Free systems of vector fields

Lars Hörmander and Anders Melin

In a recent paper Rothschild and Stein [1] have shown how systems of vector fields with commutators of maximal rank can be made free by introduction of auxiliary variables. In this note we shall give a short and elementary proof of this result (Theorem 4) and also of their theorem on approximation of the vector fields so obtained by left invariant vector fields on nilpotent Lie groups (Theorem 5).

Let X_{1}, \ldots, X_{n} be C^{∞} vector fields near 0 in \mathbf{R}^{p}. By ad X we denote the linear operator sending Y to $[X, Y]$ when X and Y are vector fields. For a sequence $I=\left(i_{1}, \ldots, i_{k}\right)$ of $k=|I|$ integers between 1 and n we shall write

$$
X_{I}=X_{i_{1}} \ldots X_{i_{k}}, \quad X_{[I]}=\operatorname{ad} X_{i 1} \ldots \text { ad } X_{i_{k-1}} X_{i_{k}} .
$$

Thus $X_{[I]}$ is a vector field and X_{I} is a differential operator of order $|I|, X_{[I]}=X_{I}=X_{i_{1}}$ if $|I|=1$. There are automatic relations between the vector fields $X_{[I]}$ such as ad $X_{i_{1}} X_{i_{2}}+$ ad $X_{i_{2}} X_{i_{1}}=0$ and the Jacobi identity. Writing out $X_{[I]}$ explicitly gives for arbitrary vector fields

$$
\begin{equation*}
X_{[I]}=\sum A_{I J} X_{J} \tag{1}
\end{equation*}
$$

where $A_{I J}=0$ when $|I| \neq|J|$ and $A_{I J}=\delta_{I J}$ when $|I|=|J|=1$. It follows that for arbitrary vector fields X_{j}

$$
\sum_{I} a_{I} A_{I J}=0 \text { for all } J \Rightarrow \sum a_{I} X_{[I]}=0
$$

Definition 1. X_{1}, \ldots, X_{n} are called free or order s at 0 if

$$
\begin{equation*}
\sum_{|I| \leqq s} a_{I} X_{[I]}(0)=0 \Rightarrow \sum_{|I| \leqq s} a_{I} A_{I J}=0, \quad|J| \leqq s \tag{2}
\end{equation*}
$$

The following proposition is essentially contained in Witt's theorem [2] but we give a direct elementary proof.

Proposition 2. X_{1}, \ldots, X_{n} are free of order s at 0 if and only if for arbitrary $c_{I},|I| \leqq s$, it is possible to find $u \in C^{\infty}$ satisfying

$$
\begin{equation*}
X_{I} u(0)=c_{I}, \quad|I| \leqq s . \tag{3}
\end{equation*}
$$

Proof. a) Assume that (3) can always be solved. If $\sum_{[I!\leqq s} a_{I} X_{[I]}(0)=0$ then (1) and (3) give $\sum_{|I| \leqq s} a_{I} A_{I J} c_{J}=0$ for arbitrary c_{J}, hence $\sum a_{I} A_{I J}=0,|J| \leqq s$. (b) Assume that X_{1}, \ldots, X_{n} are free of order s. By induction with respect to $j, 1 \leqq j \leqq s$, we shall prove that one can find u such that

$$
\begin{gather*}
X_{\left[I_{1}\right]} \ldots X_{\left[I_{v}\right]} u(0)=\sum A_{I_{1} J_{1}} \ldots A_{I_{v} J_{v}} c_{J_{1} \ldots J_{v}} \tag{4}\\
\text { if } v \leqq j, \quad\left|I_{1}\right|+\ldots+\left|I_{v}\right| \leqq s .
\end{gather*}
$$

When $v=s$ this is the same as (3). For $j=1$, thus $v=1$, the equations (4) mean that

$$
\sum_{|I| \leqq s} a_{I} X_{[I]} u(0)=\sum a_{I} A_{I J} c_{J}
$$

Since X_{1}, \ldots, X_{n} are free of order s, a linear form is uniquely defined by

$$
\sum_{[I \mid \leqq s} a_{I} X_{[I]}(0) \rightarrow \sum a_{I} A_{I J} c_{J}
$$

on a subspace of the tangent space at 0 . If we let $d u(0)$ be an extension to all of \mathbf{R}^{p}, the assertion is proved when $j=1$, so we may assume $j>1$ and that there is a solution u_{0} of (4) with j replaced by $j-1$. Set $u=u_{0}+v$ where v vanishes of order j at 0 . Then the equations (4) with $v<j$ are fulfilled. With $p=\nu^{(j)}(0)$, which may be any symmetric j linear form, the remaining equations (4) are

$$
\begin{gather*}
p\left(X_{\left[I_{1}\right]}, \ldots, X_{\left[I_{j}\right]}\right)=\sum A_{I_{1} J_{1}} \ldots A_{I_{j} J_{j}} c_{J_{i} \ldots J_{j}} \tag{4}\\
-X_{\left[I_{1}\right]} \ldots X_{\left[I_{j}\right]} u_{0}(0)=d_{I_{1} \ldots I_{j}} ; \quad\left|I_{1}\right|+\ldots+\left|I_{j}\right| \leqq s .
\end{gather*}
$$

By the Jacobi identity ad $X_{[I]}=(\operatorname{ad} X)_{[I]}$ so a commutator $\left[X_{\left[I^{\prime}\right]}, X_{\left[I^{\prime \prime}\right]}\right]$ is a linear combination of commutators of length $\left|I^{\prime}\right|+\left|I^{\prime \prime}\right|$. It is therefore clear that $d_{I_{1} \ldots I_{j}}$ is symmetric in the indices. Choose a minimal set B of sequences I with $|I| \leqq s$ such that $\left\{X_{[I]}(0)\right\}_{I \in B}$ span the same space at 0 as all $X_{[I]}$ with $|I| \leqq s$. When $\left|I_{1}\right| \leqq s$ we can write

$$
X_{\left[I_{1}\right]}(0)=\sum_{I \in B} a_{I} X_{[I]}(0)
$$

with $|I|=\left|I_{1}\right|$ in the sum, and this implies $A_{I_{1} J}=\sum_{B} a_{I} A_{I J},|J| \leqq s$, since X_{i} are free of order s. Hence it suffices to satisfy (4)' when $I_{1} \in B$, and similarly we may assume $I_{2}, \ldots, I_{j} \in B$. But in a basis containing $X_{[I]}(0), I \in B$, this means just that some coefficients of the multilinear form p are given in a symmetric way, so the existence of v is obvious.

Proposition 3. Suppose that X_{1}, \ldots, X_{n} are free of order $s-1$ but not of order s at 0 . Then one can find vector fields \tilde{X}_{j} in \mathbf{R}^{p+1} of the form

$$
\tilde{X}_{j}=X_{j}+u_{j} \partial / \partial t
$$

where $u_{j} \in C^{\infty}\left(\mathbf{R}^{p}\right)$, such that the \tilde{X}_{j} remain free of order $s-1$ and for every $r \geqq s$ the number of linearly independent vectors $\tilde{X}_{[I]}(0)$ with $|I| \leqq r$ is one unit higher than the number of linearly independent $X_{[I]}(0),|I| \leqq r$.

Proof. Induction with respect to $|I|$ gives for some $u_{I} \in C^{\infty}\left(\mathbf{R}^{p}\right)$

$$
\tilde{X}_{[I]}=X_{[I]}+u_{1} \partial / \partial t .
$$

It follows that the number of linearly independent $\tilde{X}_{[I]}$ with $|I| \leqq k$ is at least as large as the number of linearly independent $X_{[I]}$ with $|I| \leqq k$, and since this is maximal when $k=s-1$, it follows that the \tilde{X}_{i} are free of order $s-1$. It remains to show that we can choose u_{i} so that $\partial / \partial t$ is a linear combination of $\tilde{X}_{[1]}(0),|I| \leqq s$. This means that we must find $a_{I},|I| \leqq s$, so that

$$
\begin{equation*}
\sum a_{I} X_{[I]}(0)=0, \quad \sum a_{I} \tilde{X}_{[I]}(0) \neq 0 \tag{5}
\end{equation*}
$$

By hypothesis one can find a_{I} with $\sum a_{I} A_{I J} \neq 0$ for some $J,|J| \leqq s$, so that the first condition is fulfilled. Now we let

$$
\sum a_{I} \tilde{X}_{[I]}=\sum a_{I} A_{I J} \tilde{X}_{J}
$$

operate on the function t, noting that $\tilde{X}_{J j} t=X_{J} u_{j}$. By Proposition 2 we can choose u_{j} so that $X_{J} u_{j}(0)$ have arbitrary values for $|J|<s$. Hence

$$
\sum a_{I} A_{I, J_{j}} X_{J} u_{j}(0)=\sum a_{I} \tilde{X}_{[I]} t(0)
$$

is not 0 for every choice of u_{j}, which completes the proof.
Theorem 4. Suppose that X_{1}, \ldots, X_{n} are vector fields in \mathbf{R}^{p} such that for some r the vectors $X_{[I]}(0)$ with $|I| \leqq r$ span \mathbf{R}^{p}. Then there exist an integer m and vector fields \tilde{X}_{k} in \mathbf{R}^{p+m} of the form

$$
\widetilde{X}_{k}=X_{k}+\sum_{1}^{m} u_{k j}(x, t) \partial / \partial t_{j}
$$

which are free of order r, such that $\tilde{X}_{[I]}(0)$ span \mathbf{R}^{p+m} when $|I| \leqq r$.
Proof. The hypothesis implies that the dimension p is bounded by the rank of the matrix $A_{I J}(|I|,|J| \leqq r)$. Ir also implies that the hypothesis of Proposition 3 is fulfilled with $s=1$ at least, unless X_{1}, \ldots, X_{n} are already free of order r. It is then possible to lift the vector fields X_{j} according to Proposition 3 so that the hypotheses of the theorem are fulfilled by the new vector fields. After a finite number of steps we must therefore obtain vector fields which are free of order r.

We shall now examine the properties of the vector fields $\tilde{X}_{1}, \ldots, \tilde{X}_{n}$ obtained in Theorem 4. Changing the notations we assume that X_{1}, \ldots, X_{n} are now C^{∞} vector fields in a neighbourhood of $0 \in \mathbf{R}^{p}$ which are free of order r and whose commutators of order $\leqq r$ span \mathbf{R}^{p}. Let B be a subset of the set of sequences I of length $\leqq r$ such that the vectors $X_{[I]}(0)$ with $I \in B$ form a basis for \mathbf{R}^{p}. The map

$$
\mathbf{R}^{B} \ni\left(u_{I}\right)_{I \in B} \rightarrow\left(\exp \sum_{B} u_{I} X_{[I]}\right)(0) \in \mathbf{R}^{P}
$$

gives a system of coordinates indexed by B such that

$$
\begin{equation*}
\sum_{B} u_{I} X_{[I]}=\sum_{B} u_{I} e_{I} \tag{6}
\end{equation*}
$$

where $e_{I}=\partial / \partial u_{I}$. We assign the weight $|I|$ to the coordinates u_{I} and $-|I|$ to e_{I}. Thus a C^{∞} function is said to have weight $\geqq s$ at 0 if the Taylor expansion at 0 contains no term $a u_{I_{1}} \ldots u_{I_{k}}$ with $a \neq 0$ and $\left|I_{1}\right|+\ldots+\left|I_{k}\right|<s$, and a vector field $Y=\sum_{B} f_{I} e_{I}$ is said to have weight $\geqq s$ is f_{I} has weight $\geqq s+|I|$ for every $I \in B$. (In [1, p. 272] Y is then said to have local degree $\leqq-s$.) By F_{s}^{q} and V_{s}^{q} we shall denote respectively the set of C^{∞} functions and vector fields such that this is true for all terms in the Taylor expansion of degree $\leqq q$. The subsets of elements vanishing at 0 will be denoted $\stackrel{0}{F}_{s}^{q}$ and $\stackrel{0}{V}_{s}^{q}$.

The following theorem implies Theorem 5 of Rothschild-Stein [1] if one takes for Y_{i} left invariant vector fields from the appropriate nilpotent Lie group.

Theorem 5. The vector fields $X_{i}, 1 \leqq i \leqq n$, have weight -1 . If Y_{1}, \ldots, Y_{n} is another system of vector fields satisfying (6) in a neighbourhood of 0 , then $X_{i}-Y_{i}$ has weight $\geqq 0$.

In the proof we need the following lemma.
Lemma 6. The following inclusions are valid:

$$
\begin{gather*}
F_{s}^{q} F_{t}^{q} \subset F_{s+t}^{q}, \quad \stackrel{0}{F_{s}^{q}} F_{t}^{q-1} \subset \stackrel{0}{F}_{s+t}^{q} \tag{7}\\
F_{s}^{q} V_{t}^{q} \subset V_{s+t}^{q}, \quad \stackrel{0}{F_{s}^{q}} V_{t}^{q-1} \subset \stackrel{\circ}{V}_{s+t}^{q}, \quad F_{s}^{q-1} \stackrel{0}{V}_{t}^{q} \subset \stackrel{0}{V}_{s+t}^{q}, \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
V_{s}^{q-1}\left(F_{t}^{q}\right) \subset F_{s+t}^{q-1}, \quad \stackrel{\circ}{V}_{s}^{q}\left(F_{t}^{q}\right) \subset \stackrel{0}{F}_{s+t}^{q} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left[V_{s}^{q}, V_{t}^{q}\right] \subset V_{s+t}^{q-1}, \quad\left[\dot{V}_{s}^{q}, V_{t}^{q-1}\right] \subset V_{s+t}^{q-1} \tag{10}
\end{equation*}
$$

Proof. The terms of degree $\leqq q$ in the Taylor expansion of a product $f g$ come from terms in the expansions of f and g of degree $\leqq q$, and if $f(0)=0$ then only terms in g of degree $<q$ contribute. This gives (7) which implies (8). Since $e_{I}\left(F_{t}^{q}\right) \subset$ $F_{t-|| |}^{q-1}$ we also obtain (9) which implies (10) since a bracket $[X, Y]$ is formed by letting X operate on the coefficients of Y and Y on the coefficients of X.

Proof of Theorem 5. We shall prove inductively for $q=0,1, \ldots$ that

$$
X_{[I]} \in V_{-|I|}^{q}, \quad X_{[I]}-Y_{[I]} \in V_{1}^{q}-|I|
$$

Here I is arbitrary, but (11) is obviously valid if $|I|>r$, since any vector field has weight $\geqq-r$. Moreover, the vectors $X_{[J]}(0)$ with $J \in B$ form a basis for \mathbf{R}^{p} so we have for any I with $|I| \leqq r$

$$
X_{[I]}(0)=\sum_{J \in B} c_{I J} X_{[J]}(0)
$$

Since X_{1}, \ldots, X_{n} are free of order r we may assume that $|J|=|I|$ in the sum and conclude that the same equation is valid everywhere for any vector field, in particular for X or Y. Thus (11) follows for all I if it is valid when $I \in B$.

If we multiply the identity (6) and the corresponding equation for $Y_{[I]}$ by ad e_{I} we obtain the equations

$$
\begin{equation*}
e_{I}=X_{[I]}+\sum_{K \in B} u_{K} \text { ad } e_{I} X_{[K]}=Y_{[I]}+\sum_{K \in B} u_{K} \text { ad } e_{I} Y_{[K]}, \quad l \in B . \tag{12}
\end{equation*}
$$

In particular we have

$$
X_{[I]}(0)=Y_{[I]}(0)=e_{I}, \quad I \in B
$$

which proves (11) when $q=0$. In what follows we assume that (11) is proved for a certain $q \geqq 0$ and want to prove (11) with q replaced by $q+1$. To do so it is in view of (12) and (8) sufficient to prove that for arbitrary $I, J \in B$

$$
\begin{equation*}
W=\operatorname{ad} X_{[J]} e_{I} \in V_{-(|I|+|J|)}^{q}, \quad Z=\operatorname{ad}\left(X_{[J]}-Y_{[J]}\right) e_{I} \in V_{1}^{q}-(|I|+|J|) \tag{13}
\end{equation*}
$$

If the first equation (12) is multiplied by ad $X_{[J]}$ we obtain

$$
\begin{equation*}
W=\operatorname{ad} X_{[J]} X_{[I]}+\sum_{K \in B} u_{K} \text { ad } X_{[J]} \text { ad } e_{I} X_{[K]}+\sum_{K \in B} X_{[J]}\left(u_{K}\right) \text { ad } e_{I} X_{[K]} \tag{14}
\end{equation*}
$$

and (12) gives

$$
\begin{equation*}
X_{[J]}\left(u_{K}\right)-\delta_{J K}=-\sum_{L \in B} u_{L} \operatorname{ad} e_{J} X_{[L]}\left(u_{K}\right) \tag{15}
\end{equation*}
$$

Now u_{L} ad $e_{J} X_{[L]} \in \stackrel{0}{V}_{-|J|}^{q}$ by (10) and (8) so the right hand side of (15) is in $\stackrel{0}{F}_{|K|-|J|}^{q}$ by (9). Since ad $e_{I} X_{[K]} \in V_{-(|I|+|K|)}^{q-1}$ it follows that the second sum in (14) is congruent to ad $e_{I} X_{\mathrm{IJ}}=-W$ modulo $V_{-(I|+|J|)}^{q}$. By the Jacobi identity and the induction hypothesis we have ad $X_{[J]} X_{[D]} \in V_{-(I|+| J)}^{q}{ }^{\text {a }}$ which proves that

$$
\begin{equation*}
W \equiv-W+\sum_{K \in B} u_{K} \text { ad } X_{[J]} \text { ad } e_{I} X_{[K]} \text { modulo } V_{-(|I|+|J|)}^{q} . \tag{16}
\end{equation*}
$$

The term in the sum can be rewritten as follows

$$
\begin{gathered}
u_{K} \text { ad } X_{[J]} \text { ad } e_{I} X_{[K]}=-u_{K} \text { ad } X_{[J]} \text { ad } X_{[K]} e_{J} \\
=-u_{K} \text { ad } X_{[K]} \text { ad } X_{[J]} e_{I}-u_{K} \text { ad }\left(\left[X_{[J]}, X_{[K]}\right]\right) e_{I} .
\end{gathered}
$$

The last term is in $V_{-(|I|+|J|)}^{q}$ by the Jacobi identity (10) and (8) so (16) gives

$$
\begin{equation*}
2 W \equiv-\sum u_{K} \text { ad } X_{[K]} W \text { modulo } V_{-(|I|+|J|)}^{\mathbf{q}} \tag{17}
\end{equation*}
$$

Using (6) we can replace $X_{[K]}$ by e_{K} here, for

$$
\begin{gather*}
\sum u_{K} \operatorname{ad} X_{[K]} W=\sum \operatorname{ad}\left(u_{K} X_{[K]}\right) W+W\left(u_{K}\right) X_{[K]} \tag{18}\\
=\sum \operatorname{ad}\left(u_{K} e_{K}\right) W+W\left(u_{K}\right) X_{[K]}=\sum u_{K} \operatorname{ad} e_{K} W+\sum W\left(u_{K}\right)\left(X_{[K]}-e_{K}\right) .
\end{gather*}
$$

The last term is in $V_{-(|I|+|J|)}^{q}$ by (8), since $W\left(u_{K}\right) \in F_{|K|-|I|-|J|}^{q-1}$ and $X_{[K]}-e_{K} \in \stackrel{0}{V}_{-|K|}^{q}$. Hence

$$
\begin{equation*}
T W \in V_{-(|I|+|J|}^{q} \quad \text { if } \quad T W=2 W+\sum u_{K} \text { ad } e_{K} W \tag{19}
\end{equation*}
$$

But T just multiplies terms of degree μ in the Taylor expansion of W by $2+\mu$ so the first part of (13) follows.

To prove the second part of (13) we multiply the equations in (12) by ad $X_{[J]}$ and ad $Y_{[J]}$ and subtract. Since ad $X_{[J]} X_{[I]}-\operatorname{ad} Y_{[J]} Y_{[I]} \in V_{1-(I I]+\mid J)}^{q}$ by the Jacobi identity and the inductive hypothesis, we obtain

$$
\begin{equation*}
Z \equiv \sum_{K \in B} \operatorname{ad}\left(X_{[J]}-Y_{[J]}\right)\left(u_{K} \operatorname{ad} e_{I} X_{[K]}\right)+\sum_{K \in B} \operatorname{ad} Y_{[J]}\left(u_{K} \operatorname{ad} e_{I}\left(X_{[K]}-Y_{[K]}\right)\right) \tag{20}
\end{equation*}
$$

This congruence and the following ones are modulo $V_{1-(|I|+|J|)}^{q}$. We have already proved that $X_{[K]} \in V_{-|K|}^{q+1}$, hence ad $e_{I} X_{[K]} \in V_{-(I I+|K|)}^{q}$ by (10) and u_{K} ad $e_{I} X_{[K]} \in$ $\stackrel{V}{V}_{-|I|}^{q+1}$ by (8) so the first sum in (20) is $\equiv 0$ by (10). Since ad $e_{I}\left(X_{[K]}-Y_{[K]}\right) \epsilon$ $V_{1-|I|-|K|}^{q-1}$ by (10) we have by (8) that u_{K} ad $e_{I}\left(X_{[K]}-Y_{[K]}\right) \in V_{1-\mid I]}^{q}$. Now $Y_{[J]}-e_{J}$ $\epsilon V_{-|J|}^{q+1}$ so (20) gives in view of (10)

$$
\begin{equation*}
Z \equiv \sum_{K \in B} \text { ad } e_{J}\left(u_{K} \text { ad } e_{I}\left(X_{[K]}-Y_{[K]}\right)\right)=-\operatorname{ad} e_{J}\left(X_{[I]}-Y_{[I I}\right) \tag{21}
\end{equation*}
$$

where the equality follows from the fact that $\left[\operatorname{ad} e_{I}, u_{K}\right]=\delta_{I K}$ and that $\sum u_{K}\left(X_{[K]}-Y_{[K]}\right)=0$. Thus.

$$
\operatorname{ad}\left(X_{[J]}-Y_{[J]}\right) e_{I} \equiv-\operatorname{ad} e_{J}\left(X_{[I]}-Y_{[I]}\right)=\operatorname{ad}\left(X_{[I]}-Y_{[I I}\right) e_{J}
$$

If we use this in the sum in (21) we obtain

$$
\begin{gathered}
Z \equiv \sum_{K \in B} \text { ad } e_{J}\left(u_{K} \text { ad } e_{K}\left(X_{[I]}-Y_{[I]}\right)\right) \\
=\operatorname{ad} e_{J}\left(X_{[I]}-Y_{[I]}\right)+\sum u_{K} \text { ad } e_{K} \operatorname{ad} e_{J}\left(X_{[I]}-Y_{[I]}\right)
\end{gathered}
$$

for e_{J} and e_{K} commute. We can interchange I and J on the right hand side which gives $T Z \equiv 0$ with the notation in (19), hence $Z \equiv 0$, which completes the proof.

References

1. Rothschild, L. P. and Stein, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247-320.
2. Witt, E., Treue Darstellung Liescher Ringe. J. Reine Angew. Math. 177 (1937), 152-160.

Received March 14, 1977; in revised form August 25, 1977.

Lars Hörmander and Anders Melin Dept. of Mathematics Box 725 S-220 07 Lund Sweden

