic measure, to appear in Arch. Rational Mech. Anal.
- 5. DAHLBERG, B. E. J., On the radial boundary values of subharmonic functions, to appear in *Math. Scand.*
- 6. HALLISTE, K., Estimates of harmonic measures, Ark. Mat., 6 (1965), 1-31.
- 7. HARDY, G. H., LITTLEWOOD, J. E., POLYA, G., *Inequalities*, Cambridge University Press, London 1952.
- 8. HELMS, L. L., Introduction to potential theory, Wiley-Interscience, New York, 1969.
- 9. HUNT, R., WHEEDEN, R. L., On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307-322.
- 10. SAKS, S., Theory of the integral, Hafner Publishing Company, New York, 1937.

Received April 14, 1977.

Björn E. J. Dahlberg
Department of Mathematics
Chalmers University of Technology
and University of Göteborg
Fack
S--402 20 Göteborg
SWEDEN