
On uniformly homeomorphic normed spaces II 
M. Ribe 

This paper continues the studies of  the situation when two Banach spaces 
are uniformly homeomorphic (i.e., when there is a non-linear bijection f between 
them such that both f and f - 1  are uniformly continuous). The question is how 
strongly the linear-topological structures of  the two spaces must then be related 
to each other. Only very recently, Aharoni and Lindenstrauss [19] gave an example 
showing that the two spaces need not always be isomorphic. (This question of 
isomorphy, raised by Bessaga [3] and Lindenstrauss [7], [8], is still open in the 
general reflexive case and in the general separable case.) 

The present author [18] has proved that for any two uniformly homeomorphic 
real normed spaces, the finite-dimensional subspaces are imbeddable into the other 
space by linear mappings T such that all the numbers II Zll [I T-xI[ have a common 
upper bound. This generalises some results of Enflo [5], [6] and Lindenstrauss [7]. 
Aharoni [1], [2] and Mankiewicz [13]--[16] have given nice results on some closely 
related problems. (For a recent survey, see Enflo [20].) 

The purpose of this paper is to show how the mentioned result of  [18] can be 
strengthened if one of the spaces is supposed to be uniformly rotund. As an applica- 
tion, it is proved that if l < p < ~ ,  then among all real Banach spaces only L, ep- 
spaces are uniformly homeomorphic to ~p-spaces (Sect. 5). 

Theorem 1. Assume that E and F are normed spaces over the real field, that 

F is uniformly rotund, and that E and F are uniformly homeomorphic. Then there 

is a number C>O such that for  any integer n >- _ 1 and any finite-dimensional sub- 
space K in E, there is a linear imbedding T: K ~  F with the following property: 

For every n-dimensional subspace L in F there is a linear mapping S: ( T ( K ) +  L ) ~  

E such that S T  is the identity mapping on K and such that IlS[I l[ Zll <= C. 

The proof is given in Sect. 2--3. 

Coronary 1. Under the assumptions o f  Theorem 1, there is a number C > 0  such 

that for  any integer n >- 1 and any finite-dimensional subspace K in E, there is a linear 
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imbedding T: K ~ F  for which IITII liT-all ~ C  and which has the following additional 
property: 

Consider any continuous linear projection P: E ~  K; then for every n-dimensional 
subspace L in F there is a linear projection Pa: ( T ( K ) + L ) ~ T ( K )  for which 

II/'111 <= CIIP[I. 

Proof Take PI= TPS. 

The proof of Theorem 1 uses a variant of  the technique for handling finite 
point-meshes introduced in the author's previous paper [18]. Like before, the "li- 
nearization" leading to S consists in forming averages of function values on a suitably 
selected point-mesh. The mapping T is obtained in a more direct manner, using 
"approximate affinity" of the uniform homeomorphism on a suitable point-mesh. 

2. Finite point-meshes 

For the proof  of  Theorem 1 we need some lemmas. This section contains those 
lemmas which do not depend on the uniform rotundity assumption. 

Notation. Given some points xa . . . .  , Xd in a linear space and an integer m_- > 1, 
we denote by G(Xl . . . . .  Xdlm ) the set of all linear combinations 

~xXl+...+~dXa with ~i integers, I~il ~= m. 

For a normed space E we let S(E) be the set of  all d-tuples (xa . . . . .  x d ) c E  
such that tlxiII =IIxat]--> I and dist(xi, lin (xl, ..., xi_a))=-iixl[l for all i. (This 
definition is somewhat wider than the one made in [18]; really, it ought to have 
been used there also.) 

Assumptions. For this section, we assume that there are given two normed 
real linear spaces E and F, and a non-linear mapping f :  E ~  F such that for some 
number b > 0  we have 

b - l l l x -  yll <= Ilf(x)-f(y)][ <- bllx-- yl] 

for x , y  in E, IIx-yll =~1. 

Notation. With these assumptions, let x in E and u in F" be given points, and 
let c > 0  be a given number. (F '  is the conjugate space to F.) We denote by sY(x, u[c) 
the class of all sets S in E such that whenever y is a point in S and k is any positive 
integer such that y + k x  is also in S, we have 

u ( f (y  + k x ) - f ( y ) )  >- c I[ u[I llx[I k. 
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Further, we denote by ~(xlc)  the class of  all sets S in E such that whenever y is 
a point in S and k is any positive integer such that y + k x  is also in S, we have 

IIf(Y + kx)- f (Y) l l  <= c Ilxll k. 

The following lemma is a slight modification of  Lemma 2 in [18]. The proof 
carries over with obvious changes and will not be repeated here. 

Lemma 1. With the Assumptions just made, let there be given an integer d>= 1 
and a real number 0>1.  Then there is an integer too(d, b, O)=mo>-_3 such that for 
m >= mo there is an integer Jo (d, m, b, O) =J0 => 1 such that the following implication 
holds: 

Let there be given a d-tuple (xl . . . . .  Xd) of  S(E), a real number c, (2b)-l<=c<=b, 
and integers i, l<~i<=d, and j>=jo . Suppose that yO in G(x2 . . . .  ,Xdl[mZJ/3]) and u 
in F" are points, and n, mZJo~n<=m zj, an integer for which 

u ( f ( y ~ 1 7 6  ~ Ocnllull [Ix, ll. 

Then the set G(x 1 . . . .  , xdlm 3j) contains a subset which is o f  the form 

y"  + mJ--1G(xx . . . . .  xalm) 

(where 1 <=j- <=3j-1), and which belongs to the class s4(mJ-- lx i ,  ulc). 

Lemma 2. With the Assumptions just made, let there be given an integer d>= 1 
and a real number 0>1.  I f  (xl . . . . .  Xd) is a d-tuple of  S(E) and m>=l an integer, 
there is a set which is of  the form 

y + n G ( x l  . . . . .  xalm) 

(where n >= 1), and which belongs to the class 

(] d ( n x i ,  Ui]Ci) ~ ~-] M(nxilOci) 

for some elements u i ~ 0 in F" and some real numbers ci > O, 1 <- i <: d. 

Proof. We shall prove that if m -> 3 is any given sufficiently large integer, then 
for all sufficiently large integers j=> 1 the set G(x~ . . . .  , xalm j) contains a set which 
is of the form 

G- = y -  +mJ- -1G(x l  . . . .  , Xd]m) 

and which is of  class d(nx~,u]c)c~g(nx~]Oc) for some u ~ 0  and c>0 .  The 
assertion of  the lemma then follows from precisely the same iterative argument 
as was used to find Gn in the first half of the proof  of  Theorem 1A in [18]. 

For  k>=i>=l let r(k, i) be that integer r for which the set 

mi G(Xl, ..., x,I m~-~ 
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belongs to the class ~(miXllO('+l)/2)\~(mixl]O'/2 ). Let jo(d,m,b,O)=jo be the 
integer mentioned in Lemma 1. Now, the function r(k, i) has finite range, and 
clearly it is increasing in k and decreasing in i. It follows that there is an integer 
jl(d, m, b, O)=jl>3jo such that one can always find some integers k ' ,  j '  with 

3jo<=3j'<k'<-jl and with 

r ( k ' - l ,  3j') = r(k', 3j ' -3 jo)  = r', 
say. 

Consider the set 
G" = m ~i'-3j0 G(xx . . . . .  x~im k'-3i" +3jo)" 

This set, and thus every subset of it, belongs to the class :~(m3J'-3Joxl[O(e+l)/2). 
But the relation enjoyed by r '  also implies that in the set 

m 3J' G(Xl . . . .  , xalmk ,-3y-1) 

there is a point yO such that 

I[f(y~176 I ~ Or'm3Jom3J'-3Jollxll[. 

In view of  this we can apply Lemma 1, which yields that in G' there is a subset G -  
having the properties claimed above (with c=0(e-1)/2). 

Notation. We denote by W(E)  the set of  all d-tuples (xx, . . . ,  Xd) of  points 
in E such that 

IlXll I _-> 2b 2, 

and [Ix/l[ <- 2b~llxlll, 

dist (xi, lin (x~ . . . . .  x,-1)) --> (b-m/2)[IXll[ 

for all i. (Remark: The choice of  the constants here is motivated by our actual 
need in the next section.) 

Lemma 3. With the Assumptions made at the beginning of  this section, for all 
integers d, n ~ 1 there is an integer M>= 1 and a positive number 6 such that the 
following implication holds: 

Let (Xl, ..., xn) be a given d-tuple of  W(E). Suppose that there is an affine mapping 

a : G(x I . . . .  , xnlM) ~ F 
such that 

Il f(x)-a(x)ll  <= ~llxlll for x in G(x 1 . . . . .  XdlM). 

Then i f  K is any (d+n)-dimensional subspace in E which contains G(Xl . . . . .  xd[M), 
there is a linear mapping S: K ~  F such that 

1 ~ S ( x ) =  a(x) -a(O)  for x in G(x1 ,  . . . ,  xalM). 

2 ~ llall ~ 2b. 
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Proof. The proof  is analogous to the last half of  the proof  of  Theorem 1A in 
[18]. Let M and ~ be fixed, but suitably large resp. small to meet later requirements. 
Given K, we let xd+l . . . . .  xa+ . be such that (xl . . . .  , xa+,) becomes a (d+n)-tuple 
o f  W(E)  spanning K. Also, assume that f ( 0 ) = a ( 0 ) = 0 .  

Let m<=M be a fixed positive integer, to be specified later. Given an s > 0  
(specified later), and then supposing that M and 6 were suitably chosen, we can 
construct a mapping h: G(xl  . . . . .  xe+,[m)~ F fulfilling the conditions 

(i) [Ih(x)+ h ( y ) - h ( x  + y)[I <- ~llxlll 
(ii) ] la(x)-h(x) l l  <-ellxlll when x is in G(xl  . . . . .  xdlm) 

(iii) [Ih(x)ll = b llxll 

for all x and y. Namely, let N<_-M be a fixed suitable positive integer and put 

G' = G(xx, . . . ,  xe lM)+G(xa+l  . . . .  , xa+,,IN). 

Then we define the h-values as averages of  differences of f-values in this way: 

h(x)  = (2M+ 1)-e(2N+ 1)-" z~x, ( f ( x ' + x ) - - f ( x ' ) ) ,  

where the summation index x" runs through G'. 
Conditions (i)--(iii) are quickly verified. For  (i), use the assumptions for f 

and W(E),  and note that if the defining sums for the h-values are written out, then 
a very large portion of  all terms in the expression for h ( x ) + h ( y ) - h ( x + y )  will 
cancel, if  M / m  and N/m were taken large enough. The assumptions f o r f a n d  W(E)  
clearly also imply (ii) if M / N  is large and 6 > 0  is small enough. It is easily seen that 
these requirements on M, N, and 6 do not depend on the choice of  (x~, ..., xd+,), 
except on d and n. 

We now define the linear mapping S: K ~  F by putting 

S ( ~ l  X1--~ . . .  -'~-~d+nXd.l.tt ) = r + ... + ~aa(xe) + ~a+ l h (xa+ a) + ... + ~a+,h(xa+,) 

for all reals ~i. Then S clearly coincides with a on the domain of  a, as claimed. 
Further, it can be seen that conditions (i)--(iii) imply that II S][ <=2b, if m was chosen 
sufficiently large and s sufficiently small, in view of  the assumptions for W(E) ;  
and these requirements on m and s do not  depend on (x 1 . . . .  , xa+,), except on 
d and n. 

3. Uniform rotundity 

First notice that the definition of uniform rotundity (cf. Day [4], Sect. VII. 2, 
Definition 2) can be rephrased thus: A space E is uniformly rotund if and only if 
for every s > 0  there is a 6 > 0  such that if u is any element in E" with Ilull=l, 
then the set of  all points x in E with ][xll =< 1 and u(x)>= 1 - 6  has diameter at most 
8. In view of  that, the following lemma is almost immediately obtained: 
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Lemma 4. With the notations of the preceding section, suppose that F is uniformly 
rotund. For every e > 0  there is a 0>1  such that the following implication holds: 

Let (xl . . . .  , x n ) c E  be any linearly independent d-tuple and m any positive in- 
teger. Suppose that the set G(xl, ..., xalm) belongs to the class 

 (xi, uilci)n A ,,,IOcl) 
l~_i~_d l~i~_d 

for some elements ui~O in F' and some real numbers ci>O, l<=i<=d. Then there 
is an affine mapping a: G(Xl, ..., xi lm)~ F such that 

IIf(x)-a(x)ll  ~ ~dm max IIxill 
for all x in G(xl, ..., xalm). 

Proof Define a putting a (0 )=f (0 )  and a(xi)=f(O)+y/, where Yi is the 

unique solution to the equation ui(yl) = [1 u/l[ 1[ Yil[ with [I Y/l[ = el I[x/l[. 

Proof of Theorem 1. Clearly, the uniform homeomorphism f (say) fulfils the 
Assumptions at the beginning of  Sect. 2 for some b. Let (Xl, ..., Xd) be a d-tuple of  
S(E) spanning K and with Jlxl[1-->3b a. Let m be a large positive integer, and let e 
be a small positive number. Combining Lemmas 2 and 4, we find a set 

G- = y -  +rG(xl  . . . . .  x,a[m) 

(where r=>l) and an affine mapping a: G - ~ F  such that IIf(x)-a(x)ll<-_~rl[x~ll 
for x in G- .  

Let the integer n=>l be given; then if m and e were chosen suitably, we can 
define the desired linear mapping T: K ~  F as the linear extension of  the 0-pre- 
serving affine mapping x ~ a ( x + y - ) - a ( y - ) .  Namely, first note that if e is small 
enough, then 

(rr(xl) . . . .  , rr(xd)) 

is necessarily a d-tuple of  W(F) .  Now suppose that m was taken suitably large 
and e suitably small; and let L be an arbitrary n-dimensional subspace in F. We 
can then apply Lemma 3, with f - 1  in the place o f f  and a -~ in the place of  a, to 
obtain a linear mapping S: (T (K)+L) -~E  with ST  being the identity mapping 
on K and with I]Slt<-_2b. For  m large and e small we also have I[Ti[<=2b, which 
completes the proof. 

4. Further observations 

Corollary 1 can sometimes be given a stronger and more polished formulation 
with the aid of  a recently studied notion, i.e., the uniform approximation property 
(u. a. p.). A space E has the u. a. p. if there is a number C > O  so that  for every 
d _  -> 1 there is an n => 1 such that for every d-dimensional subspace K in E, there 



On uniformly homeomorphic normed spaces II 

is a linear mapping T: E ~ E  with T(x )=x  for x in K, with dim T(E)<=n, and 
with IITII-<_C. The LP~)-spaces have the u .a .p . ,  by Pelczynski and Rosenthal 
[17]; so do the reflexive Orlicz spaces, by Lindenstrauss and Tzafriri [12]. From 
Corollary 1, we immediately get: 

Corollary 2. With the assumptions of Theorem 1, also assume that F has the 
uniform approximation property. There is a number C > 0  such that for every finite- 
dimensional subspace K in E, there is a linear imbedding T: K ~ F  for which 
II T II II T-111 <= C and which has this property: I f  P: E--, K is a linear projection, there 
is a linear projection PI: F ~  T(K) with I[elll<=fl[el[. 

Let us notice that a sort of  "approximate affinity" is generally possessed by 
uniformly continuous mappings into uniformly rotund spaces. For by Lemma 4 
and an obvious modification of Lemma 2, we can obtain: 

Corollary 3. Let f :  E ~ F  be a uniformly continuous mapping from a real normed 
linear space into a uniformly rotund real normed linear space F. Let (Xl, ..., xa) be 
a linearly independent d-tuple of  elements in E and let m be a positive integer. For 
every number e > 0  there is a set of  the form 

G = y+nG(xa . . . . .  xnlm) 

(where n>=l) and an affine mapping a : G ~ F  such that [[f(x)-a(x)ll<~n for all 
x i n G .  

(Of course, this "approximate affinity" can be trivial, so that a = 0  always 
suffices for n large.) 

5. Application to Lap 

Concerning the Lap-spaces, which were introduced by Lindenstrauss and Pel- 
czynski [9], see Lindenstrauss and Rosenthal [10], or Lindenstrauss' and Tzafriri's 
book [11]. 

Theorem 2. Let l < p < ~ o .  Then i f  a real Banach space is uniformly homeo- 
morphic to an Lap-space, it is an Lap-space itself. 

Proof Let E be a Banach space which is uniformly homeomorphic to an La~, ~- 
space F. It is known that every Lap-space is isomorphic to a subspace of an LP-space; 
so since 1 < p <  ~o, F can be given an equivalent norm which is uniformly rotund. 

According to a recent theorem of  Pelczynski and Rosenthal [17], for d -> 1 
there is an n ( d ) ~ l  such that every d-dimensional subspace in l p is contained 
in an n(d)-dimensional subspace N c  I p with d(N, l~d))<--2. Now apply Theorem 1 
above, taking the finite-dimensional K c E  arbitrary and taking n = n ( d ) - d ,  
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where d is the dimension of  K. It follows that there always are linear mappings 
U: K~l~ and V: lP,~E with VU=id  K and Ilgllllgll<=2C2. But the latter state- 
ment means precisely that E fulfils the hypothesis of Theorem 4.3 of Lindenstrauss 
and Rosenthal [10], whence E is an Sap-space of  an Sa2-space. 

Now, the alternative of E being an Sa2-space can be ruled out when p ~ 2 ,  
by an application of  the above argument witb the roles of E resp. F interchanged 
(or by Theorem 6.3.1 of Enflo [6]). 

Remark. In the separable case Theorem 2 can be restated thus (see [10] or [11]): 
For 1 < p <  ~o, the class of all isomorphy types of complemented closed subspaces 
in LP(O, 1) is closed under uniform homeomorphy. It might be pointed out that a 
corresponding statement holds for the class of isomorphy types of all closed sub. 
spaces in LP(O, 1). (Of course, the latter statement is of a "less precise" kind, since 
the latter class is so much wider than the former when p r  Thus: 

Let 1 < p <  ~,. I f  a real Banach space is uniformly homeomorphic to a subspace 
in LP(O, 1), it is isomorphic to a subspace m LP(O, 1). 

Namely, this follows from the result of [18] cited at the beginning of this paper, 
combined with a known fact, which can be proved by a suitable diagonalisation: 
L"(O, 1) is a universal imbedding space for those~separable Banach spaces all finite- 
dimensional subspaces of  which can be imbedded into l p by linear mappings T with 
IlZll IIT-1[I having a common upper bound. (Alternative approach: It is possible 
to show that a uniform imbedding onto a subspace in LP(O, 1) can be "Lipschitzified', 
and hence a linear-topological imbedding then exists by a general theorem of Man- 
kiewicz [13].) 

Remark. As in [18] (cf. Sect. 5 there), it is a straightforward matter to get sharp 
quantitative forms of the results in this paper. E.g., to state such a form of  Theorem 
2, let E be a real Banach space which can be mapped onto an sap, a-space by a bijec- 
tion fulfilling the Assumptions stated at the beginning of Sect. 2 above; then E is 
an Sap, b~+~-space for every e>0.  

6. Locally bounded spaces 

For E in Theorem 1, for the given space in Theorem 2, and for one of the two 
spaces in Theorem 1 of [18], it actually suffices to assume that it is a real locally 
bounded space. Namely, the proof  of  Theorem 1A in [18] clearly carries through 
if E is endowed with the Minkowski functional of a bounded 0-neighbourhood, 
and not necessarily with a norm. This generalization of Theorem 1A immediately 
implies the following (which is a generalization of Theorem 6.2 ; of  Enflo [6]): 
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I f  a locally bounded space is uni formly  homeomorphic  to a normed  space, it is 

normable.  

The au thor  is thankful  to Prof. P. Enflo and  to Prof. T. Figiel for s t imulat ing 

conversations.  

References  

1. AHARONI, I., Every separable metric space is Lipschitz equivalent to a subset of co, IsraelJ. Math. 
19 (1974), 284--291. 

2. AHARONI, I., Uniform embeddings of Banach spaces, To appear. 
3. BESSAGA, C., On topological classification of linear metric spaces, Fund. Math. 56 (1965), 251-- 

288. 
4. DAY, M. M., Normed Linear Spaces, Third Edition, Springer-Verlag, Berlin--Heidelberg-- 

New York, 1973, ISBN 3--540--06 148--7. 
5. ENFLO, P., On the nonexistence of uniform homeomorphisms between Lp-spaces, Ark. Mat. 8 

(1969), 103--105. 
6. ENFLO, P., Uniform structure and square roots in topological groups, II, Israel J. Math. 8 

(1970), 253--272. 
7. LINDENSTRAUSS, J., On non-linear projections in Banach spaces, Michigan Math. J. 11 (1964), 

263--287. 
8. LINDENSTRAUSS, J., Some aspects of the theory of Banach spaces, Advances in Math. $ (1970), 

159--180. 
9. LINDENSTRAUSS, J. and PELCZYNSKI, A., Absolutely summing operators in Lp-spaces and their 

applications, Studia Math. 29 (1968), 275--326. 
10. LINDENSTRAUSS, J. and ROSENTHAL, H. P., The .~?p-spaces, Israel J. Math. 7 (1969), 325--349. 
11. LINDENSTRAUSS, J. and TZAFRIRI, L., Classical Banach Spaces, Lecture Notes in Math. 338, 

Springer-Verlag, Berlin--Heidelberg--New York, 1973, ISBN 3--540--06 408--7. 
12. LINDENSTRAUSS, J. and TZAFRIRI, L., The uniform approximation property in Orlicz spaces, 

lsraelJ. Math. 23 (1976), 142--155. 
13. MANKIEWICZ, P., On Lipschitz mappings between Fr6chet spaces, Studia Math. 41 (1972), 

225--241. 
14. MANKIEWICZ, P., On the differentiability of Lipschitz mappings in Fr6chet spaces, Studia Math. 

45 (1973), 15---29. 
15. MANKIEWICZ, P., On Fr6chet spaces uniformly homeomorphic to H• Bull. Acad. Polon. 

Sci. Sdr. Sci. Math. Astronom. Phys. 22 (1974), 521--527. 
16. MANKIEWICZ, P., On spaces uniformly homeomorphic to Hilbertian Fr6chet spaces, Bull. 

Acad. Polon. ScL Sdr. Sci. Math. Astronom. Phys. 22 (1974), 529--531. 
17. PELCZYNSKI, A. and ROSENTHAL, H. P., Localization techniques in LP-spaces, Studia Math. 52 

(1975), 263--289. 
18. RIBE, M., On uniformly homeomorphic normed spaces, Ark. Mat. 14 (1976), 237--244. 
19. AnARON1, I. and LINDENSTRAUSS, J., Uniform equivalence between Banach spaces, To appear. 
20. ENFLO, P., Uniform homeomorphisms between Banach spaces, Seminaire Maurey--Schwartz 

1975--1976, Expos6 18. 

Received March 29, 1977 M. Ribe 
Lostigen 1 
S--17 171 Solna, Sweden 


