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Differential  equat ions  and the Bergman Silov 
boundary  on  the Siegel upper half  plane 

Kenneth D. Johnson* 

1. Preliminaries 

Let I n be the n• identity matrix and set 

The symplectic group Sp(n, R) is defined as the group of 2n• M with 
real entries for which MJ=JM" where M" denotes the transpose of M. The group 
K=O(2n)nSp(n, R) is easily seen to be a maximal compact subgroup of Sp(n, R) 
and the space Sp(n, R)/K=Hn is a (hermitian) symmetric space. The space /-/n 
is called the Siegel upper half plane of rank n and has a geometric realization as 
the space of all complex n• Z for which Z=Z"  and Im Z>0.  

If 

B 

where A, B, C, D are n• then for Z(I-In we define M ( Z ) =  
(AZ+B)(CZ+D)-IEHn. Then K is the subgroup of Sp(n, R) which fixes iIn. 
The Sp(n, R)-invariant metric on/-/, is 

as, -- - tr((z- z)-~ az(z -  z)-~ az) 
and the corresponding Sp(n, R)-invariant Laplacian is given by 

,t = -tr((z- z) Oz(Z- z) oz) 
0 

where for A=A'=(aii) 0A=(0ij) and 01j=~(l+~l)--~--- and the Oz does not 
differentiate the Z - Z  matrix (see Hua [6]). oa~j 

* Partially supported by the National Science Foundation. 
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Of particular interest to us in this paper are the concepts of boundaries of 
H n. Of the many boundaries the most crucial to us are the Furstenberg boundary 
and the Bergman--~ilov boundary. The Furstenberg boundary is the space B=K/M 
where M is the group of diagonal matrices in K and the Bergman--~ilov boundary 
is the space Bo=K/Ko where 

To each of these boundaries there is associated a Poisson kernel and if P: H,• + 
(resp. P.: H n •  +) is the Poisson kernel of/-/~ associated to the Furstenberg 
(resp. Bergman--~ilov) boundary then 

Vo(Z, kKo) = f ~(z ,  kko M) dko. 

Using the fact that the space of all real symmetric n• S~, may be im- 
bedded in B0 so that Bo ~ Sn has measure 0 we have that on H~ • S, (almost every- 
where in H,  X Bo) 

n + l  

det (Z-- Zz) * 
Po(Z, U) = c Idet (Z-U) [  "+1 = c det ( Y + ( X - U ) Y - I ( X - U ) )  -~+~). 

It was first observed by Hua [5] that every entry of the matrix 

D = (Z-- Z) tgz (Z - Z)/)z 

annihilates P0, and it was conjectured by Stein in a more general setting that the 
functions annihilated by D characterize the Bergman--~ilov boundary. That is, 
if Df=O 

f (Z)  = e0(z,  b)F(b)db 

for some functional on Bo. In [7] A. Koranyi and P. Malliavin gave a partial 
affirmative answer to this conjecture by showing that if fELa~(H2) (n=2) and 
d f = A" f =O where 

A'f = ctr(Oz(Z-- Z) tgz)f 
then 

f (Z)  = fno P~ U)F(U) dU 

for some FE Le~ (B0). 
In this paper we again give a partial affirmative answer to this conjecture by 

showing that i f f E ~ ( H n )  ( f  is harmonic in the sense of [1]) and Df=O that 

f ( z )  = eo(Z, U)F(U) dV 

for some F E ~  ~ (B0) (F a functional on Bo). 
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Our techniques differ substantially from those of  [7] in that rather than using 
compound diffusion processes we push our differential equations to the boundary 
B. To do this we use the result of  H. Furstenberg [1] that 

f (Z)  = f B P(Z, b)F(b)db 

for some FEL~'=(B). Under the initial assumption that FEC=(B), we show using 
asymptotic growth that F is in fact in C = (Bo). Our result then follows using the 
fact that if Df=O 

DLgf = 0 (gE Sp (n, R)) 
where Lgf(Z)=f(g-l(Z)) .  

In section 2 we give a brief discussion of the Poisson kernel on a general sym- 
metric space cross its Furstenberg boundary. In section 3 we prove our result under 
the assumption that F is C% and in sections 4 and 5 we complete our proof. 

In another forthcoming paper we shall give a new proof of  the result of Malliavin 
and Koranyi which follows techniques similar to those discussed here. 

2. Convergence properties of Poisson kernels 

Let G be a non-compact semisimple Lie group with finite center. Fix G=KAN 
an Iwasawa decomposition of G. That is, K is a maximal compact subgroup of 
G, A is a maximal vector subgroup of  G consisting of semisimple elements nor- 
malizing N, a maximal simply connected nilpotent subgroup of G. Let M be the 
centralizer of  A in K, and if 0 is the Cartan involution of G which is the identity 
on K, set ON=N, Let also 15, R, ~ ,  ~0l, 9 / a n d  ~i respectively denote the Lie algeb- 
ras of  G, K, A, M, N and N respectively. 

I f  gEG, g may be written uniquely as g=k(g)expH(g)n(g)  (k(g)EK, 
H(g)Eg.I, n(g)EN) and we now define the general Poisson kernel of G/K as a func- 
tion P:G/K•  + by setting 

P(gK, kM) = e -~QR(g-lk) 

where Q is the linear functional on 9.I given by 2Q(H)=tr  (ad H[~) for HEgJ. 
(Note that G/MAN=K/M=B.)  It is a simple matter to show that P is well-defined 
and P is called a Piosson kernel because of the following result. 

Theorem (Furstenberg [1]). Suppose A is the Laplacian of  the G-invariant 
Riemannian metric on G/K. I f  f is a bounded function on G/K for which Af=O 
then there exists FELa~(B)for  which 

f (gK)  = f B P(gK, b) F(b) db 

where db is the K-invariant measure on B normalized so fB rib= 1. 
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Harish--Chandra has shown that for FE~I(K) 

L V(k)dk = L dnfM dme-~o(H(nl)V(k(n)m) 

Thus we obtain for FE,Lel(K/M) 

f g/~te -2o(H(o-lk)) F(kM)dkM = f • e -~~ F(k(fi)M)d~. 

Let 9.I+={HEg.I:adH[~} has all its eigenvalues =>0}. If H~9.1 + let ffi 1 be 
the kernel of  ad H and 922 be the subspace of  92 which is the span of  the positive 
eigenspaces of  a d H .  Then (5=92z+(~x+~2.  

Let 921=ffiln92, ~I1=0921, N2=ex p 922, N2=exp ~I~ and let G1 be the central- 
izer of H in G and /s = Kc~ G1. 

Lemma 2.1. Suppose FE C ~ (B) and 

y(gK) = f B P(gK, b) F(b) db. 

Then for all gEG, fn(g)=limt~=f(gexptHK) exists and is C ~" on G/P where 
P is the group K1ZxN2 where Z1 is the center of G1. In fact, i fg~G 

g = kogxn~ (koEK, g~EG1, n2ENz) 

fn (g) = c frl, , e-  ~ (nta i-x kl)) F(ko k, M) d (k~ M) 

where c= f N ~ e-~e(n(n)) d~ and for H" E A 

2pl (H '  ) = tr(ad H']N~). 

Proof. Art easy calculation yields 

f(g exp tHK) 

= fK1/M dkl M fs, d~z exp-- 20 (H(n~ 1) a~'l k (gll~z go) e-2o(H(97 ~, k~)) F(ko k (~') kx M) 

where a t=ex  p tH and xr=yxy-L Since the product o f  the first and third terms 
on the right handside is C ~ and converges to F(kokl M) uniformly in kx as t-,oo 
and the second term is integrable we obtain 

fn(g) = f K1/M dkxM f d~2e -2Qmarak:') F(koklM) 

= fK:, dkx M fs, d~2 e - 9 ~ n ( a ( o r l  kl)n2 a(#i" X k l ) -  1 e - 2~H(ar ~kx) F (ko kl M) 

where a(g-~kO=exp H(g~lkO and thus our result. 
This result guarantees that fn restricted to G~/K1 is harmonic. The next lemma 

although trivial will be useful. 
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Lemma 2.2. Suppose 1tl, H2E~I + and f as in lemma 2.1. Then 

(fnl)H~(g) = lim fnl(g exp tH2) = fno(g) 

where 1to is any element of  ~ + with the property that 

Ker ad H0 = (Ker ad Hx) n (Ker ad Hz). 

We shall also make use of the following result of Harish--Chandra [2]. 

Lemma 2.3. There is a representation zc of  G with highest weight 2~ (i.e. zc(an)v~Q= 
e2~(t~)v2~ where a=expHEA and nEN) and a K-fixed vector Vo such that 
P(gk, kM)=(zc(g-Xk)vz~, v0) -x where (,) is a positive definite inner product in- 
variant under G0=exp (R+i~)  where ~3 = - 1  eigenspace of O acting on lb. 

Lemma 2.4. For x E G 

1 (p(ga exp tXg~ K, k M ) -  P (gl g2 K, kM)) 
t 

converges uniformly to 

-- 1 (rt (gfl  gi-1 k) vzQ, v0)-2 (zr (g;~ Xg~ 1 k) v~Q, Vo) 

as t~O for kEK and g2, g~ in a fixed compact set. 

The proof follows immediately from the fact that P(gK, kM)>0  for all g 
and k and the simple lemma 

Lemma 2.5. Let A, B be n • n-matrices in a fixed compact set and X and arbitrary 

n• Then as t ~ O , ~ ( A e t X B - A B )  converges uniformly to AXB. 

For XE G and fEC=(G/L), L a subgroup of G, set X f ( g L ) = d f ( e x p -  tXgL)lt= o. 

From Lemma 2.4 it follows that if FE~P(K/M) (l<=p) XEffi and 

f (gK) = __f ~/M P(gK, kM) F(kM) dkM 

that 

Xy(gK) = f ar P(exp- tXgK, kM)I,=oF(kM) dkM. K/M clt 

Unlike the problems of harmonic functions on Euclidean spaces the problem 
of taking radial limits on symmetric spaces causes expansions and contractions 
in some variables and for this reason we shall be forced to differentiate F (when 
possible) instead of P. For this purpose we state 
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L e m m a  2 . 6 .  I f  FE C ~ (B) and )(1, ..., X, E f~ 

sup [)(1 ... X, Lk~F(b)I < oo. 
bEB 

Proof This is obvious by definition. 

Lemma2.7. Suppose FEC=(K/M),  H E ~  +, g I 2 ~  the linear span of  the 
negative eigenspaces of adH,  )(1 . . . .  , X, Eg12, and ~EgI 2. Then, i f  

f (gK)  = f .  P(gK, b)F(b)ab 

(Xx ... X, Lnf)H(g) = c f x lm e-~Ql(n("71k~))(Xx "" X 'LnF) (k~  dkxM 

where F is thought of  as a function on B and e, K1, 01, gt and ko are as in lemma 2.1. 

Proof This follows immediately by direct calculation from lemmas 2.1, 2.6 
and the fact that 

V(exp-- tXg)-- F(g) = f~  (XF) (exp-- sXg) ds. 

Lemma 2.8. Suppose FEC=(B), HEg.I +, )(1, ..., X, Et6t+g22. Then i f  

f(gK) = f . P(gK, b) F(b) db 

and X i = Y ~+ Z  ~ for YiEffil and Z~Egl2 

(Xa ... X,f)H(gl) = Y~ ... Y,(fu)(g0 (glE GO. 

Proof This again follows by direct calculation from lemmas 2.1 and 2.4, the 
boundedness of F and the fact that for e>0  

i e  -(I+8)Q(H(~)) d n  < 00. 

Finally combining lemmas 2.7 and 2.8 we obtain the following. 

Lemma 2.9. Suppose PECk(B), HEg~ +, X 1 . . . X , E ~ ,  Yx . . . . .  Y t E f f h + ~  
and h E N  2 . Then, i f  

f ( g K )  = f P(gK, b)F(b)db 

and 
f(gK) = f P(gK, b) (Xx ... X,L ,  F) (b) db 

we have 
(r l  ... YtX1 ... XrL, f)n(ga) = yo ... yofH(g~) (gxE GO 

for Y~= Y~ + Z~ with Y~ Z~Egl2. 

We are now in a position to return to our study of the differential equations 
Df=O on H..  



Differential equations and the Bergman--~ilov boundary on the Siegel upper half plane 101 

3. A special case 

We now return to consider the Siegel upper half plane. We suppose throughout 
this section t h a t f i s  a bounded function on H,  for which 

Df  = ( Z - ~ ' ) ~ z ( Z - 2 ) 0 z f  = 0 
and that 

f(gK) = f x/u P(gK, kM) F(kM) dkM 

where F~C~(K/M). For this purpose we use the results and general structure 
given in section 2. We leave it as an exercise for the reader to verify the following 
facts. 

1) An Iwasawa decomposition Sp (n, R)=KAN of Sp (n, R) is given by 

1 o1~ / A = : D is an n • n-diagonal matrix with positive entries on the diagonal 

N = ~ Sp(n, R): T is lower triangular with l's on the diagonal . 

2) The Cartan involution 0 which is the identity on K is given by O(X)=X "-1 
for XE Sp (n, R). 

3) M is the set of  diagonal matrices in K. 

I 
t-"' 0 

0 ----" a. 0 

4) ~- '~= ! - -  >- al : a i  = a i + l  "" 

tt ~ n 

Observe also that Sp (n, R) acts transitively on H,  since if Z ( H , ,  Z = X + i Y  
and then gxgr(i)=Z where 

f5 I" / (T J o 
and gr = -~/~ 

Observe also by direct computation or from Hua [6] that if 

(A~ B~ / 
= E Sp (n, R) 

g Co Do 
and g(Z)= W 

Df(rv) = (zc~ + D~)-~D(ZC~ + Dg)Lg-l f (Z)  

where as before ZC~+D~ is not differentiated by D. 
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Now let 

I. 
In keeping with the notation of  section 2 we have 

and 

�9 1-{[o o)} 

{~0 ~ 0 ) } 9ll = - W '  : W is lower triangular with O's on the diagonal . 

Lemma 3.1. Set fu(gxgr)=fH(X, Y). Then 

0 = (Df) n =--YOyYOyfn(X, Y). 

Proof. Now f (gxgrexptHi)=f(X+iY( t ) )  where Y(t)=e-2'Y and Oy(t)= 
e2tOr and since each entry of  gx is in ~ and each entry of  Or is a linear combination 
of elements of  ~ our result follows from lemma 2.9. 

We now have a bounded function fH (X, Y) satisfying the system of  differential 

equations 
YOr YOrfn = O. 

We wish to show that fH is independent o f  Y. To do this we shall again apply 
our results of  section 2. First note that 

fn(X, Y) = c f rdu e--2Qt(Ho;'lk))(Lax F)(kM) dkM 

for some constant c where 01 is as in lemma 2.1. 

Let HIE92 + be the matrix (h~j) where -hu=h._~, ._l= 1 and all other entries 

are 0 and consider the function (fn)Hl(gxgr)=f(X, Y). 
In order to examine this function in more detail it is useful to reparameterize 

the matrix Y > 0  as 

~:  (1 ~ ~1 (; o} (~ ~1 = . ~ ,  
where F (~ resp.) is a vector in R "-a written as a row (column resp.) and 

~--(~ ~/ ao~ ~--{~ ~ 
Ob~orvothat (~ ~O1}~exp~2 w~oronow ~2 is thospanofthonogativooigonvootors 
of ad H 1. 
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where 

(~. ~) 3. 

A simple calculation of Jacobians yields 

0 
Oy 

Oy = 

2 tgh ' " "  2 Ot~x 
and ~ |  is the matrix which sends ~ to 

Now since YOr YOYfH =0 we of course obtain 

DlfH = YOyYOyfH = 0 

and 

, y~ ff-~ q- yt . O, yO,, - 

= I ~ - -- OOy 

where 0to does not differentiate Y0. 
By lemma 2.9 we see that 

[ y . O f n )  = 0  and (yf11) ltl = O. 
k t ly  J H1 

Thus, we see by direct computation that the n - 1  X 1-column operator d 1 in the 
lower left hand corner of D x yields 

(dl fH)m = YoOr.YoYo-10~f = 0 

and the n - l •  D z in the lower right hand corner yields 

(D~f,,).l  = r o O ~ o Y o O J -  rOO~or~ O ~ f ~  ' = o. 

Thus we obtain 

Lemma 3.2. ]1o01.o YOOrof=O, 

Yo~roYooYo~Oif=O, and f is harmonic on the space of  n - l X n - l - m a t -  
rices Yo. 

Lemma 3.3. Suppose q) is a harmonic function on the space o f  positive definite 
nXn-matrices Y for which Y0rY0roq~=0. Suppose also that 

~ ( Y )  = f B e ( r ,  b)~(b)  db 

where B is the Furstenberg boundary o f  the positive matrices and �9 ~ C ~ (B). Then 
r is a constant. 
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Proof We prove our result by induction on the dimension n. If n = 1 the result 
is obvious. So assume the result for n<=r-1. If H=(his ) where h n = - - I  and 
all hlj=O we write O(Y)=O(Yo, y,t) where 

y = ( l  0 ~ ) [ ~  yOo)(~ 0) .  

By lemmas 2.1, 3.2 and induction we see that 0 depends only on ~ and satisfies the 
system of differential equations 

YoOroYooy410~O = 0  = - -  [ r - ~  1] 0~(~ ~ 0 

and hence ~ is also independent of [. Thus ~ is a constant and so q~ is a constant. 

4. Bounded case 

Suppose now that f is a function on H" and Df=O. Throughout this section 
we shall suppose that 

f(Z) = f K, M P(Z, kM)F(kM)dkM 

for FC~2(K/M). We shall show that F is in fact an Z~~ on the Bergman-- 
~ilov boundary of  H, .  

Observe first that if Df=O, D(Lgf)=O since if 

[A1 B1) 
g = C1 D1 

0 = Df(gZ) = (ZC[ +DI)-ID(ZC; +DD(Lg-,f)(Z ). 

So if D=(D,s ) we have that D,S commutes with (ZC~+D" 0 and hence 
Dij(Lg_lf)'=O. Thus we see that if ~ is a continuous function on K 

*rf(Z) = f K a(k)f(k-lZ) dk 
is annihilated by D. 

Let ~ be the set of  equivalence classes of  finite dimensional representations 
of  K and for z~/~ we shall abuse notation and identify an element of  z with z itself. 
Now if zE/~ let 3~,(k)=(deg z)tr z(k). We now have that following facts 

(i) (~, *r f )  (Z) = f K/u P (Z, kM) (~  *r F) (kM) dkM; 

(ii) F=z~,~g(Y.**rF) in 9.~(K/M); 
and 

(iii) f = Z ,  E g ~,*g f in C'~ (H,). 
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(i) is immediate, (ii) is the standard Fourier--Peter--Weyl  decomposition of F, 
and (iii) is proved in Harish--Chandra [3]. 

Theorem 4.1. F E ~ ( B o ) .  

Proof. By our remarks preceeding the theorem we see that Df=O only if 
D(3E,,~cf)=0 for every zE/~. By (i), the fact that 3E,*xFEC'(K/M ) and theorem 
3.1 we have that ~,*~FEC'(Bo). Now since FEAa2(K) and each term is its Fourier 
expansion is a function in the Bergman--~ilov boundary FELa~(Bo). 

As a corollary to this result and Furstenberg's theorem we have 

Theorem 4.2. I f  fE ~ (Hn) and Df= 0 

f = fno P(Z, kM)F(kM)dkM 

for some FE.~ ~ (Be). 

5. Harmonic function 

Suppose now that f is harmonic in the sense of  Furstenberg [1] and Df=O. 
Then df=O if A 1 = 0  and A commutes with characters of  G. Set 

In this section we show that 

L ( Z )  = X, , , ,S(Z)  = f ,o ~'o(Z, b)T,(b)db 

where T~=3~,*xT~ and if we define the functional T on B o by setting for F a func- 
tion on B0 

f . .  F(b) r(b) db = -of,- F(b) r.(b) db 
then 

f (Z)  = f Bo Co(Z, b)T(b) rib. 

Since trDf, . . . . .  trDnf~=O we have that 

f~(Z) = f B P(Z, b)S,(b)db (see appendix) 

for some S~=3E,,~S~, but now S~ is a function on B o by our results in sections 
2 and 3. Thus we obtain our main result. 

Theorem 5.1. I f  f is a function on Hn, Df=O, and df=O for all G-invariant 
A which kill constants then there is a functional T on the Bergman--,~ilov boundary 
Be for which 

f (Z)  = ( _  Po(Z, b)T(b) db. 
. , , %  
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6. Appendix 

Discussion of harmonic functions 

Let G, K, A, M and N be as in section 2 and set X =  G/K. Let M" be the norm- 
alizer of  A in K and W= M'/M be the restricted Weyl group which operates on 
A. Let Do(G/K) denote the ring of  all differential operators on the space G/K which 
commute with left translation by elements of  G. For  z E s let E, = {fE s162 : 

3~*K f = f } .  
We are now in a position to state the main result of  this section. Although 

this result is "known"  in more generality, a precise reference is difficult to give. 

Theorem 6.1. Suppose fECO~ 3s = f and Df =O for all 
DE Do(G/K) which annihilate constants. Then there is a TEE, for which 

f ( g K )  = f K/u e(gK, kM)T(kM) dkM 

Proof For  trEK7 let Co(G/K) be the set of  continuous functions F on G/K for 
which 3E~.~F=F and set C~(G/K)=C~176 and C~*,,(G/K)= 
C~ (G/K)n C,(G/K). Consider the following sesqui-linear form 

C~~174 C~" (G, K) --,- C 
defined by 

g |  ~ (g, f}  = f g(x)f(x) dx. 

Now for DEDo(G/K), (g, D f } = ( D . g , f }  where D* is the formal adjoint of  D. 
I t  is well known that Do(G/K)=C[D1 . . . . .  D~] where l = d i m A  and each 

DiEDo(G/K) annihilates constants. 
We shall now complete our proof  with the aid of  a few simple lemmas. 

Lemma 6.2. Let TE~'(G/K) and Y.,*T=T. Then TEC=(G/K) and DiT=O 
for all i <= I if and only if T(D* h) = 0 for all h E C~ (G/K). 

Proof This is immediate since Do(G/K) contains elliptic operators. 

Thus our solutions to D~f= 0 (i <-l) for fE C~ (G/K) are in one to one corresp- 
ondence with the conjugate linear functionals on C~.,(G/K) which annihilate 

�9 ~I=~ D*C~,, (G/K). 

I f  h E C~, ~ (G/K) we define 

[1 (g) = @(nO)) f ,, h (gnK) dn 

/~ is now a function on G/MN or equivalently on K/M • A and in fact we have that  

hEE~| Furthermore,  if  ~l: d~;'aT=lvj| (vjEE,~, hjECc(A)) and DE 
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Do(G/K) there is a differential operator with constant coefficients A on A for which 

= ~ A tl Dh = Z~ 1 vj| (Z~r vj| 

Thus we obtain the following lemma 

Lemma 6.2. 

Z',=I D*C~,,(G/K) c E ' ,| a*C~(A). 

From Theorem 8.5 of  Helgason [5] we have: 

Lemma 6.4. 

l C~,,(G/K) c~ E,| A*C~*(A) = Z l i = l  D*C~,(G/K). 

Coronary. Let L: E,| be a conjugate linear functional and L = 0  

1 * r on E~ | C c (A). Then L restricted to C~,,, (G/K) defines a function L E C~ (G/K) 
for which DiL=O (1~i<=l). 

I f  QEA* is defined as in section 2 and s EW  then so(H)=Q(s-~H). The con- 
E l * ~ '  jugate linear functionals L on E,| which are 0 on , |  At Cc (A) 

are given as follows: 
For  sE W, vEE, 

L(u| = f K u(k) v(k) dk f a e-SQ('~ da 

for uEE, and t/EC~(A). 
For  hEC~,,(G/K) we obtain 

L ([0 = fK dk fA  dara--~) v (k) e ~Q (lo,,,) 

= f,~ dk f .  da L dnh(kan)v(k)e(q+s~176176 

= fK dkf,, aa fN dnh(kn-la-l)'(k)e'Q-s"(l~ 

- 1 - ( o  + s o ) I t ( x )  = f,: d k f o  dxh(kx )v(k)e dx 

= f d~f~ dkh(~)~-c,*~,)~(~-~)~(k). 

Thus as a function on G/K 

L(X) = f e--tQ+sQ)ntx-*k)v(k) dk. 
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N o w  as L is ha rmon ic  and  

IZ(x)l <-- sup Iv(k)l < oo. 
k6K 

Thus we have f rom Furs t enbe rg  [1] tha t  

L(gK)  = A M  P(gK, k M ) T ( k M )  d k M  

for  some  T~E,.  This completes  the p r o o f  o f  theorem 6.1. 

Added inproof. I t  has been b rough t  to m y  a t ten t ion  tha t  lemmas 2.1. thru  2.5. 

may  be found  or  easily der ived f rom F. I. Karpelevi~ " T h e  geomet ry  o f  geode-  

s ics . . . "  (Trans la t ions  o f  the Moscow Math .  Soc. (1965), 51--199).  F o r  a more  

extensive t rea tment  see A. K o r a n y i  "Po i s son  integrals and  b o u n d a r y  componen t s  

o f  symmetr ic  spaces"  ( Invent iones  Math .  34 (1976), 19--35).  
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