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In a recent paper Rothschild and Stein [1] have shown how systems of vector 
fields with commutators of  maximal rank can be made free by introduction of  
auxiliary variables. In this note we shall give a short and elementary proof  of  this 
result (Theorem 4) and also of  their theorem on approximation of  the vector fields 
so obtained by left invariant vector fields on nilpotent Lie groups (Theorem 5). 

Let X x . . . . .  X, be C ~ vector fields near 0 in R o. By ad X we denote the linear 
operator sending Y to IX, Y] when X and Y are vector fields. For  a sequence 
I=(i l  . . . .  , ik) of  k=[ I I  integers between 1 and n we shall write 

Xx = )(/1... Xik, X[~] = ad Xil ... ad Xi~_, AT, k. 

Thus Xti ] is a vector field and X I is a differential operator of  order IIF, Xvl =X~ =X~l 
if II1=1. There are automatic relations between the vector fields Xtt ] such as 
adX~lXi + a d  XtX~=O and the Jacobi identity. Writing out X m explicitly gives 
for arbitrary vector fields 

(1) 

where AIj=O when IIl#lJI 
for arbitrary vector fields Xj 

(2) 

Xtn = Z A~jX~ 

and A u = 6 t s  when [ I { = l J l = l .  It  follows that 

~ t  aiA1s = 0 for all J ~  azXu] = O. 

Definition 1. )(1 . . . . .  X. are called free or order s at 0 if 

z~ltl~sazXff](0) = 0 :--~ ~lz l~s  axAis = O, ]JI ~ s. 

The following proposition is essentially contained in Witt's theorem [2] but 
we give a direct elementary proof. 

Proposition 2. X 1 . . . . .  X.  are free of  order s at 0 i f  and only i f  for arbitrary 
cl, [II<-s, it is possible to find uEC ~ satisfying 

(3) XIu(O) = c~, llI ~- s. 
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Proof. a) Assume that (3) can always be solved. I f  ~lt!~_saiXtr](0)=0 then 

(1) and (3) give ~iIl~sa1A1scs=O for arbitrary c s, hence ~aIAH=O, IJl<=s. 
(b) Assume that X1 . . . .  , Xn are free of  order s. By induction with respect to j ,  1 <=j -<_s, 
we shall prove that one can find u such that 

(4) Xux] " ' "  X[Iv]U(O) = Z AI1J1 ... Zlvjvcj1.. .Jv,  

i f  v <_-j, I I l 1 + . . . + 1 I v l  -<- s. 

When v =  s this is the same as (3). For  j = 1, thus v = 1, the equations (4) mean 
that  

~alIl~_s alX[1]u(O) = ~ a lA tac j .  

Since X1 . . . . .  X, are free of  order s, a linear form is uniquely defined by 

Zl~l~-s a~xtn(0) -~ Z a~.4,jcj 

on a subspace of the tangent space at 0. I f  we let du(O) be an extension to all of  
R p, the assertion is proved when j = l ,  so we may assume j > l  and that there 
is a solution uo of  (4) with j replaced by j - 1 .  Set U=Uo+V where v vanishes of  
order j at 0. Then the equations (4) with v<j  are fulfilled. With p=vtJ)(0), which 

may  be any symmetric j linear form, the remaining equations (4) are 

p(X[ll] . . . . .  Y[lj]) : 2 AIxJ1 "'" a l j j j  cjl...Jj 
(4)'  

- X u l ]  ... Xt1jau0(0) = d,1...i,; [ I l l+ . . .+ l l j [  <= s. 

By the Jacobi identity adXt i ]=(adX) t r ]  so a commutator  [Xtr], Xtrl] is a linear 
combination of  commutators of  length 1I'1+[I"1- It  is therefore clear that  dzl...~ a 
is symmetric in the indices. Choose a minimal set B of  sequences I with II[<-s 
such that {Xtt](0)}l~ B span the same space at 0 as all Xt~ ] with IIl<-s. When 
Illl<=s we can write 

Xtm(0) = Z t ~ n  aIXttl(0) 

with 111=1111 in the sum, and this implies Az~j=~BaiAis,  IJl<=s, since Xi are 
free of  order s. Hence it suffices to satisfy (4)" when ItEB, and similarly we may  
assume I~ . . . . .  IjEB. But in a basis containing Xtj](0), IEB, this means just that 
some coefficients of  the multilinear form p are given in a symmetric way, so the 
existence of  v is obvious. 

Proposition 3. Suppose that X1, ..., Xn are free of order s~  1 but not of order 
sat  O. Then one can find vector fields ,~j in R p+I of the form 

L = X1 + u~ OlOt, 

where uj~ C=(RP), such that the .Yj remain free of  order s -  1 and for every r >= s the 
number of linearly independent vectors Sgti](0) with [I[<=r is one unit higher than 
the number of linearly independent Xti](0), [II~_r. 
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Proof. Induction with respect to [II gives for some utEC~(R p) 

.gt,l = x t , j  + u~ a/at. 

It  follows that the number of  linearly independent ~[t] with IIl<=k is at least as 
large as the number of  linearly independent Xti I with IIl<=k, and since this is 

maximal when k = s -  l, it follows that the s are free of  order s -  1. It  remains to 
show that we can choose u i so that O/Ot is a linear combination of s  III -< s. 
This means that we must find at, II[<=s, so that 

(5) Z atXtl](0) = o, ~ '  at~t t](0)  r 0. 

By hypothesis one can find at with ~ a t A t s r  for some J, [Jl<=s, so that the 
first condition is fulfilled. Now we let 

Z a ,  s = Z at Atj  

operate on the function t, noting that s  =X~uj. By Proposition 2 we can choose 

uj so that Xjuj(O) have arbitrary values for IJl< s. Hence 

atAt, j jXjuj(O) = ~ a t ~ t n t ( 0 )  

is not 0 for every choice of  u j,  which completes the proof. 

Theorem 4. Suppose that X1, .. . ,  X n are vector fields in R p such that for some 
r the vectors Xtt](0 ) with IIl<=r span R p. Then there exist an integer m andvector 
fields ~k in R p+m of the form 

"~k = X k + Z •  UKj(X, t)a/atj 

which are free of  order r, such that ~ti](0) span R p+m when IIl<=r. 

Proof. The hypothesis implies that the dimension p is bounded by the rank 
of  the matrix Atj( l I  1, ] J l~ r ) .  Ir  also implies that the hypothesis of  Proposition 3 
is fulfilled with s =  1 at least, unless Xa, .. . ,  Xn are already free of  order r. It  is 
then possible to lift the vector fields Xj according to Proposition 3 so that the hypo- 
theses of  the theorem are fulfilled by the new vector fields. After a finite number  
of  steps we must therefore obtain vector fields which are free of  order r. 

We shall now examine the properties of  the vector fields ffl . . . .  , )~n obtained 
in Theorem 4. Changing the notations we assume that )(1 . . . . .  X~ are now C ~ 
vector fields in a neighbourhood of 0 E R p which are free of  order r and whose com- 
mutators of  order <= r span R p. Let B be a subset o f  the set of  sequences I of  length 
<=r such that the vectors Xtfl(0 ) with IEB form a basis for R p. The map 

R B 9(ul)t~B ~ (exp Z B  u, Xttl)(O)E Re 

gives a system of  coordinates indexed by B such that 

(6) Z B ut X[t] = Z n utel 
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where ez=O/Ou t. We assign the weight lll to the coordinates uz and - [ I I  to el. 
Thus a C ~ function is said to have weight => s at 0 if the Taylor expansion at 0 
contains no term au11.., ulk with a ~ 0  and [Ill+...+[Ik[<s, and a vector field 
Y=~Bfwex is said to have weight =>s is f t  has weight =>s+]II for every IEB. 
(In [1, p. 272] Y is then said to have local degree <= - s.) By F ff and V~ we shall 
denote respectively the set of  C = functions and vector fields such that this is true 
for all terms in the Taylor expansion of  degree <=q. The subsets of  elements 

o o 
vanishing at 0 will be denoted F ff and V q. 

The following theorem implies Theorem 5 of  Rothschild--Stein [1] if one 
takes for Yi left invariant vector fields from the appropriate nilpotent Lie group. 

Theorem5.  The vector fields Xl, l<:i<:n, have weight -1.  I f  Y1,..., Y, is 
another system of vector fields satisfying (6) in a neighbourhood of O, then X~- Y~ 
has weight >:0. 

In the proof  we need the following lemma. 

Lemma 6. The following inclusions are valid: 
o o 

(7) F2F~cF}+t, F~F~-ZcF~+,, 
0 0 0 0 

q (8) F2VtacV~+t, F}Vtq-lcV~+,, F~-IV~qcV, q+t, 
o o 

(9) V~q-z(Ftq)c r2gt z, V~(Ft~)cF~+t, 
o 

(10 )  [V~q, v t q ] c  Vsq4~ 1, [Vs q, Vtq-1] c Vsq+"t 1 . 

Proof. The terms of  degree --<_ q in the Taylor expansion of a product fg come 
from terms in the expansions o f f  and g of degree <-q, and if f ( 0 ) = 0  then only 
terms in g of degree < q  contribute. This gives (7) which implies (8). Since e~(Ftq)c 
Ftq_~ 1, we also obtain (9) which implies (10) since a bracket [X, Y] is formed by 
letting X operate on the coefficients of  Y and Y on the coefficients of X. 

Proof of Theorem 5. We shall prove inductively for q=0 ,  1 . . . .  that 

(11) XtzlE V_~III , X[I]- Y[IIE Vx~_I/I. 

Here I is arbitrary, but (11) is obviously valid if ]I[ >r ,  since any vector field has 
weight =>-r .  Moreover, the vectors Xrj3(O) with J~B form a basis for R v so we 
have for any I with ]I[~_r 

xul(0) = c , , X u l ( o ) .  

Since X z . . . .  , X, are free o f  order r we may assume that IJI =II]  in the sum and 
conclude that the same equation is valid everywhere for any vector field, in particular 
for X or Y. Thus (11) follows for all I if  it is valid when ICB. 
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If we multiply the identity (6) and the corresponding equation for Yttj by ad e~ 
we obtain the equations 

(12) et = XE1a+z~ren urad ezXEK ~ = YUl+2?K~B uKad ezY~r ~, I~B. 

In particular we have 
xua(0)  = Yuj(0) = e~, IC B, 

which proves (II) when q=0 .  In what follows we assume that (11) is proved for 
a certain q ~ 0  and want to prove (11) with q replaced by q+l .  To do so it is in 
view of  (12) and (8) sufficient to prove that for arbitrary I, J ~ B 

(13) W =  adXtslex6. V2(l~l+lll ), Z = ad(Xtsl-Yt.~l)eiE Va~_(lll+lJi). 

I f  the first equation (12) is multiplied by ad Xts J we obtain 

(I4) W = ad Xt~qXt11+~,K~ a ut~ ad Xt~ 1 ad e~Xtx J +2,K~n XtjI(UK) ad ezXttcl, 

and (12) gives 

(15) Xtsl (ux)-- 6JK = -- .~  L ~ B UL ad e s Xtz I (uK). 

Now uLad ezXtzlE I~_lz I by (10) and (8) so the right hand side of  (15) is in ~'lql_lj~ 
by (9). Since q-1 adezXtx~6 V_(Izl+l~l ) it follows that the second sum in (14) is con- 

q gruent to a d e t X t . q = - W  modulo V~<lti+lji ). By the Jacobi identity and the 
q induction hypothesis we have adXtjlXttl6V_(itl+lji ) which proves that 

(16) W =-- - W+ ~---~reB ur ad Xtj ]ad etXtr ] modulo V~(ttt+tjt~. 

The term in the sum can be rewritten as follows 

ux ad Xtl Iad ex XtKj = - ux ad Xt~ J ad X~x J el 

= - u  K ad Xtx ]ad Xt.~let-u K ad ([Xtj], Xt~j])el. 

q by the Jacobi identity (10) and (8) so (16) gives The last term is in Vq(lZ]+lji ) 

(17) 2W -- --z~ ux ad Xtx~W modulo V2(lx I + ISl)" 

Using (6) we can replace Xth q by e x here, for 

(18) 2 '  ux ad Xtr~W = ~ '  ad (uxXtx~)W+W(ux)Xtx ~ 

= 2 '  ad (u~ex)W+W(ux)Xtg ~ = ~ u~ ad ex W + 2 "  W(u~)(Xtx~- ex). 
o 

- Y(ttO- exE vq Ixl" The last term is in Vq(itl+lsl ) by (8), since W(ux)(=Fl~l~lll_lj I and q 
Hence 

(19) TW~V~IzI+IJI) if T W =  2W+2"u~ade~l~ .  
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But T just multiplies terms of  degree/ l  in the Taylor expansion o f  W by 2+i t  so 
the first part of  (13) follows. 

To prove the second part of  (13) we multiply the equations in (12) by ad Xts l 
and ad Yts~ and subtract. Since ad Xt~lXm--ad Y[j]Y[I]~ Vlq-(llt+lj[) by the Jacobi 
identity and the inductive hypothesis, we obtain 

(20) Z ------- ,-~Yres ad (2"is I - Ytsl)(ur ad etXtK])+ZKeB ad Ytsj(ux ad eI (Xfxj-  Y[rj)). 

q This congruence and the following ones are modulo V~_(itl+lsl ). We have already 
proved that XtmEV q+l hence ad q eiXtxlEV_(llt+trl ) by (10) and urade1XtrlE - I g l  ' 

0 

Vq_~/~ by (8) so the first sum in (20) is ----0 by (10). Since ade,(XtKl--Ytrj)6 
q - - 1  V~LI~I. V~I_III_IKI by (10) we have by (8) that urade t (Xtr j -Y[r l )E  Now Ytsl-es  
0 

6 Vq+l-lsl so (20) gives in view of (10) 

(21) Z ---= Z r e  nad  es (uK ad ez(Xtx J -  Yt~l)) = - ad e s (X m -  Ym) 

where the equality follows from the fact that [adex, ux]=bxr and that 

• u  K (Xt~ 1 -  Yt~l)=0. Thus. 

ad (Xts 1 -  Ytsj) er - - ad es ( X m -  Ym) = ad (X m -  Ym) es. 

I f  we use this in the sum in (21) we obtain 

Z =__ ~ ' ~ a  ad es(ur ad er (X t , ] -Ym) )  

= ad ej (X m - Y m ) +  ~ '  ur  ad er ad es (X m - y m ) ,  

for e s and e x commute. We can interchange I and J on the right hand side which 
gives T Z = O  with the notation in (19), hence Z - 0 ,  which completes the proof. 
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