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1. Introduction 

Let X be a compact C ~ manifold of dimension n > 1 with a C k Riemannian 
metric G. By an isometric embedding of  X in R N we mean an injective function 
UE CI(X, R N) which induces the given metric, that is 

(1.1) (dU, dU) = G. 

Nash [7] proved that if GEC ~ there is an isometric embedding UECI(X, R N) pro- 
vided that N>-n+2 and that there is a differentiable embedding of X in R N, in 
particular i f  N~2n. Nash also indicated that the condition N>=n+2 could be 
weakened to N>=n+I, which was proved by Kuiper [6]. It should be observed 
that (I. I) in local coordinates means n(n + I)/2 equations for N variables. For G E C k, 
k=>3, Nash [8] also showed that there is an embedding UECk(X,R N) if 
N>=n(3n+ll)/2. The condition on N has been improved for smooth metrics to 
N>--n(n+l)/2+3n+5 by Gromov and Rokhlin [3], who also gave lower estimates 
for the embedding dimension of  the same order of  magnitude for k_>-2. This result 
of  Nash was extended by Jacobowitz [5] to HOlder classes H ~ with a > 2 ,  and he 
also showed that there are metrics GEH p, f l>2,  such that (1.1) has no solution 
UEH~(35, RN), ~>~,  for any N. 

The result of  Nash--Kuiper  shows in particular that there is always a local 
embedding of  35 in R n+l. Borisov [1] has announced that if G is analytic there is 
a local isometric embedding UEH'(X, R n+l) with any ~<  1 + 1/(n~+n + 1). Thus 

is close to 1 if n is large. The low regularity seems to be caused by the demand 
for a low codimension, for by permitting large values of  N we shall prove 

Theorem l.1. I f  GEH a, 0 < f l ~ 2 ,  then the equation (1.1) has a solution 
UEH~(X, R N) t f ~ < l  +8/2 and N is sufficiently large. On the other hand,/f0<=fl<2 
the se tof  all GEH p for which (1.1) has a solution UEH~(X, R N) with ~ > l + f l / 2  
is of  the first category. 
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The proof  of  the first half of Theorem 1.1 uses ideas from Nash [7, 8]. We give 
a general outline here. 

To solve equation (1.1) for given G we want to find an appropriate iteration 
scheme producing metrics Gk, k = 0 ,  1 . . . .  , Gk--G, and functions Uk~C~(X, Rn), 
U=l im UkEH~(X, RN), k = 0 ,  1 . . . . .  such that  

(1.2) (dVk, dUk) ---- Gk+ek. 

Here the error term ek is to be so small that it almost can be corrected in the next 
step. 

To construct Uk+ t from Uk we perturb Uk in normal directions. However, this 
introduces a difficulty; if Uk~C v then the normal will only belong to C v-1 and so 
will Uk+ ~. Nash [8] overcame this problem by requiring that the perturbation should 
be normal not to Uk but tO So, U k, where S o is a smoothing operator. We therefore 
define 

(1.3) va+a = Vk+l-U~ = z~, Ck,,(k,,, 

where {~,,~} is an orthonormal system of  normals to the range of  So, Uk and Ck,, 
are real valued functions on X. In terms of  the coefficients ck, s the equation 
(dUk+ 1, dUk+~)=Gk can be written in the form 

(1.4) .~s((dck, s)Z+ 2ck, s(dSok Uk, d(k,s)) = Gk+l--(Gk+ek)--Ek 

where we shall always neglect the error term 

Ek = 2((dUk, do~+~) -2  ~ ck.,(dSo~ G ,  d(k,,))+(dok+x, dvk+t) - - .~  (dck,.) 2. 

I f  G 6 H  #, f l>2  
term, to 

that is 

we can simplify (cf. [5, 8]) (1.4), by also omitting the quadratic 

2 z~s ck, s(dSok Uk, d(k,,) = ink, 

2 .  Ck,, ( d~ So~ Uk, ~k,.) = -- mk/2. 

Here m k is close to G ~ + l - G k - e  k. This linear system of  equations for Ck, s gives 
an iteration scheme which leads to a Solution uEH p of  (1.I). For  details in this 
case see for instance H6rmander [4]. 

If  GEH p, f l<2,  this does not work because now the quadratic term is dominant. 
Using an idea in [7] we take Uo to be a C *~ embedding of  X in R N such that g =  G -  
(dUo, dUo) is positive definite. Then split g into a geometric series with terms 

and define 
gk = O-kr( 1 - O - O g  

Gk = (dUo, dUo)+ ~ k-1 gj. 
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Then Gk+l--Gk--ek=gk--ek, and with Ok and 0 properly chosen it turns out 
that gk--ek is the dominant term on the right hand side of  (1.4) and that it is positive 
definite. But then 

mk = Sok (gk -- ek) 

will also be positive definite and we want to solve 

(1.5) , ~  ((dCk,~)~ + 2Ck, s(dSok Uk, d~k,s)) = ink. 

This non-linear equation we cannot solve exactly but with the accuracy the iteration 
scheme requires. This can be done because of the following observation made by 
Nash in [7]. Write (formally) half of  the functions Ck, s as ak, t COS (Ok~ot)/Ok and the 
other half as ak,,sin (Okt&)/Ok where ~o t are linear functions in local coordinates. 
Then 

Z ~  (dck,~) ~ = ,~ ,  (a~,,(dtP,)2-k (dak, JOk) 2) 

and it turns out that the dominant term of  the left hand side of  (1-.5) is ~ t  a[,,(dq~,) 2. 
But since any positive definite matrix is the sum of  n squares of  linear forms we 
can solve the system 

Z ,  a~,,(d~~ 2 = ink. 

With a rather heavy use of  the inverse function theorem, we can than solve (1.5) 
with the required accuracy. In this way we obtain an iteration scheme that for any 
a <  1 +fl/2 gives a solution UEH" of  (1.1). 

The second part of  Theorem 1.1 follows by the usual derivation of  the Gauss 
equation in differential geometry, where derivatives are replaced by smoothed 
differences. 

We leave it as an open question whether (1.1) has a solution U E H  ~' with a =  1 + 
fl/2 when G E H  #, 0 < f l < 2  and also how large the dimension N in Theorem 1.1 
has to be. 

Finally I want to express my gratitude to Professor H6rmander for helping 
me constantly with the following work. 

2. Preliminaries 

In this section we shall collect some facts that will be needed in the proof  of  
Theorem 1.1. First we shall review briefly some classical facts on Hf lder  classes 
(cf. Hf rmander  [4]). Then, irt Lemma 2.3., we shall define a special covering of  
the manifold X and decompose Riemannian metrics in a way that will suit the 
iteration scheme in the proof  of  Theorem 1.1. This iteration scheme also requires 
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the existence of  a family of  globally defined normal vector fields for embeddings 
of  X. Such fields will be constructed in Lemma 2.4. 

We start  with discussing H61der classes. Let B be a fixed convex compact set 
in R ~ with interior points. For a continuous real valued function defined in B we set 

lula = sup l u ( x ) - u ( y ) l / l x - y l  ~ 
x, yEB 

if  0<a= l .<  I f  instead k < a < : k + l  where k is a positive integer, we set for 
uECk(B, R), the space of k times continuously differentiable real valued functions 
in B, 

lUla = ~l~l=k I oaula-k" 

Here 0~ denotes an arbitrary partial derivative of  order I~1. 

Definition 2.1. I f  k<a<-_k+l where k is an integer _->0, then the H61der 
class Ha(B,R)  is the set o f  all uECk(B,R)  with [ul~<o~ and the norm Ilulla= 
lUla+SUp lul. We set H~ R ) = C ~  R) and //u//0=su p lul. 

For  functions u=(ul ,  ..., u m) with values in B ' ~ R  m we write uEH~ B') 
if  all coordinate functions uj E H a (B, R). We then set 

m 

Ilulla = Z j = I  IlU~L. 
These H61der classes have the following six properties. H 1 -  H 3 and H 5 were 

proved in H6rmander  [4]. H 6 is a discrete version of Theorem A.11 in [4] and will 
be proved here. H 4 is an easy consequence of  H 2 and H 3 which we shall also prove. 

H1 .  H a is a Banach space which decreases when a increases. For O~_a<~b 
and b bounded, O < t <  1, there is a constant C such that 

Ilullo -< Cllullb, Ilull,a+ta-Ob <- CllulI~IlulI~-'. 

H 2. H a is a ring. When a is bounded there is a constant C such that  

IluvlL <-- C(l[Ulla IIVlIo+ Ilull011vL). 

H 3. H a is closed under composition. Let B i be a compact  convex subset of  R n,. 
I f  gEHa(B1, B2) and fEHa(B2,  R m) then fogEHa(B1, R m) and we have the following 
estimates 

IIf~ Ca(llfll~llgll~+llfllallglla+llfllo), a >= 1; 

Ilfoglla <= min(llflhllgll,, Ilfll,ligll~)+lifl[o, 0 <-_ a <= 1. 

Properties H 2  and H 3  allow one to define Ha(X, R m) if X is any compact C ~ 
manifold. To do so we cover X by coordinate patches f2j and take a partition of  
unity ~ x ~ = l  with x~ECo(Oj,  R). A function u on X with values in R m is then 
said to belong to H a (X, R m) if Ziu for every j is in H a as a function of  the local 
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coordinates, and Ilu[la is then defined as ~llxjul la  with the terms defined by means 
of  local coordinates. The definition of  Ha(X, R m) does not  depend on the choice 
of  covering, local coordinates or partition of  unity, and the norm is well defined 
up to equivalence. Similarily we can define Ha(X, E) for sections of  a C ~ vector 
bundle E over X; the only new feature is a change of  trivializations of  the bundle 
over coordinate patches. 

H4 .  Estimates of  a non-linear differential operator. Let F(x, U) be a smooth 
function of  x6B  and U =  {ua}l~l~_, n where B is a compact  convex subset o f  R n with 
interior points, u~CR N and cr . . . .  , ~n) is an n-tuple of  non-negative integers 

with sum 1~[. Let �9 be the corresponding partial differential operator acting on 
functions u defined in B and with values in R N defined by �9 (u) = F ( . ,  {t9 ~ u (.)}t~l~-m)" 
For  u, vEnm+a(B, R N) with Ilulr~<=C, where C is a fixed constant, we then have 
the estimates 

(i) II~(u)lla <- Ca(l+llullm+a) 
(ii) II ~(u + v ) - ~ ( u ) l l ,  <- Ca(lIvll~§ + llullm§ 

Here (i) follows f rom 1-13 with f = F  and g: B g x ~ ( x ,  {tg~u(x)}) if we observe 

that Ilullm§ 1/a IlUllm§ when a > l .  (ii) then follows f rom the mean value theorem, 
(i) and H 2. These estimates easily carry over to the case where �9 is a differential 
operator of  order m carrying sections of  a vector bundle E over X to sections of  
another vector bundle F over X. Such an operator is defined to be a functional 
which over every coordinate patch where E and F are trivial has the above form 
with respect to the local coordinates and trivializations of  the bundles. 

H5 .  Existence of  a smoothing operator. Let E be a C ~ vector bundle over a 
C ~ compact  manifold X. Then there is a smoothing operator S 0, 0 > 1, such that 
for uE Ha(X, E) 

(i) [ISoulln ~ Cal[Ul]a, 0 ~ b <= a; 
(ii) IlSoul[b ~ CbOb-allu]la, 0 <-- a ~_ b; 

Oii) [lu--SoUllb ~-- C~Ob-~llulla, 0 <= b <= a. 

H6. A characterisation of  H ~ when ~ is not an integer. Let E be a C ~ vector 
bundle over a C ~ compact manifold X, and assume that the interval I = [ ~ - ~ ,  ~+e]  
does not contain an integer. Let vy6Coo(X, E) be sections and assume for all 
a ~1 that 

[[vjlla ~- go~ -~, j = 0 , 1  . . . .  

where 0j=0o 0j with 0 > I .  Then it follows that  

(2.1) f = ~ ' o  vJEn~( X, g), IIUIl~ <-- C~K/(1-O -~) 

where C~ is independent of  0 and 00. 
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Proof. We can assume that vj~C~(B, R) where BC_R" is compact and convex 
and that I~]0 ,  1[. I f k  is an integer =>-1,  then we have 

k (2.2) ~o  k ILvjL+, <= K ~o Oj ~_ K~/(1--O -c) 

Z~+x IlvjL_, <- K ~'~~ Of ~ <= go;:1/(1 --O-e). 

Set d = l x - y  [ and assume first that d<l/Oo. We can then find an integer k=>0 
such that i/(dO)<-Ok<l/d. If  we use this value o f k  in (2.2) we get 

lu (x) - u (y)[ ~_ 2Kd'/(1 -- 0-*). 

If  d -> 1/0 o we choose k =  - 1  in (2.2) and get 

lu(x)-u(y)l ~_ d ' - 'K OK ' / ( l -O  -e) <- Kd' / (1-O-e) .  

Summing up we have 

sup [ u ( x ) - u ( y ) l / l x -  y[ ~ <= 2K/(1-O- ' )  
x, yEB 

which proves the statement. 
Our next aim is to decompose metrics close to a given one. The corresponding 

algebraic decomposition is given first in the following lemma. 

Lemma 2.2. Let g be a positive definite quadratic form in R n. Then one can find 
linear forms L t , t = 0 . . . . .  Sn = n (n + 1 )/2 with affinely independent squares and 

g = Zg" L~/(s,q- 1). 

�9 ~ m - - 1  12 Proof. We can first write g=A~9 j with linearly independent linear forms 
lj and then choose additional linear forms L,, t=n,  ..., s, such that all the squares 
l~ and L~ are affinely independent. For  small ~ > 0  we have 

= ' ~ n - - 1  ~.2 g--~ Z : "  Lt z z~o --, 

where Lj  is close to lj for j < n  if  e is small. But then the squares of the forms L t 

for t = 0  . . . . .  s. will be aifinely independent, and if we multiply the forms by (s .+  1) 1/2 
or (s .+ 1)v2e -1/z the lemma is proved. 

Note that the affine independence means that arty quadratic form h can be 
written in a unique way 

h Z0" At(h) L~, ~" --- = Zo 2,(h) 1. 

Here At(h ) is an attine linear function of h with At(g)= 1/(s,+ 1). 
In the following lemma we denote by SZ(T*X) the vector bundle over X whose 

fiber over x E X  is the vector space of  symmetric bilinear forms on TxX. Recall 
that we have introduced the notation s, for the fiber dimension. 
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Lemma 2.3. Let g be a given positive definite continuous section of  S2(T*X). 
We can then find 

(i) a covering o f  X by finitely many coordinate patches (2j, jEJ, such that the 
index set J is a disjoint union .Ix u . . .  u Jn+l and 

(2.3) t 2 ~ n O ~ = 0  /f  i # j  and i, jEJk,  

(ii) functions zjECo(~2j, R) with ~ Z ~ = I ,  
(iii) functions 9[ECo (X, R), jEJ, t--0, ..., Sn, which are linear in the local 

coordinates in s 
(iv) a neighborhood W 1 of  g in H~ S2(T*X)) and a neighborhood W2 of  the 

zero section of  S2(T*X) in H~ S2(T*X)), with the following properties: I f  
m E W1 and M] E W2 for all j and t we can find real valued continuous functions a] on 
X such that 

rn(x) = 2 jEJ  2~:o ((Zj(x)ai(x))2(d~~ xE X. (2.4) 

Here 
(2.5) 

(2.6) 

a{ = FL ({M~}, m), Ft j E C ~; 

IIa{llo ~- 1. 
H 3 then implies the estimates 

(2.7) Ila{Ilb ~- Cb(l+llmllb+Zi, s IIg~llb), b _-> 0. 

Proof. We shall first show that the choices (i)--(iii) can be made so that there 
is a neighborhood V of  g(X) in S~(T*X) and b~EC~(V, R) such that 

(2.8) rn= ~j~.~=o(Xj(x)b{(m))~(d~oJ,) 2 if mEVnS~(T*X)x .  

For any point xEX  we can choose a coordinate neighborhood to,, with local 
coordinates Ya . . . . .  y,  vanishing at x, and in co x we can write 

g(x) = • g~k(Y) dyj dYk. 

By Lemma 2.2. we can then choose linear forms Lt, t=O, ..., s,, such that 

g(O) = ~o" dLt(y)2/(sn + 1), 

and every quadratic form h in dy can be written uniquely 

h = z~o" 2,(h) dLt(y) 2, ~ ;~t(h) = 1. 

Let o~ be a neighborhood of x which is relatively compact in ogx such that 

2 , (g(z))> 1/2(sn+l ) if zEog~. 

Then {o~}~c x is an open covering of  X. Since X is compact there is a finite sub- 
covering and it can be refined to a covering {f2j}je s such that no point in X belongs 
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to more than n +  1 different f2~. This implies (i). Choose Zj satisfying (ii). I f  Ojaco" 
we set with the notations used above 

r = L,(y(z)), bi(m) = 2,(m) 1/2 

if zEf2 i and mES2(T*f21) is so close to g(x) that 2, (m) > l /2 (s, + l ). We can 
extend q~t ] and b ] to C ~ functions on X and a neighborhood of  g(x) in S2(T*X) 
respectively, and have then proved (2.8). 

Now define 

9(x, {MI], {aS}) = ~ '  ((Zs(x)al)2(dgl)2+Zj(x)aSMi)E S~(T*X)x 

for a[ER and M]E SZ(T*X)~. Let Q be the number of indices j and t. This induces 
a fiber preserving C = map 

~: S2(T*X)a@ (XXR Q) ~ S2(T*X)Q@S2(T*X) 
defined by taking 

�9 (x, {MI}, {a/}) = (x, {MI}, (p(x, {M/}, {a/})) 

in the fiber over x. Here �9 denotes the Whitney fiber sum. 
Now (2.8) means that there is a neighborhood V of gO() in S~(T*X) such 

that the restricted map 

0 @ ( X •  Q) ~ O@S2(T*X) (0 means the zero section) 

n a s a  right inverse 0OV~0@(XXRQ).  This can be trivially continued to a map 

q,: S2(T*X) ~ ~ V-~ S~(T*X) Q @ (XXRQ) 
by defining O(x, {M{},m)=(x, {M/}, {b{(m)}) where b~t(m) are defined by (2.8). 

Now 4~oO[0GV=identity on 0| and this implies that the differential of 
~o~k at (0, V)EOOS2(T*X)~OGV has the triangular form 

[id iO): S2(T .X)Q@T~S2(T,X ) --,. S2(T . X) Q G T,,S'(T*X). 

(If E is a vector bundle over M, then TE can at the zero section be identified with 
EOTM; regard S~(T*X)~ as a vector bundle over S2(T*X).) It is 
therefore invertible. I f  we take a relatively compact subset V~ of V the inverse 
function theorem then gives a neighborhood U of the zero section of S~(T*X) ~ 
and a C ~ map ~kx from UGV1 into S2(T*X)~ such that ~o~boq/x=identity 
on U~  V 1. Thus 

~koO~: U@V~ ~ S2(T*X)e@(XXR e) 

is a right inverse to 9. It is clear that we can assume U and Va so small that 
Oo$~(UE3V~)C={(x, {M]}, {a]})ES2(T*X)e@(XXRe); O<-a[<= 1}. This implies (iv), 
(2.4) and (2.6). 
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Finally we shall construct normal vector fields for embeddings of  X. 

Lemma 2.4. Let uo be a given C ~ embedding in R N of  the n-dimensional compact 
~p C ~ manifold X, where N>=p+2n. We can then find an orthonormal family { ~}1 

of  C ~ normals to uo(X). This means that ~i is a C= funetion from X to R N such that 
(~i, duo)=0 and (~i, ~J)=fij. Moreover we can find a first order differential operator 
w-~i(v) defined in a HI-neighborhood W of  uo such that {ffi(v)}~ is an orthonormal 
family of  norma!s to v(X) and ~i(uo)=~i. 

According to (i) in H 4 we then have the estimate 

(2.9) II~(v)[I <-- C . ( l  +llvlla+9, i =  1 . . . . .  p, a >=0. 

For the proof  we need the following well-known 

Lemma 2.5. Let X be an n-dimensional compact C ~ manifold, E a sub-bundle 
of  X •  R N and E" its orthogonal bundle. I f  the fiber dimension of  E -L is at least n + I 
there is a C ~ section over X of  the unit sphere bundle of  E ' .  

Proof of  Lemma 2.5. I l k  is the fiber dimension o r E  • then dim E = n + N - k < N  
and according to the Morse--Sard theorem the image of the projection of E on 
R N is not all of  R u. Now take an element of  R N not in this image and project it 
orthogonally on E~ for every x in X. The wanted section is then obtained from 
a normalization. 

Proof of  Lemma 2.4. We identify X and uo(X) and define ~1 by taking E = T X  
in Lemma 2.5. Then define successively ffk by taking E=TX| with 
Fi={(x, tiff(x)): x6X,  tCR}, noting that N - ( n + k - 1 ) > n  i f  k<=p. 

Now take a tubular neighborhood f2 x of X in R N with projection map q: Ox---X. 
We can then continue these vector fields to a full neighborhood of  X in R N by 
defining Zi(y)=~(q(y)) ,  yC f2x. I f  v is another C ~ embedding of  X in R N close 
enough to Uo in the H~-topology, we can recursively define ~i(v)(x) by subtracting 
from Z~(v(x)) its projection on the space spanned by the tangent plane at x of  v(X) 
and ~l(v)(x), ..., ~i_~(v)(x) and then normalizing. The lemma will be proved if 
we show that there is a neighborhood of  Uo in the HI-topology where the procedure 
above defines a differential operator v ~ ( v ) .  To do so let B be a compact subset 
of  a coordinate patch in X and let Oj denote differentiation in the local coordinates. 
In order to compute ff~(v) with respect to these coordinates let 

,7,(v) = Z, ov-2~=~ r,j(v)ajv 
where rij are given by 

0 = (n, (v) ,  o~,,v) ---- (Z ,  ov ,  O~v)--ZT=~ r,j(v)(Ojv, OkV) k = 1 . . . . .  n. 

The matrix ((Ojv, OkV)) is invertible if v is close to u0, and since Zl . . . .  , Zp are given 
C ~ functions it follows that ro(v ) is a C ~ function of  v and O~v, . . . ,  O,v, that is, 
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a first order differential operator for v in a neighbourhood of uo in H 1 (B, R N) with 
rij(Uo)=O. The estimate (ii) in H 4  then shows that if  v is close enough to u 0 in 
H~(B, R N) then (a(v)=q~(v)/lrh(V)l is well defined as a first order differential oper- 
ator in v. Now (~(v) is defined recursively. Suppose that (t(v) . . . . .  (k-l(V) are already 
defined. Then put 

0~ (v) = ~ ( v ) -  Z j = ~  -~ (z~ o v, ~j (v)) ~j (v). 

Since 0k(U0)=~k, H 4  again shows that we can normalize, and thus define Ck(v)= 
Ok(v)/lOk(v)], if V is close enough to uo in Ha(B, RN). 

3. The Embedding Theorem 

In this section we shall prove the first half of  Theorem 1.1, with an estimate 
of  N. Suppose that G~H~(X, S2(T*X)) is positive definite, 0 < f l < 2 .  If  1 < ~ <  
l+f l /2  and N>=3(n+l)(n2+n+2)+2n, then we shall prove that there is an 
embedding U~H~(X, R N) such that 

(3.1) (dU, dU) = G. 

We can of  course assume that a > m a x ( i ,  fl) and that N=NI+N~+Na 
where Nl=2(n+l)(G+l)+2n and Nz=Ns=2(n+l)(s,+l). In order to con- 
struct an embedding that solves (3.1) we first take, in the terminology of Nash [7], 
a short embedding, that is a C = embedding u0 of X in R N1 such that g = G -  (duo, duo) 
is positive definite. Such an embedding can be constructed from any C = embedding 
of  X in R N1 by a change of  scale in R N~. The embedding Uo defines an embedding 
U0 of  X in R N by Uo(x)=(Uo(X),O ). By successively constructing functions 
UkC C=(X, R N) we shall increase the C ~ metric (dUo, dUo) to the metric G. To 
do so we introduce the notation T = 2 ( a - 1 )  and decompose the metric g so that, 
with a large parameter 0, 

g = z~og~ where gi = 0 -~ (  1 - 0 - ~ ) g  �9 

The aim of  the iteration scheme is to make 

(3.2) ek = (dUk, dUk)-(dUo, dUo)-- ~ko-X g, 

much smaller than gk and the difference 

(3.3) Vk = Uk--Uk=l 

SO small that Uk has a limit UCH'(X, RN). 
First we choose e > 0  with the following three properties: 

P 1 .  I f  uCCI(X, R N,) and Ilu-uolla<~ then u is an embedding. 
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P2.  If  m, M~t, jEJ ,  t=0 ,  ..., s, are sections of S2(T*X)  such that Ilm-gl]o<8 
and IIM,Jll0<~ for a l l j  and t then we can decompose m according to (2.4). 

P3.  When tlu-uo[ll-~8, uEC~(X,  RN1), then there exist 2 (n + l) (s, + l) 
orthonormal vector fields ~t,s(u) l = I  . . . .  , n + l ,  s=0 ,  ..., 2 s ,+ l ,  normal to u(X),  
which are first order differential operators in u. We set ~(u)=~l.s(u ) i f jEJz  (see 
Lemma 2.3). 

The existence of  this ~>0 follows from Lemma 2.3 and Lemma 2.4 together 
with the fact that the set of embeddings is open in CI(X, R N,) (see Golubitsky-- 
Guillemin [2], Ch 2, Prop 5.8). Let Ok=OoO k where 00 is a large parameter. We 
assume that 0_~2 and 00=~2. 

Lemma 3.1. It is possible to f ind a constant K>=I such that whenever 0 and 
00/0 are large enough there exist embeddings Ui c: C~(X,  R N) such that with ei and 
v t defined by (3.2) and (3.3) and i= 1, 2, ..., 

(3 4) It II < I ,"~(--l~la--a 0 <: <: 4 ;  �9 Vi a = ~ t x v 0  V i - - l ~  = a = 

1 a i (3.5) ]leill~ ~- -~80i_xO- ~, 0 <= a <= #. 

The proof of  Lemma 3.1 occupies the major part of this section and it gives 
easily the statement made at the beginning of the section. 

L e m m a  3.2. From (3.4) and (3.5) it follows that 

(3.6) v = U o + z ~  vj~ n~(x,  R ~) 

and that U satisfies (3.1). Moreover, i f  we suppose (3.4) to hoM only for  i= 1, ..., k 
and set b + =max  (b, 0) then we have the estimate 

(3 7) Ilfkll "< f,I-"aL(a)-ln(a-=)+ a : ~"zxvO Vk_ 1 , 0 < a ~ 4, 

where L ( a ) = max  (1, rain (a, ~)). 

Here and elsewhere constants C are independent of  0o, 0 and K. 

Proof. First we fix a 6 > 0  so that 1 < ~ - 6 < ~ + 6 < 2 .  Then (3.6) is an immedi- 
ate consequence of  property H6,  and this property also shows that 

ItUk-UoL <_- CKO~-X/(1-O-~). 

From (3.4) we get the estimates 

liUk-Uoll, ~ -,-,,o ~ o  , ~' j - 

I IU~,-Uol l , ,  ~- KO'd-~l(1-O -~) i f  0 ~ a _~ a - , ~ .  
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In view of  the logarithmic convexity in H I  we then get 

IIUk-Uoll . ~_ CKO~i"(a,~)-lO~L-~ ~)+, 0 <= a ~_ 4. 

This implies (3.7). Moreover, using (3.4), (3.7) and (2.1) 

II(dUk, dUk)-(dU, dU)llo -<- C(llUklll + IIUIIO(IIUk--Ulla) 
1-- ex <= CK2Og-I~k  0 i = CK20~-IOt- ' / (1-O 1-~) -~0 as k -~oo. 

Since Ilekll0-~0 as k--,oo this implies (3.1). The lemma is proved. 
The first two steps, that is, the definition of  U1 and U2 respectively, will differ 

slightly from the others. The reason for a separate first step is that we want to be 
able to apply Lemma 2.4, and in it we are going to alter Uo in R s~, that is, in the 
coordinate directions in which U0 vanishes. The reason for the second step, in which 
we are going to alter U1 in R ~t~, that is, in the coordinate directions in which UI 
vanishes, we will return to. In the remaining steps we are only going to modify 
the first Na coordinates. Let u k denote the projection of U k on the first N a coordinates. 
Then (3.4) gives us the estimate 

1 
(3.8) l ink-nob = [Ifk--Umlla <= g ~k~-l  oJ(1-~) <= K02(1-~)/(1 -Ox-~) < -~ e 

if we only take 0 sufficiently large. Hence U must be an embedding. The fact that 
U is an immersion follows of  course also directly from (3.1). 

The first step. Define mo=Soog o. From the definition of  go and H 5  (iii) we 
get the estimate 

Ilrno--gllo <= COJIIglla+O-~llgllo. 

I f  we take 0 and 0o large enough, this will be less than e. Lemma 2.3 then gives us 
functions a~, t such that 

(3.9) m o =  z~j,, (Zi ag, t) ~ (d~o0 z. 
Using H 5 (i) and (ii) we get 

Ilmollo <= CO(o a-•)+ [Iglla, 0 <- a ~ 4. 

Then (2.5) and I t 3  implies 

(3.10) Ilag, tlla ~- CO~o a-a)+, 0 <= a ~-- 4. 

We can now define 

Vl = z~j,t Xj a~,~(cos (0o q~i) ~g,, + sin (0o q~[) q~,t)/Oo �9 

Here the normals are defined so that if  J~Jk  then ~, t=ev  and ~ - rio, t -- ev+N2/~, 
a ' = N l + ( k - - 1 ) ( s , + l ) + t + l ,  where ei is the i th basis vector in R N. In order to 
prove (3.4) we observe that (3.10) implies 

II ag, t cos (00 ~01)11. -<= C(Oto"-a)++ Ogo) <- 2COg, 0 <- a <= 4, 
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if we also use H 2 and H 3 .  O f  course we get the same est imate if  we substi tute 
sin for  cos. Summing  up  we get the est imate 

(3.11) !lvllla -<= Co0go-1 = ,.C'ovon'-ln~ , 0 <= a -<_ 4. 

Here  Co is a cons tant  independent  o f  00, so this will give (3.4) fo r  i =  1 if  we take 
K larger than  Co. We will not  fix the value o f  K before having considered the 
general step. 

In  order  to  get (3.5) fo r  i =  1 we compu te  

el = (dU1, dU1)- (dUo, dUo)- go = ((dvt, dr1) - too) + (mo-  go). 

Then  H 5  (ii i)gives 

(3.12)  Ilmo-golla ~-- C0g-allglla, 0 <_- a ~-- ft. 

I f  we differentiate Vl and  use (3.9) and  the fact  tha t  the normals  are o r thonormal  
and  cons tant  we get 

(dr1, dvx)-  mo= Z j, t (d (Zj a~,t))210~,. 

Using H 2 ,  H 3  and (3.10) we get the est imate 

(3.13) H(dvx, dvx)-mol[,, <= Z j,, 0;  2 [l(d(xjaJo.,))21[,, 

, ~  - 2  j J 00 (a+l-a)+ +(l-a)+ -8 , a /~. <= C j,,Oo IIxjao,,ll~+xllxjao,,lll <= C 0 <_ ~:_ 

Here the exponent  is less than  a - ] ~  which is obvious if /~<_-1; i f  1 < / ~ < 2  
it is easy to see tha t  ( a +  1 - ] ~ ) + -  2~_a-[3. Combin ing  (3.12) and  (3.13) we obtain 
the est imate 

II II < cog-a, _ # el a =  O<=a~ , 

which implies (3.5) wi th  i = 1 if  we take  00/0 so large that  

1 
CO~O~ < C(O/O )a < = 0 = - ~ "  

The second step. Define m~=Sol(gl-el) .  Since g~=O-~go we get, using (3.5) 
and  H 5  (iii) 

[I 0r m ~ -  glt o <-- O r [I m ~ -  g~ll o + II 0 ~ g l -  gll o 

< O~(CO~allgltaO-~+llSo el--e II +l ie  tl0)+0-~llgll -~" 1 1 0 1 0 

< , + 0 - , ) § 1 8 9  

this implies I f  we take  0 so large tha t  the first te rm is less than  -~ 

I[Or ma-gllo < s. 

Thus  P 2 is fulfilled and  according to L e m m a  2.3 we can find functions a{, t such that  

(3.14) O~'ml "~' (~ O~/2aJ ~2[d,',~J'~2 
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From the definition of ml and (3.5) with i =  1 if follows that 

II0'mlL <-- CO~(llgll#O-r+l[elllo) <= C~,  0 ~_ a ~_ fl; 

[10~rnl]lo ~_ COg~ -# = C O - # Z ,  fl ~_ a <= 4, 

using H5. According to (2.5) and H 3  this implies that 

]lai,,llo <-- C(I  +CO-=i~ 0 ~_ a ~ 4. 

In particular we have the estimates 

(3.15) /[ai.,/[, _-< C ~ O  -'/~, 0 ~_ a ~ 4 ;  

(3.16) Ila,,o---i l[ < C(0-x+0-#)~110-' /2,  1 <= a ~_ 4, 

when 0o/0 is large. The second estimate is crucial when we estimate e~. 
We now define 

v2 = z~j,, zjai.,(cos (0xq~[)fi.,+sin (01q~/)r/i,0/01. 

Here the normals are defined so that if J~Jk  then i _ (l,,-e#, qi,,=e~+N:, t~=Nl+ 
N 2 + ( k - 1 ) ( s , + l ) + t  +1, where e i is the ith basis vector in R s. In order to prove 
(3.4) for i = 2  we observe that (3.15) implies 

Ilai,,cos (0aq~l)llo <= C~O -~/z, 0 <= a <= 4, 

and that we have the same estimate if we substitute sin for cos. This implies the 
estimate 

(3.17) Ilv2l[o ~ CI~I -lO-y]2 = ClO~o-lO~l -at, 0 "~ a ~_ 4. 

Here (71 is independent of 0 o and 0, so this will give (3.4) for i = 2  if we take K 
larger than Cx. 

In order to get (3.5) for i = 2  we compute 

e~ = (dU2, d U z ) -  (dUo, dUo) -  (go + gl) = ((dr2, d v z ) -  ma) + ( m l -  gx + ex). 

Using H5  (iii) and (3.5) for i =  1 we obtain the following two estimates 

IlS0:gl-gxllo <-- CO?#llgll#~O -~ 0 <-_ a ~_ fl; 

llSo, ex-ellla <= C~-#llel[l# ~- C~-#OaoO -~ = CO~-#~O-2L 0 <= a ~_ #. 

In view of the definition of ml it follows that 

(3.18) ]lml-gl+e~[[,  ~- COr-#~O-"L  0 ~_ a ~_ ft. 

As in the first step, we get 

(dr2, d v z ) -  m x =  Z~ , ,  (d(z~ai,,))~/O~ 
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and using (3.16) this shows that 

(3.19) if(dye, dv2)-ml[la <= C0~2(0-~+0-~P)~+ 20 -~ 

~_ CO~-a~O - ~ ,  0 ~_ a <= ft. 

Combining (3.18) and (3.19) we obtain the estimate 

Ilezll~ ~- COr-P~O -~,  0 <= a <= fl, 

which implies (3.5) with i = 2  if  we take 0 sufficiently large. 

The general step. We shall construct Uk+ x from U k, k=>2. Since we shall only 
work in the Nx first coordinate directions this means the construction of Uk+l from 
u k. Let 

ffk = Sok uk �9 

We start with defining some vector fields. If  0 is sufficiently large then (3.7) 
with a = ~  implies in view of H5  (iii) that 11~Tk--ukll~<~e. Together with (3.8) 
this shows that ItzTk-u011~<e. According to property P 3  of  ~ we can then define 
the normal vector fields 

~ ,~=~(f lk) ,  JEJ ,  s = 0  . . . . .  2sn+l,  

and (2.8) gives the estimate 

I1~i II <Cx( l+ l l f f l l  ) 0~_ , s  a = k a + l  , a <_-- 4. 

In view of H5  and (3.7) this gives the estimates 

(3.20) IlCg,~Ilo ~ :  CKO~ in(a+l'~)-lala+l-cO+ 0 ~ a ~ 3" 
V k _  1 , , 

(3.21) II~L=It, ~ CK0~t-40~0-1~k +l-~t, 3 <---- a _--< 4, 

for the unit vectors (J Here and elsewhere constants C r depend on K, k,s " 
Now define 

(3.22) mk = So~ (gk-- ek). 

Lemma 3.3. We can f ind real valued C *~ functions c~,~ with support in I2j, 

IIc/~,sll. ~- --,,or'a~-la~-~,,k , 0 "<_ a ~_ 4, (3.23) 

such that 

(3.24) 

has the estimate 

(3.25) 

Rk = mk--.~a j, s ((dc~,s) 2 + 2c~,s(d~k, d~,  ~)) 

IIRklla ~ CKO~-BO~O -<k+l>~, 0 ~ a ~_ ft. 

We postpone the proof of Lemma 3.3 in order to prove that it allows us to complete 
the proof of  Lemma 3.1. Define 

v~+~ = Zj ,~ c~,~, . .  
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In order to prove (3.4) for i = k + l  we estimate the a-norm of  Vk+ 1 for a = 0  and 

a = 4 :  
Ilvk+llio <---- Z j,= Ilc/~,sll011~,sll0 <-- CO~o-lOf ~, 

< C : 0 4 - ~ - 1 + C  ~-10-~0~-4~-105-~ C~-IO~-~(I+CKO~-4Og(1-')) = ~ g 0 K O k 0 k J :  

Here we have used H3 ,  (3.21) and (3.23). I f  we take 0 so large that 

CK 0~-4 < 1 

the logarithmic convexity of  H 1 implies that 

(3 26) II [I < C~ON-~O~ -~, �9 v ~ +  1 . = 0 < -  a <= 4 .  

Now choose K equal to the maximum of  this constant C2 and of the constants 
Co in (3.11) and C1 in (3.17). Then (3.4) with i = k + l  follows when 0 and 00/0 

are large enough. 
In order to prove (3.5) for i = k + l  we compute eg+l, 

ek+ 1 ----- ( dUk+ 1, dUg+ l ) - (  dUo, d V o ) -  Z~ogi 

= (dUk + a, dug + I) -- (dUk, duk) + ek-- gk = [(dUk + 1, dUk + 1) -- (dUk, dUk) -- mk] + [mk-- gk+ ek]" 

The term in the first bracket we call the iteration error and the term in the 

second bracket the smoothing error. 

The smoothing error. Using H 5  (iii) and (3.5) for i = k  we obtain the following 

two estimates 
#0 ~r = ~ [3; [ISo~gk--gklla <= CIIg[l#~- - , 0 < a _ 

# 0 kr IlSo~eg-eglla <- c~-# l l eg l l#  ~- C ~ -  0~_1 - 

= COr-#~O -(k+l)~, O ~- a <-- fl. 

In view of  the definition (3.22) of  m k it follows that 

(3.27) I lmk-gg  +egll, ~ CO~-flO~k O - ( k + l ) ~ ,  0 <= a ~- [3, 

since k >:2. 

The iteration error. A direct computation gives 

( dUk + 1, dug + 1)-- ( dUk , d u g ) -  m k =  2 ( dUk , dvg + 1) + (dog + 1, dvk + 1) -- mk 

= 2 ((dug, dvg + 1) -- 2 j , ~  c[,~ (dag, d~i, ,)) + (dvk +1, dVk + 1) -- 2 j , ~  (dci.,)~- R~ 

if we use (3.24). The linear term can be estimated by 

(3.28) [[ (dUk, dVk + 1) - Z j , ,  ci,, (dak, dr 

~_ C x 0 ~ - 4 + ~ 0  -(k+l)r, 0 <= a <= [3. 
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In fact, we have 

(duk, dvk+ O = (d(Uk--ffk), dVk+ l) + . ~  j,s C{,~(d~k, d~. , )  

since ~J are orthogonal to d~ k. Moreover, by H2,  1-15, (3.26) and (3.7) k,$ 

[l(d(Uk--ffk), dVk+ l)[[a ~-- C({luk--~klla+ X IlVk+llll+ ]lUk--~kIh JlVk+lllo*,) 

<_ C(O~+ 1- ,  II uklh IlVk+ll[1 + 01-* Iluklh Ilvk +11[a+1) 

- -  ,~KvO ~k ~ k - l ~ k  ~0 = C ~ O ~ - * + ~ O ~  0 ~-- a ~_ fl. 

This proves (3.28). 
(dCk,~) is a sum of terms The term (dVk+l, dVk+l)--~j,~ J 

J J ' = w L = c L d ~ L .  (Ck,, d~k,,,, WJk ',~,) where w],,~ trd#k,,J~sk,rJ ~ or 

A factor j J q, ~ d~k, ~ has an estimate 

~"Kv0P/:lac-lna ~l-at m - 1 0 2 - ~ t V k V k  vO V k - 1  = CKO~t-20~(O0/Ok)2(at-1), 0 <---- a <_-- ft. 

Here we have used H2 ,  H3,  (3.20), (3.21) and (3.23). It is an immediate con- 
sequence of  the derivation of  (3.26) that we have the estimate 

IIw~o=l[ < CKO~(O /O ) ~ O ~ a <: ~ 

Now we have the estimate 

ll(c~,~d~Jk,~, w/~i~,)Ilo <= C(llci,~dffIJ,,llw~:~,llo 

+ II ci,~ d(i,~lI0 II wii~, [I ~) -~ C~ 0 �9 - ~ 0~ (0o/0kp <~ --1) 

<-- CKO~-~O~O -~k+l)~, 0 <: a ~_ ft. 

Here we have used 3k/2>=k+l,  that is, k_->2. The fact that this estimate is not 
true for k =  1 is the reason why the second step above could not be covered by 
the general step. 

Combining this estimate with (3.25) and (3.28) we obtain 

II(dUk+l, dUk+l)--(dUk, dUk)--mt, l[ <= CxO~-#Of, O -(k+l):', 0 <-- a ~_ fl, 

since c~_-->fl. In view of  (3.27) we then get the estimate 

Ilek+ll[ < CKO~-f lO~ 0-r 0 "r "< fl  a - -  = a =  . 

I f  0 is large enough the coefficient will be less than a -~, which means that (3.5) 
is fulfilled for i = k + l .  

To prove Lemma 3.1 it is therefore sufficient to prove Lemma 3.3. 

Proof  o f  Lemma 3.3. Write formally half o f  the functions ~,~ as 

zja~,, cos (0~ tp0/0k, j 6 J, t = 0, ..., s,, 
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and the other half as 

zja~,t sin (O k q~)/Ok, j E J, t = 0 . . . . .  s,; 

where q~l are defined in Lemma 2.3. Then for (3.23) and (3.24) to be fulfilled it is 
sufficient to find real valued functions a~,t with 

(3.29) Ila,,o=/~ II < c~(Oo/O~,)"-1, 0 <= a ~_ 4; 

(3.30) Z j , ,  ((zjai,,)2(dtPl)~+zjal,,M~,,+(d(xjaJk.,)/Ok) 2) = mk--Rk,  

where we have set 

(3.31) M~,, = 2(cos (Okq~O(dfik, d~i,O+sin (Okq~O(dfik, atlg.,))/Ok. 

Here J J (J {~k,,, r/k.t} is a partition of  { k,s} corresponding to the partition of  {~,~} made 
above. 

The construction of  a~. t is made by a heavy use of  Lemma 2.3. Let 1 be an 
integer so large that c t < 2 - f l / ( I + l ) .  We then want to show that we can define 
functions a~lt by the formula 

(3.32) ai;~ +1 = Fl(Okr/2Mk, Ok~(mk--Zj , ,  (d(zjal;~)/Ok)~))o-kr/~, i = 0 . . . . .  I - -1 ,  

j,O 
ak,  t = O, 

where Mk={M~,t} , so that 

(3.33) Ila~:[llo <---- Ci~(Oo/Ok) ~-~, 0 ~_ a ~_ 4 + I - - i ;  

(3.34) Ita~:illo ~-- C~(0~-2+0-~)~0 -kr/2, 1 <- a ~_ 4 + I - i ;  

(3.35) O~21[(d(zja~:~))~-(d(zjaJk:~-l))2][ a 

~-- Ci(O~-2+O-P)i+x~O -k~, 0 ~_ a ~_ 3 + I - i .  

Here the constants C~ depend on i and K and F / a r e  the C ~ functions of  (2.5). 
Since ( I + l ) ( ~ - 2 ) < - f l  and 

Rk = -- Z j,, Or e ((dzj aJk; I,)2_ (dzj a~; ~- ~)'), 

if we choose aJk, t=aJk;~, this will prove Lemma 3.3. 
It suffices to prove that the function a~;~ +1 fullfills (3.33)--(3.35) if a~;~ does. 

First we prove that the right hand side of  (3.32) is well defined. If  we take 0 large 
enough then the computation at the beginning of  the second step gives 

[lOkrmk--gl,o ~__ C(O~ IJ + l e 0 - '  W 0 - 0 + l e  < 3~/4. 

Using (3.31) and (3.20) we obtain 

}lOkr/ZMg,,llo <- c E O k ? / 2 0 ~ l ~ o - l O ~ - ~  = C E O  ~ - 2  < ~,, 
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and finally (3.34) gives 

IlO~'(da~:[lOk)~llo ~_ c~(o=-2 +O-a) 2 < ~/4. 

In view of the property P 2 this shows that (3.32) is well-defined if 0 is large enough. 
To obtain an estimate for a~:~ +~ we first have to estimate the H~ of 0k~mk 
and Ok~/2M~, t. Repeating the estimate of O~mx in the second step we get 

II0~m~ll= <= co-m~"('a)O~, 0 <= a ~ 4 + I ,  

and in view of H 5  (i) the estimate of  II0~e/~M~.,llo above can be extended to 

IIO~/~M~,,II~ <- C K O ~ - ~ ,  0 ~ a ~ 4+I.  

Using (3.34) this gives 

Ila~:~+lll~ ~_ C(l+(C~0~-~+C0-~"r 0 ~ a ~ 3 + I - i ,  

from which we deduce (3.33) and (3.34) for i+  1 if 0 is larger than some number 
depending on K and 0o[0 is large. This also gives (3.35) for i=  1. 

It remains only to prove (3.35) for i+  1. First we note that if F is a C *~ func- 
tion of  M /  and f ,  and Ilf011o<=C then H 4  (ii)implies 

IIF(M, f o + f ) -  F(M, f0)ll= <- C= ((IIMII. + IIf011= + Ilfll= + 1)Ilfllo+ Ilfll~ 

By definition 

where 

and 

a{:[+l-ai : [  = ( F / ( M ,  f o + f ) +  F / ( M ,  fo))O -k~/s, i >  O, 

M : okvlaMk, fo = okv(mk--Zj , ,  (d(zja~:[-1)/Ok) 2) 

f = 0~ Z j,, Or~((d(zja~:[-1)) 2 -  (d(zja~;[))~) �9 

In view of the estimates above this implies that 

I[ak.,~'~+l--a~'~[],, ~ <= Ci(O~-~+O-tJ)i+lO~, O-kr/2, 0 <= a <= 3 + I - i .  

Using this together with (3.33) for i and i +  1 we get the estimate 

0~-'ll(d(X/akS:[ + x))'-(d(zja~:~))'t[ . 

CO-~. a j i+x + a ~ a' , t+l a ' i  - k ((11 ~:, 11,+1 II k , l l . + O l l  i , ,  - i : ,Jh 

+ a ~+1 + a y~ a'~+x a (ll {:, II1 II ,,:,llOII ~:~. - k,.tl~ 

~_ G+dOI-"+O-B)~+~O~O-~, 0 <- a <- 3 + I - i .  

This proves (3.34) for i +  1, and therefore the first half o f  Theorem 1.1. 
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4. A necessary condition on the regularity 

In this section we shall prove the second half of  Theorem 1.1. Since regularity 
is a local property we can assume that X is a ball in R" with center at 0. The equation 
(du, du)= g is then equivalent to n(n + 1)/2 equations (Oi u, ~ju)= g~j. Let Xh denote 
the set of  points in X whose distance to the boundary is at least h. 

Now fix ~pE C~ with support in the unit ball with f ~o dx = 1 and define 

dkV(X)= f v(x--hy)Okq~(y)dy for vEC~ XEXh. 

Then d k will be an operator depending on h and we make it a convention that for- 
mulas involving d k are valid in X h and formulas involving d,d k are valid in X2h. 
Then we have the following properties: 

(4.1) dsdkV = dkdsV, vE CO; 

(4.2) dkOiv = diOkv, rE Cl'~ 

(4.3) dkv = O(h~ vE H ~ 

(4.4) dk(UV ) = (dkU)V+udkv+O(h a+b) if 

vE H b or v = O(hb), 

0 ~ a ~ l ,  

uEH* or 

O ~ a , b ~ l .  

u = O ( h ~  

Here O(h) represents any function v(x, h) such that, for h in a neighborhood of  
O, Iv(x, h)[/[hl is bounded by a constant independent of  x and h. (4.1)---(4.3) are 
immediate consequences o f  the definition and the fact that 

f Oktpdx=O, k =  1 , . . . , n ,  

and (4.4) follows from the formula 

(dk (vw) -- (dk v)w -- vd k w) (x) = f (v (x-- hy) - v (x)) (w (x-- hy) - w (x)) Ok tp (y) dy. 

Lemma 4.1. Let g=(du, du), uE H ~, ce>l, and set 

1 
L h (g) = -~ (d~ d i gjk + dk dj g ~ -  d~ dj gih- dk di gj~). 

Then we have the estimate 
(4.5) sup ILh(g)] <= Ch 2(~-x) 

x2h 

for h small�9 Here C is independent of  h. 

Proof. First note that gEH ~-1. Set ui=Oiu. From (ui, uj)=gij we get 

dk gij = (dk ui, u j) + (ui, d k u j) + 0 (h ~(~-1)) 

using (4.4). Permuting the indices and using (4.2) we obtain 

(dkUi, u j) = T/jk+O(h 2(~-1)) 
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where 

1 
T~jk = -~ (dk gij +di gjk-- d j gik) = 0 (h ~-1). 

We can then write 

(4.6) dkUi = ~ (T~+O(h*~-l)))um+Fki, (Fk,, Uj) = O, j = 1, ..., n, 
with 

T~ = X j g'~T~j, = O(h~-l). 

Here (g~J) is the inverse of (g~) and belongs to H "-1. Using (4.6) and (4.4) we then 
obtain 

d, dk ,,i = Z m  (dsT~,)um + Z m  T~ d~um + d~Fk, + O (h~C~-l~). 

But Tk~dsum=O(h 2~'-1)) since dsum=O(h~-l), and using (4.4) we get 

d~ T~ = Z ,  g~t(d, T~,,) + ~ ,  (a s g~') T~t k + 0 (h *t~-')) 

= .~t gmldsTitk+O(h~(~-l))" 
From this we deduce that 

(d~ d k u i, u j) = ~m,t  gmj gml ds Titk + (ds Fki, U j) "~ 0 (h 2(~- t)). 

Moreover, [Fk~ [ ~ [d k ui[ implies that Fki = 0 (h ~-1) so 

(dsFki, u j) = - (Fki, d, u j) + 0 (h ~-1))  = 0 (h ~ -  1)). 

Since ~m gmjgm~=6jt (Kronecker delta) this shows that 

(d, dku ~, u j) = d s T~ik +O(h~(~-l)). 
The equation 

(dsdku~-dkdsu.  u )  = 0 
thert implies (4.5). 

Lemma 4.2. Let E be the set o f  all gEH a with Ilgllp-<_C and 

sup Ith(g)l <- C ' h  ~+~, 0 < h < 1 
x~h 

for some e>0  and some constant C'. Then E is o f  the first category. 

Proof. Let ~oh(x)=h-ng(x/h). Thert 

djg(x) = f g ( x - h y ) O w ( y ) d y  = h(cgjg.gh)(x),  

from which we obtain that df l jg=h~@Ojg.Fp *) with ~=~o. tp .  I f  we set 

1 
L(g) = -~(O~O~&k+OkOjgs,--tgstgjg,~--tgkC~,gj~), 

this shows that Zh(g)---hz(Z(g)*Fph). Here all derivatives are takert in the sense 
of  distribution theory. Now define 

E, -- {gEHa:  Ilglla <-- C, sup IL,(g)l -~ ha+~/e, 0 < h < 1}. 
x~h 
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I t  is clear that E, is closed, symmetric and convex. To show that  E~ has no interior 
points it is sufficient to show that 0 is not an interior point. For  this we take ~, C Co 
with L ( ~ O ) . ~ 0  and define ~h(X)=hb~(x/h) ,  f l<b<[3+e .  Note that if i = s = l ,  
j = k = 2  then 

1 2 L(g) = -~ (01 01g2~+0~ 02g11-- 19102glz) ~ 0. 

Then we have Lh(~kh)(x):hb(L(~k) . (o)(x/h)  which shows that 

h-(O+~)sup [Lh(~lh) { = hb-ta+ ' )sup [L(~k)*q3[ --- oo as h -~ 0. 

Moreover, [[qJhlla<-_C~h b-" since this is true when a is an integer. Hence [l~bhllp-*0 
as h-~0 which proves the lemma. 

Suppose g C H  p and that there is some u ~ H  ~, 2 ( ~ - 1 ) > / 3  with (du, d u ) = g .  Then 
(4.5) implies that  

h -~('-1) sup lLh(g)[ <= C, 0 < h < 1, 
X2h 

with C independent o f  h. But Lemma 4.2 then implies that g must  belong to a set 
of  the first category in H p. This completes the p roof  of  Theorem 1.1. 
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