Free systems of vector fields

Lars Hormander and Anders Melin

In a recent paper Rothschild and Stein [1] have shown how systems of vector
fields with commutators of maximal rank can be made free by introduction of
auxiliary variables. In this note we shall give a short and elementary proof of this
result (Theorem 4) and also of their theorem on approximation of the vector fields
so obtained by left invariant vector fields on nilpotent Lie groups (Theorem 5).

Let X, ..., X, be C~ vector fields near 0 in R?. By ad X we denote the linear
operator sending Y to [X, ¥] when X and Y are vector fields. For a sequence
I=(y, ..., i) of k=|I| integers between 1 and n we shall write

XI':X'il"'XVikS X'[I]=adA,il...adX'

-1

Thus X, is a vector field and X; is a differential operator of order |I|, Xi;=X,=X;
if |[I|=1. There are automatic relations between the vector fields X;;, such as
adX; X; +ad X; X; =0 and the Jacobi identity. Writing out X, explicitly gives
for arbitrary vector fields

6] X[I] = 2 A X;

where A;;=0 when |I|#|J| and A4;,=6;; when [[|=|J|=1. It follows that
for arbitrary vector fields X;

21 a,A” =0 for all J=>2 a,XU] =0.
Definition 1. Xy, ..., X, are called free or order s at 0 if
(2) Z|I|§s a,Xm(O) =0 =>2|I|§s aIAU = O, IJ[ =5.

The following proposition is essentially contained in Witt’s theorem [2] but
we give a direct elementary proof.

Proposition 2. X, ..., X, are free of order s at 0 if and only if for arbitrary
¢r, [I|=s, it is possible to find ucC* satisfying

3) Xu@©) =c¢, |I|=s.
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Proof. a) Assume that (3) can always be solved. If 3, a;X;;;(0)=0 then
(1) and (3) give 3.,ar4;;¢;,=0 for arbitrary c¢;, hence 3 a;A4;,=0, [J|=s.
(b) Assume that X, ..., X, are free of order 5. By induction with respect to j, 1 =j=s,
we shall prove that one can find u such that

Q) X - X ju(©0) = 2 Apgy o Arys,6y0 005
if v=j, |Ij+...+|}=s.
When v=y this is the same as (3). For j=1, thus v=1, the equations (4) mean
that
2|1|§s a; Xinu©) = X ar ¢,

Since Xj, ..., X, are free of order s, a linear form is uniquely defined by
2|I|.S_s arXn(0) ~ 2 arAy;¢y

on a subspace of the tangent space at 0. If we let du(0) be an extension to all of
R?, the assertion is proved when j=1, so we may assume j>1 and that there
is a solution u, of (4) with j replaced by j—1. Set u=u,+v where v vanishes of
order j at 0. Then the equations (4) with v<j are fulfilled. With p=v¥(0), which
may be any symmetric j linear form, the remaining equations (4) are

P(X[h]’ tevo X[I,]) = Z Allh AIijc.h...Jj

@
=Xy - X[Ijluo(o) =dy, .1, | +...+|L] = .

By the Jacobi identity ad X;;;=(ad X);;; so a commutator [X;.,, X[;~] is a linear
combination of commutators of length |I’|+|I”|. It is therefore clear that d; ,
is symmetric in the indices. Choose a minimal set B of sequences I with |[|=s
such that {X;(0)},cp span the same space at 0 as all Xj;; with |I|=s. When
|I,|=s we can write

X (0) = 2rep ar Xin(0)

with |I|=]I,| in the sum, and this implies Ay =214y, [J|=s, since X; are
free of order s. Hence it suffices to satisfy (4)" when I,€B, and similarly we may
assume I, ..., I;¢B. But in a basis containing X;1,(0), /€ B, this means just that
some coefficients of the multilinear form p are given in a symmetric way, so the
existence of v is obvious.

Proposition 3. Suppose that X,, ..., X, are free of order s~1 but not of order
s at 0. Then one can find vector fields X; in R?** of the form
f,- = X;+u;0/ot,

where u;€ C*(RP), such that the X ; remain free of order s —1 and for every r = s the
number of linearly independent vectors X;1,(0) with |I|=r is one unit higher than
the number of linearly independent X;1;(0), |[I|=r.
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Proof. Induction with respect to |7] gives for some u;€C™(RP)
Y[[] = X[1]+u13/(9t.

It follows that the number of linearly independent X;; with |[I|=k is at least as
large as the number of linearly independent X;; with |I|=k, and since this is
maximal when k=s—1, it follows that the fi are free of order s—1. It remains to
show that we can choose #; so that 9/9¢ is a linear combination of £;1,(0), [/|=s.
This means that we must find a;, |I|=s, so that

&) 2 Xin(0) =0, 3 a;Xn(0) =0.

By hypothesis one can find a; with > a;4;;#0 for some J, |J|=s, so that the
first condition is fulfilled. Now we let

SauXin=2adyX,
operate on the function 7, noting that X;;z=X,u;. By Proposition 2 we can choose
u; so that X;u;(0) have arbitrary values for |J|<s. Hence

2 arAp, 5 X;u;(0) = 3 ap Xnt(0)
is not O for every choice of u;, which completes the proof.

Theorem 4. Suppose that X,, ..., X, are vector fields in RP such that for some
r the vectors X;p,(0) with |I|=r span RP. Then there exist an integer m and vector
fields X, in RP*™ of the form

X = X+ 37 u(x, 0)0)0
which are free of order r, such that X;;;(0) span R?*™ when |I|=r.

Proof. The hypothesis implies that the dimension p is bounded by the rank
of the matrix A, (JI|, |J|=r). Ir also implies that the hypothesis of Proposition 3
is fulfilled with s=1 at least, unless X, ..., X, are already free of order r. It is
then possible to lift the vector fields X; according to Proposition 3 so that the hypo-
theses of the theorem are fulfilled by the new vector fields. After a finite number
of steps we must therefore obtain vector fields which are free of order r.

We shall now examine the properties of the vector fields X, ..., X, obtained
in Theorem 4. Changing the notations we assume that X, ..., X, are now C~
vector fields in a neighbourhood of 0€ R? which are free of order r and whose com-
mutators of order =r span RP. Let B be a subset of the set of sequences I of length
=r such that the vectors X{;;(0) with 7¢B form a basis for R?. The map

R®3(upres —~ (exp > 5 ur Xin)(Q€R”
gives a system of coordinates indexed by B such that
(6) 2 Xuy = pure
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where e;=d/du;. We assign the weight |I| to the coordinates u; and — [I] to e;.
Thus a C= function is said to have weight = s at 0 if the Taylor expansion at 0
contains no term au, ...u, with a»0 and |[f]+...+|f[<s, and a vector field
Y =2, fie; is said to have weight =s is f; has weight =s+|I| for every I€B.
(In [1, p. 272] Y is then said to have local degree = —s.) By FZ and V? we shall
denote respectively the set of C= functions and vector fields such that this is true
for all terms in the Taylor expansion of degree =g. The subsets of elements

vanishing at 0 will be denoted Igs" and Io/sq.
The following theorem implies Theorem 5 of Rothschild—Stein [1] if one
takes for Y; left invariant vector fields from the appropriate nilpotent Lie group.

Theorem 5. The vector fields X,, 1=i=n, have weight —1. If Y,,..., Y, is
another system of vector fields satisfying (6) in a neighbourhood of 0, then X,—Y,
has weight =0.

In the proof we need the following lemma.

Lemma 6. The following inclusions are valid:

™ FFACFS,,, FIFEICFY,,

®) FEVICVS,, FiVa-icVs, Fevachy,,
© VaN(FOCFiz2, VA(F)CFL,,,
(10) W VACVE:, V8 Ve Va

Proof. The terms of degree =¢ in the Taylor expansion of a product fg come
from terms in the expansions of f and g of degree =g, and if f(0)=0 then only
terms in g of degree <g¢ contribute. This gives (7) which implies (8). Since e,(Ff)c
FZ}, we also obtain (9) which implies (10) since a bracket [X, Y] is formed by
letting X operate on the coefficients of ¥ and Y on the coeflicients of X.

Proof of Theorem 5. We shall prove inductively for g=0, 1, ... that
(1n Xn€Va, Xin—Yin€hiy-

Here [ is arbitrary, but (11) is obviously valid if [I|>r, since any vector field has
weight = —r. Moreover, the vectors X;;,(0) with J¢B form a basis for R? so we
have for any I with |I|=r

Xin(©0) =3 se8 Cr Xen(0).

Since X, ..., X, are free of order r we may assume that |J|=|I| in the sum and
conclude that the same equation is valid everywhere for any vector field, in particular
for X or Y. Thus (11) follows for all I if it is valid when I¢B.
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If we multiply the identity (6) and the corresponding equation for Yy, by ad ¢;
we obtain the equations
(12 e =X+ icpuxade X = Yin+ 2 eptxad e Yixy, I€B.

In particular we have
Xin(0) = Y;;(0) = ¢, I€B,

which proves (11) when ¢g=0. In what follows we assume that (11) is proved for
a certain g=0 and want to prove (11) with g replaced by g+1. To do so it is in
view of (12) and (8) sufficient to prove that for arbitrary I, J€B

(13) W =ad Xyner€ V40, 2 =adXn—Yyder€ g+ -
If the first equation (12) is maltiplied by ad X;,; we obtain
(14) W =ad X1 Xi1+ 3 g p ux ad Xpyyad ey Xppy+ > g p Xin(ug) ad er X,
and (12) gives
1s) Xin(e)—0ix =—2 Lepurad e; X (ug).

o
Now u,ade,; X,,€ 7%, by (10) and (8) so the right hand side of (15) is in F%,_,
by (9). Since ad e, X;,€ V2] ik, it follows that the second sum in (14) is con-
gruent to ad e X;p=—W modulo V.., By the Jacobi identity and the
induction hypothesis we have ad X X;,€V? . ,, which proves that

(16) W=—W+ 2 yeptxad Xyyad e Xy; modulo Vs
The term in the sum can be rewritten as follows
uy ad Xp;yad e; Xy = —uy ad Xjjyad Xige;
= —ug ad Xpgyad Xpyrep—ug ad (X, Xigler .
The last term is in ¥2 ;. by the Jacobi identity (10) and (8) so (16) gives
an W =—3 ugad X;gW modulo V1)
Using (6) we can replace X, by ex here, for
(18) 2 uxad X W = 3 ad (ug Xie) W +W (ug) Xy
= 2 ad (ugex) W+W (ug) Xipy = 2 ugad eg W+ 3 W (ug) (Xixy— €x)-

0
The last term is in V4, ;, by (8), since W(ug)€ Fit iy and Xig—ex€ Vg
Hence

(19) TWG V_q(lll"'l‘”) if TW= 2W+Z uK ad eKW
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But T just multiplies terms of degree u in the Taylor expansion of W by 2+u so
the first part of (13) follows.

To prove the second part of (13) we multiply the equations in (12) by ad X,
and ad Yy, and subtract. Since ad X;;,X;,—ad Y ;1Y 1€ V¥ 14015y DY the Jacobi
identity and the inductive hypothesis, we obtain
(Q0) Z = 3 pad (X — Yy (ux ad e Xig) + 3 ke p 2d Yy (ug ad er(Xixy—Yixy)-
This congruence and the following ones are modulo V{_ . ;- We have already
proved that X €Vely, hence ade X €V, xy by (10) and uyade X €

0

Vet by (8) so the first sum in (20) is =0 by (10). Since ade (Xjg;— Y€

Vil _ ik by (10) we have by (8) that wuyade;(Xx—Yy)€EVi - Now Y—e
[

€V so (20) gives in view of (10)
@D Z = Jgepad e;(ug ad ey(Xpg—Yixy) = —ad ¢, (Xin—Yny)

where the equality follows from the fact that [ade;, ug]=0;x and that
Zux (X[K]“‘Y[K])ZO- ThuS.

ad (X ~Yyper =—ad e;(Xi—Yin) = ad (Xin—Yupes.
If we use this in the sum in (21) we obtain

Z = Z’KGB ad eJ(uK ad eK(X[I]—Y[I]))
= ad e; (X3 —Yin) + > ug ad ex ad e; (X —Yuy),

for e; and e, commute. We can interchange I and J on the right hand side which
gives TZ=0 with the notation in (19), hence Z=0, which completes the proof.
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